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Part 1: Risk Assessment 
 

What are 
the 

hazards? 
Who might be 

harmed? How could they be harmed? 
What are 

you already 
doing? 

S L Risk 
(SxL) 

Do you 
need to 

do 
anything 
else to 

manage 
this risk? 

S L Risk 
(SxL) 

Additional 
Action 

Required  

Eye 
fatigue/strain 

Student/supervisor Can cause tiredness  
and muscle ache and difficulty sleeping. 

Taking 
regular 
breaks. 

1 5 5 Regular 
breaks, 
exercise 
and 
stretches. 

1 4 4 Switch 
display 
settings to 
“dark mode” 
and reduce 
brightness. 

Back/neck 
strain. 

Student/supervisor Discomfort, reduced mobility, difficulty 
sleeping. 

Take regular 
breaks to 
walk and 
stretch. 

3 5 15 Use a 
suitable 
work chair, 
sit with 
good 
posture. 

3 3 9 See 
doctor/physio 
if problems 
persist. Core 
Strengthening 
exercises. 

General 
household 
injuries (i.e. 
trips, slips, 

Student/supervisor Damage to skin, limbs, head, body. Take care 
when moving 
around. 

5 4 20 Take care 
when 
moving 
around 

5 2 10 Wear suitable 
foorwear. 

Risk Assessment  
College/ PSU College of Science Assessment Date  28/01/2021 
Location SO53/TW2/SA2 Assessor  Wallis James 
Activity Desk Study Review Date (if applicable)  NA 
Associated documents  NA  
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What are 
the 

hazards? 
Who might be 

harmed? How could they be harmed? 
What are 

you already 
doing? 

S L Risk 
(SxL) 

Do you 
need to 

do 
anything 
else to 

manage 
this risk? 

S L Risk 
(SxL) 

Additional 
Action 

Required  

burns). and 
completing 
tasks, 
keep 
pathways 
clear and 
clear up 
spillages. 

Repetitive 
strain injury 
(RSI). 

Student/supervisor Discomfort, reduced mobility, difficulty 
sleeping. 

Take regular 
breaks to 
walk and 
stretch. 

3 5 15 Use a 
suitable 
work chair, 
sit with 
good 
posture. 

1 5 5 See 
doctor/physio 
if problems 
persist. 

Damage to 
equipment. 

Equipment (i.e. 
computers, 
laptops) 

Water damage, screen damage. Cautious with 
liquids and 
moving 
equipment. 

2 5 10 Limit fluids 
around 
equipment, 
use 
protective 
cases. 

2 2 4 Use cups with 
lids, clear 
pathways and 
wear suitable 
footwear to 
avoid trips 
when moving 
equipment 
around. 

Electric 
shocks/fire. 

Student, 
supervisor, 
equipment (i.e. 
computers, 
laptops). 

Check all wiring is intact with no 
loose/exposed connections and that 
sockets are safe. Ensure equipment 
does not overheat. 

Replace 
damaged 
cables and  

5 1 5 Turn off 
equipment 
and allow 
to cool 
down if too 
hot and 
fans are 
straining. 

5 1 5 Potentially 
get electrics 
tested 
regularly by a 
professional.  
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What are 
the 

hazards? 
Who might be 

harmed? How could they be harmed? 
What are 

you already 
doing? 

S L Risk 
(SxL) 

Do you 
need to 

do 
anything 
else to 

manage 
this risk? 

S L Risk 
(SxL) 

Additional 
Action 

Required  

Loss of 
data/files. 

Data and files. Latest progress could be accidentally 
deleted and unretrievable. 

Save work 
regularly and 
have 
backups. 

1 3 3 Save to 
online 
source 
(e.g. 
OneDrive). 

1 2 2 Save and 
email new 
versions of 
documents 
regularly. 

 
 
 
Part 2: Actions arising from risk assessment 

 
Actions Lead Target Date Done 

Yes/No 
Ensured wiring/cables and sockets for all electrical equipment is undamaged and safe. Wallis James 28/01/2021 Yes 

Ensured desk chair is suitable/comfortable. Wallis James 28/01/2021 Yes 

Undergoing regular breaks/exercise to reduce likelihood/impacts of eye fatigue, back and neck strain 
and RSI. 

Wallis James 28/01/2021 
(continuous). 

Yes 

Check workspace is clear and tidy. Wallis James 28/01/2021 
(continuous). 

Yes 

Install and set up online document saving service (OneDrive) and transfer necessary files here. Wallis James 28/01/2021 Yes 
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Risk Matrix 

 
  Consequences 

  1 
Insignificant 
No injuries/ 

minimal financial 
loss 

2 
Minor 

First aid 
treatment/ 

medium financial 
loss  

3 
Moderate 
Medical 

treatment/high 
financial loss  

4 
Major 

Hospitalised/ 
large financial 

loss  

5 
Catastrophic 

Death/ Massive 
Finanical Loss 

Likelihood 

5 
Almost Certain 

Often occurs/ 
once a week  

5 
Moderate 

10 
High 

15 
High 

20 
Catastrophic 

25 
Catastrophic 

4 
Likely 

Could easily 
happen/ once a 

week  

4 
Moderate 

8 
Moderate 

12 
High 

16 
Catastrophic 

20 
Catastrophic 

3 
Possible 

Could happen/ 
happen once a 

year  

3 
Low 

6 
Moderate 

9 
Moderate 

12 
High 

15 
High 

2 
Unlikely 

Hasn’t’ yet 
happened but 
could happen 

2 
Low 

4 
Moderate 

6 
Moderate 

8 
High 

10 
High 

1 
Rare 

Conceivable but 
1/100 year event 

1 
Low 

2 
Low 

3 
Low 

4 
Moderate 

5 
Moderate 
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ABSTRACT 

There are many advantages in determining animal behaviour for conservation 

initiatives seeking to protect species impacted by the changing planet. However, for many 

years, direct observation of elusive or dangerous animals in challenging habitats precluded the 

acquisition of representative, non-biased behavioural data. Recently though, animal-attached 

tag technology incorporating accelerometers, magnetometers and pressure sensors, has greatly 

advanced our abilities to document the behaviour of a numerous vertebrate species (e.g. birds, 

reptiles, fish, mammals), even when they cannot be observed. For this, supervised and 

unsupervised machine learning are often used to categorise behaviours by identifying patterns 

within the biotelemetry data. However, supervised machine learning requires training data, 

which is not always available, and both methods are driven by machine-based software with 

no explicitly defined parameters associated with behaviours which can be cross-checked. This 

work aimed to use a proper physics-based understanding of triaxial accelerometer-, 

magnetometer- and pressure data taken from electronic tags deployed on tiger sharks, 

Galeocerdo cuvier, to interpret patterns and group them into behaviours. As part of this, multi-

modality in frequency distributions of parameters was investigated, on the premise that 

different behaviours can result in different frequency distributions in particular metrics. 

Following examination, algorithms using defined numerical limits were created to isolate 

distinct behaviours and these used to detect the extent of identified patterns within entire data 

sets and across individuals. A total of 12,338 minutes of tag data was processed, from which 

10 behaviours were identified. Seven of these were successfully described using numerical 

metric limits from recorded and/or derived data including; ‘descent’, ‘ascent’, ‘burst power’, 

etc. However, frequency distributions showed a continuum rather than multiple distinct modes, 

indicating that this approach is likely to be more complex than thought. The use of physical 

principles seems a promising method for interpreting accelerometer, magnetometer and 

pressure data to identify behaviours that occur in study animals that cannot be directly 

observed. Although these algorithms are specific to tiger sharks in this work, this method is 

likely to be applicable to other species in aerial, aquatic or terrestrial habitats and could inform 

a broad range of conservations initiatives in the future. 
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LAY SUMMARY 

The way an animal interacts with, and moves within, its natural environment can 

provide insight into its physiological condition, the space it uses (e.g. for feeding, resting, 

mating) and its energy expenditure (and therefore its energy/feeding requirements), along with 

many other factors. An in-depth knowledge of an animal’s behaviour is therefore crucial to 

informing conservation programs that hope to ensure the survival of species.  

A previous challenge with gathering behavioural information from animals was that 

visual observation was needed. Wild animals are often elusive, dangerous or live in habitats 

unsuitable for humans (e.g. oceans) and observing a captive animal is not the same as studying 

a wild counterpart. The presence of humans can influence the behaviours presented by animals 

and behaviours may be so subtle (e.g. jaw position) or occur on too large a timescale (e.g. 

migrations) for humans to notice or observe wholly. Tiger sharks are endangered, extremely 

difficult to follow and are also a danger to humans. They live in a marine environment in which 

they can travel large three-dimensional distances so visual observation to determine behaviours 

is unrealistic. 

By fitting specialist recording hi-tech tags to the dorsal fins of 10 wild tiger sharks at 

Ningaloo Reef, Australia, we were able to remotely study the behaviour of wild tiger sharks. 

The tags recorded metrics such as acceleration, magnetic orientation and pressure at high rates 

(i.e. 20 time per second), which provide detailed information on behaviours via changes in the 

sharks’ body postures, headings and depths etc. Previously, computer driven ‘machine 

learning’ has been used to process this type of data and categorise patterns into behaviours. 

However, supervised machine learning generally requires that the study animals be observed 

to ‘ground truth’ the data. This is not possible for tiger sharks. Another analysis option, 

‘unsupervised machine learning', also driven by a machine-based software, does not require 

‘training data’ but provides no defined numerical limits of the machine-categorised behaviours 

that can be cross-checked with data from other sharks. In addition, once unsupervised machine 

learning categories are identified, they still require human interpretation to decipher what 

behaviour the data refer to.  

Instead, a proper understanding of the sensory outputs of the tags allowed me to reconstruct 

behaviours, as if I was watching the animal, and define them using numerical limits. Figure 1 

shows how three of the behaviours were defined and distinguished from one another using 

these limits. Of 10 behaviours that I identified, seven were numerically defined. The numerical 
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limits were used to construct search formulae to extract the behaviour from each individual 

tiger shark’s data. Interestingly, examination of the behaviour metrics from the extracted data 

revealed that the sharks did not always distinctly switch between one mode of a behaviour to 

another, sometimes showing ‘intermediate’ behaviours. 

 

Figure 1 – The initial steps of the decision tree in which the 10 identified behaviours are 
distinguished and the key metrics that define them are summarised. 

This is a successful and viable method for categorising behaviours from multi-sensor 

tag data. Further development could identify more behaviours and formulae to identify them 

within the data sets created. Although the formulae I produced are specific to tiger sharks, this 

method could certainly be applied to a range of other species and provide vital information to 

conservation and management initiatives, not only for protecting the species but to implement 

animal control programs to ensure the safety of humans as well. 
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INTRODUCTION 

Global vertebrate populations and biodiversity have continuously declined throughout 

the past century (Butchart et al., 2010) due to overexploitation, climate change and a loss of 

habitats and resources caused by direct and indirect anthropogenic activity (Stevens et al., 

2000; Block et al., 2011; Hoffman et al., 2010). There are 9,914 vertebrate species currently 

threatened by the risk of extinction, making up almost 14% of the estimated total number of 

extant vertebrate species described, although this proportion is potentially higher due to only 

75% of described vertebrate species having been assessed (IUCN, 2021). Strengthened 

conservation efforts are necessary to address and stem this biodiversity crisis and aid the 

recovery of endangered species (Butchart et al., 2010; Hoffman et al., 2010; Cooke, 2008).  

Identification and understanding of animal behaviour can play a pivotal role in helping 

conservation initiatives (Cooke et al., 2004; Cooke, 2008; Greggor et al., 2016). For example, 

Sutherland (1998) summarises numerous areas in which the study of animal behaviour can be 

used to help solve conservation problems including overexploitation, minimum reserve area, 

minimum habitat requirements and predicting consequences of environmental change, to name 

a few. Behaviour, characterised by patterns in body posture and body motion (Shepard et al., 

2008b), is an animal’s response to its environment and physiological condition (Shepard et al., 

2008a, 2008b). It can provide direct insight into its physical state (Williams et al., 2017; 

Shepard et al., 2008b), space use, activity (or quiescence) (Cooke et al., 2004), inter- and intra-

specific interactions (Broell et al., 2013; Herrera & Nunn, 2019) and life-history traits (e.g. 

mating behaviour; Whitney et al., 2010). Thus, an in-depth understanding of animal behaviour 

is essential to coordinating and implementing many effective conservation management 

schemes.  

Advances in animal-attached tag technology have begun to overcome the difficulties of 

observing behaviour in intractable animals (Cooke, 2008; Schneirla, 1950; Godley & Wilson, 

2008; Brown et al., 2013; Ferreira et al., 2017; Bestley et al., 2013; Stankowich & Blumstein, 

2005) and have developed into sophisticated systems for the remote monitoring of free-

roaming animals in the wild (Broell et al., 2013; Wilson et al., 2006, Rutz & Hays, 2009). 

Initially, biologging and biotelemetry were most frequently used to document the spatial 

ecology of animals (Cooke, 2008). However, the use of animal-attached accelerometers and 

magnetometers in particular, has since provided fine-scale measurements of animal body 

movements (Yoda et al., 2001) and allowed workers to quantify animal behaviour and been 
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used to identify and monitor poorly understood behaviours of free-living animals in their 

natural habitat (Yoda et al., 1999; Wilson et al., 2002; Whitney et al., 2010; Naito et al., 2010; 

Block et al., 2011; Owen et al., 2016). This has also led to the ability to estimate energy 

expenditure (Halsey, Shepard & Wilson, 2011; Wright et al., 2014; Wilson et al., 2020; Gleiss, 

Wilson & Shepard, 2011) and activity-specific metabolic rate in wild animals (Wilson et al., 

2006; Gleiss et al., 2009), as well as assess the risk of infectious disease and parasite 

transmission (Herrera & Nunn, 2019), among other uses. A broad range of free-living 

vertebrate species from fish, through reptiles to birds, and mammals, has now been equipped 

with triaxial accelerometer tags (Wilson, Shepard & Liebsch, 2008; Wilson et al., 2018). 

Triaxial accelerometers, which sense acceleration in the three orthogonal axes of space, 

measure ‘static’ acceleration (due to the Earth’s gravitational field and the tag’s relative 

orientation) and thereby indicate an animal’s posture (Shepard et al. 2008a), but they also sense 

‘dynamic’ acceleration (due to the animal’s movement (Wilson et al. 2020)), which provides 

additional information useful in determining behaviour (Shepard et al., 2008a, 2008b). Triaxial 

magnetometers measure the strength of the Earth’s magnetic field and the orientation of the tag 

in relation to the direction of the field lines, also over three orthogonal axes (Williams et al. 

2017). Consequently, triaxial accelerometer and magnetometer data has been increasingly used 

to identify behavioural modes (e.g. sitting, walking) with quantifiable metrics (e.g. Dynamic 

Body Acceleration – DBA (Wilson et al., 2020)).  

