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Abstract

This thesis uses four-dimensional unitarity and augmented recursion to calculate a selection
of Yang-Mills amplitudes. This selection consists of the full-colour, two-loop, all-plus

helicity amplitudes for five- and six-points; a conjecture for an n-point sub-subleading in
colour two-loop amplitude; calculation of the cut-constructible piece of the full-colour,
two-loop, all-plus helicity n-point amplitude. A new technique for calculating the cut
constructible part of the leading in colour two-loop, five-point, single-minus helicity

amplitude is presented. The correct infrared divergent piece of this single-minus amplitude
was calculated, as well as the correct transcendental two pieces at finite order. Logarithms
containing Mandelstam variables including only positive helicity legs were unable to be
correctly calculated, but the calculation of this final amplitude uncovered many new
relations involving generalised hypergeometric functions such as the Appell functions.
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Chapter 1

Introduction

Physics is an exploratory science which may be split into two broad areas: theory and exper-
iment. They have historically been heavily intertwined, where most theory was developed to
explain observable phenomena on a classical scale, and there was even a time where it was
thought that physics was almost solved. Clearly with a modern view this is emphatically
untrue, and since the advent of quantum mechanics and general relativity, a new epoch of
theoretical and experimental physics has begun.

This new epoch has seen the emergence of scattering amplitudes, a subject which aims to
both probe mathematics and also to provide results that are needed in experiments. Collider
experiments such as those performed at the Large Hadron Collider (LHC) seek to investigate
the standard model of physics and indeed, what lies beyond the standard model. A typical
collider experiment fires beams of high energy protons at each other, creating large numbers
of product particles that hit the boundary detectors, and whose signatures are detected and
measured. These measurements relate the total number of detected events, Nevents, to the
luminosity, L, and the cross section, σ, via

Nevents =

∫

dt
dNevents

dt
= σ

∫

dtL = σLint (1.1)

where Lint is the integrated luminosity. The cross section σ describes the probability of all
possible interactions that can occur. The experiment can tune the integrated luminosity,
aiming to increase both the luminosity and the time the experiment runs for, and then
measure the number of events and calculate the cross section from these. The measured cross
section can then be compared to the theoretical cross section which is related to scattering
amplitudes (using a 2 → 2 process as an example) via

σ =

∫ 2π

0

dθ

∫ π

0

dφ
dσ

dΩ
sin θ =

∫ 2π

0

dθ

∫ π

0

dφ|A|2 sin θ, (1.2)

where Ω is the solid angle and A is the scattering amplitude. It is the calculation of scatter-
ing amplitudes that this thesis focuses on. These calculations provide a clear link between
experiment and theory for high energy particle physics interactions.

The strong force is colour-charged and asymptotically free. Colour confinement tells us
that no colour-charged particle can exist in an isolated state and must form colourless clumps
of particles called hadrons. Asymptotic freedom means that at high energy the coupling
constant of the theory is weak, and so colliding high energy protons produces, initially, quarks
and gluons which fire off from the collision. Confinement then means that, in order to keep
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these colour charged quarks and gluons in colourless clumps, additional quarks and gluons
get pulled from the vacuum to create a new high energy hadron, which in turn separates into
individual particles which pull quarks and gluons from the vacuum and so on. This process
results in a tight cone of hadrons called a jet which eventually reach low energy scales.

As experimental precision and accuracy increases, we must reduce the theoretical uncer-
tainties at each stage of the above processes. At the high energy scale we may perturbatively
expand a given scattering amplitude and therefore break the calculation into an expansion
in the coupling constant. If we are then to detect any new interactions or to test the interac-
tions of the Standard Model, we need to understand the background that is produced during
hadronization to a sufficiently high degree of accuracy, with sufficiency being determined by
the accuracy of the experiment.

In this thesis, we wish to push the accuracy of the gluon-gluon interactions further and
so we will calculate pure Yang-Mills theory [3]. Within pure Yang-Mills, the perturbative
expansion of an n-gluon scattering amplitude is written as an expansion in the gauge coupling
constant g

An = ign−2
∑

ℓ≥0

aℓA(ℓ)
n , (1.3)

where a = g2e−ǫγE

(4π)2−ǫ , γE is the Euler–Mascheroni constant, ǫ here is the dimensional regularisa-

tion constant [4] which we will discuss shortly. A(ℓ) is the ℓ′th loop amplitude. Traditionally
these were calculated using Feynman diagrams [5] where the loop here refers to the number
of closed, internal momentum loops present in the diagrams that are needed for each loop
amplitude. This is the way most students will be introduced to Quantum Field Theory cal-
culations at an undergraduate level; it involves drawing every allowed diagram in accordance
to the Lagrangian of the theory, each vertex and internal propagator corresponding to a
mathematical object. For tree-level diagrams, the momentum conservation at vertices allows
the internal momenta to be constrained in terms of external momenta, which for uniformity
in later discussions we will take to all be outgoing. For loop diagrams, there are momenta
which cannot be uniquely specified and so must be integrated over.

While this was successful for tree-level and low multiplicity (i.e. small numbers of gluons),
problems quickly develop, not least being the sheer number of diagrams needed to be summed
over. For a four-point tree amplitude, there are only 4 diagrams so this is not an issue.
However, by ten-point you need 10, 525, 900 diagrams. Oh dear. This exponential increase
goes up both with added gluons but also with added loops, comparing the 2, 485 diagrams
needed for the seven-point, tree-level gluon amplitude with the 227, 585 diagrams needed for
the one-loop, seven-point gluon amplitude. Another issue is that each Feynman diagram
is gauge dependent with gauge independence only being restored in the full sum. Gauge
dependent terms cancelling each other out implies redundancies and indeed, there are a huge
number of them. Here is our first clue that these calculations could be vastly improved.

One way of improving this would be to find gauge invariant subsets, necessarily negating
the need for gauge dependent terms cancelling. The first way of finding these gauge invariant
subsets was inspired by string theory and the emergence of Chan-Paton factors [6], where
an analogous decomposition was made for tree-level gluon amplitudes and applied to the
six-point calculation [7, 8]. This decomposition allowed one to rewrite the amplitude for a
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given helicity assignment as

A(0)
n (1λ1 , 2λ2 , ..., nλn) =

∑

σ∈Sn/Zn

Tr(T aσ(1)T aσ(2) · · ·T aσ(n))A(0)
n (σ(1)λσ(1) , σ(2)λσ(2) , ..., σ(n)λσ(n))

(1.4)

where the notation 1λ1 refers to a labelling of gluon 1 with momentum p1 and helicity λ1,
and the sum is over all non-cyclic permutations with Sn and Zn being the set of all permu-
tations and all cyclic permutations respectively. T ai are the 8 × 8 matrices in the adjoint
representation of SU(3) and the traces are the equivalent of the Chan-Paton factors. We will
hereby generalise SU(3) to SU(Nc) and indeed we will later take this to U(Nc) - however, that
will become clearer in a later section. Helicity for a massless particle is a Lorentz invariant
quantity which describes the spin projected onto the axis of the particle’s three-momentum.
This is given by

h :=
p · S
|p| , (1.5)

and decomposing the amplitude into a sum over all helicity configurations allows us to further
fine grain the problem into more manageable pieces. These A

(0)
n partial amplitudes have the

same cyclic and flip symmetries of the trace of colour matrices they multiply,

A(0)
n (1λ1 , 2λ2 , · · · , nλn) = A(0)

n (2λ2 , · · · , nλn , 1λ1) (1.6)

A(0)
n (1λ1 , 2λ2 , · · · , nλn) = (−1)nA(0)

n (nλn , (n− 1)λ(n−1) , · · · , 1λ1) (1.7)

and contain all of the kinematic information for that particular subset, motivating a view of
(colour × kinematics). This colour decomposition is now a widely used convention and we
will discuss how it extends beyond tree-level later. We will hereby simplify our notation by
suppressing the σ’s, writing the decomposition

A(0)
n (1λ1 , 2λ2 , ..., nλn) =

∑

Sn/Zn

Tr(1, 2, · · · , n)A(0)
n (1λ1 , 2λ2 , · · · , nλn) (1.8)

to mean the same thing as (1.4).
The partial amplitudes are dependent on the external momenta and the helicites of the

external particles. Indeed, the results of [7, 8] are presented in a compact notation that
was introduced in [9–15] called the spinor helicity formalism, where [9–14] focused on QED
calculations and [15] extended it to non-abelian gauge theories. This formalism allows one
to rewrite four-vectors that transform under SO+(1, 3) in terms of two Weyl spinors that
transform under SL(2,C). The next section of this chapter will review this formalism. We
will then expand upon this, introducing the building blocks needed to create colour ordered
Feynman rules. These rules are dependent on momentum and polarization vectors of the
gluons and have the colour dependence stripped from them. We will then present some
results that may be derived from these rules before continuing onto more modern techniques
used in these calculations such as recursion and unitarity.

1.1 Spinor-Helicity Formalism

We have thus far seen that we can reduce the huge redundancies in the Feynman diagram
approach to QCD by decomposing the amplitudes into gauge invariant subsets. These early
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results can be presented in a compact form using the spinor-helicity formalism. This section
reviews this formalism, wherein we present the four-momenta and polarisation vectors of
massless particles in terms of products of two spinors. The remainder of this chapter can be
found in more detail in [16].

First we should begin by covering some conventions. We choose the Weyl/chiral repre-
sentation of the γµ matrix

γµ =

(
0 σµ

σµ 0

)

(1.9)

where σα̇α
µ ≡ (1, σi), σα̇α

µ = (1,−σi) and σi are the Pauli matrices. We may use σµ to rewrite
the four-momentum as

pµσα̇α
µ = pα̇α =

(
p0 + p3 p1 − ip2

p1 + ip2 p0 − p3

)

, (1.10)

where the determinant of the matrix gives

det(pα̇α) = p20 −
∑

i

p2i = m2. (1.11)

The rank of a 2×2 matrix is at most two, but in the case of massless particles the rank reduces
to one due to the vanishing determinant. This allows us to write the null four-momentum
matrix as

pα̇α = λ̃α̇λα. (1.12)

This can be extended to the massive case using a similar rank-two decomposition as a sum of
two spinor biproducts, but again we will be focusing on pure Yang-Mills which is a massless
theory. For real momenta we require (λα)∗ = ±λ̃α̇ where the sign depends on the sign of the
energy of the four-momentum. An example solution for these spinors is

λα =
t

√

p0 + p3

(
p0 + p3

p1 + ip2

)

, λ̃α̇ =
t−1

√

p0 + p3

(
p0 + p3

p1 − ip2

)

, (1.13)

where t is an overall convention dependent phase and it is apparent that
√

p0 + p3 is re-
al/imaginary depending on whether p0 is positive/negative because |p0| > |p3|, giving rise to
the ±1 factor. We will later need to extend the momentum to the complex plane in which
case λ and λ̃ are independent. We will also be dealing with multiple gluons and thus we will
assign a label pαα̇i = λα

i λ̃
α̇
i for the i’th gluon. The freedom to rescale using t is generated by

a helicity operator,

h =
n∑

i=1

(

−λα
i

∂

∂λα
i

+ λ̃α̇
i

∂

∂λ̃α̇
i

)

, (1.14)

where we have assigned helicity −1 to λ and helicity +1 to λ̃. We see that these helicity
spinors encode information both about the particle momentum but also about their helicity.
We will see an example of how the helicity scaling can be useful further on within the thesis.
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We can use standard spinor manipulations, raising and lowering spinor indices with the
Levi-Civita tensor, and we can use Lorentz-invariant products to form the building blocks of
our results

〈i j〉 := λα
i λjα = ǫαβλ

α
i λ

β
j = −〈j i〉

[i j] := λ̃iα̇λ̃
α̇
j = −ǫα̇β̇λ̃

α̇
i λ̃

β̇
j = − [j i] . (1.15)

We may write the Mandelstam variables sij involving two massless particles i and j as

sij = (pi + pj)
2 = 2pi · pj = pαα̇i pjαα̇ = 〈i j〉 [j i] , (1.16)

where the conversion to spinor products can derived using

σ̄αα̇
µ σ̄ββ̇

ν ǫαβǫα̇β̇ = 2ηµν (1.17)

and

pαα̇i pββ̇j ǫαβǫα̇β̇ = pµi p
ν
j σ̄

αα̇
µ σ̄ββ̇

ν ǫαβǫα̇β̇ = 2pµi p
ν
j ηµν = 2pi · pj. (1.18)

It is clear here that 〈i i〉 = [i i] = 0 and we see from 2p2i = 〈i i〉 [i i] = 0 that the massless
condition is encoded directly into these spinor products. We can also view the helicity spinors
λα and λ̃α̇ as solutions of the massless Dirac equation

|p〉 := u+(p) = v−(p) =

(
λα

0

)

, |p] := u−(p) = v+(p) =

(
0

λ̃α̇

)

, (1.19)

where we introduce the bracket notation |i〉 and |i] for convenience later. u± and v± are chiral
projections of the solutions of the massless Dirac equation, where u±(p) =

1
2
(1± γ5)u(p) and

v∓ = 1
2
(1 ± γ5)v(p). The difference between u and v is only present for the massive Dirac

equation but we keep both here for consistency with common notation. We note here that

/p|p〉 = pµγ
µ|p〉 =

(
0 pαα̇
pα̇α 0

)(
λα

0

)

= /p|p] = 0, (1.20)

showing that they satisfy the massless Dirac equation. Finally, with the introduction of a
Schouten identity

〈1 2〉λ3 + 〈2 3〉λ1 + 〈3 1〉λ2 = 0, (1.21)

we now have the basics of the spinor helicity formalism. This Schouten identity comes from
the fact that the spinors live in a two-space and so any three of them must have linear
dependence. For example, we may write λ3 = αλ1 + βλ2, assuming λ1 6= kλ2 for some
constant k, and the Schouten identity becomes explicit,

〈1 2〉λ3 + 〈2 3〉λ1 + 〈3 1〉λ2 = 〈1 2〉
(
αλ1 + βλ2

)
+ α 〈2 1〉λ1 + β 〈2 1〉λ2 = 0. (1.22)

Recalling that this formalism was used to present compact analytic results for the partial
amplitudes in the colour-decomposed, gauge invariant subsets of the full amplitude (1.8), we
seek a way to write down colour-stripped Feynman rules.
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1.1.1 Helicity and Polarization Vectors for Gluons

We have introduced helicity spinors which contain information about a particle’s momentum
and its helicity. We have defined the helicity generators in (1.14), where we choose the
convention of assigning the objects λ̃/λ a helicity of 1/ − 1. Alternative conventions assign
±1

2
to the generators in (1.14) if dealing with other types of particles, but we only consider

gluons in this thesis which are spin-1 particles. We wish to form modified Feynman rules
that are stripped of colour information and to do so we will need another gluonic object, the
polarization vectors εµ±(p). These satisfy the relations

p · ε± = 0, ε+(p) · ε+(p) = ε−(p) · ε−(p) = 0, (1.23)

and can be written in helicity spinor form for particle i as

εαα̇+,i = − λ̃α̇
i η

α

〈λi ηi〉
, εαα̇−,i =

λα
i η̃

α̇

[λi η]
, (1.24)

where η and η̃ are arbitrary reference spinors. It is easy to show the relations (1.23) are
satisfied by this and that they are eigenvectors of the helicity operator with eigenvalues ±1
for εµ±. It can be shown that with a shift of η → η + δη, we have δεαα̇+ (p) ∝ pµ and it can
be shown that δεµ+Aµν1...(p, q1, . . .) = 0. In this sense changing η corresponds to a gauge
transformation and we see consistency in claiming that these partial amplitudes are gauge
independent. Now that we have the gluon polarizations we may start looking at colour
ordered Feynman rules.

1.2 Yang-Mills and Colour Ordered Feynman Rules

We have seen that we can colour decompose an amplitude into gauge invariant subsets, that
the results can be presented in compact spinor helicity formalism and that we can present
polarization vectors in this formalism. We will now apply these concepts to pure Yang-Mills
theory and present some of the earliest results that used these techniques.

We define the field strength tensor as

Fµν = ∂µAν − ∂νAµ − ig[Aµ, Aν ], (1.25)

where Aµ is the gluon-field, and we can then decompose it in terms of the Lie algebra
generators T a of SU(Nc) , such that Fµν = F a

µνT
a, with

Aa
µ = Tr[T aAµ] (1.26)

and

F a
µν = ∂µA

a
ν − ∂νA

a
µ + igfabcAb

µA
c
ν , (1.27)

where we take T a to be the traceless, antihermitian generators of the fundamental repre-
sentation of SU(Nc) . In the adjoint representation the entries of the matrices are just the
structure constants (T a)bc = fabc. The Lagrangian for pure Yang-Mills is then

L = −1

4
Tr[FµνF

µν ]. (1.28)
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where we take the trace over the colour indices to keep it gauge invariant. We need to add
a gauge fixing term

Lg.f = − 1

2ξ
(∂µAa

µ)
2 (1.29)

and, given this is a non-Abelian gauge theory, we should also need ghosts. We will discuss
later that we use unitarity methods which involve only on-shell particles in the S-matrix,
and so these ghosts play no part in practice. From here we can write down the momentum
space Feynman rules where the gluon propagator is given by

ν

b

µ

a

k
∆ab

µν(k) =
δab

k2 + iδ

(

ηµν + (ξ − 1)
kµkν

k2 + iδ

)

, (1.30)

where the iδ term regularised the k2 → 0 limit of the propagator. We have the three/four
point vertices, again with all outgoing gluons, are given by

νb

q

µ a

p

ρc

r

iV abc
µνρ(p, q, r) = gfabc [(q − r)µηνρ + (r − p)νηρµ + (p− q)ρηµν ] (1.31)

and

ν
b

µa

ρ
c

σ
d

iV abcd
µνρσ =− ig2

[

fabef cde(ηµρηνσ − ηµσηνρ)

+ facefdbe(ηµσηνρ − ηµνηρσ)

+ fadef bce(ηµνηρσ − ηµρηνσ)
]

. (1.32)

We can then disentangle the colour and kinematic degrees of freedom by rewriting the struc-
ture constants on a given diagram in terms of traces of strings of generator matrices,

fabc = Tr(T a[T b, T c]), (1.33)
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normalised to

Tr[T aT b] = δab. (1.34)

Summing over all diagrams after rewriting the colour factors like this leads to the decom-
position (1.8). With the separation of colour and kinematics we can write down colour
ordered Feynman rules which make use of the already discussed polarization vectors, with
the propagator being given by

Dµν(p) = − i

p2 + iδ
ηµν , (1.35)

and three/four point vertices being given by

V3 = −g[(ε1 · ε2)((p1 − p2) · ε3) + (ε2 · ε3)((p2 − p3) · ε1) + (ε3 · ε1)((p3 − p1) · ε2] (1.36)

and

V4 = g2[2(ε1 · ε3)(ε2 · ε4)− (ε1 · ε2)(ε3 · ε4)− (ε1 · ε4)(ε2 · ε3)]. (1.37)

With these colour ordered Feynman rules, the number of diagrams which contribute to a
specific colour structure is vastly reduced and one can start deriving simple tree amplitudes.
We will briefly outline the calculation of the vanishing amplitudes and the four-point tree
amplitudes, before presenting an n-point amplitude. This will demonstrate the simplification
of the colour decomposition and the power of the compact spinor helicity formalism.