Supervised and unsupervised machine-learning (ML) algorithms have been successfully 

and routinely used to classify patterns within accelerometer data into behavioural categories 

(e.g. m-prints, Williams et al., 2017; state-space models, Nathan et al., 2012; hidden Markov 

models, Wang, 2019; k-means cluster methods, Sakamoto et al., 2009; random walk models, 

Morales et al., 2004). However, supervised ML requires training data such as synchronised 

visual observations for the algorithms (Nathan et al., 2012) to ‘label’ the data, which can be 

difficult or impossible to obtain for elusive or cryptic species or those moving widely within 

expansive environments (Wang et al., 2019). Conversely, unsupervised ML can detect and 

categorise unknown patterns in ‘unlabelled’ data. However, human interpretation is still 

required to identify what any categorised patterns potentially mean in terms of putative 

behaviours, without prior training data (Valetta et al., 2017). Furthermore, unsupervised 

learning often fails to describe and cluster behavioural patterns amongst data recorded over 

longer time scales due to variation in the individual’s movement behaviour pattern and requires 

the use of numerous complex models (Morales et al., 2004). This may be unsuitable; a) for 
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data sets recorded over longer periods to get a more whole depiction of an animal’s long term 

behavioural movements, such as migratory species or species with expansive home ranges and 

b) when trying to assess multimodality within behaviours of the same category. Tsuda et al. 

(2009) successfully categorised nine spawning behaviours of female chum salmon, 

Onchorynchus keta, solely using acceleration data, without the assistance of machine learning. 

However, in a manner similar to that of other studies, video-recorded observations 

synchronised with the acceleration data were first used to confirm each behaviour. Thus, there 

is a need for biologists to consider how animal behaviour might be categorised from 

acceleration and magnetometer data (and metrics derived from them) for conditions when 

visual observation is not possible. 

Furthermore, whilst such methods can identify and categorise discrete behavioural 

modes, modality or variation of parameters used to describe individual behavioural categories 

is less often considered. Uni-modality would indicate that a behaviour can be described by a 

single set of limits on a recorded parameter with little or no variation. A behaviour with bi- or 

multi-modality would indicate that there are two or more modal groups with separate metric 

limits within a behaviour category. Multimodality has been documented in the communication 

displays and/or vocalisations of wolf spiders (Uetz, Roberts & Taylor, 2009; Gordon & Uetz, 

2011) and some bird, canid, and primate species (Sebeok, 1993), but less so within other 

behaviours. However, by assessing the distributions of the metrics that describe each 

behaviour, the modality can be determined. Separating out the data based on the distributions 

around the metrics can produce behavioural cascades following a Boolean approach (Wilson 

et al., 2018) that provides multiple metric behaviour divisions. 

The main thrust of this work was to attempt to identify behaviours adopted by tiger 

sharks, Galeocerdo cuvier, equipped with animal-attached multi-sensor tags, solely using the 

data provided by the tags and without validation from visual observations. Indeed, it is virtually 

impossible to observe tagged wild tiger sharks for any length of time and this species is likely 

to be particularly constrained in its behavioural repertoire in captivity (Cooke, 2017; Hart, 

Reynolds & Troxell-Smith, 2021). However, tag-derived metrics can be used to define many 

of the characteristics used by people to define behaviours directly by visual observation 

(Tinbergen, 1960). Thus, for example, body posture can be determined by pitch and roll and 

movement effort (including speed) can be derived from the Dynamic Body Acceleration 

(Halsey et al. 2011, Bidder et al., 2012) so careful examination of tag-derived metrics can 

produce a physical framework analogous to direct visual observations. Thus, I aimed to 
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quantify, as far as possible, as many behaviours as I could using this approach. My principal 

objective was to define each behaviour by stated limits in tag-derived metrics, which could be 

used to construct bespoke algorithms to identify and extract specific behaviours from 

continuous data obtained from wild tiger sharks, without the use of machine-learning or 

assistance of visual observations. The extracted data from each behaviour were to be used to 

produce frequency distributions of descriptive metrics to assess the modality (uni-, bi- or multi-

modality or a continuum) of each identified behaviour to assess whether simple consideration 

of frequency distributions of select metrics would allow behaviours to be differentiated. 

Finally, I attempted to determine what my identified behaviours may signify. 

Large predatory sharks are imperative for maintaining healthy ocean ecosystems globally 

(Stevens et al., 2000; Heithaus 2001; Simpfendorfer, Goodreid & McAuley, 2001; Ferretti et 

al., 2010), yet many species are under threat from a myriad of environmental and anthropogenic 

factors. Indeed, elasmobranchs are experiencing severe population declines worldwide 

(Ferretti et al., 2003; Dulvy et al., 2014), with 36% of assessed shark, ray and chimaera species 

being threatened with the risk of extinction (IUCN, 2021). As a result, their conservation has 

become a focal point for ecosystem management (Stevens et al., 2000; Gleiss et al., 2009), 

making them an obvious threatened species archetype for the focus of this research. Their 

elusiveness and difficulty to observe in the wild also makes them an excellent test species for 

this new approach. 

MATERIALS AND METHODS 

Data Collection 

The tagging process and subsequent data collection was carried out by Andrzejaczek et 

al. (2019). During April-May 2017, tiger sharks, were captured inside the reef lagoon at 

Ningaloo Reef (approximately 23° 00’ S, 113° 48’ E), Australia. A series of three drumlines 

were each equipped with a single 20/0 circle hook baited with fish scraps and deployed ∼100 

m apart between 07:00-16:00. Lines were checked for captures hourly and once caught, sharks 

were secured alongside a 5.8 m vessel, measured (pre-caudal length, fork length, total length, 

and maximum girth) and sexed. Finally, a multi-sensor biologging tag (see below) was clamped 

to the base of the dorsal fin and photographed for identification purposes, and to assess any 

potential physiological effects of tags.  

The tags were attached using a stainless-steel spring clamp (CATS, Australia - 

https://www.cats.is/products/cats-diary/) via a docking pin and a corrodible galvanic timed 
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release (GTR, Ocean Appliances, Australia - http://oceanappliances.com.au/index.php). The 

GTR dissolved between seven and 48 hours later, releasing the tag and allowing it to float to 

the surface, to be located using a hand-held VHF receiver and collected by boat (Lear & 

Whitney, 2016). After approximately seven days, a magnesium sleeve on the clamp itself 

dissolved, detaching the clamp and leaving no tagging equipment fixed to the shark. For further 

details, see Andrzejaczek et al. (2019). In this study, tag data from 10 tiger sharks was used, 

totalling 205 hours and 38 minutes of sensor data for processing. 

Biologging Tags 

The tags used were CATS Diary tags (Customised Animal Tracking Solutions, 

https://www.cats.is/products/cats-diary/), equipped with triaxial accelerometers (illustrated in 

figure 1), triaxial magnetometers, gyroscopes and depth, temperature, and light sensors (all 

parameters were continuously recorded at 20 Hz). Speed sensors were present, but not 

functional and the light and temperature readings were not functional in the data processing 

software used. CATS Cam tags were also deployed on some of the tiger sharks, but the video 

footage was not analysed in this study.  

 

Fig. 2. Schematic diagram of G. cuvier equipped with a multi-sensor tag at the base of the 
dorsal fin. A major sensor within the tag was a triaxial accelerometer, which recorded 
acceleration along three orthogonal axes. The red arrow illustrates the x-axis, recording 
forward and backwards movements (surge). The green arrow shows the y-axis, which records 
side-to-side acceleration (sway). The blue arrow illustrates the z-axis, recording the dorso-
ventral movements (heave).  

The data channels directly recorded by the tag sensors are described in table 1. Once the 

tags had been retrieved and the data had been imported into a processing software (DDMT, 

discussed in the next section), additional metrics were derived from the data channels recorded 

by the tags (table 2), which provided further means of quantifying behaviours.  
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Table 1. Descriptions of the metrics directly recorded by the CATS tag and stored on the SD 
card whilst it was attached to the shark, before retrieval. 

Recorded data channel characteristics: 

Duration The duration of recording is recorded as decimal seconds, seconds, 
minutes, hours and days and presented as DD:HH:MM:SS.ss.  

Acceleration x Surge (triaxial accelerometer axis 1). Measures the linear longitudinal 
acceleration of the shark (0-6 g), as well as centripetal acceleration and 
the static acceleration of the Earth’s gravitational field.  

Acceleration y Sway (triaxial accelerometer axis 2). Perpendicular to axis 1. Measures 
the linear lateral acceleration of the shark (0-6 g), as well as centripetal 
acceleration and the static acceleration of the Earth’s gravitational field. 

Acceleration z Heave (triaxial accelerometer axis 3) of the triaxial accelerometer. 
Perpendicular to axis 1 and 2. Measures the linear dorso-ventral 
acceleration of the shark (0-6 g), as well as centripetal acceleration and 
the static acceleration of the Earth’s gravitational field. 

Mag x Axis 1 of the triaxial magnetometer. Measures magnetic field intensity 
in milligauss (mG), ranging to the maximum of the earth’s magnetic 
field. 

Mag y Axis 2 of the triaxial magnetometer. Same measurements as axis 1. 
Mag z Axis 3 of the triaxial magnetometer. Same measurements as axis 1. 
Water pressure The sensor measures water pressure (mbar) which can be converted into 

depth within DDMT. 
 

Acceleration occurs with or against the force of gravity, with an immobile tag’s total 

acceleration across the three orthogonal axes having a vectorial sum of 1 g (equal to the Earth’s 

gravitational field). As the tag is moved with the animal’s trunk, the recorded animal-generated 

acceleration values are superimposed on the static values, generating higher or lower values 

independently and simultaneously at any point, depending on the movement type (Wilson et 

al., 2020). The tag also records a series of other data channels (table 1), from which other 

metrics can be derived (table 2). 

Data Processing 

 Daily Diary Multiple Trace Software (DDMT – Wildbyte Technologies, 

http://www.wildbytetechnologies.com/), developed at Swansea University, was used for data 

inspection. DDMT was originally designed for reading data recorded via Daily Diary (DD) 

Tags (Wildbyte Technologies, http://www.wildbytetechnologies.com/) but the CATS tag data 

were converted to make them readable within DDMT. In addition, the original imported shark 

heading (with respect to the Earth’s magnetic field and given values between 0 and 359°) data 

(calculated using the accelerometer and magnetometer data (Gunner et al. 2021)) were found 

to be flawed, but the errors could be corrected within DDMT to calculate true shark heading.   
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 Metadata (Appendix III) was used to identify each tag’s recording start time and date, 

following the deployment of the tags onto the sharks and their subsequent release. This 

information was also input individually into DDMT for each tag, alongside the magnetometry 

corrections and saved as a ‘Time Date Offset’ or ‘.tdo’ file, to be reloaded into DDMT each 

time the file was inspected. This ensured that the correct time/date data was associated with the 

data, and that any heading data was correct. Shark body pitch data was also examined, to assess 

whether each tag had been correctly oriented during attachment to the sharks. This was done 

by finding periods during which the sharks maintained a constant water depth and examining 

the pitch recorded by the tag (table 2). If the pitch angle was approximately zero degrees when 

the shark was swimming horizontally, it indicated that the tag was likely oriented correctly, 

and no corrections were needed. This proved to be the case for all tags in this study. 

 Each file was inspected for patterns within various data channels (tables 1 and 2) that 

may be produced by a particular behaviour. This is a tag-based visualisation approach that may 

be likened to the standardized simple observation of animals (e.g. Tinbergen, 1960) since the 

tag data are quantified metrics for movement and body posture. VeDBA was a key metric for 

describing several behaviours. VeDBA (Vectorial sum of the Dynamic Body Acceleration) is 

a derivation of Dynamic Body Acceleration (DBA), a proxy used for rate of energy expenditure 

in animals and humans (Wilson et al., 2020; Wright et al., 2014; Qasem et al., 2012). The 

equation (shown in table 2) removes the acceleration imposed by the Earth’s gravitational field 

by subtracting the smoothed (over 2 s) acceleration data of each orthogonal axis from the 

corresponding raw acceleration data, leaving the dynamic acceleration for each axis that is 

produced by the animal’s movement. The values of the three axes are then summed vectorially 

to calculate the Vectorial Dynamic Body Acceleration (VeDBA) (Gleiss, Norman & Wilson, 

2011; Wilson et al., 2020; Shepard et al., 2008a). Once a behaviour pattern was identified, 

numeric values of parameters (see Tables 1 & 2) were ascribed to describe the limits within 

which the behaviour occurred. These limits could then be used to construct Boolean algorithms 

(Wilson et al. 2018) to find the behaviour within continuous shark data using the ‘Behaviour 

Builder’ function within DDMT. 

Table 2. Derived metrics from data channels directly recorded by the tag. These metrics 
enabled further description of the behaviours. These metrics were provided by DDMT. 

Derived metrics characteristics: 

Date/time The recording start times and dates were manually input into DDMT for 
each individual tag using metadata as reference and saved as ‘.tdo’ files, 
which could be reloaded into DDMT. Date was presented as dd/mm/yy, 
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and time the same as duration. The duration then continued from the 
input start date and time, so that the data was associated with the correct 
time, also allowing day and night to be distinguished.  

Body pitch  Derived from the accelerometer data, the pitch angle (°) is the static 
component of the surge (x) axis and is essentially the tilt on the x-axis 
given by; 
Pitch = sin(AccXsm) 
 
where AccXsm is the surge acceleration smoothed over 2 s (see above). 
Parallel to the water’s surface, the shark’s pitch angle was expected to 
be zero and therefore measured as 0° (see text). A negative pitch 
indicated that the shark was angled downwards, and a positive value 
suggested the shark was angled upwards (e.g. a value of -90° being 
straight down and 90° being directly upward, perpendicular to the 
surface). 

Roll  Roll angle (°) is the static component of the sway (y) axis, similar to 
pitch and surge above, given by: 
Roll = sin(AccYsm) 
 
where AccYsm is the sway acceleration smoothed over 2 s (see above). 
Roll depicts the angle at which the shark is rolling or banking to the left 
or right, along the body’s longitudinal (y) axis.  Roll angle to the left 
ranged 0° to 180° and roll to the right had an identical but negative range 
to easily distinguish between the two directions.  

VeDBA The vector of the dynamic body acceleration (VeDBA) shows the 
dynamic acceleration implemented by the shark at any time. It is 
calculated using:  
  
VeDBA = (($%%& − $%%&!")# + ($%%* − $%%*!")# + ($%%+ −
$%%+!")#)$.&  
 
Where AccX is the raw x axis (surge) acceleration data, AccXsm is the 
smoothed x axis acceleration data. AccY is the raw y axis (sway) 
acceleration data, AccYsm is the smoothed y axis acceleration data. AccZ 
is the raw z axis (heave) acceleration data and AccZsm is the smoothed z 
axis acceleration data. The subtraction of the smoothed acceleration 
from the raw acceleration provides the dynamic acceleration (Wilson et 
al. 2020). 

Heading Heading was derived from the magnetometry x, y and z axes after taking 
into account the pitch and roll angles of the shark (see above) (details in 
Gunner et al. 2021). Heading ranges from 0° to 359° and portrays the 
heading of the individual in relation to magnetic north. A circular mean 
of the heading can also be viewed in DDMT to remove the vertical line 
created by the individual crossing over north. 

Angular velocity Angular velocity was derived from a combination of the rate of change 
of three data channels: heading, pitch, and roll (° s-1). Angular velocity 
provides a rate of change of angular position of the overall rotation of 
the body (see Gunner et al. 2020). 

Depth  Depth (m) was derived from pressure data assuming that the density of 
seawater is 1.03 g/mL. DDMT can visually invert this channel (e.g., 



Wallis James ( ) / BIOM64 May 2022 

23 
 

increasing depth slopes downwards and vice-versa) to reflect the 
animal’s direction of movement in the water column. 