1.2.1 Initial Tree Amplitudes

Firstly, we will present some n-point vanishing results. We choose a uniform, massless ref-
erence momentum η = ληλ̃η to be used in the polarization vectors for all external gluons,
which immediately yields the relations

ε+,i · ε+, j = ε−,i · ε−, j = 0. (1.38)

It can be easily argued that an n-leg tree graph contains at least one polarization contraction
of the form εi ·εj. Therefore, we immediately conclude that “all-plus” tree amplitudes vanish,

A(0)
n (a+, b+, . . . , n+) = 0, (1.39)

as there necessarily is at least one ε+,i · ε+, j. The amplitude with opposite helicities are
related by parity transformations and so the “all-minus” trees vanish. We will henceforth
consider mostly positive helicity amplitudes due to this relation. For the “single-minus”
tree amplitude, A(0)(a−, b+, c+, . . . , n+), we can make a different choice of reference momenta
within the polarization vectors such that,

qa = q 6= pa, qb = qc = . . . = qn = pa, (1.40)

where q is arbitrary and pa is the external, null, four momentum for gluon a. We therefore
still have any term with ε+,i · ε+, j = 0, and now we have ε+,i · ε−,a = 0, we can write

A(0)
n (a−, b+, c+, . . . , n+) = 0. (1.41)
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Again, the single-plus tree amplitudes must also vanish. It should be noted that while we
can always make a choice of η like this, once the choice has been made for an amplitude it
must be used for all diagrams.

We next want to consider “maximally helicity violating” (MHV) amplitudes with two
minus legs and the remainder positive (the conjugate of this being called MHV or a “googly”
amplitude). This is named as such because in super-Yang-Mills (SYM) theory the all-plus
and single minus amplitudes vanish to all loop orders, and so it is the first non-zero amplitude
that maximises the sum of all helicities. This is also true at tree-level for YM theory.

For the four-point interaction these MHV amplitudes are the only non-zero contributions
and we will briefly calculate them here. We can make the choice of reference momenta
{qa, qb, qc, qd} = {pd, pd, pa, pa} which gives the only contractible polarization vectors as

ε−, b · ε+, c = −〈ηc λb〉 [ηb λc]

〈λc ηc〉 [λb ηb]
= −〈a b〉 [c d]

〈a c〉 [b d] . (1.42)

The only surviving diagram that contributes to this trace structure with this choice of ref-
erence momenta, and therefore the total contribution to this partial amplitude, is given by
Figure 1.1

a−

b− c+

d+

Figure 1.1: Non-zero contribution to A(0)(a−, b−, c+, d+)

where we will hereby use these lines and arrows to represent momentum flow of gluonic
propagators, given that there are no other particles in this theory. Using the colour ordered
Feynman rules, this leads to

A(0)(a−, b−, c+, d+)

=
ηµν
sab

[
εµ−, b(2pb + pa) · ε−, a − εµ−, a(2pa + pb) · ε−, b

]

×
[
εν+, d(2pd + pc) · ε+, c − εν+, c(2pc + pd) · ε+, d

]

= − 4

sab
(ε−, b · ε+, c)(pb · ε−, a)(pc · ε+, d)

= − 4

sab

(

−〈a b〉 [c d]
〈a c〉 [b d]

)(
1

2

〈a b〉 [b d]
[a d]

)(
1

2

〈a c〉 [c d]
[d a]

)

= − 〈a b〉 [c d]2
[a b] 〈a d〉 [d a] . (1.43)
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We can use overall momentum conservation for outgoing gluons to rewrite scd = 〈c d〉 [d c] =
sab, and we can use

n∑

i=1

pµi =
n∑

i=1

λα
i λ̃

α̇
i =

n∑

i=1

〈x i〉 [i y] = 0, (1.44)

where x and y here are arbitrary, to rewrite the amplitude as

A(0)(a−, b−, c+, d+) = − 〈a b〉 [c d]2
[a b] 〈a d〉 [d a] ×

〈d c〉
〈d c〉 = − 〈a b〉2

〈b c〉 〈d a〉
[c d]

[b a]
× 〈d c〉

〈d c〉 =
〈a b〉3

〈b c〉 〈c d〉 〈d a〉 .
(1.45)

We would then like to calculate A(0)(a−, b+, c−, d+) but we can show this is dependent on
(1.45) by introducing photon decoupling identities. There is no interaction between photons
and gluons (as seen by the vanishing structure constants) and we know that the Lie algebras
satisfy u(Nc) ≡ su(Nc) × u(1), therefore the U(Nc) and SU(Nc) amplitudes are identical. If
we then set one of the legs to be this U(1) “photon” with colour generator,

T a
∣
∣
∣
U(1)

=
1√
Nc

1Nc×Nc , (1.46)

and extract the resulting common trace structure from the full colour sum we find

A(0)
n (1, 2, 3, . . . , n) + A(0)

n (2, 1, 3, . . . , n) + . . .+ A(0)
n (2, 3, . . . , (n− 1), 1, n) = 0. (1.47)

We have set leg 1 as the U(1) photon here but it works for any leg. This is the tree-level
decoupling identity and there are equivalent identities derived in the same way at loop orders
but we will cover these later. This means we can write,

A
(0)
4 (a−, b+, c−, d+) = −A

(0)
4 (a−, b+, d+, c−)− A

(0)
4 (a−, d+, b+, c−)

=
〈c a〉4

〈a b〉 〈b c〉 〈c d〉 〈d a〉

(〈d a〉 〈b c〉+ 〈a b〉 〈d c〉
〈b d〉 〈c a〉

)

=
〈c a〉4

〈a b〉 〈b c〉 〈c d〉 〈d a〉 , (1.48)

where we have used the Schouten identity (1.21) with the free λ contracted so it is equivalently
written as

〈w x〉 〈y z〉+ 〈x y〉 〈w z〉+ 〈y w〉 〈x z〉 = 0. (1.49)

These results can be generalised to the form

A
(0)
4 (a, b, c, d; i−, j−) =

〈i j〉4
〈a b〉 〈b c〉 〈c d〉 〈d a〉 (1.50)

where i and j are whichever of {a, b, c, d} have the negative helicities. We earlier said how the
amplitude was decomposed with colour into gauge invariant subsets and presented in spinor
helicity formalism in [7, 8]. In these papers there were two more results presented

A
(0)
5 (a, b, c, d, e; i−, j−) =

〈i j〉4
〈a b〉 〈b c〉 〈c d〉 〈d e〉 〈e a〉 (1.51)
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and

A
(0)
6 (a, b, c, d, e, f ; i−, j−) =

〈i j〉4
〈a b〉 〈b c〉 〈c d〉 〈d e〉 〈e f〉 〈f a〉 , (1.52)

which is suggestive of an n-point result

A(0)
n (a, b, . . . , n; i−, j−) =

〈i j〉4
〈a b〉 〈b c〉 · · · 〈n− 1n〉 〈n a〉 . (1.53)

This is the Parke-Taylor amplitude [17] and, while it was originally presented in terms of the
squared amplitude and scalar products, it easily translates to the spinor helicity formalism.
This result was not proven until [18] where recursion relations were used to prove this result
by induction. We will discuss recursion shortly, but first let us look closer at this result
and see what features it satisfies and how the spinor helicity formalism lends itself to easy
checks. To start with, the cyclic and flip symmetries are clearly manifest, recalling that
〈x y〉 = −〈y x〉 . Another property it must satisfy is the correct momentum weight. We can
see from pαα̇ = λαλ̃α̇ and λ̃ = (λ)∗ that each λ/λ̃ spinor carries a momentum weight of 1

2
.

Each spinor bracket therefore has overall momentum weight of 1. An n-point amplitude has
4− n powers of momentum, and so the overall momentum weight is clearly satisfied.

We also can check the little group scaling. We saw from (1.13) that the spinors may be
rescaled arbitrarily without changing the momentum, this little group scale being given by
t. We can then see from (1.24) then that

ε+ ∼ t−2, ε− ∼ t2 (1.54)

and this gives another check on the amplitude. Looking at A
(0)
4 (a−, b−, c+, d+) as an example

and recognising that |x] ∼ t−1 and |x〉 ∼ t, if we label the little group scaling of a gluon i as
ti we see

〈a b〉3
〈b c〉 〈c d〉 〈d a〉 ∼ t3at

3
b

tbtc × tctd × tdta
= t2at

2
bt

−2
c t−2

d . (1.55)

These properties serve as quick, straightforward and easy to read checks on results and, as
we will see later, provide some limits on what types of functions we may expect to see.
This Parke-Taylor amplitude was the first non-trivial n-point amplitude for a non-abelian
gauge theory and clearly demonstrates the shortcomings of the original Feynman diagram
approach, where the exponential increase in complexity discussed earlier can all be reduced
to a single term. It also demonstrates how more modern techniques have overcome many of
these shortcomings, where recursion and the factorisation properties of tree amplitudes were
used to prove this formula. The next section introduces the basics of recursion.

1.3 Factorisation and Complex Recursion

We have discussed how the spinor helicity formalism provides compact analytic forms for
amplitudes. In this notation there are physical properties that can sometimes be read straight
from the amplitude; one such property is the amplitude’s analytic structure. We see in (1.53)
that if any adjacent momenta become collinear, for example if pi+1 = k× pi where k is some
constant, then (pi + pi+1)

2 = (1 + k)2p2i = (1 + k)2 〈i i〉 [i i] = 0, and this manifests itself as
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a simple pole in the amplitude. One must be wary of the presence of unphysical “spurious”
poles appearing in the results of calculations, in which the numerator also goes to zero on an
apparent pole. This will be discussed more later but as there are no spurious poles in (1.53),
we can press on.

These collinear limits are a subset of kinematic regions where internal propagators go
on shell. These regions provide a strong consistency check on a given amplitude. In such a
region where the propagator has more than two gluons on each side of the propagator, the
amplitude factorises into products of lower point amplitudes,

lim
P 2
1...i→0

A(0)
n (1, . . . , i, i+ 1, . . . , n) =

∑

λ

A
(0)
i+1(1, . . . , i, P

λ
1...i)×

−1

P 2
1...i

A
(0)
n−i+1(−P−λ

1...i, i+ 1, . . . , n)

(1.56)

where i ≥ 3 and we introduce the notation

Pi...j = pi + pi+1 + . . .+ pj−1 + pj. (1.57)

We assign helicity to P1...i as in the collinear limit this momentum goes null and we must
sum over both helicity configurations. This sum over helicities originates from rewriting the
metric tensor from the connecting propagator in terms of a sum of polarization vectors due
to the completeness relation,

∑

λ

εµ, λ(εν, λ)∗ ∼ −ηµν . (1.58)

If we know the lower order amplitudes then this provides a strong check which can be imple-
mented analytically or numerically on the n-point amplitude.

In the case of i = 2, this necessarily means the two external particles are collinear. This
leads to a universal behaviour

lim
i||i+1

A(0)
n (1, 2, . . . , i, i+ 1, . . . , n)

=
∑

λ

Split
(0)
λ (i, i+ 1; z)A

(0)
n−1(1, 2, . . . , i− 1, k−λ, i+ 2, . . . , n), (1.59)

where Split
(ℓ)
λ are splitting functions and z here is a parameter that can relate the collinear

gluons via

pi = (1− z)k, pi+1 = zk, (1.60)

where k2 = (pi + pi+1)
2 = 0. This discussion will be extended to loop order later but for now

the tree-level splitting functions are [17, 19, 20]

Split
(0)
+ (i+, j−) =

1

〈i j〉
(1− z)2
√

z(1− z)

Split
(0)
− (i+, j−) =

1

[j i]

z2
√

z(1− z)

Split
(0)
− (i+, j+) =

1

〈i j〉
1

√

z(1− z)

Split
(0)
− (i−, j−) = 0. (1.61)
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We may relate the remaining splitting functions to these via conjugation. Other factorising
behaviour may be exhibited in the soft limit of an external momentum [19,20]. This is when
one of the external momenta goes to zero pi → 0 and factorises the amplitude as

lim
ps→0

A(0)
n (1, 2, . . . , s− 1, sλs , s+ 1, . . . , n)

= Soft(0)(s− 1, sλs , s+ 1)A
(0)
n−1(1, 2, . . . , s− 1, s+ 1, . . . , n) (1.62)

where

Soft(0)(i, s+, j) =
(

Soft(0)(i, s−, j)
)∗

=
〈i j〉

〈i s〉 〈s j〉 . (1.63)

We can make good use of factorisation properties of amplitudes to implement powerful tools
for calculation. One such tool is complex recursion, used to construct rational parts of
amplitudes using complex analysis and factorisation theorems. This involves shifting select
external momenta into the complex plane, introducing some complex variable z (different to
the splitting function variable z above) and looking at the rational parts of the amplitude as
a meromorphic function of z. The poles in z are then associated with internal propagators
going on shell. The residues of the highest order singularities in the Laurent series around
these propagator z poles are the factorisations of the amplitude.

This observation was first made in [21, 22] and was used to generate a set of recursion
relations which can be used to build higher point tree amplitudes as we will now discuss.

1.3.1 Britto-Cachazo-Feng-Witten (BCFW) Recursion

We have shown how colour ordering Feynman rules and colour decomposing the amplitudes
can reduce redundancy, yet we still see the use of Feynman diagrams. We will now discuss how
the factorisation properties may be used to develop recursion relations, massively reducing
redundancies as we can now write the amplitude as a sum of products of on-shell, gauge
invariant amplitudes. This significantly reduces algebraic cancellations by eliminating gauge
redundancy. In this thesis, when we talk about applying recursion to the calculation of
amplitudes, we really only mean the rational parts of the amplitudes although this will only
become relevant at loop order.

We start by considering an n-point amplitude and perform a complex shift of two neigh-
bouring legs, for example 1 and n,

λ1 → λ̂1(z) = λ1 − zλn,

λ̃n → ˆ̃λn(z) = λ̃n + zλ1, (1.64)

where z ∈ C. The momentum then gets complexified via

pαα̇1 → p̂αα̇1 (z) = (λ1 − zλn)
αλ̃α̇

1 ,

pαα̇n → p̂αα̇n (z) = λα
n(λ̃n + zλ̃1)

α̇, (1.65)

where the deformation preserves momentum conservation and on-shell conditions,

p̂21 = p̂2n = 0, p̂1 + p̂n = p1 + pn. (1.66)
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As previously mentioned, this shift effectively turns the amplitude into a meromorphic func-
tion of z, An(z). Propagator poles become poles in z whose locations need to be analysed.
The residue of the highest order pole in the Laurent series corresponds to products of lower
order tree amplitudes, with emphasis here on the highest order pole as we will show later
that at loop order we see the emergence of double poles. This type of recursion can then
provide the double pole contribution but it fails to provide the full simple pole piece. We
also need to analyse the large z behaviour of A(z), requiring it to vanish for a given shift at
large z so that we may perform a suitable contour integral.

For tree-level these simple poles are easy enough to find. Consider the factorisation in
Figure 1.2,

A
(0)
n A

(0)
i+1 A

(0)
n−i+1

P1...i

2

1̂

n̂

i

2

1̂

i+ 1

n̂

∼

Figure 1.2: Factorisation of the n-point amplitude A
(0)
n on the propagator pole zP1...i

corre-
sponding to the sum p1 + p2 + . . .+ pi going on-shell.

where we have a factorisation connected by the propagator

1

P̂ 2
1...i

=
1

(p̂1 + p2 + . . .+ pi)2
=

1

P 2
1...i − z[1|P1...i|n〉

, (1.67)

where we introduce the notation [1|P1...i|n〉 = λnαP
αα̇
1...iλ̃1α̇ =

∑i
j=1[1|j|n〉. It is important that

p̂1 and p̂n are on different sides of the factorisation as the sum of the two is independent of
z and so no poles are present. This shift clearly breaks the cyclic symmetry of the problem
and later we will see recovering this cyclic symmetry becomes a highly non-trivial check on
results. Pressing on, we see that An(z) has simple poles in z at,

zi =
P 2
1...i

[1|P1...i|n〉
, (1.68)

where i ∈ [2, n− 2]. In [22] it was proven that the residue of this pole corresponds to a sum
of lower point amplitudes and so we can write

lim
z→zi

An(z) =
1

z − zi

−1

[1|P1...i|n〉
∑

λ

A
(0)
i+1

(

1̂(zi), 2, . . . , i, P̂
λ
1...i(zi)

)

× A
(0)
n−i+1

(

−P̂−λ
1...i(zi), i+ 1, . . . , n− 1, n̂(zi)

)

. (1.69)

It is possible to prove this factorisation, but it is easy to convince yourself that the clusters
on each side of the factorisation contain all of the Feynman diagrams necessary to calculate
that particular lower-point amplitude, and that the propagator goes on shell so this becomes
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a product of two on-shell sub-amplitudes. The sum over λ is again over both helicities of the
now on-shell P̂1...i(zi); if one were to consider other theories we would also need to consider
the full particle content that could run between the factorisations.