Differentials Differential channels were used to extract the rates of change of existing 
recorded and derived channels.  For example, creating a differential 
channel for depth (m) provided the rate of change of depth [= vertical 
velocity] (m.s-1) at any given time. Within DDMT, the range (length of 
time) over which the differential is calculated is set by the user but is 
over 5 consecutive data points by default, and I used this setting unless 
otherwise stated.  

 Dead reckoning The dead-reckoning option within DDMT provides a three-dimensional 
visualisation of the shark’s track derived by using vectors on animal 
speed, heading and change in the vertical dimension over time (Gunner 
et al. 2021). Within my analysis, the heading (°) provided a two-
dimensional track over time, whilst incorporating pressure (mbar) via 
depth (m) provided the vertical axis, making the track three dimensional 
(for example see later in figure 30). 

 

Data Analysis 

 The ‘Behaviour Builder’ (hereafter termed BB) function within DDMT allowed the 

user to construct algorithms using a metric or combination of metrics that best described an 

identified behaviour. DDMT would run the algorithm and search a specified section or the 

entire data file using a Boolean approach to identify and ‘mark’ any data points (hereafter 

referred to as ‘events’) with metrics that fit the requirements of the algorithm. For example, 

when searching for events where the depth of the shark was increasing, the algorithm was 

inputted as ‘If (Diff_Chan (Depth (R=5)) > 0) then ‘Mark Events’. This algorithm thus searched 

for a mean rate of change of depth greater than 0 m s-1, over five consecutive depth data points 

(therefore lasting 0.25 s in my 20 Hz dataset). Minor disturbance or ‘noise’ was visible in the 

recorded data channels when observed on a small scale, possibly due to tag disturbance during 

movement through the water. To reduce noise within the differential channels, they were 

smoothed over 80 events (2 s) before defining limits within them to construct algorithms. This 

period was chosen since, by inspection, it minimized noise (generated, for example, in the 

acceleration data due to tag wobble on the sharks as they swam) while not obviously changing 

underlying trends. Thus, all differential channels were smoothed before running algorithms in 

each data file to search for events that fitted within the algorithm’s defined limits. Over-

smoothing can result in a loss of information, so a smoothing limit was set and to ensure 

consistency. However, to avoid over-smoothing and loss of detail, ‘noise’ could not always be 

eliminated entirely. 
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 Depth, and rate of change of depth, are particularly important parameters for defining 

the behaviours of marine animals (e.g. Gleiss et al., 2013; Ritter, 2020; Owen et al., 2016) and 

so are considered in more detail here. In particular, algorithms were developed to highlight the 

whole descent and ascent phases of dives as a complete behaviour (see e.g. Nakamura et al., 

2011), rather than transient changes in depth of approximately <0.2 m that may only represent 

minor momentary changes (possibly resulting from tag disturbance via stability on the fin). To 

eliminate such transience, the ‘Timeseries’ function within DDMT (hereafter referred to as TS) 

was used to ‘bookmark’ events that matched the BB algorithm requirements over a certain 

timescale or number of events. For instance, the algorithm; ‘Diff_Chan Depth > 0, present for 

100 events, %time 100, with next expression starting from range 100, flexibility after of 10’ 

instructed DDMT to search for and bookmark sections of data that had a rate of change of depth 

> 0 m s-1 for a duration of at least 100 events or 5 s (as the data was recorded at 20 Hz). Once 

the bookmarked events were converted to ‘marked events’, this data was exported to excel for 

further examination.  

 The overall aim within the behavioural identification was to construct algorithms for 

each behaviour that could be applied across whole data files of any tiger shark and successfully 

detect each identified behaviour. Once an algorithm was run and had marked the data within 

the limits, the data was exported. Graphs were constructed to illustrate the key defining metrics 

of each behaviour category clearly and provide a visual description for future analysis using 

similar tags, software, and metrics. Frequency distributions were also produced to demonstrate 

whether there was multi-modality within the initial behaviour categories, shown in the 

following section. 
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RESULTS 

A total of 10, non-mutually exclusive, behavioural categories were identified from the 

tag data of the 10 tiger sharks (TS8, TS12-19 & TS24) using the methods described. All 

behaviours are described in detail below before being summarized in table 3 where key metrics 

for Boolean search terms are provided. Some of the behaviours were more straightforward to 

describe using recorded and derived metrics than others, so not all are numerically defined. 

BEHAVIOURS BASED ON DEPTH 

Behaviour A – ‘Descent’ 

Key metrics 

‘Descent’ of the water column was manifest by a continuous increase in depth (and 

pressure). Rate of change of depth was > 0 m s-1 for > 3 s. 

Example behaviour 

Examination of the data showed that when the rate of change of depth was positive (e.g. 

figure 3c) and the body pitch angle of the shark was mostly < -5ᵒ (e.g. figure 3d), this was 

indicative of the shark’s position descending through the water column (e.g. figure 3a). The 

graphed example in figure 3 spanned 205 seconds, during which time the depth increased to 

about 93 m. The mean rate of change of depth throughout this particular descent was 0.09  m 

s-1 (±0.04, SD). The mean pitch angle of the example dive was -24.6ᵒ (±9.5). The smoothed 

VeDBA (g) mostly remained below 0.05 g (mean 0.03 g ±0.02), excluding some peaks that 

coincided with the dive initiation or increases in body pitch angle steepness and rate of change 

of depth (figure 3b). The peaks in VeDBA indicated that the shark sometimes powered its 

descent with tailbeats. It took approximately 2 to 2.5 s to complete one full tailbeat.  
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Figure 3. Time series plots of key metrics associated with Behaviour A (descent), including a) 
depth (m), b) VeDBA (g), c) rate of change of depth (m s-1) and d) body pitch angle (°). Metrics 
smoothed over 2 s. 

Multiple examples of the behaviour within an individual 

The frequency distributions from TS8’s Behaviour A data are graphed in figure 4, to 

show general patterns across descents. Here, the mean rate of descent was 0.09 m s-1 (±0.04), 

with almost 25% of cases occurring between 0.02 and 0.03 m s-1 (figure 4a). The data were 

distributed in a single continuum. The mean pitch angle was -11.3° (±5.9), with the most 

frequently occurring pitch angles during TS8’s descents ranging between -6° and -8°. Mean 

smoothed VeDBA values were 0.02 g (±0.02) with almost 40% of all values ranging between 

0.001 and 0.002 g. These metrics also displayed continuum distributions, with no distinct 

separation between potential behavioural modes. 
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Figure 4. Frequency distributions of key derived metrics from the extracted descent data of 
TS8, including a) rate of change of depth (m s-1), b) body pitch angle (°) and c) VeDBA (g). 
The maximum VeDBA value was 0.595, however the frequency of values in bins from 0.1 g 
onwards were negligible and not shown. Metrics smoothed over 2 s. 

Patterns across individuals 

All tiger sharks observed in this work participated in Behaviour A, but the rates of 

descent varied between them (figure 5a). The rate of change of depth of all descending tiger 

sharks values bar one (TS18) generally ranged between 0 and 0.05 m s-1. However, some of 

the maximum values greatly exceeded this. For example, TS13 had a maximum rate of change 

of depth of 0.37 m s-1, compared with a median value of 0.025 m s-1, as well as the greatest 

range of values. TS13 also exhibited the highest proportion of time spent descending through 

the water column (figure 5b) of all sharks, although there is no evidence that this was 

specifically due to the greater range of values in the descent rate. The proportion data for 

descent includes all activities (identified below) that may have occurred during descent phases. 

Examples include straight swimming, undulatory swimming and circling during descents (see 
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below). Most of the tiger sharks displayed a minimum rate of change of depth value below 

zero, despite the algorithm searching for values greater than zero. This is because a search 

flexibility value of 10 was enabled for all algorithms to avoid exclusions of descent events due 

to unexpected values potentially caused by tag disturbance.  

 

Figure 5. a) Box whisker plot of the rates of descent for all tiger sharks exhibiting Behaviour 
A (horizontal lines show medians, boxes quartiles and whiskers limits). The y axis was limited 
to 0.08 m s-1 to give a more precise view of the interquartile ranges. Maximum values are 
included above. The same occurs in other box whisker plots later on. b) The proportion of 
recorded time each shark dedicated to this behaviour. 
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Behaviour B – ‘Ascent’ 

Key metrics 

‘Ascent’ of the water column was manifest by a continuous decrease in depth. Rate of 

change of depth was < 0 m s-1 for > 3 s. 

Example behaviour 

A negative rate of change of depth and a body pitch angle > 5° were key indications of 

a decrease in depth or ‘ascent’ of the water column (e.g. figure 6a). The example below spanned 

192 s, during which time the shark’s depth in the water column decreased by 92.3 m. The rate 

of change of depth (figure 6c) values remained mostly negative, (mean -0.10 m s-1 ±0.04) and 

the body pitch angle (figure 6d) remained mostly positive with a mean of 20.7° (±9.3). The 

mean smoothed VeDBA (figure 6b) was 0.06 g (±0.06).  

However, after approximately 25 seconds, the rate of change of depth increased to a 

maximum of 1.94 m s-1 and the pitch angle became positive simultaneously, resulting in 

increasing depth. Furthermore, the smoothed VeDBA demonstrated substantial increases in 

total acceleration, a few seconds prior to the periods when the depth differential and body pitch 

angle developed considerably steeper gradients. Throughout the rest of the ascent phase, the 

rate of change of depth was not constant and appeared as a series of increases and decreases.  

This pattern indicates that ascent phases were not achieved using a continuous 

acceleration effort. Instead, the sharks alternated between ‘climb’ and ‘rest’ periods (although 

these periods are not as distinct as this, as discussed below for figure 7). The climb periods 

consisted of increased acceleration and steeper body pitch angles, which produced steeper 

negative depth differential values and faster rates of ascent. They were then followed by rest 

periods of decreased acceleration, shallower pitch angle and slower rates of ascent. Table 3 

describes both Behaviour A (descents) and Behaviour B (ascents) to be ‘continuous increases 

or decreases (respectively) in depth’ from start to finish. However, within the general criterion 

of rates of change of depth being either negative or positive, sharks frequently levelled-off or 

even momentarily changed descent for ascent and vice versa during either behaviour (these 

moments are not marked by the relevant algorithms).  
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Figure 6. Time series plots of key metrics associated with Behaviour B, including a) depth (m), 
b) VeDBA (g), c) rate of change of depth (m s-1) and d) pitch angle (°). Metrics smoothed over 
2 s. 

Multiple examples of the behaviour within an individual 

Patterns within the derived data channels suggested that Behaviour B consisted of 

‘climb’ and ‘rest’ periods. However, when all the ascent data was extracted and the key metrics 

were graphed as frequency distributions for each shark, this pattern was not apparent. When 

observed collectively as frequency distributions, the data showed skewed continua, rather than 

the bimodality that would be expected if ascent phases were a combination of distinct climb 

and rest periods. Figure 7 shows the frequency distributions of a) rate of change of depth (m s-

1), b) smoothed body pitch angle (°) and c) smoothed VeDBA (g) for the Behaviour B data 

from TS12. The most frequently occurring rate of change of depth values ranged between -

0.005 and -0.01 m s-1 (figure 7a), yet the mean was -0.02 m s-1 (±0.01). Smoothed body pitch 

angle most frequently ranged between 4° and 6° (figure 7b) and the mean 6.8° (±5.0). Smoothed 

VeDBA most frequently ranged between 0.01 and 0.02 g (mean 0.03 ±0.02 g). 
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Figure 7. Frequency distributions of key derived metrics from the extracted Behaviour B of 
TS12, including a) rate of change of depth (m s-1), b) pitch angle (°) and c) VeDBA (g). Metrics 
smoothed over 2 s. Rate of change of depth reached a maximum decrease rate of -0.16 m s-1, 
however the frequency of values occurring between this value and -0.1 m s-1 was minimal. The 
maximum pitch angle exhibited by this shark during ascents was 78.52° but values this extreme 
rarely occurred. Smoothed VeDBA reached 0.54 g but values greater than 0.15 were also 
uncommon. 

Patterns across individuals 

Figure 8a shows that the spread of rates of change of depth performed by the sharks 

during Behaviour B followed a relatively similar pattern to one another, that was not normally 

distributed. For all sharks, the rate of ascent mostly ranged between 0 and -0.05 m s-1, a similar 

(but negative) gradient range to the rates of descent in Behaviour A. However, despite all sharks 

exceeding these values on occasion (TS18 performed a maximum rate of change of depth of -

0.24 m s-1), overall ranges and maximum values of Behaviour B ascent rates were slower than 

that of Behaviour A descent rates. Despite the larger range of values for Behaviour A, when 
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the mean rates of change of depth were compared between both behaviours and across all 

sharks, very little difference was observed (figure 9). 

 

Figure 8. a) Comparisons of extracted rate of change of depth (m s-1) data between sharks 
during Behaviour B (horizontal lines show medians, boxes quartiles and whiskers limits). b) 
compares the proportion of recorded time each shark dedicated to this behaviour. 

The bar heights in figure 8b displays an almost identical pattern to that in figure 5b, 

between individuals’ proportion of time spent exhibiting Behaviours A and B. For example, 

TS8 spent the smallest proportion time both descending (16.9%) and ascending (15.1%) and 

TS13 spend the greatest proportion of time both descending (42.4%) and ascending (51.4%). 

All sharks, except for TS18, spent more time exhibiting behaviours engaged in ascents, than 

descents.  
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Figure 9. Comparisons of the mean rates of change of depth (m s-1) for Behaviour A and 
Behaviour B. Although Behaviour A’s values are positive and B’s values are negative, they 
represent the gradient at which the sharks increased or decreased depth respectively. Thus, 
the secondary axis (reading Behaviour B’s rate of change of depth values) is reversed to allow 
for easy comparison. Error bars show standard deviation. 

Figure 9 shows that the mean rates of change of depth were slightly higher during 

Behaviour A than Behaviour B for all sharks except TS8. This is unsurprising if the sharks 

returned to a depth that was approximately the same as the initial depth prior to the descent 

phase, during the ascent phase of a dive which had slower mean rates of change of depth. Thus, 

faster rates of descent would be expected to result in less time dedicated to descents than 

ascents. However, the standard deviation bars indicate that each shark’s data deviates greatly 

from the means and any significant difference between the gradient of the two behaviours and 

also between individual sharks is unlikely. Additionally, over all ascents and descents for all 

sharks, the mean VeDBA values (descents 0.032 g ±0.027, ascents 0.033 g ±0.025) were not 

significantly different (t = 0.49, unpaired t-test at 0.05 level). 

Figure 10a represents the first 60 seconds of a single dive descent phase, reaching a 

maximum depth of 93.16 m. During the first 60 seconds, the depth increased by 29.407 m at a 

mean rate of 0.098 ±0.053 m s-1. Based on the second half of the data from this dive section 

(due to more regular visible tailbeats), the tailbeat frequency was approximately 0.433 tailbeats 

s-1 and the mean smoothed VeDBA was 0.034 ±0.020 g. Figure 10b represents the first 60 

seconds of the corresponding ascent phase of the same dive, following a bottom phase. During 

the first 60 seconds of the ascent, the depth decreased by 17.204 m at a mean rate of -0.057 
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±0.035 m s-1. Again, based on the second half of the first minute of ascent, the tailbeat 

frequency was approximately 0.567 tailbeats s-1 and the mean smoothed VeDBA was 0.063 

±0.072 g. 