The amplitude we are interested in is An(z = 0) and so with our eye on Cauchy’s residue
theorem we would like a pole at z = 0. This does not correspond to any propagator pole and
so we must include the pole manually. This can be simply done by considering the contour
integral

I(z) = 1

2πi

∮

γ

A(0)(z)

z
dz, (1.70)

where dividing by z inserts a z = 0 pole and γ is a circular contour that we take to infinity,
containing all propagator poles and the pole at z = 0. Cauchy’s residue theorem then gives
us

I(z) = A(0)
n (0) +

∑

zi 6=0

Res

[

A
(0)
n (z)

z
, zi

]

, (1.71)

and if limz→∞ A(z) = 0 then the contour integral vanishes, allowing us to write the desired
amplitude as

A(0)
n (0) = −

∑

zi

Res

[

A
(0)
n (z)

z
, zi

]

. (1.72)

We can then combine (1.69) and (1.72) to write

A(0)
n =

n−2∑

i=2

∑

λ

A
(0),λ
i+1 (zi)

1

P 2
1...i

A
(0),−λ
n−i+1(zi). (1.73)

This is a key result of recursion. It clearly scales significantly better with higher multiplicity
than the Feynman diagram approach, which has factorial scaling. There are still some alge-
braic redundancies present, as can be seen when considering the Parke-Taylor formula (1.53)
compared to (1.73), but it is a huge improvement and can be used to prove the conjecture
(1.53).

For this to work, we need to know the large z behaviour of the amplitude. This can be
considered by analysing generic graphs and seeing how propagators, interaction vertices and
polarisation vectors behave with z. Simple analysis of the worst case scenario leads to the
scaling for the BCFW shift,

A(1̂+, n̂−) ∼ 1

z
, A(1̂+, n̂+) ∼ z,

A(1̂−, n̂−) ∼ z, A(1̂−, n̂+) ∼ z3. (1.74)

For the majority of amplitudes, the BCFW shift (1.65) can be used as it clearly vanishes with
large z. The all-plus case does not have this shift as an option and so the BCFW shift fails.
This is fine as there are other shifts available and the discussion is the same. The Risager
shift [23] acts on three momenta pa, pb and pc to give

λa → λ̂a = λa + z [b c]λη,

λb → λ̂b = λb + z [c a]λη,

λc → λ̂c = λc + z [a b]λη, (1.75)
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where η is some arbitrary reference that has the condition 〈a η〉 6= etc but is otherwise
unconstrained. This shift has the correct large z behaviour for a+, b+ and c+ and so can
be used for an all-plus calculation. This will be important in later chapters where we will
calculate two-loop, all-plus, full-colour amplitudes.

The discussion so far has been entirely focused on tree order amplitudes. We will now
move our discussion to loop order and start to specialise to the amplitudes relevant for the
remainder of this thesis.

1.4 Loop Amplitudes

We have thus far focused our discussion on tree amplitudes, outlining the development of
techniques which significantly improve the efficiency of these calculations. As previously
discussed, the momentum conservation at vertices in tree amplitudes allows the internal mo-
menta to be entirely constrained. For loop diagrams, there are momenta which cannot be
uniquely specified and so must be integrated over. There are regions of this loop momenta
integral which cause divergences, namely ultraviolet (UV) divergences for high energy re-
gions, and infrared (IR) divergences which appear for low energy and collinear parts of the
integration region. These need to be regularised and in some cases one can renormalize the
bare parameters in the Lagrangian which absorb these divergences.

For an n-point, Yang-Mills amplitude one can have at worst a loop integral with n prop-
agators and n powers of loop momentum in the numerator. Traditionally, these amplitudes
would be set up with Feynman diagrams and integrated but, as with the tree amplitudes,
this is hugely inefficient and difficult. There now exists integral reduction methods [24–31]
for one-loop integrals which reduce the problem to a more simple basis of integrals. These
basis integrals are built of functions containing branch cut singularities, and the discontinu-
ities across such branch cuts are utilised to construct the amplitude in a highly constrained
method.

This following section will outline how the amplitudes are regularised, introduce the colour
decomposition and colour relations used to build gauge invariant subsets at loop orders,
before going on to discuss integral reduction techniques. We will then go on to discuss how
we use branch cut singularities and discontinuities to constrain the problem, significantly
reducing the calculational intensity. These techniques will later be implemented in this
thesis to calculate the cut-constructible part of the n-point, full-colour, two-loop, all-plus
helicity amplitude. We will also calculate the cut constructible part of the planar five-point,
single-minus amplitude for two-loops.

1.4.1 Dimensional Regularisation and renormalization

Feynman integrals may diverge in the UV or IR integration regions. For example the bubble
integral

ID=4
2 (P 2) =

∫
d4ℓ

(2π)4
1

ℓ2(ℓ− P )2
, (1.76)
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diverges as ℓ → ∞ in four dimensions but is finite in the IR ℓ → 0 limit. We define these
integrals in the “mostly minus” Minkowski space with metric

ηµν =







1 0 0 0
0 −1 0 0
0 0 −1 0
0 0 0 −1







. (1.77)

We take the Feynman propagators off the real axis using 1/(ℓ− P + iδ)2 where we will drop
the explicit iδ unless it becomes relevant. These types of integrals can be regularised by
analytically continuing the integration dimension to D = 4−2ǫ, a process called dimensional
regularisation [4]. This allows both UV and IR divergences to be regularised simultaneously
although usually one has to keep ǫ > 0 so that one can perform UV renormalization of the
bare parameters in the Lagrangian and then continue to ǫ < 0 in order to renormalize the
IR divergences. The loop integration measure becomes

∫
d4ℓ

(2π)4
→ µ4−D

∫
dDℓ

(2π)D
, (1.78)

where µ is an arbitrary mass scale to keep the units consistent. We will set µ → 1 for ease of
notation but we must be mindful of its presence. There are subtleties about whether or not
keeping the numerator loop momenta in four-dimensions is valid (it in fact misses terms) but
as we will discuss later there are ways around this. The most common way of course would
be to just take the internal loop momenta into D-dimensions but we will return to this later.

The counter-term for the coupling constant can be viewed as an expansion,

g → g +
δg

ǫ
, (1.79)

where δg
ǫ
is O(ǫ−1) as it is required to renormalize UV divergences. We expand this within

the perturbation expansion as

An =
( g

4π

)n−2

A(0)
n +

( g

4π

)n

A(1)
n +

( g

4π

)n+2

A(2)
n

+ (n− 2)
( g

4π

)n−3 δg

ǫ
A(0)

n + n
( g

4π

)n−1 δg

ǫ
A(1)

n + . . . (1.80)

We need the counter term δg to cancel the UV part of the one-loop amplitude but firstly
we must note that the UV divergence starts a loop order higher than the first non-zero
amplitude, which does not necessarily mean the tree amplitude. Pressing on, the counter
term in the MS scheme for one-loop amplitudes is [32]

A(1)
n

∣
∣
∣
UV

= −(n− 2)(4π)ǫ

2ǫΓ[1− ǫ]

( g

4π

)2

β0A(0)
n , β0

∣
∣
∣
Yang−Mills

=
11Nc

3
, (1.81)

and from the perturbative expansion we need

( g

4π

)n
[

A(1)
n

∣
∣
∣
UV

+ (n− 2)
( g

4π

)−3 δg

ǫ
A(0)

n

]

= 0 (1.82)

17



We therefore find

δg =
(4π)ǫ

2Γ[1− ǫ]

( g

4π

)5

β0 . (1.83)

For the all-plus and single-minus helicity configurations (which are the configurations that
are investigated in this thesis), the tree-level amplitudes vanish and so the UV divergence
first appears at two loops. We can therefore write

( g

4π

)n+2
[

A(2)
n

∣
∣
∣
UV

+ n
( g

4π

)−3 δg

ǫ
A(1)

n

]

= 0, (1.84)

and given δg is now fixed we have

A(2)
n

∣
∣
∣
UV

= −n
(4π)ǫ

2ǫΓ[1− ǫ]
β0

( g

4π

)2

A(1)
n . (1.85)

This in itself is not so remarkable but when compared with the collinear divergences for these
helicity configurations at two-loops [32] we see

A(2)
n

∣
∣
∣
collinear

= −
( g

4π

)2 nγ(g)

ǫ
A(1)

n , (1.86)

where for gluons in pure Yang-Mills γ(g) = β0/2. In the full cross section and upon expanding
in ǫ, the UV and collinear IR divergences cancel, leaving just the soft IR divergences. We
will therefore leave our amplitudes unrenormalized for this thesis. The soft IR divergences
for these amplitudes are already known [33] but before we can discuss them properly we must
first introduce the colour decomposition at loop order and the functional content of these
amplitudes.

1.4.2 Colour relations and Loop Order Colour Decomposition

We would like to extend the discussion of colour decomposition to that of loop order am-
plitudes. We have already mentioned that we extend the SU(Nc) of Yang-Mills theory to
U(Nc) and how the non-zero amplitudes in SU(Nc) are equal kinematically to that of U(Nc) .
We work in U(Nc) for colour dressing purposes as it largely simplifies the colour algebra. It is
also the source of the decoupling identities and we will see later that the combination of colour
dressing and the use of decoupling identities allowed for simplifications in the calculation at
the expense of introducing new redundancies in the final answer.

The U(Nc) generators T
a have non-zero traces unlike the SU(Nc) generators and so there

are N2
c of them. The generators span the colour space and have the normalisations given by

(1.34). The U(Nc) colour algebra makes use of the Fierz identity,

T a
ijT

a
kl = δilδjk, (1.87)

allowing us to derive relations such as

Tr[T aX]Tr[T aY ] = XjiYij = Tr[XY ],

Tr[T aXT aY ] = Tr[X]Tr[Y ],
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and

Tr[XT aT aY ] = δkkTr[XY ] = NcTr[XY ]. (1.88)

One can write down all possible diagrams and assign colour vertices according to the Feynman
rules, rewrite the structure constants as strings of traces using (1.33) and, after repeated ap-
plication of the above colour relations (remembering that we sum over all colour contributions
of the internal gluons), we derive the colour decompositions of the amplitudes. This works
for the tree decomposition (1.8) but also works to loop order, giving the colour decomposition
for one-loop,

A(1)
n (a, b, . . . , n) = Nc

∑

Sn/Pn:1

Tr[T a1 · · ·T an ]A
(1)
n:1(a1, a2, · · · an)

+

⌊n/2⌋+1
∑

r=2

∑

Sn/Pn:r

Tr[T a1 · · ·T ar−1 ]Tr[T brT br+1 · · ·T bn ]A(1)
n:r(a1 · · · ar−1; br · · · bn), (1.89)

and for two-loop,

A(2)
n (a, b, . . . , n) = N2

c

∑

Sn/Pn:1

Tr[T a1 · · ·T an ]A
(2)
n:1(a1, a2, · · · an)

+Nc

⌊n/2⌋+1
∑

r=2

∑

Sn/Pn:r

Tr[T a1 · · ·T ar−1 ]Tr[T brT br+1 · · ·T bn ]A(2)
n:r(a1 · · · ar−1; br · · · bn)

+

⌊n/3⌋
∑

s=1

⌊(n−s)/2⌋
∑

t=s

∑

Sn/Pn:s,t

Tr[T a1 · · ·T as ]Tr[T bs+1 · · ·T bs+t ]Tr[T cs+t+1 · · ·T cn ]

× A
(2)
n:s,t(a1, · · · , as; bs+1, · · · , bs+t; cs+t+1, · · · , cn)

+
∑

Sn/Pn:1

Tr[T a1 · · ·T an ]A
(2)
n:1B(a1, a2, · · · an). (1.90)

We have introduced here the “subleading in colour” amplitudes An:r and at two-loop we have
“sub-subleading in colour” amplitudes An:s,t and An:1B. These amplitudes follow the cyclic
symmetry of the multiplying trace structure, as well as a flip symmetry

Aℓ
n:r(a, b, . . . , r − 1; r, . . . , n) = (−1)nAℓ

n:r(r − 1, . . . , b, a;n, n− 1, . . . , r), (1.91)

and similarly for the An:s,t amplitudes. This flip symmetry can be derived from the antiher-
mitian group generators

Tr[a, b, . . . , n]† = (−1)nTr[n, . . . , b, a]. (1.92)

It can also be shown to be true if one chooses the hermitian convention by counting the
number of flip-antisymmetric three point interaction vertices which apply to each amplitude.
We have also introduced the notation Pn:c which are the symmetry sets of the amplitude.
This ensures every colour structure is counted exactly once and they are given by (for r > 1,
r − 1 6= n

2
, s 6= t, t 6= n−s

2
and 3s 6= m,n),

Pn:1 = Zn[a, b, . . . , n],

Pn:r = Zr−1[a, b, . . . , r − 1]× Zn+1−r[r, . . . , n],

Pn:s,t = Zs[a, b, . . . , s]× Zt[s+ 1, . . . , s+ t]× Zn−s−t[s+ t+ 1, . . . , n]. (1.93)
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For cases with equal length sets we have,

P2m:m+1 =Zm[a, b, . . . ,m]× Z ′
m[m+ 1, . . . , 2m]× Z2[Zm, Z

′
m],

Pn:s,s =Zs[a, b, . . . , s]× Z ′
s[s+ 1, . . . , 2s]× Zn−2s[2s+ 1, . . . , n]× Z2[Zs, Z

′
s],

P3m:m,m =Zm[a, b, . . . ,m]× Z ′
m[m+ 1, . . . , 2m]× Z

′′

m[2m+ 1, . . . , 3m]× S3[Zm, Z
′
m, Z

′′

m],

P2m:2s,m−s =Z2s[a, b, . . . , 2s]× Zm−s[2s+ 1, s+m]× Z ′
m−s[s+m+ 1, . . . , 2m]

× Z2[Zm−s, Z
′
m−s]. (1.94)

For example at six-point with A6:2,2(a, b; c, d; e, f) the manifest symmetry is

P6:2,2 = Z2[a, b]× Z2[c, d]× Z2[e, f ]× S3[{a, b}, {c, d}, {e, f}]. (1.95)

These subamplitudes have gauge invariance just as with tree-level and therefore many of the
redundancies are eliminated. These colour decompositions are the same for both U(Nc) and
SU(Nc) , although any terms with a single generator Tr[T a] vanish for SU(Nc) as these
generators are traceless. We will give examples of the colour dressing in a later chapter,
but if one considers all colour dressed diagrams, we recover these full colour structures and
the calculation of the single trace term allows us to use decoupling identities to check the
SU(Nc) amplitudes. We will later see that one can write all of the single trace terms as sums
of SU(Nc) amplitudes and so this provides another numerical check on our results as these
relations are highly non-trivial. The simplest case is seen by setting gluon 1 to be U(1)

A
(ℓ)
n:2(1; 2, . . . , n) = −

∑

σ∈Pn:2

A
(ℓ)
n:1(1, σ), (1.96)

where as a reminder Pn:2 is the group of cyclic symmetries Zn−1[2, 3, . . . , n] as opposed to
the non-cyclic Sn/Pn:2 that we see in the colour decomposition. We therefore have tools
for colour dressing, the colour decomposition and will later use U(Nc) relations for tests
and simplifications. We see that the colour decomposition has different powers of Nc on
different structures, introducing the concept of “leading-in-colour” terms An:1. These are
“maximally planar” amplitudes, planar in every definition of the word whether it is being
able to bring external gluons to infinity without crossing any internal gluons on the graph
or when considering colour dressing having no colour lines crossing. See Figure 1.3 for an
example.
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Figure 1.3: A one-loop box ribbon diagram contributing to the planar “leading-in-colour”
amplitude. The closed colour loop in the middle contributes a factor of Nc to the colour
structure.

Planar diagrams are easier to calculate and so for a given helicity structure the first calcu-
lation tends to be the “large Nc limit” [34] where we consider this planar contribution. When
we calculate the single-minus configuration we will focus on the leading-in-colour amplitude.
We will also consider the “maximally non-planar” amplitudes A

(2)
n:1B in a later chapter. This

is not the only colour decomposition available to us [35–37] and studying the relations be-
tween different decompositions has been used to derive new group theory identities for the
partial amplitudes [38, 39]. We will look at these more closely in Chapter 2 but they allow

us to write A
(2)
5:1B in terms of A

(2)
5:3 and A

(2)
5:1, though we see this is not possible at six-point or

higher.
In the previous section we talked about how the soft IR divergences are already known

but we needed to first introduce colour notation. Now that this is done we can look at the
soft IR divergences for the full colour amplitudes. First defining the divergent piece

Ii,j ≡ −(sij)
−ǫ

ǫ2
, (1.97)

the leading in colour IR soft term is [33]

U
(1)
n:1(1, 2, . . . , n) ≡ A

(0)
n:1(1, 2, . . . , n)

n∑

i=1

Ii,i+1, (1.98)

where In,n+1 ≡ In,1. Importantly here ℓ = 0 refers to the first non-zero loop order which for
all-plus and single-minus amplitudes is one-loop. This means (1.98) is valid at two-loops for
these helicity configurations. To extend this to full colour we write the IR soft term in the
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more telling form of [40]

Ia,b × faijf bik ×A(1)
n (j, k, . . . , n), (1.99)

and we wish to disentangle this simple equation into the color-ordered components. When
considering n-point full colour calculations, it will be convenient to use a list notation for the
partial amplitudes where we use

A(l)
n (S) = A(l)

n ({a1, a2, · · · an}) ≡ A
(l)
n:1(a1, a2, · · · an) , (1.100)

A
(l)
n (S1;S2) for A

(l)
n:r and A

(l)
n (S1;S2;S3) for A

(l)
n:s,t.

We then have for a list S = {a1, a2, a3, · · · , ar},

Ir[S] =
r∑

i=1

Iai,ai+1
(1.101)

where the term Iar,ar+1 ≡ Iar,a1 is included in the sum. We also define Ij[S1, S2] and Ik[S1, S2],

Ij[S1, S2] = Ij[{a1, a2 · · · ar}, {b1, b2, · · · bs}] ≡ (Ia1,ar + Ib1,bs − Ia1,b1 − Iar,bs) ,

Ik[S1, S2] = Ik[{a1, a2 · · · ar}, {b1, b2, · · · bs}] ≡ (Ia1,bs + Ib1,ar − Ia1,b1 − Iar,bs) , (1.102)

giving

Ir[S1 ⊕ S2] = Ir[S1] + Ir[S2] + Ik[S1, S2]− Ij[S1, S2] (1.103)

where {a1 · · · ar} ⊕ {b1 · · · bs} = {a1 · · · ar, b1 · · · bs}. In this language the leading and sub-
leading IR singularities at one-loop are

A(1)
n (S) = A(0)

n (S)× Ir[S] ,

A(1)
n (S1;S2) =

∑

S′

1∈Z(S1)

∑

S′

2∈Z(S2)

A(0)
n (S ′

1 ∪ S ′
2)× Ij[S

′
1, S

′
2] . (1.104)

The set Z(S) is again the set of cyclic permutations of S.
At two-loops, for vanishing tree amplitude helicities, we have

A(2)
n (S) = A(1)

n (S)× Ir[S] ,

A(2)
n (S1;S2) = A(1)

n (S1;S2)× (Ir[S1] + Ir[S2])

+
∑

S′

1∈Z(S1)

∑

S′

2∈Z(S2)

A(1)
n (S ′

1 ∪ S ′
2)× Ij[S

′
1, S

′
2] ,

A(2)
n (S1;S2;S3) =

∑

S′

2∈Z(S2)

∑

S′

3∈Z(S3)

A(1)
n (S1;S

′
2 ∪ S ′

3)× Ij[S
′
2, S

′
3]

+
∑

S′

1∈Z(S1)

∑

S′

3∈Z(S3)

A(1)
n (S2;S

′
1 ∪ S ′

3)× Ij[S
′
1, S

′
3]

+
∑

S′

1∈Z(S1)

∑

S′

2∈Z(S2)

A(1)
n (S3;S

′
1 ∪ S ′

2)× Ij[S
′
1, S

′
2] ,

A
(2)
n,B(S) =

∑

U(S)

A(1)
n (S ′

1;S
′
2)× Ik[S

′
1, S

′
2] , (1.105)

22



where U(S) is the set of all distinct pairs of lists satisfying S ′
1 ⊕ S ′

2 ∈ Z(S) where the size of
S ′
i is greater than one. For example

U({1, 2, 3, 4, 5}) =
{

({1, 2}, {3, 4, 5}), ({2, 3}, {4, 5, 1}), ({3, 4}, {5, 1, 2}),

({4, 5}, {1, 2, 3}), ({5, 1}, {2, 3, 4})
}

. (1.106)

We have now seen how the amplitudes decompose, and we know the universal IR pieces,
and so we can review some techniques that have been developed to improve calculations at
loop order.

1.5 One-Loop Integral Reduction

For an n-point amplitude we can have up to n powers of loop momenta in the numerator
and n propagators. A general Feynman integral with N propagators and rank r is

∫
dDℓ

(2π)D
ℓµ1 . . . ℓµr

ℓ2(ℓ− P1)2 . . . (ℓ− PN−1)2
, (1.107)

and at one-loop level this can be simplified greatly to O(ǫ0) by use of integral reduction
techniques [24–27]. This can be achieved using Passarino-Veltman reduction [25] in which one
can use the linear dependence of the loop and external momenta to rewrite the numerator as
a sum of inverse propagators and scalar factors which depend only on the external momenta.
This can reduce (1.107) to scalar integrals with arbitrary numbers of propagators.

One can then on a case by case basis keep reducing these integrals by building new bases
and systems of equations and rewriting the loop momenta until we are left with a basis of
integrals,

I
(1)
N (a, b, . . . , n) =

∑

i

c4,iI4,i +
∑

i

c3,iI3,i +
∑

i

c2,iI2,i +
∑

i

c1,iI1,i +R, (1.108)

where, for In,i, n refers to the set of n-point scalar one-loop integral functions, i labels
the kinematically distinct n-point integrals within each set and cn,i is a rational, kinematic
coefficient of this function. R is the totally rational kinematic contribution. We will be using
four-dimensional unitarity in this thesis which has advantage of simplicity in the interactions
of the internal and external gluons, but has the disadvantage that some rational contributions
get lost when we perform these sorts of reductions in the D = 4 limit. At loop level the
recursion techniques we have covered also fail as there exist double poles, but we will later
introduce a method called augmented recursion which bypasses this issue.

The tadpole diagrams I1,i vanish in four-dimensions with massless particles so this entire
contribution vanishes. The remaining integral functions are known in analytic form and
are given in Chapter 2 and so the problem becomes determining cn,i. One could of course
manually perform these reductions and keep track of all contributions until we have the
reduction for each integral. This is a very intensive process but one can instead make use of
the branch cut singularities present in the amplitude to massively simplify this process. This
technique is known as unitarity.
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1.6 Unitarity

We have discussed that the problem of calculating one-loop integrals is now reduced to deter-
mining coefficients of scalar boxes, triangles and bubble integral functions, and additionally
a rational contribution. These coefficients are then built by exploiting the factorising prop-
erties of the amplitude itself along with the discontinuities along branch cut singularities in
the integral functions. This process is called generalised unitarity and can be motivated by
looking at the optical theorem of quantum field theory.

The optical theorem can be understood by analysing the S-matrix [41], an object which
describes the trajectory of a particle propagating from the times t = −∞ to t = ∞ with
possible interactions occurring in some finite time within these limits. This is written as

S = 1+ iT (1.109)

where the identity matrix is the path with no scattering, and T describes the interaction states
which contribute to scattering. The elements of the S-matrix determine the probability of a
given interaction occurring and this means they must sum to 1, imposing the condition

SS† = 1, (1.110)

and this, along with (1.109), gives us

−i(T − T †) = TT †. (1.111)

We can perturbably expand T and extract coefficients of different powers of the coupling
constant g to find the relations,

T (0)† = T (0), −i(T (1) − T (1)†) = T (0)T (0). (1.112)

We define elements of T between asymptotic states which we call Toi ≡ 〈out|T |in〉 such that

〈out|T †|in〉 = 〈in|T |out〉∗ ≡ (Tio)
∗ = (Toi)

∗, (1.113)

where the last part is true due to time reversal invariance. This leads us to Cutkosky’s
rule [42]

−i(T
(1)
oi − T

(1)∗
io ) =

∫

dµT
(0)
0µ T

(0)
µi , (1.114)

where
∫
dµ refers to the sum over all helicities and phase-space integrals over all intermediate

on-shell states. If one extended to other theories this would also be a sum over different
particle contents but importantly it only includes on-shell external states which eliminates
ghosts.

The left hand side of this equation is then twice the imaginary part of T
(1)
oi , which we

may relate to branch cut discontinuities in the integral functions. These integral functions
are made up of polylogarithms and other special functions which can have these branch cut
discontinuities. These discontinuities arise in the regions of loop-momenta integrations when
a virtual gluon goes on shell, and therefore a propagator becomes purely imaginary and can
be thought of as being “cut”. To exploit the factorisation property of the amplitude, we need
to perform two cuts as shown in Figure 1.4.
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→

Figure 1.4: Schematic diagram of the optical theorem. The LHS being a generic one-loop
amplitude and the RHS how it factorises into two tree-level amplitudes on a two-particle cut,
represented by the dashed lines over the internal propagators.

To practically implement a cut, we rewrite the propagator via the distribution relation

lim
δ→0

1

p2 + iδ
= P

(
1

p2

)

− iπδ(p2), (1.115)

where P is the principle part. We can see that the discontinuity of the one-loop amplitude can
be computed for a given channel by replacing the two relevant propagators with δ(p2i ), thus
introducing discontinuities within the integrand. The dimension of this δ function determines
whether we use four-dimensional unitarity or D-dimensional unitarity. We will be using four-
dimensional unitarity but the most common method is to use D-dimensions [43–49]. This
involves decomposing the loop momentum into a four-dimensional component and a −2ǫ
component,

ℓ = ℓ[4] + ℓ[−2ǫ] = ℓ̃+ µ, ℓ2 = ℓ̃2 − µ2, (1.116)

with the integration measure

∫
dDℓ

(2π)D
=

∫
d4ℓ̃

(2π)4

∫
d−ǫµ2

(2π)−2ǫ
. (1.117)

This technique has the benefit of calculating the full amplitude, including the whole rational
contribution, at the expense of more complicated algebra and a larger set of master integrals.
We will not discuss D-dimensional unitarity further in this thesis.

Our discussion of unitarity has thus far been limited to two-particle cuts, but we would
like to extend this method to allow us to calculate the coefficients cn,i of (1.108). We do this
by extending unitarity to higher order cuts in the technique known as generalised unitarity.

1.6.1 Generalised Unitarity

We have introduced unitarity via the optical theorem but we would like to calculate the
coefficients cn,i for the scalar integral functions in the decomposition (1.108). This can be
achieved by generalising unitarity to higher numbers of particle cuts. If one performs four
cuts then triangles and bubbles are eliminated, allowing one to calculate the box coefficient
as was initially done for N = 4 SYM [50]. One can then perform a triple cut to isolate the
triangle coefficient, being careful to subtract the box contributions and so on.

We will cover the practical applications when we need them in later chapters, but for now
we will briefly discuss quadruple cuts for pedagogical purposes. Note that on a cut we may
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rewrite the loop momenta in the spinor helicity formalism ℓ = λℓλ̃ℓ. This momentum has four
degrees of freedom and therefore on a quadruple cut we can use momentum conservation and
the cut conditions to fully constrain ℓ in terms of external gluon spinors at one-loop. The
quadruple cut factorises the amplitude into a product of four trees as shown schematically
by Figure 1.5,

Figure 1.5: Schematic quadruple cut, each corner represents a tree amplitude. Thick external
lines means the corner might have one null leg or many null legs.

A(1)
n (1, 2, . . . , n)

∣
∣
∣
cut

=
1

2

∑

λ

A(0)
(

−ℓ
−λℓ4
4 , 1, . . . , i, ℓ

λℓ0
0

)

× A(0)
(

−ℓ
−λℓ1
1 , i+ 1, . . . , j, ℓ

λℓ2
2

)

× A(0)
(

−ℓ
−λℓ2
2 , j + 1, . . . , k, ℓ

λℓ3
3

)

× A(0)
(

−ℓ
−λℓ3
3 , k + 1, . . . , n, ℓ

λℓ4
4

)

× I4[P
2
1...i, P

2
i+1...j, P

2
j+1...k, P

2
k+1...n]

∣
∣
∣
cut

, (1.118)

where the sum is over all internal helicity configurations and I4[K1, K2, K3, K4] is the scalar
one-loop box integral whose arguments are the masses on each corner. There are two solutions
for the loop momentum on the cuts which need “averaging over”, a fact which comes from
extracting the Jacobian factor that is equal on both sides of this equation and hence the
factor of 2 in the denominator.

Inserting the fully constrained loop momenta into the right hand side of (1.118) gives the
coefficient of this particular box in (1.108). One then needs to sum over all configurations
and cuts. Many of these subamplitudes might vanish depending on helicities. Triple cuts
will leave one degree of freedom unconstrained. There are various simple methods of dealing
with this but specific implementations will be further discussed in later chapters.

This decomposition into scalar boxes, triangles and bubbles only works for one-loop in-
tegrals (emphasis on integrals here, as we will see in the next chapter that certain two-loop
amplitudes may be reduced to one-loop integrals using unitarity). For two-loop amplitudes
there is no universal decomposition such as (1.108), but there are reduction techniques which
exist, such as integration by parts (IBP) relations which can reduce a given problem to a
smaller set of master integrals for beyond one-loop [51–62].

We will later use unitarity in a two-loop setting in order to constrain the problem to a
general set of numerators for a series of propagators, and these are integrated by hand. We
argue that our technique should scale well with higher multiplicities but clearly this is still not
the most efficient method given the relative simplicity of the final results. Throughout this
introduction we have talked about methods of calculation which begin as incredibly inefficient
but over time make use of symmetries and functional properties to eliminate large swathes
of redundancies. The two loop techniques presented in Chapter 5 still exhibit cancellations
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and redundancies. We will highlight this as it is suggestive of undiscovered techniques which
may exist to further simplify these loop calculations.

Before we continue on to new calculations there remains one more problem for us to
address, namely the existence of double poles in rational parts of some amplitudes. We will
be performing four-dimensional unitarity in this thesis and as such we will lose rational terms.
For the amplitudes whose rational terms contain at worst simple poles, we may use complex
recursion to recover the entire rational piece. The recursion we have covered so far only gives
leading contributions to the Laurent series and so, for amplitudes containing double poles
and higher, this method fails. We will now briefly review an augmented recursion technique
which bypasses this problem.

1.7 Augmented Recursion

BCFW recursion looks at factorisations of an amplitude and how we can build amplitudes
from these factorisations. We have already stated that this only provides the leading poles
in the Laurent expansion and so anything with double poles will miss rational contributions
if one uses standard recursion. Lets now go into detail about what this means.

At tree-level, the MHV amplitude has the form (1.53). When we talk about simple poles,
we really mean poles in z after a complex deformation of the external momenta. This has
been discussed in more detail in Section 1.3.1 but this means for poles where 〈i j〉 → 0 we can
rephrase it as ci

(z−zi)
. The complex deformation changes the amplitude to a complex function

A(z) and we would like to recover A(0) from this. We therefore want to invoke Cauchy’s
theorem and find a z = 0 contribution by looking at A(z)/z, forcing the existence of a z = 0
pole. For example, the one-loop all-plus amplitude is known to any multiplicity [63],

A(1)
n (1+, 2+, . . . , n+) = −1

3

1

〈1 2〉 〈2 3〉 . . . 〈n 1〉
∑

1≤i<j<k<l≤n

Tr−[ijkl] +O(ǫ) (1.119)

where Tr−[ijkl] ≡ Tr
(

(1−γ5)
2

/ki /kj /kk /kl

)

= 〈i j〉 [j k] 〈k l〉 [l i] and we use the normalisation in

(1.3). For n > 4 this only contains simple poles but for n = 4 we see the emergence of double
poles in the form 〈2 3〉2 after rewriting the amplitude using four-point kinematics. Recalling
that loop-level amplitudes contain polylogarithmic terms, diverging terms and finite rational
terms, we call the finite rational part of the amplitude R(z) and so

R(z)

z
=

c−2

z(z − zi)2
+

c−1

z(z − zi)
+O

(
(z − zi)

0
)
, (1.120)

where cj are the coefficients of (z−zi)
j in the Laurent expansion around the zi 6= 0 propagator

pole. We can rewrite the pole as δ = z − zi and Taylor expand

R(z)

z
=

c−2

(δ + zi)δ2
+

c−1

(δ + zi)δ
+O(δ0) ≈ c−2

ziδ2
+

1

δ

(

−c−2

z2i
+

c−1

zi

)

+O(δ0). (1.121)

We therefore see that the residue around this pole is given by

Res

[
R(z)

z

]
∣
∣
∣
∣
∣
zj

= −c−2

z2i
+

c−1

zi
(1.122)
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and this is what is used for (1.72). The problem is that while c−2 (or whichever the leading
pole in zi is) is given by factorisations, as we saw with BCFW recursion, there are no universal
results for c−1. We therefore implement a technique called “augmented recursion” [64], which
has been used to calculate rational parts of various one-loop and two-loop amplitudes [64–71],
where the latter two references are part of chapters 2 and 3.

This technique makes use of the axial gauge formalism [72–74] to extract the “pole under
the pole” term so that we may use recursion. For the all-plus, two-loop helicity amplitudes,
the origin of the double pole can be traced to the factorisation in Figure 1.6 for complex
momenta, where there are one-loop contributions on both sides,

Figure 1.6: The origin of the double pole. The double pole corresponds to the coincidence
of the singularity arising in the three-point, one-loop integral from the left hand side, with
the factorisation corresponding to K2 = sab → 0. The RHS of the factorisation here can
be an any loop-level, (n − 1)-point amplitude, depending on the overall amplitude that is
factorising.

and we can build diagrams of the form presented in Figure 1.7 where the internal legs, α
and β, are taken off shell using axial gauge techniques.

Figure 1.7: Diagram containing the leading and sub-leading poles as sab → 0. The axial
gauge construction permits the off-shell continuation of the internal legs.

In this formalism we can assign helicity labels to the internal off-shell legs and vertices
by rewriting the off-shell momenta as a sum of two nullified momenta

K = K♭ +
K2

2K · q q = K♭ +K♯, (1.123)
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where q is a massless but otherwise arbitrary reference momenta. The two off-shell legs are
given by

α = α(ℓ) = ℓ+ a, β = β(ℓ) = b− ℓ, (1.124)

where Pαβ = α + β = a + b = Pab is independent of the loop momentum ℓ. For now we will
keep the discussion to leading in colour and so the diagram may be written as

∫

dΛ(−α−λα , a+, b+,−β−λβ)τ
(1)
n:1(α

λα , βλβ , c+, d+, . . . , n+), (1.125)

where
∫

dΛ(−α−λα , a+, b+,−β−λβ) =
i

cΓ(2π)D

∫
dDℓ

ℓ2α2β2
V(α, a, ℓ)V(ℓ, b, β), (1.126)

and we can build the vertices V using the axial gauge formalism and these are dependent on
the helicites of the arguments.