 

Figure 10. The first 60 seconds of a) a descent phase and b) an ascent phase of the same dive, 
taken from TS18’s tag data. The green lines showing continuous decrease and increase 
represent depth (m, smoothed over 2 s). The black oscillating lines represent sway acceleration 
(g) from the acceleration y axis.  

Data from only the first 60 seconds of each phase was used in this example to provide 

a clearer view of the TS18’s tailbeats, visible in the sway acceleration (g) axis. This data 

suggests that the shark’s tailbeats were slightly irregular when initiating both a descent and an 

ascent. During the descent phase (figure 10a), TS18’s tailbeats began with greater magnitude 

but became smaller and more uniform after the first 24 s, when the depth began to increase 

more steeply. During the ascent (figure 10b), between approximately 0-3 s, 13-27 s and 58-60 

s, there are some obvious irregularities in the tailbeats, some of which appear to coincide with 

changes in the gradient of the depth line. Between 27 and 58 s, the tailbeat frequency and 

amplitude are more regular as the gradient of the depth line decreases more steadily. The 

tailbeat frequency was higher and amplitude greater during the ascent phase compared to the 

descent phase.  
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Behaviour C – ‘Horizontal Swimming’ 

Key metrics 

 ‘Horizontal swimming’ was manifest when the rate of change of depth was equal to 0 

m s-1 for > 3 s. 

Example behaviour 

 A rate of change of depth of <0.01 and >-0.01 m s-1 for a prolonged period (> 3s) 

indicated that there was no change in depth and that the sharks were maintaining their 

horizontal position in the water column. Behaviour C was relatively short-lived in all 

occurrences, for example TS14 maintained a constant depth of 8.3 m for just over three seconds 

(figure 11a). During this period, the smoothed pitch angle (figure 11b) changed very little, with 

a range of only 1.3° within a mean of 0.3° ±0.3°. The mostly positive body pitch during this 

behaviour suggests that the shark’s body was pitched slightly upwards. The smoothed VeDBA 

(g) varied slightly during this short period, ranging between 0.005 g and 0.371 g (mean 0.03 

±0.01 g). The current algorithm only detected the occurrence of Behaviour C amongst the data 

of two sharks (figure 13).  

 

Figure 11. Time series plots illustrating the key features of Behaviour C within derived metrics, 
including a) depth (m) and b) pitch angle (°) and c) VeDBA (g). Metrics smoothed over 2 s. 
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Multiple examples of the behaviour within an individual 

For TS14, Behaviour C most frequently occurred at depths between 0.5 and 0.1 m and 

at a mean depth of 2.91 m (±3.68). Depths < 1 m were considered to be at the water’s surface. 

Body pitch angle values had a mean of -0.4° (±1.1) however, both positive and negative body 

pitch angles were observed during this behaviour (figure 12b). The most frequently occurring 

negative pitch angles ranged between 0° and -0.5° and the most frequently occurring positive 

pitch angles ranged between 0° and 0.5°. Figure 12c shows a continuum in the distribution of 

VeDBA values for Behaviour C and the most frequently occurring values ranged between 0.01 

g and 0.02 g, with a mean value of 0.06 ±0.01 g.   

 

Figure 12. Frequency distributions of extracted a) rate of change of depth (m s-1) data, b) pitch 
angle (°) data and c) VeDBA (g) data for TS14 during Behaviour C. VeDBA reached 0.37 g 
but were rarely greater than 0.2 g. Metrics smoothed over 2 s. 
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Patterns across individuals 

For both sharks that showed Behaviour C, body pitch angle was mostly positive (or 

upwards) (figure 13a). Pitch angle was never less than -5° and never exceeded 5°, markedly 

shallow compared with the ranges seen in Behaviours A and B (figures 5b and 8b). The 

proportion of time dedicated to horizontal swimming was also minimal (figure 13b). Both 

sharks dedicated less than 1% of the recorded time to Behaviour C, indicating that maintenance 

of a perfectly constant depth was uncommon and most sharks did not do so at all within their 

monitored periods.  

 

Figure 13. Comparisons of extracted a) body pitch angle (°) data (smoothed over 2 s) between 
sharks during Behaviour C (horizontal lines show medians, boxes quartiles and whiskers 
limits). b) compares the proportion of recorded time each shark dedicated to this behaviour. 
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Behaviour D – ‘Surface Swimming’ 

Key metrics 

‘Surface swimming’ occurred at a depth of < 1 m for a period > 3 s and was not included 

within Behaviour C discussed above. Increased VeDBA values were also observed during this 

behaviour. 

Example behaviour 

Between dive phases, the sharks would occasionally spend time swimming at the 

surface of the water, at depths of < 1 m (figure 14a). ‘Surface swimming’ occurred at a depth 

of < 1 m for > 3 s, during which time increased VeDBA values were observed in all individuals. 

During these periods, the rate of change of depth (figure 14b) had a mean of 2.09 x10-5 m s-1 

and remained within a much smaller range (between -0.05 and 0.05 m s-1) compared to descent 

and ascent phases. However, the rate of change of depth was not constant and alternated 

between positive and negative values. Over these short periods, the counteractive movement 

of positive and negative rates of change of depth resulted in very minor changes of several 

centimetres in the shark’s depth. It is also possible that some of the recorded fluctuations were 

a result of tag disturbance, especially if the sharks’ fins protruded the surface of the water or 

wave action making the water above the tag deeper and shallower. The pitch angle mostly 

remained between -5° and 5° (figure 14c), in a manner similar to Behaviour C, and had a mean 

value of 0.6° (±2.3). Increased VeDBA (g) values were evident (mean 0.10 ±0.05 g) when 

swimming in depths of < 1 m (figure 14d). Although Behaviour C (horizontal swimming) was 

common at the surface, the rate of change of depth values overlapped little with those of 

Behaviour D, making surface swimming undetectable within the current Behaviour C 

algorithm. 
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Figure 14. Time series plots illustrating the key features of Behaviour D within derived metrics, 
including a) depth (m) and b) rate of change of depth (m s-1), c) pitch angle (°) and d) VeDBA 
(g). Metrics smoothed over 2 s. 

Multiple examples of the behaviour within an individual 

There was no multimodality shown by the frequency distributions of all metrics 

including a) rate of change of depth, b) smoothed pitch angle and c) smoothed VeDBA (figure 

15). The most frequently occurring rate of change of depth values ranged between -0.002 and 

-0.001 m s-1 (mean -0.001 ±0.007 m s-1). The smoothed pitch angle and the smoothed VeDBA 

also showed continuum distributions. The highest frequency of pitch angle values ranged 

between 1° and 2° (mean 1.9° ±2.7) and the highest frequency of smoothed VeDBA values 

ranged between 0.04 g and 0.05 g (mean 0.07 g ±0.04).  
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Figure 15. Frequency distributions of Behaviour D extracted from TS13’s data. a) The rate of 
change of depth (m s-1) data ranged from -0.058 to 0.057 m s-1. b) Smoothed pitch angle (°) 
ranged from -31.6° to 21.3°. c) Smoothed VeDBA (g) data for TS13 during Behaviour D ranged 
between 0.007 g to 0.44 g. 

Patterns across individuals 

The algorithm for surface swimming detected the behaviour amongst the data of only 

six of the 10 sharks (figure 16). The majority of the VeDBA data for this activity fell between 

0 and 0.15 g for all sharks, but all had a maximum value exceeding 0.4. In fact, TS19 produced 

a maximum VeDBA value of 0.91 g. TS19 also dedicated the highest proportion of time to 

swimming at the surface (37.5%), potentially providing more opportunity to produce higher 

VeDBA values whilst participating in this activity. For the rest of the sharks, proportion of time 

dedicated to Behaviour D varied. TS14, TS19 and TS24 each spent over 25% of their time at 

the water’s surface, whilst TS13, TS15 and TS18 each spent less than 15% at the surface, with 

TS13 dedicating only 2.37% of recorded time to this activity. TS8, TS12, TS16 & TS17 spent 

no proportion of recorded time at the surface as no data was detected by the algorithm. 
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Figure 16. Comparisons of extracted a) smoothed VeDBA (g) data between sharks during 
Behaviour F (horizontal lines show medians, boxes quartiles and whiskers limits). b) compares 
the proportion of recorded time each shark dedicated to this behaviour. 

Behaviour E – ‘Undulatory Swimming’ 

Key metrics 

 Key numerical metrics could not be defined for this behaviour due to the varying nature 

between individuals and occurrences. However, the behaviour was visually readily identifiable 

by the sine wave-like pattern in the surge, depth and the rate of change of depth data. Thus, 

‘undulatory swimming’ was defined as a regular oscillation around zero in the rate of change 

of depth channel. 

Example behaviour 

Three-dimensional dead-reckoning of this behaviour showed that this appeared as a 

repetition of descents and ascents, but with markedly smaller amplitudes than Behaviours A 

and B. Key features of Behaviour E, or undulatory swimming, are graphed in figure 17. Unlike 

complete dive movements (figure 18), the undulations in depth were smooth, consistent and 

lacked a ‘bottom phase’ between descents and ascents. Also, a relatively constant depth was 
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maintained overall. In the example given, Behaviour E was initiated at a depth of 15.3 m and 

terminated at a depth of 12.9 m and overall remained between 6.1 m and 15.4 m (mean 11.69 

m ±1.6) throughout the activity, despite the undulations. The oscillations in the rate of change 

of depth values (figure 17b) created a sine-wave-like pattern that, in this example, remained 

between -0.1 and 0.1 m s-1 and had a mean value of -0.0008 ±0.036 m s-1. 

 However, metrics varied between occurrences of this behaviour and between 

individuals, depending on the scale of the oscillations. This made it more difficult to define 

Behaviour E with set metric limits in order to construct an algorithm. Behaviour E was 

characterised by oscillations in the vertical [or depth] axis. A time series algorithm designed to 

detect and mark consecutive peaks 0 m s-1 and troughs <0 m s-1 in the rate of change of depth 

channel was tested. It successfully marked the peaks for the particular occurrence of the 

behaviour the algorithm was initially based upon, but not for other occurrences others with a 

differing wave period or amplitude. Following alterations to the algorithm to include these 

larger oscillations, upon testing the algorithm successfully marked the larger oscillations, 

however no longer marked the smaller oscillations. Defining limits for sinusoidal swimming 

and circling presented the same difficulties. This provides an area of development for this work 

in the future. 

 

Figure 17. Time series plots illustrating the key features of Behaviour E within derived metrics, 
including a) depth (m) and b) rate of change of depth (m s-1), c) pitch angle (°) and c) VeDBA 
(g). Metrics smoothed over 2 s. 
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As expected, the pitch angle (figure 17c) followed a near-identical visual pattern to the 

rate of change of depth, with values corresponding to steeper pitch angles. The pitch angle in 

this example had a mean value of -0.78° ±10.61° and mostly oscillated between -20° and 20° 

except for one deeper trough between 200 and 300 s. These are relatively shallow body pitch 

angles compared with the maximum pitch angles demonstrated in ascent (figure 3b) and 

descent (figure 6b). Despite continuous fluctuations in VeDBA (figure 17d) throughout this 

activity, there were distinctive periods of increased VeDBA during the ascent periods (mean 

0.03 ±0.02 g). 

Yo-yo Diving Behaviour 

Expanding the time window over which behaviours were determined, it was possible 

to see that all sharks displayed vertical ‘yo-yo’-like movements through the water column 

whereby the sharks would repetitively descend the water column and then ascend back to 

similar depth prior to the dive (cf. Nakamura et al., 2011) (figure 18), although number of dives 

per hour and maximum depth per dive varied between individuals (figure 19). Complete dives 

were characterised by descent, bottom (though not always present) and ascent phases and other 

behaviours often occurred within these phases. For example, some of the sharks circled during 

descent or bottom phases or swam sinusoidally during any phase (see below). The three-

dimensional dead-reckoning visualisation from TS13’s tag data shown in figure 10 spans 4 h 

50 min. During this time the depth ranged a maximum 93.08 m across 20 dives and more than 

14 km of horizontal distance was travelled, with the total distance travelled likely much greater 

after vertical travel is considered.  
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Figure 18. a) A three-dimensional dead-reckoning plot created in DDMT illustrates the yo-yo 
like diving behaviour comprised of Behaviours A and B, as well as bottom phases occasionally. 
Dead-reckoning is derived from the heading, speed and depth data channels over time (table 
2). 

The extracted depth data from Behaviour A reveals that most of sharks dived no deeper 

than 40 m at any time, except for TS13 and TS18, which reached depths exceeding 80 m (figure 

19). TS18 reached a maximum depth of 93.81 m during a descent. TS13 and TS18 were the 

two sharks that also had the fastest rates of change of depth (figure 9).  
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Figure 19. Comparisons of extracted depth data, m (smoothed over 2 s) between sharks during 
Behaviour A (horizontal lines show medians, boxes quartiles and whiskers limits). 

 

BEHAVIOURS BASED ON HEADING 

Behaviour F – ‘Straight swimming’ 

Key metrics 

‘Straight swimming’ was defined as periods of (forward) movement with a steady or 

slow-changing heading and no major directional changes based on the absolute rate of change 

of heading being < 0.5ᵒ s-1 for > 3 s. 

Example behaviour 

Due to the minor sinusoidal heading fluctuations (caused by tailbeats) present in the 

heading differential channel despite smoothing (over 80 events, 2 s), the rate of change of 

heading was not considered to be 0ᵒ s-1 during this activity.  The data was not smoothed further 

to remain consistent and to avoid loss of information. However, upon inspection, the tailbeats 

rarely produced an absolute rate of change of heading value greater than 0.5ᵒ s-1. Therefore, 

any period during which the magnetic heading was within -0.5 and 0.5ᵒ s-1 for three seconds or 

more was considered to be straight swimming.  
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The graphed example of Behaviour F spanned 42 seconds, in which time the absolute 

rate of change of heading was not constant but remained between 0.28 and 0.49° s-1, with a 

mean value of 0.4° s-1 (±0.1) (figure 20a). As a result, the maximum range of the shark’s 

heading was 8.5° during this behaviour, remaining between 179.5° and 188° (figure 20b). The 

mean magnetic heading was 183.3° (±1.5). Also, very little variation in magnetic field intensity 

was observed, with the magnetometer x, y and z axes remaining relatively constant (figure 20c). 

The magnetometer y axis, which recorded lateral movement in relation to the Earth’s magnetic 

field, showed values remaining close to 0 mG (mean -0.11 mG ±0.02). This was another key 

indication that the direction of the sharks’ swimming was steady. 

Over a longer distance, any rate of change of heading greater than zero would have 

resulted in a significant difference in direction and position. However, due to the swimming 

mode of the sharks, a perfectly straight heading would be impossible to maintain unless they 

undertook long periods of gliding without the use of any tailbeats at all. The sharks only 

remained on straight courses for relatively short periods (figure 22c). 

 

 

Figure 10. Time series plots illustrating the key features of Behaviour F within recorded and 
derived metrics, including a) rate of change of heading (° s-1) and b) heading (°) and c) 
magnetic field intensity axes x (orange), y (pink), z (purple), (mG). Metrics smoothed over 2 s. 