τ
(1)
n:1 is a doubly off-shell current and is the key to augmented recursion. We are only

interested in the residue on the sab → 0 pole and so, when building the current, we only need
two conditions to be satisfied:

(C1) It reproduces the leading singularities as sαβ → 0 with α2, β2 6= 0,

(C2) It must reproduce the one-loop amplitude τ
(1)
n:1(α, β, c, . . . , n) → A

(1)
n:1(α, β, c, . . . , n) in

the on-shell limit α2, β2 → 0, sαβ 6= 0.

In this thesis we build the current by starting with the on-shell amplitude, written in terms
of α♭ and β♭ from (1.123). Historically the reference momentum q has been chosen to relate
to one of the external legs for simplification, but we will keep q general as this helps with
the full colour calculations. We then rewrite the amplitude in such a way that gives the
factorisations in Figure 1.8 which give the leading singularities for (C1).

+

−
−
+

β+

α−

c+

n+

A
(1)
n−1

Figure 1.8: The leading singularities to be found within the current. Both helicities of the
internal propagator need to be accounted for.

We emphasise these factorisations must be built for the sαβ → 0 pole, recalling that
〈αβ〉 [β α] = (α♭ + β♭)2 6= sαβ and so care must be taken when taking things off-shell in this
way. These manipulations can make use of sαβ << 1 and add in terms that are proportional
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to α2 and β2 for free. Once we have the leading factorisations, we should be left with a
piece that is of order O(s−1

αβ) that came from the double pole manipulations. This is the
“pole under the pole” piece we seek. Any additional terms that do not contribute a pole
can be discarded, so we do not need the full current. The final step is to then perform the
integration, sum over all contributing integrated currents and perform recursion alongside all
other channels that do not contribute double poles and we obtain the full rational piece.

In this thesis we build several currents for full-colour, all-plus helicity amplitudes and so
there will be examples of this process given in Chapters 2 and 3. We use the Risager shift
(1.75) for the all-plus amplitude and this breaks the cyclic symmetry of whichever colour
structure we calculate. The axial gauge also makes a gauge choice but the final result should
be gauge invariant. These provide very strong numerical checks on results, and we can test
that the result is independent of the choice of q and that the cyclic symmetries are recovered.
These are tested numerically because the expression calculated reads as a large function of
q and so the independence is highly non-trivial. We then fit analytic expressions to this
rational piece, a process which will be described in detail in Chapter 3.

We again see a large intermediate expression reduced to much smaller analytic expressions
(∼Mb in size to ∼kb in size) which is indicative of some undiscovered technique for calculat-
ing these pieces. This is still relatively efficient and allows us to make use of the much simpler
four-dimensional unitarity to calculate cut-constructible pieces. We have now schematically
introduced all of the techniques that will be used throughout this thesis. We have motivated
modern techniques being vastly more efficient than traditional methods but with an eye of im-
proving calculations in the future. We are now therefore ready to move onto new calculations.

The remainder of this thesis is organised as follows: Chapter 2 extends previously devel-
oped four-dimensional unitarity and augmented recursion techniques to a full colour setting.
We then use this colour-dressed technology to calculate the full-colour, two-loop, five-point,
all-plus helicity amplitude. This is published work [70]. Chapter 3 calculates the same am-
plitude but at six-point. This was a new result at the time of publishing [71] and so we
also discuss functional reconstruction methods used to fit the rational piece of this ampli-
tude. Chapter 4 discusses n-point amplitudes, calculating the full-colour, cut-constructible
part of the n-point, two-loop, all-plus helicity amplitude. We then provide a conjecture for
the rational part of the A

(2)
n:1B colour-amplitude which has been tested numerically for up to

seven-point. This is the first partial amplitude conjectured to n-points for pure Yang-Mills,
which both has agreement with the explicit calculation for seven-point while also obeying
non-trivial symmetry checks to even higher points. This is also published work [75]. Chap-
ter 5 is unpublished and extends four-dimensional unitarity to calculate the cut-constructible
piece of the two-loop, five-point, single-minus, leading in colour amplitude. This result is
already known [2], but this is the first time four-dimensional unitarity has been used to at-
tempt to calculate such a configuration and, as we argue throughout, once this technique
has been full automated it will scale well to higher multiplicities. We also derive many use-
ful relations along the way, from generalised hypergeometric relations to a very convenient
scalar box integral result with general powers on the propagators and also under a Mellin-
Barnes transformation. Finally, summarises what has been learned in these calculations and
discusses what the author would like to see explored in future calculations.
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Chapter 2

Colour Dressed Unitarity and
Recursion: a Five Point Amplitude

2.1 Introduction

In Chapter 1 we discussed how experimental results in particle physics may be explored
with theoretical calculations. Calculating perturbative scattering not only decreases the
theoretical uncertainty in these tests but reveals deeper insights and understanding into
symmetries and properties of the theories that are not present in the Lagrangian approach.
This perturbative expansion is given by (1.3) and we can further expand each loop amplitude
in terms of colour structures, Cλ

A(ℓ)
n =

∑

c

A(ℓ)
n:cC

c , (2.1)

separating the colour and kinematics of the amplitude. The colour structures Cλ may be
organised in terms of powers of Nc.

There has been much progress in computing leading tree and one-loop amplitudes. For
two-loops progress has been considerable in theories with highly extended supersymmetry,
both at the integrated [76] and integrand level [77]. However for pure gauge theory, progress
has been restricted to amplitudes with a small number of external legs. Specifically full
results are only available analyically for four gluons [78, 79], and in [80] these results are
presented to all orders in dimensional regularisation.

The first amplitude to be computed at five point was the leading in colour part of the
amplitude with all positive helicity external gluons (the all-plus amplitude) which was com-
puted using D-dimensional unitarity methods [81, 82] and was subsequently presented in a
very elegant and compact form [83]. In [67], it was shown how four-dimensional unitarity
techniques could be used to regenerate the five-point leading in color amplitude. The lead-
ing in colour five-point amplitudes have been computed for the remaining helicities [2, 84].
Full colour amplitudes are significantly more complicated requiring a larger class of master
integrals incorporating non-planar integrals [85, 86]. In [87] the first full colour five-point
amplitude was presented in QCD -for the case of all-plus helicities. Beyond five-point, the
leading in color all-plus amplitudes for six- and seven-points are known [68, 69] and indeed
in [71] and in Chapter 3 we calculate a full-colour, six-point amplitude.

In this chapter we examine the one and two-loop partial amplitudes using a U(Nc) colour
trace basis where the fundamental objects are traces of colour matrices T a rather than con-
tractions of the structure constants fabc. We examine the all-plus amplitude, An(1

+, · · ·n+).
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This amplitude is fully crossing symmetric which makes computation relatively more tractable
but nonetheless is a valuable laboratory for studying the properties of gluon scattering. We
compute directly all the colour trace structures for the five-point all-plus two-loop amplitude.
The singular part is known from general theorems so we focus on the finite remainder. Our
results are in complete agreement with the results computed by Badger et. al. [87] and are
consistent with constraints imposed by group theoretical arguments [38, 39].

Our methodology involves computing the polylogarithmic and rational parts of the finite
remainder by a combination of techniques. The polylogarithms are computed using four
dimensional unitarity cuts and the rational parts are determined by recursion. We use aug-
mented recursion [88] to overcome the issues associated with the presence of double poles.
These concepts have already been introduced in the previous chapter but we will now discuss
them in more detail.

2.2 One-Loop Sub-leading Amplitudes

The full one-loop n-point amplitude can be expanded as shown in (1.89), with the manifest
symmetries given in (1.93) and (1.94). This colour decomposition is both a U(Nc) and an

SU(Nc) expression. The A
(1)
n:2 is absent (or zero) in the SU(Nc) case. If any external gluons in

the U(Nc) case are the U(1) gluon then the amplitude must vanish. This imposes decoupling
identities amongst the partial amplitudes. For example setting leg 1 to be U(1) and extracting
the coefficient of Tr[T 2T 3 · · ·T n] implies

A
(1)
n:2(1; 2, 3, · · ·n) + A

(1)
n:1(1, 2, 3, · · ·n) + A

(1)
n:1(2, 1, 3, · · ·n) + · · ·A(1)

n:1(2, · · · , 1, n) = 0 (2.2)

and consequently the A
(1)
n:2 can be expressed as a sum of (n − 1) of the A

(1)
n:1. By repeated

application of the decoupling identities all the A
(1)
n:r can be expressed as sums over the A

(1)
n:1

and we obtain,

A(1)
n;r(1, 2, . . . , r − 1; r, r + 1, . . . , n) = (−1)r−1

∑

σ∈COP{ᾱ}{β}

A
(1)
n;1(σ) (2.3)

where αi ∈ {ᾱ} ≡ {r − 1, r − 2, . . . , 2, 1}, βi ∈ {β} ≡ {r, r + 1, . . . , n − 1, n} [Note that the
ordering of the first set of indices is reversed with respect to the second]. COP{α}{β} is the
set of all permutations of {1, 2, . . . , n} with n held fixed that preserve the cyclic ordering of
the αi within {α} and of the βi within {β}, while allowing for all possible relative orderings
of the αi with respect to the βi. For example if {α} = {2, 1} and {β} = {3, 4, 5}, then
COP{α}{β} contains the twelve elements (where {α} is made bold for clarity)

(2,1, 3, 4, 5), (2, 3,1, 4, 5), (2, 3, 4,1, 5), (3,2,1, 4, 5), (3,2, 4,1, 5), (3, 4,2,1, 5),

(1,2, 3, 4, 5), (1, 3,2, 4, 5), (1, 3, 4,2, 5), (3,1,2, 4, 5), (3,1, 4,2, 5), (3, 4,1,2, 5).

The simplest one-loop QCD n-gluon helicity amplitude is all-plus helicity amplitude
(1.119). This expression is correct up to order ǫ but all-ǫ expression exist for the first few
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amplitudes in this series [46],

A
(1)
4;1(1

+, 2+, 3+, 4+) =
2

〈1 2〉 〈2 3〉 〈3 4〉 〈4 1〉
ǫ(1− ǫ)

(4π)2−ǫ
× s12s23I

D=8−2ǫ
4 ,

A
(1)
5;1(1

+, 2+, 3+, 4+, 5+) =
1

〈1 2〉 〈2 3〉 〈3 4〉 〈4 5〉 〈5 1〉
ǫ(1− ǫ)

(4π)2−ǫ

×
[

s23s34I
(1),D=8−2ǫ
4 + s34s45I

(2),D=8−2ǫ
4 + s45s51I

(3),D=8−2ǫ
4

+ s51s12I
(4),D=8−2ǫ
4 + s12s23I

(5),D=8−2ǫ
4 + (4− 2ǫ)ε(1, 2, 3, 4)ID=10−2ǫ

5

]

,

A
(1)
6;1(1

+, 2+, 3+, 4+, 5+, 6+) =
1

2 〈1 2〉 〈2 3〉 〈3 4〉 〈4 5〉 〈5 6〉 〈6 1〉
ǫ(1− ǫ)

(4π)2−ǫ

[

−
∑

1≤i1<i2≤6

Tr[/ki1
/P i1+1,i2−1/ki2

/P i2+1,i1−1]I
D=8−2ǫ
4:i1;i2

+(4− 2ǫ) Tr[123456] ID=10−2ǫ
6

+(4− 2ǫ)
6∑

i=1

ε(i+ 1, i+ 2, i+ 3, i+ 4)I
(i),D=10−2ǫ
5

]

.

In principle, all the A
(1)
n:r amplitudes for the all-plus case may be expressed in terms of the

leading colour however the number of terms grows quite rapidly. The number of terms in a
single A

(1)
n:1 grows as

1

24
n(n− 1)(n− 2)(n− 3) (2.4)

and the summation over COP terms grows with n as

∼ (n− 1)!

(r − 2)!(n− r)!
. (2.5)

Although the number of terms in (2.3) is growing very rapidly with n and r, there is
considerable simplification. We demonstrate how useful the spinor-helicity formalism is here;
by simply thinking of which expressions have the correct momentum weight, little group
scaling and symmetries, and by making use of previously conjectured sums to guess which
kind of sums appear, we can obtain simple all-n formulae for the subleading terms.

A
(1)
n:1(1

+, 2+, 3+, · · · , n+) = −1

3

∑

i<j<k<l Tr−(ijkl)

〈1 2〉 〈2 3〉 · · · 〈n 1〉

A
(1)
n:2(1

+; 2+, 3+, · · · , n+) = −
∑

i<j[1|ij|1]
〈2 3〉 〈3 4〉 · · · 〈n 2〉

A
(1)
n:3(1

+, 2+; 3+, · · · , n+) = 2
[1 2]2

〈3 4〉 〈4 5〉 · · · 〈n 3〉

A(1)
n:r(1

+, 2+, 3+, · · · , (r − 1)+; r+ · · ·n+) = −2
(P 2

1...r−1)
2

(〈1 2〉 〈2 3〉 · · · 〈(r − 1) 1〉)(〈r (r + 1)〉 · · · 〈n r〉

where P1...r−1 denotes the usual
∑r−1

i=1 ki and r ≥ 3. These expressions have been tested nu-
merically against the decoupling identities for up to n = 12. These expressions are remarkably
simple given the large number of terms one would expect from the decoupling identities.
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Another complication we have discussed at loop order are double poles. They occur in
amplitudes at complex momenta when the factorisation shown in Figure 1.6 occurs. The
factorisation takes the form

V (a+, b+, K+)× 1

s2ab
A

(0)
n−1(K

−, · · · ) ∼ [a b]

〈a b〉2
× A

(0)
n−1(K

−, · · · ) (2.6)

where
V (1)(a+, b+, K+)

sab
= −1

3

[a b] [bK] [K a]

sab
. (2.7)

is the one-loop three-point vertex [89]. As we previously discussed, the all-plus one-loop
amplitude does not contain double poles for n > 4 since the tree amplitude on the RHS of
the factorisation vanishes. The single minus amplitude does have double poles which can be
seen explicitly in the five-point case [90]

A
(1)
5:1(1

−, 2+, 3+, 4+, 5+) =
1

3

1

〈3 4〉2
[

− [2 5]3

[1 2] [5 1]
+

〈1 4〉3 [4 5] 〈3 5〉
〈1 2〉 〈2 3〉 〈4 5〉2

− 〈1 3〉3 [3 2] 〈4 2〉
〈1 5〉 〈5 4〉 〈2 3〉2

]

, (2.8)

where there are 〈a b〉−2 singularities for 〈a b〉 = 〈2 3〉, 〈3 4〉 and 〈4 5〉.
The naive application of (2.3) obscures the simplicity of the sub-leading terms. In par-

ticular, there are no double poles in the one-loop sub-leading partial amplitudes for n > 4.
This can be derived from decoupling identities, for example in the A

(1)
n:2(a; b, c, . . . , n) case,

rewriting this in terms of the A
(1)
n:1 as in (1.96) then the double pole in 〈a b〉 will only occur

in the first two terms and will be of the form

V (a+, b+, K+)

s2ab
× A

(0)
n−1:1(K

−, c, · · ·n) + V (b+, a+, K+)

s2ab
× A

(0)
n−1:1(K

−, c, · · ·n) = 0 (2.9)

since V (a, b,K) is antisymmetric. The double pole in sbc for A
(1)
n:2(a; b, c, . . . , n) vanishes via

a decoupling identity. In the summation only the second term does not contribute and we
obtain

V (b+, c+, K+)

s2bc
×
(

A
(0)
n−1:1(a,K

−, d, · · ·n) + A
(0)
n−1:1(K

−, a, d, · · ·n)

+ · · ·+ A
(0)
n−1:1(K

−, d, · · · a, n)
)

(2.10)

This vanishes due to the decoupling identity for the tree amplitude A
(0)
n−1:1. Similar arguments

show the vanishing of double poles for all A
(1)
n:r for r > 1. Importantly this argument is inde-

pendent of the helicities outside of the three-point vertex and so is true for all configurations
considered in this thesis, including the single-minus amplitude.

The simplifications in the sub-leading terms allow us to present some compact n-point
expressions for the single minus configuration. Explicitly, we can find all-n formulae for
A

(1)
n:2(1

−; 2+, · · ·n+) and A
(1)
n:3(1

−, 2+; 3+, · · ·n+):

A
(1)
n:2(1

−; 2+, 3+, · · · , n+) =
−∑2≤i<j≤n〈1|ij|1〉

〈2 3〉 〈3 4〉 · · · 〈(n− 1)n〉 〈n 2〉 (2.11)
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and

A
(1)
n:3(1

−, 2+; 3+, · · · , n+) =
∑

Z(3···n)

∑

2≤i<j≤n〈1|ij|1〉
〈2 3〉 〈3 4〉 · · · 〈(n− 1)n〉 〈n 2〉 (2.12)

where Z(3···n) is the set of cyclic permutations of the set (3, · · ·n).
The vanishing of the 〈b c〉 double poles in (2.10) uses a tree level identity, so we do not

expect the argument to extend beyond one-loop. Specifically if we consider the double pole
in A

(2)
n:2(a; b, c, . . . , n), a formula for the double pole in 〈b c〉 akin to (2.10) will exist but with

the tree amplitudes A
(0)
n−1:1 replaced by their one-loop equivalents A

(1)
n−1:1. The combination

of A
(1)
n−1:1 is that of the decoupling identity (1.96) so the double pole does not vanish but

instead is proportional to

V (1)(b+, c+, K+)

s2bc
× A

(1)
n−1:2(a;K

−, d, · · ·n) . (2.13)

These simplified subleading in colour amplitudes will prove to be very useful in calculating
the two-loop, all-plus amplitudes.

2.3 Two-Loop Amplitudes

A general two-loop amplitude may be expanded as in (1.90). For five-point amplitudes this
reduces to

A(2)
5 (a, b, c, d, e) = N2

c

∑

S5/P5:1

Tr(abcde)A
(2)
5:1(a, b, c, d, e)

+ Nc

∑

S5/P5:2

Tr(a) Tr(bcde)A
(2)
5:2(a; b, c, d, e)

+ Nc

∑

S5/P5:3

Tr(ab) Tr(cde)A
(2)
5:3(a, b; c, d, e)

+
∑

S5/P5:1,1

Tr(a) Tr(b) Tr(cde)A
(2)
5:1,1(a; b; c, d, e)

+
∑

S5/(P5:1,2

Tr(a) Tr(bc) Tr(de)A
(2)
5:1,2(a; b; c, d, e)

+
∑

S5/P5:1

Tr(abcde)A
(2)
5:1B(a, b, c, d, e) (2.14)

where we again suppress σ notation, similar to going from (1.4) to (1.8) and we have defined
all of the summation sets in Chapter 1. For an SU(Nc) gauge group, this simplifies to

A(2)
5 (a, b, c, d, e) = N2

c

∑

S5/P5:1

Tr(abcde)A
(2)
5:1(a, b, c, d, e)

+ Nc

∑

S5/P5:3

Tr(ab) Tr(cde)A
(2)
5:3(a, b; c, d, e)

+
∑

S5/P5:1

Tr(abcde)A
(2)
5:1B(a, b, c, d, e) , (2.15)

35



which gives three separate functions needing to be determined: A
(2)
5:1, A

(2)
5:3 and A

(2)
5:1B. By

themselves the U(1) decoupling identities do not determine any of the three however they

can be used to obtain the specifically U(1) functions A
(2)
5:2 , A

(2)
5:1,1 and A

(2)
5:1,2.

A
(2)
5:2(a; b, c, d, e) = −A

(2)
5:1(a, b, c, d, e)− A

(2)
5:1(b, a, c, d, e)− A

(2)
5:1(b, c, a, d, e)− A

(2)
5:1(b, c, d, a, e) ,

A
(2)
5:1,1(d; e; a, b, c) =

(

− A
(2)
5:2(e; a, b, c, d)− A

(2)
5:2(e; a, b, d, c)− A

(2)
5:2(e; a, d, b, c)

− 1

2
A

(2)
5:3(d, e; a, b, c)

)

+ {d ↔ e}

=
∑

σ∈COP{d,e}{a,b,c}

A
(2)
5:1(σ)− A

(2)
5:3(d, e; a, b, c)

(2.16)

and

A
(2)
5:1,2(1; 2, 3; 4, 5)

= −A
(2)
5:3(2, 3; 1, 4, 5)− A

(2)
5:3(2, 3; 1, 5, 4)− A

(2)
5:3(4, 5; 1, 2, 3)− A

(2)
5:3(4, 5; 1, 3, 2)

= 0 . (2.17)

Decoupling identities do not relate the A
(2)
n:1B to the other terms but do impose a tree-like

identity,

A
(2)
n:1B(a, b, c, · · ·n) + A

(2)
n:1B(b, a, c, · · ·n) + · · ·A(2)

n:1B(b, · · · , a, n) = 0 , (2.18)

which in itself does not specify A
(2)
n:1B completely. There are however further colour restrictions

beyond the decoupling identities [38,39] which may be obtained by recursive methods. These,

together with eq. (2.18) determine the A
(2)
5:1B:

A
(2)
5:1B(a, b, c, d, e) = −A

(2)
5:1(a, b, d, c, e) + 2A

(2)
5:1(a, b, e, c, d) + A

(2)
5:1(a, b, e, d, c)

−A
(2)
5:1(a, c, b, d, e) + 2A

(2)
5:1(a, c, d, b, e)− 5A

(2)
5:1(a, c, e, b, d)

−2A
(2)
5:1(a, c, e, d, b) + 2A

(2)
5:1(a, d, b, c, e) + A

(2)
5:1(a, d, c, b, e)

+2A
(2)
5:1(a, d, e, b, c) + A

(2)
5:1(a, d, e, c, b)

− 1

2

∑

Z5(a,b,c,d,e)

(

A
(2)
5:3(a, b; c, d, e)− A

(2)
5:3(a, c; b, d, e)

)

. (2.19)

Our calculation determines A
(2)
5:1B and we use (2.19) as a consistency check. We will now

review the functional content of these amplitudes.

2.4 The Cut Constructible Piece

We can split amplitudes into a piece containing branch cut singularities and a rational piece,

A(2)
n:c = P (2)

n:c +R(2)
n:c, (2.20)

where P refers to cut constructible pieces and R refers to the rational piece that will lose
terms in four-dimensional unitarity. We label it P as we will hereby refer to this as “polylog-
arithmic” although this also refers to divergent pieces and hypergeometric functions. We use
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c here to indicate the different colour structures. We can then split P into diverging parts
and IR finite pieces

P (2)
n:c = U (2)

n:c + F (2)
n:c . (2.21)

U
(2)
n:c contains a IR singular structure which is determined by general theorems (1.106) as

already discussed. Given the general expressions for U
(2)
n:c are known, the challenge is to

compute the finite parts of the amplitude F
(2)
n .

2.4.1 Unitarity

D-dimensional unitarity techniques can be used to generate the integrands [81] for the five-
point amplitude which can then be integrated to give the result [83]. We would like to use four-

dimensional unitarity and cut the two-loop diagrams that contribute toA(2)
5 (a+, b+, c+, d+, e+).

We can categorise two-loop diagrams into two types: what we call “genuine two-loop dia-
grams” where you must cut more than one internal propagator to reduce the diagram to
two sub-diagrams (cut and reduce here being in a topological sense) and (one-loop)2 which
are reducible with a single cut. Figure 2.1 gives an example of each type, introducing the
“tricorner box” which will become very important in Chapter 5.

Figure 2.1: (Top) The tricorner box falls under the genuine two-loop category. (Bottom)
An example of a (one-loop)2 diagram, where topologically cutting the connecting propagator
would reduce the diagram to two one-loop diagrams.
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We can use unitarity to distinguish between the two types, utilising continuous triple cuts
like the one in Figure 2.2 which factorises the amplitude into A(0)×A(0). A very useful result
of this is that for the all-plus configuration these are all zero. This is because there are no
ways of distributing negative helicities on the cut loop-momenta that will give two non-zero
amplitudes. When we look at the single-minus amplitude there are non-zero cuts as you can
then have two negative helicities on two loop momenta in one amplitude and two negative
helicities from the remaining loop momentum and also from the external negative helicity
leg.

Figure 2.2: Triple cut contributing to a (tree)×(tree) factorisation.

We therefore find unitarity reduces the problem to only the (one-loop)2 diagrams. These
can then be viewed as loop insertions. This is particularly useful as it ties up one of the loop
integrals and effectively reduces this two-loop amplitude to a one-loop problem, allowing the
use of Passerino-Veltman reduction techniques to reduce it to a sum of scalar boxes, triangles
and bubbles such as in (1.108).

Another good indicator that this is valid is by looking at three-point corners with a loop
insert. We would expect on a quadruple cut for the amplitude to factorise into A(1) ×A(0) ×
A(0) ×A(0) as opposed to four trees. While there is not a three-point, one-loop amplitude as
such, we may use the one-loop vertex (2.7) as the insertion to test the behaviour. We find
that any quadruple cut containing these inserts vanish, further indicating this method is valid
(compare to the single-minus configuration later where some of these cuts diverge, further
suggesting the presence of genuine two-loop contributions and invalidating this approach).
The non-vanishing four dimensional cuts are therefore shown in Figure 2.3.
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Figure 2.3: Four dimensional cuts of the two-loop all-plus amplitude involving an all-plus
one-loop vertex (indicated by • ) In the boxes K2 may be null but K4 must contain at least
two external legs.

The cuts allow us to determine the coefficients, cj,i, of box, triangle and bubble functions
in the amplitude. The integral functions are

I2(K
2) =

(−K2)−ǫ

ǫ(1− 2ǫ)
, (2.22)

I1m
3 (K2) =

1

ǫ2
(−K2)−1−ǫ , I2m

3

(
K2

1 , K
2
2

)
=

1

ǫ2
(−K2

1)
−ǫ − (−K2

2)
−ǫ

(−K2
1)− (−K2

2)
, (2.23)

and

I2m
4 (s, t,K2

2 , K
2
4 ) = − 2

st−K2
2K

2
4

[

− 1

ǫ2

[

(−s)−ǫ + (−t)−ǫ − (−K2
2)

−ǫ − (−K2
4)

−ǫ
]

+Li2

(

1− K2
2

s

)

+ Li2

(

1− K2
2

t

)

+ Li2

(

1− K2
4

s

)

+ Li2

(

1− K2
4

t

)

−Li2

(

1− K2
2K

2
4

st

)

+
1

2
log2

(s

t

)

+
π2

6

]

(2.24)

where s = (k1 +K4)
2 and t = (k1 +K2)

2.
The bubbles in principle would determine the (−s)ǫ/ǫ infinities. However, explicit calcula-

tion using, for example, a canonical basis approach [91] shows that they have zero coefficient.

The triangles only contain contributions to U
(2)
n:λ, while the box functions contribute to both

the IR terms and the finite polylogarithms. Separating these pieces we have

I2m4 (s, t,K2
2 , K

2
4) = I2m4

∣
∣
∣
∣
IR

− 2

st−K2
2K

2
4

F2m[s, t,K2
2 , K

2
4 ] (2.25)

where F 2m is a dimensionless combination of polylogarithms.
The IR terms combine to give the correct IR singularities [92],

(
∑

c4,iI2m
4,i

∣
∣
∣
∣
IR

+
∑

c2m3,i I2m
3,i +

∑
c1m3,i I1m

3,i

)

c

= U
(2),ǫ0

n:c (1+, 2+, · · · , n+) (2.26)
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where U
(2),ǫ0

n,c (1+, 2+, · · · , n+) is the order ǫ0 truncation and n : c labels the colour structure,
for example it might mean n : 1 or n : s, t etc. The sum over i is simply the sum over all
relevant configurations of boxes and triangles that will contribute to the colour structure c.

We have checked the relation of (2.26) by using four dimensional unitarity techniques to

compute the coefficients and then comparing to the expected form of U
(2)
n given by (1.106)

for n up to 10 points. Given these just give results of a known theorem we leave discussion
of triple and double cut calculations for Chapter 5.

The remaining parts of the box integral functions become the finite polylogarithms. The
expression for F

(2)
n is [92]

F (2)
n =

∑

i

ciF
2m
i (2.27)

where where the i sum is simply over all boxes, and

F2m[s, t,K2
2 , K

2
4 ] = Li2[1− K2

2

s
] + Li2[1− K2

2

t
] + Li2[1− K2

4

s
]

+ Li2[1− K2
4

t
]− Li2[1− K2

2K
2
4

st
] + 1

2
ln2(s/t) + π2

6
(2.28)

and, in the specific case where K2
2 = 0,

F1m[s, t,K2
4 ] ≡ F2m[s, t, 0, K2

4 ] = Li2[1− K2
4

s
] + Li2[1− K2

4

t
] + 1

2
ln2(s/t) + π2

3
. (2.29)

Let us now consider the specific five-point case where only the K2
2 = 0 case occurs.

b+

c+

a+

e+

d+

•

ℓ3, p ℓ1,m

ℓ2, n

ℓ4, q +−

+−

+

−

+

−

Figure 2.4: The labelling and internal helicities of the quadruple cut.

In this case the one-loop corner is a four-point amplitude. The colour partial amplitudes
simplify the case since

A
(1)
4:1(1234) = A

(1)
4:1(1243) = A

(1)
4:1(1324) (2.30)

which implies from the decoupling identities that,

A
(1)
4:2(1; 234) = −3A

(1)
4:1(1234), A

(1)
4:3(12; 34) = 6A

(1)
4:1(1234) (2.31)

which means the full colour amplitude factorises into colour and kinematics as

A(1)
4 (ℓ1, ℓ4, d, e) = C × A

(1)
4:1(ℓ4, d, e, ℓ1) (2.32)

Since the three-point tree amplitudes also factorise, the quadruple cut of this box function
will be

C ′ × A
(0)
3 (a, ℓ2, ℓ1)A

(0)
3 (b, ℓ3, ℓ2)A

(0)
3 (c, ℓ4, ℓ3)A

(1)
4:1(ℓ4, d, e, ℓ1) (2.33)
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We then just need the solution to the quadruple cuts. The following works for n-point
one-mass boxes with all-plus helicity legs.

c

ℓ4

ℓ1

ℓ2

ℓ3

b a

K

Figure 2.5: A general one-mass box with a2 = b2 = c2 = 0 and K2 6= 0. On a quadruple cut,
ℓ2i = 0 for i ∈ {1, 2, 3, 4}.

For the configuration in Figure 2.5 we have

ℓ2 + ℓ1 = a

ℓ2 + ℓ3 = −b

ℓ3 + ℓ4 = c

ℓ4 + ℓ1 = −K = Pabc, (2.34)

where we use the notation Pijk = pi + pj + pk. On the cut, we solve for ℓ2

ℓ21 = [ℓ2 a] 〈ℓ2 a〉 = 0, (2.35)

ℓ23 = [ℓ2 b] 〈b ℓ2〉 = 0, (2.36)

ℓ2 = αℓ2λ̃bλa. (2.37)

The conjugate of this is also valid but causes the subamplitudes on the cut to vanish, and so
we will ignore them for now, although we must average over the two solutions for the final
result. We solve αℓ2 using momentum conservation around two corners

ℓ24 = (Pbc + ℓ2)
2 = [ℓ2|Pbc|ℓ2〉+ sbc = 0,

αℓ2 = −〈c b〉
〈c a〉 ,

ℓ2 = −〈c b〉
〈c a〉 λ̃bλa. (2.38)

Similarly for ℓ3

ℓ3 = −〈a b〉
〈a c〉 λ̃bλc (2.39)

remembering we cannot have ℓ3 ∝ λ̃c due to the MHV corner etc.

ℓ1 =
〈c a〉 λ̃a + 〈c b〉 λ̃b

〈c a〉 λa , ℓ4 =
〈c a〉 λ̃c + 〈b a〉 λ̃b

〈c a〉 λc. (2.40)
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Now that we have the solutions, remembering to average over the zero and non-zero solutions,
we can write

A
(0)
3 (a, ℓ2, ℓ1)A

(0)
3 (b, ℓ3, ℓ2)A

(0)
3 (c, ℓ4, ℓ3)A

(1)
4:1(ℓ4, d, e, ℓ1) =

2sabsbc
3

× [d e]2

〈a b〉 〈b c〉 〈c a〉(2.41)

=
sabsbc
3

× A5:3(de; abc) (2.42)

Consequently the different colour trace amplitudes will be of the form

F
(2)
5 ∼

∑

A5:3(de; abc)× F 1m
abc;de (2.43)

where F 1m
abc;de ≡ F 1m[sab, sbc, sde]. We can determine the terms in the summation by evaluating

C ′. Expanding C ′ and applying U(Nc) trace identities (1.88) we get

C ′
(de;abc) =

∑

m,n,p,q

(

(Tr[amn]− Tr[man])(Tr[bpn]− Tr[pbn])(Tr[pcq]− Tr[pqc])
)

×
(

NcTr[mqed] +NcTr[meqd]/2 +NcTr[qemd]/2 +NcTr[qmed]

− 3Tr[m] Tr[qde]− 3Tr[q] Tr[mde]− 3Tr[d] Tr[emq]− 3Tr[d] Tr[eqm]

+ 3Tr[de] Tr[mq] + 3Tr[dm] Tr[eq] + 3Tr[dq] Tr[em] + {d ↔ e}
)

= N2
c

(

Tr[deabc] + Tr[edabc]− Tr[badec]− Tr[baedc]
)

+Nc

(

− 2Tr[d](Tr[eabc]− Tr[baec])− 2Tr[e](Tr[dabc]− Tr[badc])

− Tr[a](Tr[debc] + Tr[edbc]− Tr[bdec]− Tr[bedc])

− Tr[b](Tr[deac] + Tr[edac]− Tr[aedc]− Tr[adec])

− Tr[c](Tr[deab] + Tr[edab]− Tr[adeb]− Tr[aedb])

+8Tr[de](Tr[abc]− Tr[bac]) + Tr[da](Tr[bec]− Tr[ebc])

+Tr[db](Tr[aec]− Tr[eac]) + Tr[dc](Tr[aeb]− Tr[eab])

−Tr[ea](Tr[dbc]− Tr[bdc])− Tr[eb](Tr[dac]− Tr[adc])− Tr[ec](Tr[dab]− Tr[adb])
)

+3
(

− 2Tr[d] Tr[e](Tr[abc]− Tr[bac]) + Tr[d] Tr[a](Tr[ebc]− Tr[bec])

+Tr[d] Tr[b](Tr[eac]− Tr[aec]) + Tr[d] Tr[c](Tr[eab]− Tr[aeb])

+Tr[e] Tr[a](Tr[dbc]− Tr[bdc]) + Tr[e] Tr[b](Tr[dac]− Tr[adc])

+Tr[e] Tr[c](Tr[dab]− Tr[adb])
)

+6
(

Tr[deabc]− Tr[dcbae] + Tr[dcbea]− Tr[daebc] + Tr[dceba]− Tr[dabec] + Tr[dcaeb]− Tr[dbeac]

+Tr[dbaec]− Tr[dceab] + Tr[dabce]− Tr[decba] + Tr[daecb]− Tr[dbcea] + Tr[dbeca]− Tr[daceb]
)

.