Multiple examples of the behaviour within an individual 

There was no distinct multimodality within the magnetic headings at which straight 

swimming occurred. However, TS18 most frequently participated in straight swimming with a 
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magnetic heading between 176ᵒ and 178° (mean 170° ±13.95°). The frequency distribution of 

the y axis data recorded by the triaxial magnetometer (figure 21b) displayed a relatively unusual 

pattern. A significantly taller peak showed that the most frequently record magnetic field 

intensity values fell between the range of 0 and -0.01 mG (mean 0.05 ±0.07 mG). Another three 

peaks of increasing value but lessening frequency are also visible. However, again there is no 

distinct separation between these peaks to suggest clear, separate multimodality. Also, the 

frequency distributions of the other sharks’ data either displayed a similar pattern to TS18 or 

displayed a single continuum of values. There was also a continuum in the frequency 

distribution of VeDBA values (figure 21c) recorded during Behaviour F by TS18 and the other 

sharks. The most frequently observed VeDBA values ranged between 0.010 and 0.011 g (mean 

0.013 ±0.005 g). Thus, there was no distinct separation between the modes of acceleration 

engaged during this activity. 

      

Figure 11. Frequency distributions of extracted data for TS18 during Behaviour F. a) Magnetic 
heading (°) data, b) magnetic intensity y axis (mG) and c) smoothed VeDBA (g). VeDBA 
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reached a maximum of 0.085 g, but values greater than 0.04 g were infrequent. Metrics 
smoothed over 2 s. 

Patterns across individuals 

The magnetic field intensity values, recorded along the magnetometry y axis, straddled 

0 mG with both positive and negative values, except for TS16 and TS17 which had entirely 

positive values and TS24, which has entirely negative values. The graph also suggested that 

the values recorded by each sharks’ tag were unlikely to be significantly different from one 

another, as the box and whisker plots for each shark broadly overlapped, despite some variation 

between individuals’ values. The same was said for the smoothed VeDBA values plotted in 

figure 22b. It is evident that Behaviour F was very uncommon for these sharks, with all except 

TS12 dedicating less than 1% of the recorded time to swimming with a straight course (figure 

22c). 



Wallis James ( ) / BIOM64 May 2022 

49 
 

Figure 12. Comparisons of extracted a) magnetic field intensity y axis (mG) and b) smoothed 
VeDBA (g) data between sharks during Behaviour F (horizontal lines show medians, boxes 
quartiles and whiskers limits). c) compares the proportion of recorded time each shark 
dedicated to this behaviour. Metrics smoothed over 2 s. 
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Behaviour G – ‘Burst power’ 

Key metrics 

‘Burst power’ was defined by the absolute rate of change of VeDBA rapidly increasing 

above 0.03 g s-1, for varied time periods. 

Example behaviour 

Some bursts were singular and short-lived, others lasted longer or were a series of bursts 

in close succession. Burst power periods were accompanied by an increased amplitude and 

decreased period in tailbeat curves. Behaviour G was characterised by sudden disorderly 

changes in most or all the recorded and derived data channels and occurred sporadically 

throughout the recorded time. The example event (figure 23) occurred over the course of 

approximately 50 seconds, but the seconds prior to and following the behaviour are included 

in the time series plot to provide context. Figure 23c shows the acceleration x (red), y (green) 

and z (blue) axes (raw channels represented by lighter colour hues, smoothed channels 

represented by darker hues). The increase in tailbeat frequency and magnitude shown in the 

raw acceleration y axis (light green) relative to prior and following activity suggested that the 

shark was engaging a sudden burst of power. This was also evident from the sudden increase 

in the absolute rate of change of VeDBA values observed during (figure 23a), which had a 

mean of 0.05 g s-1 (±0.02). VeDBA (figure 23b) showed a similar but less smoothed pattern.  

In a manner similar to the acceleration axes, the magnetometer x (orange), y (pink) and 

z (purple) axes (figure 23d) recorded disorderly changes in the magnetic field intensity (mG) 

during this behaviour. The rapid, disorderly changes across all three acceleration and 

magnetometry axes indicated highly variable three-dimensional movement. 
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Figure 13. Time series plots illustrating the key features of Behaviour G within recorded and 
derived metrics, including a) absolute rate of change of VeDBA (g s-1), b) VeDBA (g), c) 
acceleration (g) axes x (surge, red), y (sway, green), z (heave, blue) and d) magnetic field 
intensity axes x (orange), y (pink), z (purple), (mG). Raw channels in c) are represented by 
lighter colour hues, smoothed channels represented by darker colour hue. Metrics smoothed 
over 2 s. Note that the negative heave axis values indicated that this tag was fitted upside down 
and the recorded accelerometer and magnetometry data should be read accordingly. 

Multiple examples of the behaviour within an individual 

The metrics recorded during Behaviour G did not show multimodality, including 

absolute rate of change of VeDBA which showed a single steep-sided continuum from 0.03 g 

s-1 onwards. For TS19, the depths at which this behaviour occurred ranged between 0.1 m and 

13.3 m (figure 24a) across all burst events performed but occurred most frequently between 

0.4 m and 0.6 m (mean 0.96 m ±0.85), close to the water’s surface. Whilst examining the 

frequency distributions for all metrics, a relatively unusual pattern was observed in the 

distribution of the magnetometer y axis. Figure 24b shows a smooth continuum distribution 

with a distinct peak between -0.59 mG to -0.6 mG. The frequency within the bins then 

decreased forming a trough, but then gradually increased and decreased again to form a smooth 

mounded shape. The most frequently recorded magnetic field intensity values in this second 

smooth peak ranged between -0.3 and -0.31 mG. 
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VeDBA values were relatively high compared with the other behaviours, reaching a 

maximum value of 0.42 g (figure 24c) and most frequently ranged between 0.04 g and 0.05 g 

(mean 0.08 g ±0.04), again showing a single continuum distribution.  

 

Figure 14. Frequency distributions of extracted data for TS19 during Behaviour G. a) Depth 
(m) data ranged between 0.1 and 13.3 m. b) Magnetic intensity z axis (mG) data. c) VeDBA (g) 
reached a maximum of 0.42 g. Metrics smoothed over 2 s. 

Patterns across individuals 

Most of the rate of change of VeDBA data (figure 25a) extracted for Behaviour G 

remained below 0.06 g s-1 for all sharks. Maximum rate of change of VeDBA values for all 

sharks exceeded this but remained below 0.36 g s-1. This behaviour mostly occurred at shallow 

depths (< 3 m) for all sharks, except TS8 and TS13 (as shown by the interquartile ranges in 

figure 25b). However, TS13 and TS18 also expressed Behaviour G at depths greater than 75 

m. Behaviour G was detected in less than 15% of the sharks’ recorded time, except for TS14, 

which spent 23.8% swimming in a state of increased acceleration. 
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Figure 15. Comparisons of extracted a) rate of change of VeDBA (g s-1) and b) depth (m) data 
between sharks during Behaviour G (horizontal lines show medians, boxes quartiles and 
whiskers limits). c) compares the proportion of recorded time each shark dedicated to this 
behaviour. Metrics smoothed over 2 s. 
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Behaviour H – ‘Direction change’ 

Key metrics 

‘Direction change’ was indicated by any instance in which the shark was not swimming 

with a straight heading described by Behaviour F. Direction change (or turn) had a rate of 

change of heading > 0.5ᵒ s-1 for > 3 s in the smoothed heading data (figure 27a). 

Example behaviour 

The tiger sharks spent very little time swimming with straight courses, as demonstrated 

in figure 21c and a birds-eye-view of this shark’s dead-reckoning track (figure 26) illustrates a 

course with frequent changes in direction. This track spanned just over 48 minutes, in which 

time over 1.8 km horizontal distance was travelled and the shark’s rate of change of heading (° 

s-1) changed continuously (did not remain <0.5° s-1 for >3 s), implying a straight course (as 

defined by my algorithm) never occurred. 

 

Figure 16 – A bird-eye-view dead-reckoning track of a shark swimming without a straight and 
steady heading at any time and continuously changing direction. 

Figures 27b to 27d show the magnetic field intensity (mG), measured by the triaxial 

magnetometer x, y and z axes. Like the rate of change of heading, which they underpin, they 

displayed an unsteady pattern except for magnetometer axis z, which remained relatively 

constant at approximately -0.45 mG (mean -0.45 mG ±0.03). The lack of regularity in the 
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heading differential channel and magnetometry x and y axes suggested that the rates of lateral 

turning and turning angles varied between occurrences but were never greater than 5ᵒ s-1 in this 

example (mean 3.6° s-1 ±0.4).  

 

Figure 17. Time series plots illustrating the key features of Behaviour H within recorded and 
derived metrics, including a) rate of change of heading (° s-1), as well as b) magnetic field 
intensity axis x (mG), c) axis y (mG) and c) axis z (mG). Metrics smoothed over 2 s. 

Multiple examples of the behaviour within an individual 

In an attempt to determine whether the sharks had distinct modes of turning rate (e.g. 

fast, slow), the frequency distributions of the absolute rate of change of heading data were 

assessed. However, steady continuum distributions were expressed, as seen in the data of TS16 

in figure 28. For TS16, absolute rates of change of heading most frequently ranged between 2 

and 3° s-1 (mean 3.4° s-1 ±4.0). A relatively unusual pattern was observed in the smoothed 

magnetic heading data for this shark, with three conjoined peaks appearing (figure 28b). 

Although they were not distinctly separated from one another, the bin values ranged between 

300° and 305°, 055° and 060° and finally, 170° and 175° (in order of frequency). The mean 

magnetic heading was 181.6° (±105.7). The frequency distribution of smoothed roll angle 

demonstrated that this behaviour could also be cascaded into left and right turns, because the 
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body roll angle changed as the sharks leaned into a turn. Left or anticlockwise turns produced 

negative roll angles, whilst right or clockwise turns produced positive roll angles. Figure 28c 

shows a peak in the positive smoothed body roll angle values (most frequently expressed angles 

ranged between -9° and -10°) and a peak in the negative smoothed body roll angle values (most 

frequently expressed values ranged between 5° and 6°). This could also be shown using the 

standard heading differential instead of the absolute heading, with left or anticlockwise turns 

producing positive differential values and right or clockwise turns producing negative values. 

   

Figure 18. Frequency distributions of extracted data for TS16 during Behaviour H. a) Rate of 
change of heading (° s-1) has values as high as 179.8° s-1. b) Magnetic heading (°). c) Body roll 
angle ranged between -68.9° and 64.7° but rarely exceeded a roll of 20° either side. Metrics 
smoothed over 2 s. 

Patterns across individuals 

The extracted Behaviour H data identified that the rate of change of heading (figure 

29a) mostly remained below 5° s-1 and always remained below 50° s-1 for all sharks except 

TS17, which had a maximum rate of change of heading value of 179.8° s-1. The smoothed 
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VeDBA data mostly remained below 0.1 g, although all sharks exceeded this value (as 

particularly shown by the upper extreme quartiles in figure 29b). Figure 22c shows that the 

sharks spent very little time with straight headings, the rest of their time was spent continually 

changing heading. The faster rates of change of heading seen in figure 28a implied faster turns. 

However, the distributions of this metric (example shown in figure 28a) suggest these higher 

values were an infrequent occurrence for all sharks. 

 

Figure 19. Comparisons of extracted a) rate of change of heading (° s-1) and b) VeDBA (g) 
data between sharks during Behaviour H (horizontal lines show medians, boxes quartiles and 
whiskers limits). Metrics smoothed over 2 s. No ethogram for Behaviour H is presented as time 
dedicated to this behaviour is the recorded time remaining after Behaviour F had been 
removed (figure 22c). 

Behaviour I – ‘Circling’ 

Key metrics 

‘Circling’ was characterised by regular oscillation in all three magnetometer axes and 

forward motion with systematic change across the full 360° magnetic heading, in either 

clockwise or anticlockwise direction. Numerical metric limits were not defined due to the 

variation in occurrences between individuals and instances. Variation in the depth differential 
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was also sometimes observed during this behaviour between occurrences and individuals. 

Some occurrences showed no change in depth (in some instances, the rate of change of depth 

revealed oscillatory fluctuations), whilst others demonstrated a continuous descent or ascent. 

Example behaviour 

‘Circling’ was observed at least once in six out of the 10 sharks’ tag data. A birds-eye-

view of the dead-reckoning track of TS13 shows that she completed eight full clockwise 

circular movements over a span approximately nine minutes and 23 seconds (figure 30). Figure 

31 gives a three-dimensional view of the dead-reckoning track, which illustrates that TS13’s 

depth steadily decreased from 25.16 m to 52.28 m whilst exhibiting this behaviour. However, 

this was not necessarily the case for all instances of this behaviour. The mean rate of change 

of depth during this example activity was 0.01 m s-1 (±0.01) and the mean smoothed body pitch 

angle was 7.7° (±7.1).  

F 

Figure 20. A birds-eye-view dead-reckoning plot from TS13 created in DDMT illustrates the 
pattern of movement of Behaviour I. 

The VeDBA values (represented by the track colour and explained by the colourmap 

key) remained relatively low and had a narrower range and smaller maximum value than seen 

when all descents behaviours were combined within a frequency distribution in figure 4c. The 

mean VeDBA during the example of Behaviour I in figure 31 was 0.023 ±0.014 g, whereas the 

mean VeDBA from TS13’s combined descent data (Behaviour A) was 0.031 ±0.029 g. 
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Although these figures overlap somewhat, it suggests that less acceleration was utilised during 

Behaviour I, than other circumstances of descent.  

 

 

Figure 21. A three-dimensional dead-reckoning track of the downward-circling movement of 
Behaviour I from the data of TS13. 

Figure 32 displays time series plots of a similar but separate Behaviour I event to that 

shown in figures 30 and 31, but again from TS13. This behaviour spanned 188 s, during which 

time TS13 performed 11 anticlockwise complete circles. Without looking at the dead-

reckoning track, the sine-wave patterns are evident in all three magnetometry axes (figure 32a) 

and are the most distinct feature within the data. A distinct pattern is not present in the 

acceleration axes associated with data recorded by the triaxial accelerometer for this behaviour 

(figure 32b). The smoothed surge (acc x) axis remained mostly negative between 0 and -0.3 g, 

and occasionally rose into positive values. This corresponds to the body being angled slightly 

downward, with a mostly negative body pitch angle (figure 33e) to assist the gradual descent 

seen in figure 33d. The smoothed sway (acc y) axis showed a similar range and fluctuation of 

acceleration to the surge axis. The minor fluctuations may have been caused by slight 

adjustments to movement using tailbeats to maintain the behaviour. The mostly negative values 
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suggest that TS13 was banking to one side into the turn, during this activity. The heave (acc z) 

axis experienced very little change and showed that the shark was not completely level, which 

corresponds to the shark banking slightly into the turns. 

 

Figure 22. Time series plots illustrating the key features of Behaviour I within recorded 
metrics, including a) magnetic field intensity axes x, y and z, b) acceleration axes x (surge), y 
(sway) and z (heave) from the data of TS13. Metrics smoothed over 2 s. This tag was fitted 
upside down and, indicated by the inverted acceleration data is inverted and appears along 
the opposite axis. An acceleration z axis value close to -1 g would imply that TS13 was almost 
completely upside. This is unlikely as tiger sharks can experience a state of tonic immobility 
when inverted in this way (Holland et al., 1999; Kessel & Hussey, 2015). The acceleration data 
is interpreted as though it has been inverted onto the opposite axis. 

 Behaviour I is immediately evident in the magnetic heading data (figure 33a). In this 

example, the derived heading data shows that TS13 was circling in an anti-clockwise direction. 

Over time, the heading passed through to 359° from 000°, an indication that the shark’s heading 

crossed magnetic North. The derived values then began to decrease back to 000° and the cycle 

would repeat. The rates of change of heading (figure 33c; mean -4.3° s-1 ±1.3) and smoothed 

body roll angles (figure 33f; mean -7.9° ±5.3) were mostly negative, due to the anticlockwise 

nature of the circles. In this case, faster rates of change of heading were observed when TS13’s 

heading approached approximately 180°. This indicated that some sections of the circles were 

turned at faster rates than others. Although the VeDBA remained fairly constant (figure 33b; 

mean 0.05 g ±0.02), peaks were observed at similar intervals to the increases in the rate of 

change of heading. This suggests that TS13 was employing more dynamic acceleration, 
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possibly to turn that section of the circle more quickly. The depth slowly increased throughout 

this activity (figure 33d; mean rate of change of depth of 0.008 m s-1 ±0.008), which 

corresponds to the mostly negative (smoothed) body pitch angle (figure 33e; mean -6.7° ±4.4). 

 

Figure 23 - Time series plots illustrating the key features of Behaviour I within derived metrics, 
including a) magnetic heading (°), b) VeDBA (g) c) rate of change of heading (° s-1), d) depth 
(m), e) body pitch angle (°) and f) body roll angle (°). Metrics smoothed over 2 s. 

Patterns across individuals 

Information on patterns across individuals is not provided as an accurate search 

algorithm was not constructed within the current time, similarly to Behaviours E and I. This 

leaves open the opportunity for further development in the future. 
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Behaviour J – ‘Sinusoidal swimming’ 

Key metrics 

‘Sinusoidal swimming’ was characterised by regular oscillation around zero in the 

heading differential channel, although greater than the minor oscillations caused by tailbeats. 

Numerical metric limits were not defined due to the variation in the metrics of different 

occurrences of this behaviour. 

Example behaviour 

 Behaviour J was picked up by the algorithm constructed for Behaviour H and included 

in the subsequent extracted data as rate of change of heading being greater than 0.5° s-1. 

However, it is important to note that although this behaviour does involve constant directional 

change, it was much more uniform and often smoother than other general changes in direction. 

It presented a sine-wave-like pattern in several data channels, including the sway axis (figure 

34). The sine-wave patterns occurred on a greater scale than the patterns caused by the sharks’ 

tailbeats, which are still partially evident in the smoothed magnetic heading channel (figure 

34b) and smoothed body roll angle (figure 34c). The characteristic sine wave patterns of 

Behaviour J are also clear in the smoothed sway (acc y) axis (figure 34b) and the magnetometer 

y axis data (figure 34e).  
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Figure 24. Time series plots illustrating the key features of Behaviour J within recorded and 
derived metrics, including a) magnetic heading (°), b) sway (y) acceleration (g) c) body roll 
angle (°), d) magnetic field intensity x axis (mG), e) magnetic field intensity y axis (mG) and f) 
magnetic field intensity z axis (mG). Metrics smoothed over 2 s, except for a). 

Behaviour J was observed in all the sharks’ tag data. The example graphed in figure 34 

spanned 206.25 seconds, the wavelength of magnetic heading was approximately 20 s and the 

amplitude was approximately 40°. However, the length of other occurrences of this behaviour 

varied, as did the amplitude and wavelength of the sine waves produced in the recorded and 

derived data between occurrences and individuals. This made it particularly difficult to set 

defined limits within the data to construct an algorithm that would successfully extract all 

Behaviour J occurrences. Within the current time, I was unsuccessful in constructing such an 

algorithm.  
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BEHAVIOUR SUMMARIES 

All identified behaviours are summarised below (table 3).  

Table 3. The behaviours of G. cuvier identified from CATS tag data using DDMT software, 
mostly described using quantifiable metrics that allow behaviours to be detected in other tag 
data using algorithms input into DDMT’s BB. 

Behaviour Key features 

A ‘Descent’ of the water column was manifest by a continuous increase in depth 
and pressure. Rate of change of depth was > 0 m s-1 for > 3 s. Pitch angle was 
also commonly < -5ᵒ. Frequency distribution plots showed a continuum in the 
rate at which these sharks descended, instead of uni- or multi-modality. Descent 
varied between powered or glided although both could occur within the same 
descent. A steeper negative pitch angle (ᵒ) was accompanied by a faster rate of 
change of depth, suggesting a relationship between the two metrics. Descent 
could occur simultaneously alongside Behaviours F, G, H, I & J. 

B ‘Ascent’ of the water column was manifest by a continuous decrease in depth 
and pressure. The rate of change of depth was < 0 m s-1 for > 3 s and the pitch 
was mostly > 5°. Frequency distribution plots showed a continuum of modality. 
Ascent could occur simultaneously alongside Behaviours F, G, H, I & J. 

C ‘Horizontal swimming’ was defined when the rate of change of depth was 
equal to 0 m s-1 for > 3 s. Pitch usually ranged between -5ᵒ < pitch < 5ᵒ. 
Horizontal swimming could occur within Behaviours D, F, G, H, I & J. 

D ‘Surface swimming’ was defined to have occurred at a depth of < 1 m for > 3 
s, during which time, increased VeDBA values were observed in all 
individuals. Surface swimming could occur within Behaviours A, B, C, E, F, 
G, H & J. Sharks were not seen participating in Behaviour I at the surface. 

E ‘Undulatory swimming’ was defined as a regular oscillation around zero in 
the rate of change of depth channel. Three-dimensional dead-reckoning of this 
behaviour showed this as a repetition of descents and ascents, smaller in scale 
than ‘deeper’ dives. 

F ‘Straight swimming’ was defined when there were periods of forward 
movement with a steady or slow-changing heading and no major directional 
changes (an absolute rate of change of heading of < 0.5ᵒ s-1 for > 3 s). Due to 
the minor sinusoidal heading fluctuations (caused by tailbeats) present in the 
heading differential channel despite smoothing (80 events, 2 s), the rate of 
change of heading was not considered to be 0ᵒ s-1 during this activity.  Straight 
swimming could occur within Behaviours A, B, C, D & E. 

G ‘Burst power’ was defined by the rate of change of VeDBA rapidly increasing 
above 0.03 g s-1, for varied time periods. Some bursts were singular and short-
lived, others lasted longer or were a series of bursts in close succession. Burst 
power periods were accompanied by an increased amplitude and decreased 
period in tailbeat curves. Burst power events could occur during Behaviours A, 
B, C, D & H. 

H ‘Direction change’ was indicated by any instance in which the shark was not 
swimming with a straight heading described by behaviour F. Direction change 
(or turn) had a rate of change of heading > 0.5ᵒ s-1 for > 3 s in the smoothed 
heading data. Directional change could occur during all behaviours, except for 
Behaviour F.  
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I ‘Circling’ was characterised by regular oscillation in all three magnetometer 
axes and forward motion with systematic change across the full 360° magnetic 
heading. Variation in the depth differential was also sometimes observed 
during this behaviour between occurrences and individuals. Could occur during 
Behaviours A, B,  

J ‘Sinusoidal swimming’ was characterised by regular oscillation around zero 
in the heading differential channel, although greater than the minor oscillations 
caused by tailbeats. During some occurrences, there was minimal change to 
depth but Behaviour I was also observed occurring alongside Behaviours A, B 
& D. 

 

After presentation, the recognised behaviours are also labelled alphabetically in a 

decision tree, constructed using the descriptive metric limits set within the algorithms for 

defining the behaviours. For the purpose of this simplified decision tree, all behaviours are 

described as if they occur in isolation, although two or more could also occur simultaneously 

(table 3). 

 

Figure 25. A decision tree differentiates the identified behavioural categories based on the key 
derived metric limits that quantify and define them.  
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DISCUSSION 

The use of biologging tags and the inspection of the high-resolution data they record is 

akin to observing the movement and behaviour of free-roaming animals in their natural 

environment. However, the influence that observer presence or captive habitat conditions may 

have on the normal performance of any animal is removed. This technique of recording 

behaviour from the animal’s perspective also removes our own visual bias, as well as any bias 

towards behaviours that are caused by baiting or more commonly occur at the surface or 

(Heithaus et al., 2002) by measuring metrics inaccessible by visual observation (Ropert-

Coudert & Wilson, 2005; Ellwood, Wilson & Addison, 2007). 

Despite the use of multichannel biologging tags being the norm for the study of animal 

biotelemetry today (Ropert-Coudert & Wilson, 2005), to the best of my knowledge this is the 

first piece of work attempting to identify the behaviour of tiger sharks solely from human 

inspection and interpretation of animal-attached tag data, without using field observations or 

camera footage as a reference to confirm or the aid of ML. While seemingly complex, the 

process of inspection of multi-sensor data is, in essence, no different from what people do when 

they watch an animal in the field and classify behaviours – typically concentrating on patterns 

in body part movement and travel through space. Thus, the process I have adopted is essentially 

no different from that adopted for classifying behaviour over decades (e.g. Tinbergen, 1960). I 

note that ML has been successfully used to detect and categorise patterns in accelerometer data 

to separate animal behaviours in numerous studies (e.g. Sakamoto et al., 2009). However, 

supervised ML requires training data of behaviours already described using data derived from 

observed animals wearing tags (Nathan et al., 2012), which is obviously problematic for 

identifying behaviours that are difficult or impossible to observe naturally (Wang et al., 2019). 

Whilst unsupervised ML can detect and categorise patterns in the data of potentially unseen 

behaviours without the aid of training data (Valetta et al., 2017), the algorithms cannot interpret 

these categories and explain them in behavioural terms. This requires human interpretation of 

the data to understand and communicate what the animal is doing.  

Humans possess the capacity to detect highly complex regular and irregular visual 

patterns (Zeki et al., 2008) and are therefore more than capable of detecting patterns within 

triaxial accelerometer data. This work aimed to ‘cut out the middleman’ and identify and 

categorise movement patterns in acceleration data, without the aid of ML. It was successful in 

that 10 behaviours were identified and described via human understanding and interpretation 

of triaxial accelerometer data based on visualizations. Furthermore, defined numerical limits 
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within recorded and derived metrics were set for some of the behaviours, which allowed the 

construction of algorithms using BB to sift the data and extract repetitions of the behaviours. 

Although algorithms were not constructed for some of the more complex behaviours within 

the available time frame, it is certainly possible. For the behaviours for which BB algorithms 

constructed, data was extracted and used to produce ethograms and frequency distributions to 

assess time allocation for each behaviour and modality of metrics within them. Below, I 

describe what the data suggests the sharks are doing during each behaviour and their potential 

functions in a natural setting. 

Behaviours A, B, E & J 

During descents, the downward angled posture of the sharks produced negative surge 

values and thus, DDMT derived mostly negative body pitch angles from this data. 

Consequently, there was a sustained (longer than 3 s) increase in depth, which made descents 

easily identifiable by searching for periods in the data with rates of change of depth greater 

than 0 m s-1 (figure 3c). The direct opposite was observed for Behaviour B (ascent). Surge 

acceleration values were positive, as were the body pitch angles and a sustained decrease in 

depth occurred. Therefore, to identify ascent periods, rate of change of depth values less than 

0 m s-1 occurring consecutively for longer than 3 s were searched for, marked and extracted. 

Only periods sustained for longer than 3 s were accepted to avoid the inclusion of data recorded 

due to noise or tag disturbance. The peaks in VeDBA (figure 3b) suggested the sharks 

occasionally used power to assist the descent, instead of solely gliding to reserve energy as 

would be expected (Gleiss, Norman & Wilson, 2011). In figure 10, the higher frequency and 

greater amplitude of tailbeats during ascents than descents implied that the shark was 

employing greater dynamic acceleration more quickly, probably to counteract its negative 

buoyancy and rise through the water column. 

The continuum of data within the distributions for all the sharks’ data implied that there 

was no clear distinction between gliding and powered modes during both descents (figure 4) 

and ascents (figure 7). However, without the ability to extract the finely resolved behaviours, 

it would have been possible to extract larger periods of data and assess the frequency 

distributions to assess what modes were present. All rate of change of depth (figure 26a) and 

body pitch angle (figure 26b) data were extracted from TS8. The frequency distributions show 

a clear divide between two modes around zero within these metrics, identifying bi-modality 
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within them and demonstrating why they were separated into two separate behaviours in this 

work (up and down, essentially).  

 

Figure 26. a) The rate of change of depth (smoothed over 2 s) data extracted from the entire 
data file of TS8. Extreme values were cut off at -0.1 and 0.1 m s-1 due to much lower relative 
frequencies but reached a minimum value of -0.19 m s-1 and a maximum of 0.22 m s-1. Negative 
values represent a decrease in depth and positive values represent an increase. b) Body pitch 
angle (smoothed over 2 s) data extracted from the entire data file of TS8. Extreme values were 
cut off at -40° and 40° due to much lower relative frequencies but reached a minimum value of 
-55.6° and a maximum of 77.2°1. Negative values represent downward pointing postures and 
positive values represent upwards pointing postures. 

Furthermore, this is a relatively small sample of data from only 10 individuals and without 

being able to easily separate other behaviours that involve descent, such as circling descent or 

undulatory swimming, it is currently not given the extent to which these different behaviours 

within descent contribute differentially to the continuum distribution. There was certainly 

variation in the rates of change of depth used by individuals (figures 5a and 8a), for whatever 

reasons (presumably a result of environmental context (Bestley et al., 2013)). All sharks spent 

a large proportion of time descending and ascending through the water column executing the 

yo-yo diving behaviour (see Nakamura et al., 2011) and very little time at a maintained depth 

(figures 5b and 8b), possible reasons for which are discussed below. 
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Energy management and conservation are critical to survival (Roth II, Rattenbourg, & 

Pravosudov, 2010) and therefore, to reproductive success (Pianka, 1976). It was suspected that 

the sharks would utilise their negative buoyancy to glide during descents, as seen in whale 

sharks, Rhincodon typus (Gleiss, Norman & Wilson, 2011), to minimise energetic costs of 

travel. Weihs (1973) predicted that energy conservation of up to 50% was possible by 

negatively buoyant fish oscillating between gliding descents and powered strokes to ascend 

back to their original depth. However, the sharks in this work were regularly observed using 

power strokes during descent phases manifest by uniform peaks and troughs in the sway axis 

indicating regular tailbeats. Heithaus et al. (2002) also observed tiger sharks powering during 

descents using animal attached ‘Crittercam’ video recordings and Nakamura et al. (2011) found 

only 50% of studied sharks glided during descents, which accounted for <18% of total descent 

time.  

Mean smoothed VeDBA values were expected to be lower during descents than ascents if 

the sharks had in fact glided during descents and required less dynamic acceleration. However, 

they were found not to be significantly different (see results). This fact, alongside the presence 

of powered strokes in the sway axis during both descents and ascents, suggests that similar 

acceleration levels were utilised for both behaviours on average.  

In tandem with this, the mean body pitch angle during descents was –7.1° (±8.3), and the 

steepest recorded descent angle was -87.8° (TS13). The mean body pitch angle during ascents 

was 6.1° (±6.1), and the steepest recorded descent angle was 85.7° (also TS13). Although the 

mean descent values are relatively shallow, much steeper values were expressed by all sharks. 