This is an expansion of the form

C ′
(de;abc) =

∑

λ

aλ(de;abc)C
λ (2.44)

where the Cλ are the different colour structures. Consequently the finite polylogarithmic
part of the partial amplitudes is

F
(2)
5:λ =

∑

(de;abc)

aλ(de;abc)A5:3(d, e; a, b, c)× F1m
abc;de . (2.45)
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Specifically we recover the previous results of [83] and [87],

F
(2)
5:1 (a, b, c, d, e) =

∑

P5:1

−A
(1)
5:3(d, e; a, b, c)F

1m
abc;de ,

F
(2)
5:3 (a, b : c, d, e) =

4

3

∑

P5:3

(

A
(1)
5:3(a, b; c, d, e) F

1m
cde;ab

+
1

4
A

(1)
5:3(a, c; b, e, d) (F

1m
bed;ac + F1m

bde;ac − F1m
dbe;ac)

)

, (2.46)

where again the P sets follow the manifest symmetry of the F
(2)
5 arguments. We also deter-

mine directly the remaining SU(Nc) partial amplitude,

F
(2)
5:1B(a, b, c, d, e) = 2

∑

P5:1

(

A
(1)
5:3(a, b : c, d, e) F

1m
cde;ab+

A
(1)
5:3(a, c; b, e, d) (F

1m
bed;ac + F1m

bde;ac − F1m
dbe;ac)

)

. (2.47)

This expression matches that obtained by using the results of (2.46) in (2.19).
The specifically U(Nc) partial amplitudes may also be extracted directly:

F
(2)
5:2 (a; b, c, d, e) = −2

3

∑

P5:2

(

A
(1)
5:3(a, b; c, d, e) F

1m
cde;ab

+
1

2
A

(1)
5:3(b, c; a, e, d) (F

1m
ade;bc + F1m

dea;bc − F1m
dae;bc)

)

(2.48)

and

F
(2)
5:1,1(a; b; c, d, e) = −

∑

P5:1,1

(

A
(1)
5:3(a, b; c, d, e) F

1m
cde;ab

+ A
(1)
5:3(a, c; b, e, d) (F

1m
bed;ac + F1m

bde;ac − F1m
dbe;ac)

)

. (2.49)

These satisfy the decoupling identities (2.17), providing a strong check on the results.

2.5 Recursion

The remaining part of the amplitude is the rational function R
(2)
n:c. This amplitude contains

double poles and will therefore need augmented recursion to calculate. We outlined the
fundamentals for a general calculation in Section 1.7, but we can now specialise to R

(2)
5:c .

We will use the Risager shift [23] which acts on three momenta, say pa, pb and pc, to give

λa → λâ = λa + z [b c]λη ,

λb → λb̂ = λb + z [c a]λη ,

λc → λĉ = λc + z [a b]λη ,

(2.50)

where λη must satisfy 〈a η〉 6= 0 etc. but is otherwise unconstrained. For simplicity we choose
it to be equal to q, the similarly unconstrained reference vector in (1.123). After applying
the shift, the rational quantity of interest is a complex function parametrized by z i.e. R(z).
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If R(z) vanishes at large |z|, then Cauchy’s theorem applied to R(z)/z over a contour at
infinity implies

R = R(0) = −
∑

zj 6=0

Res
[R(z)

z

]∣
∣
∣
zj
. (2.51)

Employing the Risager shift (2.50) yields a shifted quantity with the desired asymptotic
behaviour. This is difficult to tell a priori for two-loops but we can tell a posteriori. Both the
Risager and BCFW shifts break the cyclic symmetry due to making a specific selection of
legs, and the Risager shift depends on η. Cyclic symmetry is then restored in the final result
when using the Risager shift, but not for the BCFW shift, and the result is independent on
η. This implies the large z behaviour of the Risager shift is correct but is incorrect for the
BCFW shift. This is not too surprising given the analysis that can be performed at tree
level.

The effect of this shift is to excite poles belonging to various factorisation channels; the
(one-loop)-(one-loop) and the (tree)-(two-loop) factorisations, where for the all-plus helicity
we expect non-vanishing factorisations to look like,

R
(1−1)
5 ∼ A

(1)
3 × 1

K2
× A

(1)
4 (2.52)

R
(0−2)
5 = A

(0)
3 × 1

K2
× A

(2)
4 (2.53)

such that the rational part of the amplitude can be written as

R
(2)
5 = R

(1−1)
5 +R

(0−2)
5 . (2.54)

Loop amplitudes in non-supersymmetric theories may have double poles in complex mo-
menta. R

(1−1)
5 is written as similar to and not equal to since its leading singularity is a

double pole which can be determined by factorisation theorems, however there is additional
sub-leading information that is non-factorising in nature. Mathematically this is not a prob-
lem since, as has been discussed, we may use augmented recursion and the doubly off-shell
current to perform a Laurent expansion. The required residue is then

Res
[R(z)

z

]∣
∣
∣
zj
= − c−2

z2j
+

c−1

zj
(2.55)

and we can use Cauchy’s theorem provided we know the value of both the leading and sub-
leading poles. At this point, there are no general theorems determining the sub-leading pole
and we need to determine it for each specific case.

We will start with the (tree)-(two-loop) piece. It only involves simple poles and their
contributions are readily obtained from the rational parts of the four-point two-loop ampli-
tude [79]:

R
(2)
4:1(K

+, c+, d+, e+) =
1

3
A

(1)
4:1(k

+, c+, d+, e+)

(
s2ce

scdsde
+ 8

)

,

R
(2)
4:3(K

+, c+; d+, e+) =
1

9
A

(1)
4:3(k

+, c+; d+, e+)

(
s2cd

scesde
+

s2ce
scdsde

+
s2de

scdsce
+ 24

)

. (2.56)

This allows us to extend to full colour by writing the full colour decomposition of each side
of the factorisation and using U(Nc) trace identities. The specifically U(1) amplitudes can

44



be related to the two rational amplitudes (2.56) via decoupling identities. Figure 2.6 gives
the colour lines that contribute to the leading in colour planar amplitude but again we need
to include the whole four-point, two-loop, amplitude (1.90).

+

−
−
+

ĉ+

d+

e+
â+

b̂+

Figure 2.6: A ribbon graph representing the leading in colour contribution to a (tree)-(two-
loop) channel. The external legs are dressed in a cyclic ordering to produce Tr[abcde], while
there are two closed internal colour lines belonging to the loops contributing a factor of Nc

each.

The rational piece obtained from these factorisations is then obtained from standard
recursion, performing the Risager shift, colour dressing all factorisations that have shifted
legs on both sides, taking the residue and summing over all contributing diagrams.

We then look at the (one-loop)-(one-loop) factorisation. By considering a diagram of
the form Figure 1.7 using an axial gauge formalism (1.123), we can determine the full pole
structure of the rational piece, including the non-factorising simple poles.

The principal helicity assignment in Figure 1.7 gives
∫

dΛcolour(α+, a+, b+, β−) τ (1),colourn (α−, β+, c+, ..., n+), (2.57)

and we can apply the method to the full colour amplitude. The U(Nc) color decomposition
of dΛcolour contains a common kinematic factor so we have the colour decompositions

τ (1),colourn =
∑

c

Ccτ
(1)
n:c and

∫

dΛcolour = CΛ

∫

dΛ0 , (2.58)

where we can use axial gauge formalism to express three point off-shell tree amplitudes to
write ∫

dΛ0(α
+, a+, b+, β−) =

1

(2π)D

∫
dDℓ

ℓ2α2β2

[a|ℓ|q〉[b|ℓ|q〉
〈a q〉 〈b q〉

〈β q〉2

〈α q〉2
. (2.59)

Hence the full color contribution is
∑

c

CΛCc

∫

dΛ0(α
+, a+, b+, β−) τ (1)n:c (α

−, β+, c+, · · ·n+). (2.60)

The various τ
(1)
n:c can be expressed as sums of the leading amplitudes τ

(1)
n:1 via a series of

U(1) decoupling identities (2.3). We now focus on the five-point case, where the decoupling
identities only make use of two distinct forms of the leading current,

τ
(1)
5:1 (α

−, β+, c+, d+, e+) and τ
(1)
5:1 (α

−, c+, β+, d+, e+) , (2.61)
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which we call the ’adjacent’ and ’non-adjacent’ leading currents respectively.
τ
(1)
5:1 (α

−, β+, c+, d+, e+) has been calculated previously for a specific choice of the axial
gauge spinor λq = λd [67]. Since we require currents for which all the legs have been permuted
it is necessary to derive this current for arbitrary λq. The non-adjacent case has not previously
been considered.

2.5.1 Obtaining the adjacent current

We do not need the full current, it just needs to satisfy the two conditions outlined in Sec-
tion 1.7. Condition (C2) requires the current τ

(1)
5:c to reproduce the full partial amplitude A

(1)
5:c

in the α2 → 0, β2 → 0 limit and so the current should have the same colour decomposition
as the one-loop amplitude (1.89). We can use the decoupling identities (2.3) to relate any of

the sub-leading currents to sums of the leading in colour currents τ
(1)
5:1 . The cyclic and flip

symmetries inherited from A
(1)
5:1 mean that any of the τ

(1)
5:c can be related to τ

(1)
5:1 (α, β, c, d, e)

and τ
(1)
5:1 (α, c, β, d, e) up to permutations of the legs {c, d, e}.

To build the current we start with the one-loop, five-point, single-minus partial amplitude

A
(1)
5:1(α

−, β+, c+, d+, e+) =
∑

j=i,ii,iii

A
(1)
5:1j

(
α−, β+, c+, d+, e+

)
(2.62)

where

A
(1)
5:1i

(
α−, β+, c+, d+, e+

)
=

1

3

1

〈c d〉2
〈c e〉 〈α d〉3 [d e]
〈αβ〉 〈d e〉2 〈β c〉

,

A
(1)
5:1ii

(
α−, β+, c+, d+, e+

)
= −1

3

1

〈c d〉2
[β e]3

[αβ] [e α]

and

A
(1)
5:1iii

(
α−, β+, c+, d+, e+

)
=

1

3

1

〈c d〉2
〈α c〉3 〈β d〉 [β c]

〈d e〉 〈α e〉 〈β c〉2
.

Condition (C1) requires our approximation to the current to reproduce the correct leading
singularities as sαβ → 0, the sources of these are depicted in Figure 2.7.

+

−
−
+

c+

d+

e+
α−

β+

A
(1)
4:1

Figure 2.7: Factorisations of the current on the sαβ → 0 pole.
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We determine these within the axial gauge formalism. The two channels give

F cde
dp ≡ [β k] 〈α q〉2

〈β q〉 〈k q〉
1

sαβ
A

(1)
4:1(k

−, c+, d+, e+) =
1

3

〈α q〉2

〈β q〉2
〈q|αβ|q〉

sαβ

〈e c〉 [c e]3
〈c d〉 〈d e〉 [e|Pαβ|q〉[c|Pαβ|q〉

for the double pole, and

F cde
sb ≡ 〈α k〉 [β q]2

[α q] [k q]

1

sαβ
A

(1)
4:1(k

+, c+, d+, e+) = −1

3

〈α k〉 [β q]2

[α q] [k q]

1

sαβ

[e k]2

〈c d〉2
(2.63)

for the “square bracket pole”, where k = α + β = −c− d− e which is null on the pole.
We start from A

(1)
5:1i in terms of α♭ and β♭ and take it off-shell using (1.123) and sαβ << 1,

aiming for F cde
dp . Using the identity

1

〈αβ〉 〈β c〉 =
1

〈α q〉 〈β q〉2
(〈q|αβ|q〉[q|Pαβ|q〉

sαβ[q|Pαβ|c〉
+

〈q β〉 〈q c〉 [q|α|q〉
〈β c〉 [q|Pαβ|c〉

)

, (2.64)

and the expansion

[β|P ♭
αβ|d〉

[β|Pαβ|q〉
=

[q|Pαβ|d〉
[q|Pαβ|q〉

+ sαβ
〈q d〉 [β q]

[β|Pαβ|q〉[q|Pαβ|q〉
+O(s2αβ), (2.65)

which simply makes use of a Schouten identity followed by taking Pαβ off-shell, we find

A
(1)
5:1i = F cde

dp

[

1 + sαβ

(
[q e]

[c e] [q|Pαβ|c〉
+

[c|q|d〉
[q|Pαβ|q〉[c|e|d〉

+
[e|q|d〉

[q|Pαβ|q〉[e|c|d〉

)

+O(s2αβ)

]

.

(2.66)

We see that A
(1)
5:1i generates the correct singularity as 〈αβ〉 → 0. This terms generates

the double pole when integrated and the form in (2.66) explicitly exposes the subleading
contribution. We throw away terms of O(s2αβ) as this no longer contributes a pole, hence not
requiring the complete current.

The F cde
sb factorisation arises when [αβ] → 0. This we obtain from A

(1)
5:1ii. Using,

k♭ = k − k2

2k.q
q = α♭ + β♭ + δq, (2.67)

where

δ =
α2

2α.q
+

β2

2β.q
− sαβ

2k.q
, (2.68)

we have

F cde
sb =

1

3

1

sαβ

[

[e β]2 [β q] 〈β α〉
[α q] 〈c d〉2

+ δ[e|q|α〉([e β] [β q] [k q] + [β q]2 [e k])

[α q] [k q] 〈c d〉2

]

. (2.69)

Now A
(1)
5:1ii can be rewritten as

A
(1)
5:1ii = −1

3

1

〈c d〉2
[β e]2 [q e]

[e α] [α q]
− 1

3

1

〈c d〉2
[β e]2 [q β]

[αβ] [α q]
(2.70)
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and noting that

〈β α〉
sαβ

− 1

[αβ]
=

〈β α〉 [αβ]− sαβ
sαβ [αβ]

=
(α♭ + β♭)2 − sαβ

sαβ [αβ]
= −

(
α2

2α.q
+

β2

2β.q

)
2k.q

sαβ [αβ]
,

(2.71)

we see that A
(1)
5:1ii has the form F cde

sb + ∆ as [αβ] → 0, where ∆ contains terms of order

α2 and β2. We therefore include a contribution to the current of the form A
(1)
5:1ii − ∆ to

satisfy condition (C1). As ∆ vanishes when α2 = β2 = 0, its inclusion does not compromise
condition (C2).

The remaining piece of the one-loop amplitude, A
(1)
5:1iii, contains no poles as 〈αβ〉 → 0 or

[αβ] → 0 and we can simplify it using

〈X α〉
〈Y α〉 =

〈X α〉
〈Y α〉

〈Y a〉
〈Y a〉 =

〈X a〉
〈Y a〉 +O(〈α a〉) (2.72)

as terms of O(〈α a〉) do not ultimately contribute to the residue.
The adjacent leading current is then

τ
(1)
5:1 (α

−, β+, c+, d+, e+) = F cde
dp

[

1 + sαβ

(
[q e]

[c e] [q|Pαβ|c〉
+

[c|q|d〉
[q|Pαβ|q〉[c|e|d〉

+
[e|q|d〉

[q|Pαβ|q〉[e|c|d〉

)]

+
i

3 〈c d〉2
〈α q〉2

〈β q〉2
[〈a c〉 [c|β|d〉

〈d e〉 〈e a〉 +
〈c e〉 [d e]
〈d e〉2

(
[q|Pαβ|d〉3
[q|Pαβ|q〉3

〈q c〉 〈q a〉 [q|α|q〉
〈a c〉 [q|Pαβ|c〉

− 3
〈q d〉 [q|Pαβ|d〉2[q|β|q〉
[q|Pαβ|q〉2[q|Pαβ|c〉

)]

+ F cde
sb +

i

3 〈c d〉2

(

− [β e]2 [q e]

[e α] [α q]
+ [e|q|α〉([e β] [β q] [k q] + [β q]2 [e k])

[α q] [k q] 2k.q

)

+O(sαβ) .

(2.73)

We then need the non-adjacent current τ
(1)
5:1 (α

−, c+, β+, d+, e+), which we again calculate by
starting with the amplitude and taking off-shell. This is a non-planar current as demonstrated
in Figure 2.8 and it is easy enough to guess that this will not contribute double poles due to
the non-planar way in which a and b would need to go collinear. While this would imply you
would only need to perform standard recursion as there are only simple poles, we see there
are no factorisations that contribute to some of these colour structures. This is interesting
as it implies the contributions from these types of currents are entirely non-factorising and
we can still view the residue as in (2.55) but with c−2 = 0.

β

α

d+

c+

e+

a+

b+

Figure 2.8: Diagram showing a non-planar current
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The non-adjacent leading current is

τ
(1)
5:1 (α

−, c+, β+, d+, e+) =
1

3

〈α q〉2

〈β q〉2

(

〈α e〉 [e c]
〈c α〉 〈d e〉2

− [e c]3

[e|α|d〉[c|α|d〉

)

+O(〈αβ〉). (2.74)

These currents must be integrated before extracting the rational pole. The non-adjacent
case integrates to the simple form,

∫
dDℓ

ℓ2α2β2

1

3

[a|ℓ|q〉[b|ℓ|q〉
〈a q〉 〈b q〉

〈a e〉 [e c]
〈c a〉 〈d e〉2

∣
∣
∣
∣
∣
Q

=
1

6

[e c] 〈a e〉 [a b]
〈d e〉2 〈c a〉 〈a b〉

, (2.75)

where the second term in eq. (2.74) has been dropped since it is a quadratic pentagon and
does not contain any rational terms (this is because we need to at least reach scalar bubbles
by integral reductions which cannot be done for a quadratic pentagon). The adjacent current
needs a bit more work to integrate.

2.5.2 Integrating the Adjacent Current

Defining the helicity dependent integrated current as

Cλα,λβ =

∫

dΛ0(α
−λα , a+, b+, β−λβ) τ

(1)
5:1 (α

λα , βλβ , c+, d+, e+). (2.76)

we can split the it into five parts, picking for now the helicity configuration we have already
discussed,

C−+ = C−+
dp + C−+

ap + C−+
sf + C−+

sl + C−+
sk (2.77)

where C−+
dp corresponds to integrating the Fdp part; C

−+
ap corresponds to integrating the “pole

under the pole” piece from the double pole; C−+
sf corresponds to integrating the Fsb piece and

the C−+
sl and C−+

sk bits correspond to the last two terms in the current which come from the
leftovers when deriving Fsb and the subtracted k2 term when taking the current off-shell. We
have defined this current for general q and so the C+− is related by simple flip symmetries.
The integrals are the same as in [67] except without the choice of q → b but we outline them
here for completeness.