This is not consistent with shallow pitch angles expressed by other species of negatively 

buoyant fish utilising powerless descent to increase energetic efficiency (Kawabe et al., 2004). 

Whale sharks adhere quite rigorously to a gliding descent, powered ascent regime, with 

corresponding VeDBA data (Gleiss, Norman & Wilson, 2011), which is symptomatic of 

animals operating on a tight energy budget feeding on essentially immobile prey (plankton 

(Gleiss et al., 2013)). Tiger sharks must catch large, fast and agile prey (Drymon et al., 2019; 

Simpfendorfer, Goodreid & McAuley, 2001; Dicken et al., 2017), thus requiring them to have 

a strategy that allows them to move rapidly in a 3D space. Therefore, they would be expected 

to have a much more dynamic, and less energetically optimal, movement strategy than plankton 

feeders. 
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Chum salmon were found to be negatively buoyant during vertical movements through the 

water column, despite the presence of a swim bladder (absent in elasmobranchs) (Tanaka, 

Takagi & Naito, 2001). Accelerometer data showed that the salmon descended faster, at much 

steeper angles than when they ascended and tailbeat frequency and amplitude was higher 

during ascents, suggesting more energy was spent during ascent phases. The purpose of the 

salmons’ diurnal vertical movements during migration to spawning grounds was attributed to 

differences in geography, hydrographic features, physical condition or reproductive strategy 

(Tanaka, Takagi & Naito, 2001). Although the pitch angle gradients appear relatively similar 

between descents and ascents for the tiger sharks (unlike the chum salmon), figure 10 suggests 

that tailbeats were faster and more intense during ascents than descents like the chum salmon. 

When inspecting the data of all 10 sharks, it was clear that G. cuvier frequently descend 

and ascend repetitively, creating what has been coined ‘yo-yo vertical movement’ (Nakamura 

et al., 2011). Behaviour E (undulatory swimming) also consisted of uniformly alternating 

vertical movements. Although this behaviour was detected by the algorithms constructed to 

extract Behaviours A and B, it has also been described as a separate behaviour (Gleiss et al., 

2011). This is because the data exhibited much smoother and smaller scale oscillations in depth 

that could occur during any phase of the deeper dives observed, as well as during horizontal 

movements. This distinction between deeper dives and oscillations with smaller amplitudes 

was also observed by Holland et al. (1999) with Gleiss et al. (2011) pointing out that movement 

using small vertical oscillations is an energetically efficient mode of locomotion in fluid media.  

Behaviour J (sinusoidal swimming) presented a similar oscillating pattern as Behaviour E 

however, the oscillations occurred in the sway axis, rather than the surge. In other words, the 

sharks were also exhibiting a regularly oscillating lateral movement, on a larger scale than that 

produced by tailbeats. Such lateral oscillations are more difficult to explain than vertical 

oscillations because there is no energetic advantage to them. Rather, straight-line swimming is 

the most energetically efficient (Wilson et al., 2013) and so, the costs of these oscillating three-

dimensional movements must offset the benefits of energetics savings. I suggest that the 

particular pattern might be due to ‘trail following’, whereby animals follow a scent whilst 

moving laterally (and vertically in a three-dimensional environment) up an odour plume to 

hone in on the source (Vickers, 2000). Certainly, sharks have particularly sensitive smell 

receptors (Yopak, Lisney & Collin, 2015) and odour following has been documented widely 

in them (e.g. Tucker et al., 2019; Gardiner & Atema, 2007; 2010). 
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Overall, it is perhaps relevant Nakamura et al. (2011) concluded that energy conservation 

was unlikely to be the primary objective of this ‘yo-yo’ swimming pattern, but rather a method 

for expanding the searched area throughout water column for potential prey. Although there 

are other proposed theories, such as behavioural thermoregulation and navigation (Carey, 

Scharold & Kalmijn, 1990; Klimely, 1993), tiger sharks are generalist and opportunistic feeders 

that exploit easily captured prey within their current habitat (Lowe et al., 1996). When foraging 

in deeper waters across distances of a few to hundreds of kilometres, marine predators are less 

likely to rely on sensory information from proximal cues (e.g. vision) and become more 

probabilistic hunters that depend on an optimal search strategy to maximise prey encounters 

(Sims et al., 2008). Some of these movements have been classified as Lévy walks (Shlesinger, 

Zaslavsky & Klafter, 1993). Thus, these swimming modes combined potentially represent a 

three-dimensional foraging strategy to increase the likelihood of detecting visual and olfactory 

cues to maximise encounter rates with sparsely distributed prey whilst travelling throughout 

the water column (Carey, Scharold & Kalmijn, 1990; Bres, 1993; Nakamura 2011; Sims et al., 

2008; Sims, 2010). This suggests that the potential gain of increased prey encounter rates 

outweigh the energetic ‘inefficiency’ of these swimming modes.  

Behaviour C – Swimming at a maintained depth 

The algorithm constructed for this behaviour only detected a very small proportion amongst 

only two of the sharks’ tag data (figure 16b). The tiger sharks evidently spent a large proportion 

of time making horizontal movements through the water column during their descents and 

ascents and so swimming at a maintained depth was likely to be less common. It could also be 

due to tag disturbance making a depth differential reading of 0 m s-1 less likely, in which case 

an adjustment to the algorithms would be required. Despite this, tiger sharks do appear to spend 

periods of time swimming at relatively horizontal invariable depths at times (e.g. swimming 

along the seabed or at the surface) and I propose that the algorithm used here was too exact by 

searching for sustained periods where rate of change of depth remained at 0 m s-1.  

The reason for such an exact figure was to prevent overlap with Behaviours A and B, 

however it does not allow for possible disturbance to the tag despite a relatively unchanged 

depth. For example, figure 14a shows one of the sharks swimming at a relatively constant depth 

at the surface, but with many minor fluctuations in depth. This is likely a result of swimming 

in a fluid medium, in a high drag area with increased wave amplitude, which is registered by 

the depth sensor. Periods where this is speculated to have occurred were not detected by the 
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current algorithm. Future development of this work would investigate construction of an 

algorithm that accounts for minor depth fluctuations occurring during periods of relatively 

unchanged depth, without overlapping with descent and ascent behaviours. 

Behaviour D – Swimming at the surface 

The smoothed VeDBA rose above 0.03 g whilst swimming at depths of <1 m. Andzrejaczek 

et al. (2019) had similar findings of increased ODBA values when tiger sharks swam at the 

surface and attributed the increased acceleration values to wave action (ODBA and VeDBA 

can be considered synonymous (Wilson et al. 2020)). Yoda et al. (1999) found that it was 

energetically cheaper for Adélie penguins to dive deeper than necessary between breaths, than 

to swim close to the surface due to increased surface drag forces caused by wind, waves and 

currents. Thus, it is possible that the tiger sharks required increased dynamic acceleration to 

overcome greater friction forces whilst swimming within the high-drag layer, hence the greater 

smoothed VeDBA values expressed at the surface. If the increased VeDBA associated with 

surface swimming is a genuine manifestation of effort (Gleiss et al., 2010) rather than an 

artifact due to wave motion affecting the tag stability (cf. Wilson et al. 2020; Lear, Gleiss & 

Whitney, 2018) then, as with the apparently non energetically optimal yo-yo diving, the 

question is why sharks should swim so close to the surface anyway. 

Only six of the 10 sharks displayed periods of swimming at the surface. Three of these 

sharks spent relatively little time (< 15%) swimming at the surface compared to the other three 

(> 25%), possibly because it is more energetically taxing due to the increased drag forces (Yoda 

et al., 1999). Also, swimming at the surface would reduce their ability to visually detect 

silhouettes of air-breathing prey (e.g. sea turtles), as well as the effectiveness of their 

camouflage to prey positioned above them (Heithaus et al., 2002). However, tiger sharks are 

opportunistic predators (Lowe et al., 1996) feeding on benthic, as well as pelagic and surface 

prey. Their white ventral colouration in beneficial when hunting prey that is beneath them (i.e. 

pelagic or benthic) as it reduces silhouette produced by downwards sunlight (Heithaus et al., 

2002) and so, positioning to reduce the likelihood of being detected by benthic prey may force 

them towards the surface. Also, stomach contents have frequently revealed the consumption of 

seabirds (Drymon et al., 2019), as well as visual accounts of tiger sharks actively hunting 

seabirds at the surface of the water at several different locations globally (Meyer, 

Papastamatiou & Holland, 2010; see South Pacific, 2009 for example). Furthermore, they are 

known to be facultative scavengers, feeding on floating whale carcasses for example (Clua et 
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al., 2013). Therefore, it is possible that the tiger sharks were swimming to the surface to 

scavenge on floating animal carcasses or to capture potential prey floating on or breathing at 

the surface and the energetic gains accrued from this strategy outweigh the increased movement 

costs.  

Behaviour F (straight course swimming) & Behaviour H (directional change) 

Several species of shark including scalloped hammerhead sharks, Sphyrna lewini (Klimely, 

1993) and tiger sharks (Holland et al., 1999) have been described to swim with highly 

directional or straight-line horizontal courses. For example, using acoustic GPS tracking tags, 

Holland et al. (1999) recorded three sharks making very similar direct tracks to the same 

location following release. However, the sharks observed in this work spent relatively little 

time swimming with straight paths (figure 23c), despite it being the most energetically efficient 

form of horizontal travel (Wilson et al., 2013). Heithaus et al. (2007) suggested that sharks 

travelling between home ranges would exhibit straight course swimming, whilst sharks 

restricting their movement within a home range would demonstrate less straight-line 

movement. Perhaps during the period the tags (mean 20 h 34 min, range 13 h 48 min to 48 h 

44 min) were attached to the sharks, they had restricted their movements to a particular home 

range within Ningaloo Reef and thus displayed less straight-line courses.  

Furthermore, although Holland et al. (1999) described tiger sharks’ movements as highly 

directional in offshore waters, they also observed frequent turning and looping in the tracks of 

tiger sharks whilst they were in shallow waters of <300 m. None of the sharks observed in this 

work exceeded depths of 100 m during the time the tag was attached, which could explain why 

their dead reckoned tracks were highly tortuous and lacked longer periods of straight course 

swimming. This tortuous swimming behaviour has been observed prior to, and is associated 

with, prey investigation by tiger sharks (Andrejaczek et al., 2019; Heithaus et al., 2007; Sims 

et al., 2008). Thus, perhaps high tortuosity horizontal travel patterns contribute to prey capture 

success and offset the energetic costs of turning (Andrejaczek et al., 2019), compared with 

straight-line swimming (Wilson et al., 2013). Furthermore, studies that have reported longer 

periods of straight-line swimming and less tortuous tracks used GPS tracking tags that recorded 

over periods of weeks rather than days and declared that position fixes lacked temporal 

resolution (Holland et al., 1999; Heithaus et al., 2007). Therefore, they were more likely to 

observe long distance tracks between home ranges that required straight line swimming and 

detailed smaller scale tortuous tracks may have been less obvious. 
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Behaviour G – Burst swimming event 

Burst swimming events were obvious amongst the data as sporadic periods in which all or 

most data channels recorded extreme values unlike those that were recorded immediately 

before or afterwards. As seen in figure 24, the rate of change of VeDBA rapidly increased, 

caused by increased tailbeat frequency and amplitude (visible in the raw sway axis). The raw 

and smoothed sway axes show the shark was swimming a course with relatively little lateral 

movement and almost undetectable tailbeats before the event. Then suddenly, some large 

lateral movements occur throughout the ~50 s event. Rapid postural changes are also seen in 

the surge and heave axes, as well in the three magnetometer axes. 

Large tiger sharks, such as those studied here (266 to 380 cm TL), are unlikely to experience 

predation risk or interspecific competition (Heithaus, et al., 2002). However, intraspecific 

competition resulting in spatial segregation of males within different size classes (Heithaus, 

2001) or sexual segregation (male avoidance by females; Sims, 2003; Meyer et al., 2014), 

could result in avoidance behaviour if conspecifics were to encounter each other. Thus, it is 

possible that these sporadic periods of increased dynamic acceleration and changes in 

swimming direction are a result of avoidance action taken by the sharks upon encountering a 

conspecific. 

Another cause for burst swimming events could be prey investigations and/or capture. 

Andrzejaczek et al. (2019) observed burst, stalking and/or turning behaviours immediately 

preceding investigations of prey. Additionally, tiger sharks rarely engaged in prolonged high-

speed chases due to limited manoeuvrability compared with highly vigilant prey (Heithaus et 

al., 2002), which would explain why burst events observed in this data were brief.  Nakamura 

et al. (2017) also observed bursts by tiger sharks in the presence of potential prey such as 

unicornfish, Naso spp. However, they also demonstrated that not all burst events were 

apparently related to the presence of prey using video footage in conjunction with acceleration 

data. 

Behaviour I – Circling 

This behaviour was evident from oscillation patterns in all the magnetometer axes and 

derived heading data, which also indicated whether the circular motions were clockwise or 

anticlockwise. In almost all occurrences, there was a gradual increase in depth during this 

circling behaviour, which was performed by six of the 10 sharks observed in this work 

although, frequency of occurrences varied between individuals. In a manner similar to 
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Behaviours E & J, due to variance in the oscillatory nature of the data channels, it was difficult 

to set defined limits that successfully detected all occurrences of this behaviour. Thus, an 

algorithm to detect this behaviour has not yet been constructed. However, its legitimacy as a 

behaviour is undoubted as it has been described in previous literature using other methods 

(Andrzejeczak et al., 2018; Narazaki et al., 2021). 

Despite being ram ventilators and therefore obligate swimmers, it is unlikely that tiger 

sharks and other species alike have evolved to no longer require sleep (Kelly et al., 2019), due 

to their extensive cognitive capabilities (Lisney et al., 2012; Hart, Lisney & Collin, 2006). 

Furthermore, the evolutionary persistence of sleep across the animal kingdom (Rihel, 2020) 

and evidence for sleep-like behaviours in other, albeit buccal ventilating, shark species 

(Randall, 1977; Kelly et al., 2020) make it unlikely for ram ventilating shark species to have 

entirely lost the need for it. Additionally, cyclic diel vertical migrations have been considered 

as evidence for endogenous circadian rhythm in several obligate swimmer species (see Kelly 

et al., 2019; Myrberg & Gruber, 1974). It is hypothesised that ram ventilating sharks such as 

tiger sharks sleep unihemispherically (Kelly et al., 2019; Grainger et al., 2022), whereby one 

hemisphere of the brain remains active whilst the other participates in non-rapid eye movement 

(REM) rest. It enables the eye neurologically linked to the awake side of the brain to remain 

open and monitor the individuals’ surroundings (Lyamin et al., 2002), whilst maintaining 

continuous swimming. Most cetaceans (Kelly et al., 2019) and some other marine mammals 

sleep this way (Lyamin, Mukhametov & Seigel, 2004; Lyamin et al., 2008; 2016). Within birds 

too, great frigatebirds, Fregata minor, have been observed soaring on rising air currents in a 

circling motion whilst engaged in unihemispherical asymmetric non-REM sleep with a single 

eye open. Depending on which side of the brain is asleep and which is awake, the birds have 

their open eye leaning in towards the turn and the asleep eye facing outwards (Rattenbourg et 

al., 2016), possibly to avoid birds soaring in the same air mass. However, this behaviour could 

only be maintained for relatively short periods (<1 h per night; Rattenbourg et al., 2019).  

These tiger sharks were noted to be circling for relatively short periods (typically between 

3-10 min) and in several cases their depth gradually increased throughout the behaviour. It may 

also be relevant to this that Ritter (2020) described a bull shark, Carcharhinus leucas, that 

drifted ‘without control from tailbeats or fin movements’ sinking at a steady rate of 0.1 m s-1 

for a period of 120 s. Perhaps, when the tiger sharks were participating in these circling 

motions, they were exhibiting unihemispherical sleep. Instead of maintaining or increasing 

altitude on warm air masses like the figatebirds (Rattenbourg et al., 2016), they were gradually 
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descending like the bull shark (Ritter, 2020) due to their negative buoyancy (Andrzejaczek et 

al., 2019). However, it is impossible to say for sure whether this was the case from this data as 

the tags could not sense eye state, nor were they equipped with an electroencephalogram (EEG) 

to record electrical activity within the brain. Alternatively, circling behaviours occurring during 

the day at a maintained depth have been associated with foraging behaviours in tiger sharks 

(Narazaki et al., 2021) and sandbar sharks, Carcharhinus plumbeus (Andrzejaczek et al., 

2018). It is also perhaps relevant that Meyer et al. (2018) used a shark-mounted video camera 

to document a male tiger shark approaching a female using circling motions for courtship. 

Limitations 

It is essential to acknowledge the limitations presented in this work, so that they can be 

improved upon in future research. Firstly, catch and release procedures come with risks to both 

animals and researchers (Gleiss et al., 2009). No major deleterious effects on the sharks during 

capture and release were described by Andzrejeczak et al. (2019). However, due to tiger sharks 

being obligate ram ventilators and requiring a constant flow of oxygenated water over their 

gills (Tomita et al., 2018), there is a risk of fatal suffocation when fastened alongside a 

stationary vessel (Kawatsu et al., 2010). Gallagher et al. (2014) ranked tiger sharks as low risk 

from suffering reflex impairment, physiological stress responses and mortality following 

capture and release relative to four other studied shark species. However, they suggested that 

additional research was required. Drumlines equipped with baited hooks (used to capture the 

tiger sharks in this study) have resulted in mortality of sharks and non-target species when not 

checked frequently (Gribble, McPherson & Lane, 1998). However, the drumlines used in this 

study were checked hourly and no mortalities occurred. Nonetheless, some sharks had wrapped 

themselves amongst the lines and occasionally, hooks were broken when attempting to remove 

them from the sharks’ jaws. Gleiss et al. (2009) successfully tagged 11 whale sharks 

(Rhincodon typus) without capture and restraint by swimming alongside the animals, although, 

this species is larger and considered less dangerous than tiger sharks.  

Secondly, external animal-attached tags can have deleterious effects on animals, including 

abnormal behaviour and increased energy expenditure (Wilson, Shepard & Liebsch, 2008; 

Wilson & McMahon, 2006; Ellwood, Wilson & Addison, 2007). It is unknown to what degree 

(if at all) the tiger sharks’ behaviours were altered by the CATS tags in this study, as 

determining this can be complex (Wilson & McMahon, 2006). Most of the data files began 

with chaotic changes in the recorded data channels, lasting no longer than a few minutes. These 

recordings may have occurred during tag attachment or be a result of fleeing or aberrant 
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behaviour following the release of the sharks. Ideally, tagging procedures would have minimal 

effect on the animal and its behaviour and further investigation into less perturbing techniques 

for both animals and researchers is recommended (Wilson & McMahon, 2006). 

 No magnetometer calibrations were made for the tags prior to deployment. Garde et al. 

(2022) demonstrated how tag type, placement, and calibrations (or lack thereof) affected the 

acceleration signal, which resulted in calculated DBA values varying up to 25%. Calibrations 

for the tags used in this study were subsequently made by eye in DDMT to correct any offset, 

however this made room for human error even though DDMT is a bespoke software originally 

designed to inspect data recorded via DD tags (Wildbyte Technologies, 

http://www.wildbytetechnologies.com/). The data used in this study was recorded using CATS 

tags (Customised Animal Tracking Solutions, https://www.cats.is/products/cats-diary/) and 

alterations were required to correct faulty imported calculations in the heading channel, 

possibly caused by the lack of magnetometry calibrations. As a result, accuracy of the derived 

metrics calculated in DDMT from the provided data cannot be fully guaranteed. Furthermore, 

some of the tags had been fitted upside down and the data of some recorded channels (e.g. 

acceleration axes) and derived channels had to be subsequently inverted. Kawatsu et al. (2010) 

discussed the discrepancies in pitch angle data when accelerometer attachment angles are not 

suitably calibrated. Sequeira et al. (2021) highlighted the importance of data compatibility, and 

so a standardisation of procedures for deployment and calibration, and tag characteristics could 

be adopted. For example, Wilson et al. (2020) recommended tags be placed onto the animal’s 

main mass (i.e. the body trunk) and that position should remain constant between individuals. 

Fortunately, all tags used in this study were placed in a similar location at the base of each 

shark’s dorsal fin (Andrzejaczek et al., 2019). Despite the concerns with magnetometer and 

attachment calibrations (human error), the tags’ small size relative to the size of the sharks 

results in small device induced error (DIE) and higher tag accuracy (Ellwood, Wilson & 

Addison, 2007), implying that the data recorded by the tag can be reasonably ‘trusted’. 

The tags used in this study recorded at a frequency of 20 Hz, however, Broell et al. (2013) 

recommended frequencies greater than 30 Hz, as detection probability for feeding and escape 

activities decreased by 50% when reduced from 100 Hz to <10 Hz during a study on great 

sculpin (Myoxocephalus polyacanthoceaphalus). However, great sculpins are significantly 

smaller in size than tiger sharks and have movements that are typified by higher frequency 

waveforms, thereby requiring higher sampling frequencies for sufficient resolution. 

Furthermore, increased sampling frequencies across multiple channels significantly reduces 
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available recording time (Wilson, Shepard & Liebsch, 2008). Qasem et al. (2012) also 

challenged the validity of using VeDBA for the investigation of short time-scale movements 

due to a loss of detail, later work has found it suitable (Wilson et al., 2020). 

There is currently no environmental context to accompany the behaviours observed within 

the data from the CATS tags. Knowledge of the environmental context in which behaviours 

occur is key to understanding animal-environment interactions and a species’ responsiveness 

to environmental change (Bestley et al., 2013). It also infers links between the biomechanical, 

behavioural, and ecological processes that influence variations in the behaviours of individuals 

and determines behavioural modality (Nathan et al., 2012). For example, the occurrence of 

spawning behaviours performed by female chum salmon, O. keta, was significantly affected 

by turbidity influenced by runoff water following a storm (Tsuda et al., 2006) and substrate 

type influenced mating display multimodality in male wolf spiders (Gordon & Uetz, 2011). 

The dead-reckoning track could be aligned with the deployment and retrieval GPS coordinates, 

to provide locations for which individual behaviours occurred. Known locations could provide 

information about the underwater environment, as well as local weather and sea conditions at 

that time, for example (Fedak, 2004). This, combined with recorded parameters, such as light 

intensity, depth and temperature could provide deeper insight into which conditions influence 

certain behavioural modes.  

Against this, however, the sharks will have experienced drift due to currents of varying 

speed and direction, a factor that cannot be directly measured by the tag. Therefore, the 

accuracy of the position given by the dead-reckoning will likely decrease over time (Wilson, 

Shepard & Liebsch, 2008). GPS technology can be applied to tags (Nathan et al., 2012) to 

provide relatively accurate and precise spatio-temporal data, although such technology does 

come with its own faults, including high current drain and being unusable beneath salt-water 

(reviewed by Hebblewhite & Haydon, 2010). Estimates of latitude and longitude have 

previously been made using ambient light levels, depth and sea surface temperatures from 

archival tag data (Wilson et al., 2007) but these are a crude substitute for GPS accuracy. Gunner 

et al. (2021) have proposed a method for correcting the cumulative drift errors associated with 

dead reckoning of terrestrial, aquatic and aerial biotelemetry data from triaxial accelerometer 

tags. Verified Position Correction (VPC) is possible via an R package called Gundog.Tracks 

that uses periodic ground-truthing with aligned location data (see Gunner et al. 2021 for 

details).  



Wallis James ( ) / BIOM64 May 2022 

79 
 

Finally, the scope of behaviours described in this study was limited by a relatively small 

sample size. Data from only 10 individuals of a single species were analysed, all of which were 

tagged in the same location during a similar period. Seasonal and spatial shifts in tiger shark 

behaviour have been observed and can also be influenced by sex and size/age (Lowe et al., 

1996). Therefore, behaviours displayed by animals of different species or occupying different 

environments or ecosystems may also differ greatly and so, it is unlikely that these algorithms 

could be applied so widely. Nonetheless, they may be applicable to other Selachii or teleost 

species of similar swimming modes, assuming similar behaviours are displayed. Undoubtedly, 

this approach of identifying and defining behaviours could be applied to a much wider scope 

of species in the future. 

CONCLUSIONS 

The behaviours described in this work were successfully identified remotely using triaxial 

accelerometer and magnetometer tag technology and the DDMT software, despite my limited 

prior knowledge of their function and appearance amongst acceleration data. However, using 

my understanding of acceleration data, I was able to detect patterns amongst the recorded and 

derived channels and interpret them. There is extensive literature already describing these 

identified behaviours (see discussion) via video footage or in-situ visual observation, which 

provides evidence to suggest that it this is a viable method for identifying and observing the 

movements and behaviours of free-roaming animals in their natural environment. 

It is also evident that algorithms can be constructed by hand using BB (within DDMT), 

without the aid of ML. Although algorithms were not constructed for some of the more 

complex behaviours within the time-frame, it would undoubtedly be possible once more 

familiarity with the DDMT software is achieved. The frequency distributions produced from 

the behaviours that were successfully extracted using the constructed algorithms suggest that 

modality within the metrics of the tiger sharks’ behaviours described occur as more of a 

continuum, rather than distinctly separate modes. However, the overlap between behavioural 

occurrences could potentially be cascaded with further investigation. It cannot be confirmed or 

denied whether distinct modalities occur within Behaviours F, I & J at this time. 

Future development of this work could be firstly directed towards ensuring the accuracy of 

the current algorithms, as well as developing algorithms for the behaviours that were not 

successfully extracted from the data and then assessing the modality of metrics within them. 
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Furthermore, investigation into the diurnal modalities and times at which certain behaviours 

occurred most frequently could be considered.  

Overall then, simple visual inspection of patterns in acceleration, magnetic field intensity 

and pressure data and their derivatives appears to be a viable method for detecting, interpreting 

and identifying behaviours in species that are difficult or impossible to observe. I suggest that 

this approach could be applied to numerous other species and used for a suite of other 

behavioural investigation applications. 
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APPENDICES 

Appendix I – Inverted Tags and Acceleration Data 

During data inspection of periods when the sharks were swimming at the surface, it was 
noticed that the tags were probably fitted upside-down due to the negative values close to -1 g 
in the heave (acceleration z) axis. This implied that the sharks would have been upside down 
at the surface, which seemed unlikely. Furthermore, the values of all three acceleration axes 
should sum to 1 g, but the VeSBA (Vector of Static Body Acceleration) was reading values 
less than this. However, the surge (acceleration x) axis and pitch angles remained close to zero 
when the depth was unchanging, which verified that the tags were level along the longitudinal 
axis. However, because the tags’ magnetometer axes had not been fully calibrated and the 
heading calculations made by the tag were not fully compatible with DDMT software, 
corrections were made for this in DDMT. When corrections for the inverted acceleration data 
were attempted, it altered the offsets for the magnetometer axes. Reasons for this were unclear, 
however, it may have been because the DDMT software was originally made for a different 
type of tag, known as the Daily Diary. Therefore, it was decided to leave the acceleration data 
inverted, but make the reader aware. This issue highlights the importance of tag calibration 
prior to deployment onto a subject, as well being fitted in the correct orientation. The topic of 
calibration and its’ importance is discussed in detail by Garde et al. (in press). 

 

Appendix II – DDMT BB/TS Algorithms 

Behaviour BB and TS algorithms 

A ‘If ( Diff_Chan(Pressure (R=5)) > 0 ) then Mark Events’ -> ‘Element (1): ABS 
Diff  Depth > 0, present for 60 events, %time 100, with next expression starting 
from range 100, flexibility after of 10’ 

B ‘If ( Diff_Chan(Pressure (R=5)) < 0 ) then Mark Events’ -> ‘Element (1): ABS 
Diff  Depth < 0, present for 60 events, %time 100, with next expression starting 
from range 100, flexibility after of 10’ 

C ‘If ( Diff_Chan(Pressure (R=5)) = 0 ) then Mark Events’ -> ‘Element (1): ABS 
Diff  Depth = 0, present for 60 events, %time 100, with next expression starting 
from range 100, flexibility after of 10’ 

D ‘If ( Pressure (R=5) < 1 ) then Mark Events’ -> ‘Element (1): Depth < 1\, 
present for 60 events, %time 100, with next expression starting from range 100, 
flexibility after of 10’ 

E N/A 
F ‘If ( ABS (  Diff_Chan(Heading (R=5)) < 0.5 ) ) then Mark Events’ -> ‘Element 

(1): ABS Diff Head < 0.5, present for 60 events, %time 100, with next 
expression starting from range 100, flexibility after of 10’ 

G ‘If ( ABS (  Diff_Chan(VeDBA (R=5)) > 0.03 ) ) then Mark Events’  
H ‘If ( ABS (  Diff_Chan(Heading (R=5)) > 0.5 ) ) then Mark Events’ -> ‘Element 

(1): ABS Diff Head < 0.5, present for 60 events, %time 100, with next 
expression starting from range 100, flexibility after of 10’ 

I N/A 
J N/A 
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Appendix III – Tiger shark tagging metadata (reduced) 

 

 

  

Shark ID PCL FL STL Girth Date Time Latitude Longitude Date Time
TS8 260 283 321 159 28/04/2017 12:01 23.00.802 113.48.148 29/04/2017 05:15
TS12 301 332 380 181 30/04/2017 13:50 23.00.776 113.48.151 01/05/2017 03:38
TS13 215 229 277 119 30/04/2017 14:37 23.00.944 113.48.145 01/05/2017 10:52
TS14 267 299 351 167 30/04/2017 15:13 23.00.602 113.45.067 01/05/2017 08:45
TS15 270 298 329 161 02/05/2017 12:19 23.00.945 113.47.861 04/05/2017 13:03
TS16 202 223 268 108 03/05/2017 09:19 23.00.627 113.48.012 04/05/2017 02:48
TS17 297 323 373 171 03/05/2017 09:35 23.00.638 113.47.997 04/05/2017 01:12
TS18 270 300 330 07/05/2017 10:31 23.01.174 113.47.993 08/05/2017 02:37
TS19 224 252 299 140 07/05/2017 13:40 23.00.965 113.48.058 08/05/2017 04:50
TS24 300 330 373 171 14/05/2017 12:08 23.00.757 113.48.154 15/05/2017 11:51

Length (cm) Tag deployment + release Tag detatchment
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