We will find that we can reduce all integrals to triangles. We make use of the identities
for the general Feynman parametrisation

1

Dν1
1 Dν2

2 . . . Dνn
n

=
Γ [σ]

∏n
i=1 Γ(νi)

∫ ∞

0

n∏

i=1

dxix
νi−1
i

δ
(

1−∑n
j=1 xj

)

[x1D1 + x2D2 + . . .+ xnDn]
σ (2.78)

where σ =
∑n

i=1 νi, and the loop momentum integral

∫
dDℓ

iπ
D
2

ℓµ1 . . . ℓµ2m

[ℓ2 −R2 + iδ]σ
= (−1)σ

[
(g...)⊗m

]{µ1...µ2m}
(

−1

2

)m Γ[σ −m− D
2
]

Γ[σ]
(R2 − iδ)−σ+m+D

2

(2.79)

where
[
(g...)⊗m

]{µ1...µ2m}
means that µi are distributed over m copies of the metric tensor g

in all possible ways. We have all cases of ℓ “capped” with a q, in other words ℓ|q〉 and so the
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only surviving integrals are scalar or ones with Feynman parameters in the numerator. This
allows us to generalise the triangles, writing for the one-mass triangles

I1m
u,v =

∫ 1

0

dx3

∫ 1−x3

0

dx2
xu
3x

v
2

[x2x3]1+ǫ
=

1

v − ǫ

∫ 1

0

dx3x
u−1−ǫ
3 (1− x3)

v−ǫ =
Γ[u− ǫ]Γ[v − ǫ]

Γ[u+ v + 1− 2ǫ]
.

(2.80)

This is easy enough to expand and extract the rational contribution and similar results
can be calculated for the two-mass triangles. The first piece is

C−+
dp =

∫
dDℓ

ℓ2α2β2

[a|ℓ|q〉[b|ℓ|q〉
〈a q〉 〈b q〉

1

3

〈q|αβ|q〉
sαβ

〈e c〉 [c e]3
〈c d〉 〈d e〉 [e|Pαβ|q〉[c|Pαβ|q〉

= − 1

18

[c e]3 〈e c〉 〈q|ab|q〉
〈a b〉2 〈c d〉 〈d e〉 [e|Pab|q〉[c|Pab|q〉

(2.81)

and we see that both helicities have the same double pole contribution, giving

C−+
dp + C+−

dp = −1

9

[c e]3 〈e c〉 〈q|ab|q〉
〈a b〉2 〈c d〉 〈d e〉 [e|Pab|q〉[c|Pab|q〉

. (2.82)

The second piece is

C−+
ap =

∫
dDℓ

ℓ2α2β2

[a|ℓ|q〉[b|ℓ|q〉
〈a q〉 〈b q〉 〈c d〉2

1

3

×
[

〈q|αβ|q〉 〈c d〉 〈e c〉 [c e]3
〈d e〉 [e|Pαβ|q〉[c|Pαβ|q〉

(
[q e]

[c e] [q|Pαβ|c〉
+

[c|q|d〉
[q|Pαβ|q〉[c|e|d〉

+
[e|q|d〉

[q|Pαβ|q〉[e|c|d〉

)

+
〈a c〉 [c|β|d〉
〈d e〉 〈e a〉 +

〈c e〉 [d e]
〈d e〉2

(
[q|Pαβ|d〉3
[q|Pαβ|q〉3

〈q c〉 〈q a〉 [q|α|q〉
〈a c〉 [q|Pαβ|c〉

− 3
〈q d〉 [q|Pαβ|d〉2[q|β|q〉
[q|Pαβ|q〉2[q|Pαβ|c〉

)]

(2.83)

which are quartic and cubic triangles. All cases of loop momenta are contracted with the
same axial gauge momentum q so only the scalar contributions of the Feynman parameter
shifted integrals survive giving us

C−+
ap =

1

18 〈c d〉2
[a b]

〈a b〉

[

〈q|ab|q〉 〈c d〉 〈e c〉 [c e]3
〈d e〉 [e|Pab|q〉[c|Pab|q〉

(
[q e]

[c e] [q|Pab|c〉
+

[c|q|d〉
[q|Pab|q〉[c|e|d〉

+
[e|q|d〉

[q|Pab|q〉[e|c|d〉

)

+
〈a c〉 [c|a+ 2b|d〉

〈d e〉 〈e a〉 +
〈c e〉 [d e]
〈d e〉2

(
[q|Pab|d〉3
[q|Pab|q〉3

〈q c〉 〈q a〉 [q|2a+ b|q〉
〈a c〉 [q|Pab|c〉

− 3
〈q d〉 [q|Pab|d〉2[q|a+ 2b|q〉

[q|Pab|q〉2[q|Pab|c〉

)]

.

(2.84)

For the third piece we can make use of the factorisation to write the integral in terms of
splitting functions. This is because if we write it as

C−+
sf =

∫
dDℓ

ℓ2α2β2

[a|ℓ|q〉[b|ℓ|q〉
〈a q〉 〈b q〉

〈β q〉2

〈α q〉2
〈α k〉 [β q]2

[α q] [k q]

1

sαβ
A(1)(k+, c+, d+, e+)

= C−+
tri × 1

sαβ
A(1)(k+, c+, d+, e+),

(2.85)
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then the triangle integral

C−+
tri =

∫
dDℓ

ℓ2α2β2

[a|ℓ|q〉[b|ℓ|q〉
〈a q〉 〈b q〉

〈β q〉2

〈α q〉2
〈α k〉 [β q]2

[α q] [k q]
(2.86)

is closely related to the (+,+,−) one-loop splitting function such that we find that

C−+
sf + C+−

sf =
1

3

[q a] [q b] [b a]

[k q]2
× 1

sαβ
A(1)(k+, c+, d+, e+). (2.87)

The fourth piece is

C−+
sl =

∫
dDℓ

ℓ2α2β2

[a|ℓ|q〉[b|ℓ|q〉
〈a q〉 〈b q〉

〈β q〉2

〈α q〉2
1

3

1

〈c d〉2

(

− [β e]2 [q e]

[e α] [α q]

)

=
1

3

1

〈c d〉2
[q e]

〈a q〉 〈b q〉
∑

n=0,2

∫
dDℓ

ℓ2α2β2
[a|ℓ|q〉[b|ℓ|q〉 [e|α|q〉

1−n[e|Pab|q〉nκn

(α + q)2
+O(α2)

(2.88)

where κ0 = κ2 = 1, κ1 = −2 and we discard order α2 terms that originate from promoting a
term in the denominator to a propagator,

1

2α.q
− 1

(α + q)2
=

α2

2α.q(α + q)2
, (2.89)

because they do not contribute anything rational. The n = 2 contribution consists of a
quadratic pentagon and so we can discard it. For the n = 0, 1 cases we can reduce the boxes
to triangles using

[a|ℓ|q〉[b|ℓ|q〉 = α2〈q|bℓ|q〉+ β2〈q|aℓ|q〉+ ℓ2〈.q|Pabβ|q〉
〈a b〉 (2.90)

As before we only get contributions from the scalar part of the Feynman parameter shifted
integrals, removing two of the triangles completely. The surviving triangle only gives rational
pieces from the quadratic numerator leaving us with

C−+
sl = −1

6

[q e] [a b] [e|b|q〉
〈a b〉 〈c d〉2 sbq

. (2.91)

Finally we have the C−+
sk piece which uses the same leading order approximations as in

previous cases to give

C−+
sk =

1

18

[a b]

〈a b〉
[e q]

〈c d〉2 2k.q

(

1

sbq
(5[q|b|q〉[e|b|q〉+ 3[q|a|q〉[e|b|q〉+ [q|b|q〉[e|a|q〉)

+
[e|Pab|q〉
2k.q

(5[q|b|q〉+ 4[q|a|q〉)
)

.

(2.92)

At this stage we have not performed the Risager shift and so these results are quite general.
We have been using (a, b, c, d, e) notation for the most part as these results can be coded
up functionally and then summing over the contributions becomes a simple case of summing
over arguments of these functions. The Risager shift then determines which diagrams we
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need to sum over and we can then perform the shift and take the residue. The result has
apparent q dependence with terms like sbq present and once the full sum is done we can test
the gauge independence by testing with different values of q and checking that we recover
the manifest symmetries act as strong checks.

Having summed over all channels excited by the Risager shift, we obtain the full two-loop
colour decomposition. The results are presented in the compact forms

R
(2)
5:1(a

+, b+, c+, d+, e+) =
1

9

1

〈a b〉 〈b c〉 〈c d〉 〈d e〉 〈e a〉
∑

P5:1

(tr2+[deab]

sdesab
+5sabsbc+sabscd

)

, (2.93)

R
(2)
5:3(a

+, b+; c+, d+, e+) =
2

3

1

〈a b〉 〈b a〉 〈c d〉 〈d e〉 〈e c〉
∑

P5:3

(
tr−[acde]tr−[ecba]

saescd
+

3

2
s2ab

)

(2.94)

and

R
(2)
5:1B(a

+, b+, c+, d+, e+) = 2ǫ (a, b, c, d)
(

CPT(b, c, a, d, e)

+ CPT(a, b, e, c, d) + CPT(a, d, b, c, e)

+ CPT(a, b, d, e, c) + CPT(a, c, d, b, e)
)

(2.95)

where

CPT(a, b, c, d, e) =
1

〈a b〉 〈b c〉 〈c d〉 〈d e〉 〈e a〉 , (2.96)

is the Parke-Taylor denominator for five gluons. These expressions are valid for both U(Nc)
and SU(Nc) gauge groups and are remarkably compact. The first two results were originally

presented in [87] but the result for R
(2)
5:1B had previously been left to be calculated via (2.19).

Clearly the result presented here is more efficient and indeed provided the first clue as to an
n-point result for this colour structure but we will cover that in Chapter 4.

In this chapter, we have demonstrated how the full colour all-plus five-point amplitude
may be computed in simple forms. We computed all the colour components directly and
used colour relations between them as checks. While these results were already calculated,
our methodology obtained these results without the need to determine two-loop non-planar
integrals. This led to quick and compact forms of the polylogarithmic pieces and pushed
the calculational bottleneck to augmented recursion, which compared to calculating two-loop
non-planar integrals is a considerably more simple problem.

Augmented recursion produces relatively large analytic functions in the external momenta
but also in the axial gauge vector q. The final result is independent of q and so one might
imagine compact, analytic forms of the results exist, and indeed for the five-point amplitude
we had the results of [87] to numerically compare with. The next chapter’s results were new
as of their publishing in [71], and so we needed to perform some functional reconstruction
methods to find a compact analytic form. The following chapter therefore addresses this
problem as we calculate the two-loop, six-point, full-colour, all-plus helicity amplitude.
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Chapter 3

Colour Dressed Unitarity and
Recursion: a Six Point Amplitude

3.1 Introduction

In the previous chapter we extended four-dimensional unitarity and augmented recursion to
a full colour setting. We discussed n-point relations where appropriate but largely kept the
discussion to five-point. With an eye on improved efficiency with higher multiplicity, we will
start to introduce n-point discussions in this chapter but will continue to largely focus on a
specific and new calculation, the six-point, full colour amplitude.

The six-point, two-loop colour decomposition is given by

A(2)
6 (a, b, c, d, e, f) = N2

c

∑

S6/P6:1

Tr[abcdef ]A
(2)
6:1(a, b, c, d, e, f)+

Nc

[
∑

S6/P6:2

Tr[a] Tr[bcdef ]A
(2)
6:2(a; b, c, d, e, f)

+
∑

S6/P6:3

Tr[ab] Tr[cdef ]A
(2)
6:3(a, b; c, d, e, f)

+
∑

S6/P6:4

Tr[abc] Tr[def ]A
(2)
6:4(a, b, c; d, e, f)

]

+
∑

S6/P6:1

Tr[abcdef ]A
(2)
6:1,B(a, b, c, d, e, f)

+
∑

S6/P6:1,1

Tr[a] Tr[b] Tr[cdef ]A
(2)
6:1,1(a; b; c, d, e, f)

+
∑

S6/P6:1,2

Tr[a] Tr[bc] Tr[def ]A
(2)
6:1,2(a; b, c; d, e, f)

+
∑

S6/P6:2,2

Tr[ab] Tr[cd] Tr[ef ]A
(2)
6:2,2(a, b; c, d; e, f)

(3.1)

where we see new structures of A
(2)
6:4 and A

(2)
6:2,2, both of which are SU(Nc) amplitudes. For

the five-point amplitude we showed that A
(2)
5:1,2 = 0 via a decoupling identity but this was
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a five-point result that depended on the flip symmetry. We can derive n-point decoupling
identities by setting one or more legs to being U(1), leaving us with

A
(2)
n:2(1; 2, 3, · · · , n) +

∑

σ1

A
(2)
n:1(σ1) = 0,

A
(2)
n:3(1, 2; 3, 4, . . . , n) + A

(2)
n:1,1(1; 2; 3, 4, . . . , n)−

∑

σ∈COP{2,1}{3,...,n}

A
(2)
n;1(σ) = 0,

A
(2)
n:1,s(1; 2, 3, . . . , s+1; s+2, . . . , n)+

∑

σ2

A
(2)
n:s+2(σ2; s+2, . . . , n)+

∑

σ3

A
(2)
n:s+1(2, . . . , s+1; σ3) = 0,

(3.2)
where σ1,2,3 are the sums over the different ways of inserting 1 into {2, 3, . . . , n}, {2, 3, . . . , s+
1} and {s+2, . . . , n} respectively. We also have the tree-like (2.18) for the A

(2)
n:1B as has already

been discussed. These again provide checks on our results as colour dressing will recover the
full colour decomposition and using U(Nc) trace identities will allow us to calculate the U(1)
amplitudes and check the SU(Nc) amplitudes satisfy the decoupling relations with them.
These are highly non-trivial checks but we will later take collinear limits as further checks.

3.2 Unitarity

In Chapter 2 we discussed the simplification of the two-loop problem to a pseudo one-loop
calculation with one of the loop momentum already dealt with in the form of loop inserts.
The validity of this approach was checked by performing triple cuts which isolated the genuine
two-loop diagrams and we found these cuts to all vanish. This was an n-point check and so
the methodology should continue to the six-point calculation.

We also presented new and compact forms of n-point, one-loop, subleading in colour
amplitudes for the all-plus configuration. Indeed, for A

(1)
n:r with r > 2 we see that this is

remarkably only a single term. This makes full colour inserts into the scalar boxes, triangles
and bubbles of (1.108) scale well with higher multiplicity.

The only added complication at six-point and higher is that of two-mass boxes. For
four-dimensional unitarity we need alternating MHV and MHV trees as all other helicity
configurations vanish on the cut. This eliminates any two-mass hard boxes and so we are
left with two-mass easy boxes and one-mass boxes. We will now calculate the coefficients
of the boxes in the finite polylogarithmic pieces F

(2)
6:c . As a reminder this is the finite, cut

constructible piece after decomposing the amplitude into

A
(2)
6:c = U

(2)
6:c + F

(2)
6:c +R

(2)
6:c , (3.3)

where U6:c are the divergent terms given by (1.106) and R
(2)
6:c are the purely rational terms

which we recover via augmented recursion. The contributions to F
(2)
6:c we will consider are

given in Figure 3.1.
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Figure 3.1: The labelling and internal helicities of the quadruple cut. The loop insert is given
by the purple circle.

3.2.1 One-Mass Box Coefficients

Recalling that we know the n-point solution to the quadruple cuts on a one-mass box to be

ℓ2 = −〈b a〉
〈c a〉 λ̄bλc, ℓ3 = −〈b c〉

〈a c〉 λ̄bλa ,

ℓ1 =
〈a c〉 λ̄a + 〈b c〉 λ̄b

〈a c〉 λa, ℓ4 =
〈c a〉 λ̄c + 〈b a〉 λ̄b

〈c a〉 λc . (3.4)

for the configuration in Figure 2.5, we can calculate the full colour coefficients of the one-mass
boxes. We first need to find the independent solutions from the five-point one-loop corner.
The tree corners combine to give

A
(0)
3 (a+, ℓ+2 , ℓ

−
1 )A

(0)
3 (ℓ−3 , ℓ

−
2 , b

+)A
(0)
3 (ℓ+3 , c

+, ℓ−4 )

=
[ℓ2 a]

3

[ℓ1 a] [ℓ2 ℓ1]

[c ℓ3]
3

[c ℓ4] [ℓ4 ℓ3]

〈ℓ3 ℓ2〉3
〈ℓ2 b〉 〈b ℓ3〉

= [b|ac|b] (3.5)

which is antisymmetric in a and c so any two terms that are related by ℓ1 ↔ ℓ4 in the one-
loop corner are simply related by −{a ↔ c} in the full coefficient, recalling we are inserting
the full colour, one-loop amplitude. This is not too surprising as this is just a relabelling of
ℓ1 → ℓ4 and a → c which is fine for the fully cross-symmetric all-plus helicity configuration.

We therefore only need

A
(1)
5:1(ℓ

+
1 , ℓ

+
4 , d, e, f) , A

(1)
5:1(ℓ

+
1 , d, ℓ

+
4 , e, f) , A

(1)
5:2(d; ℓ

+
1 , ℓ

+
4 , e, f) , A

(1)
5:2(d; ℓ

+
1 , e, ℓ

+
4 , f)

A
(1)
5:3(ℓ

+
1 , ℓ

+
4 ; d, e, f) , A

(1)
5:3(ℓ

+
1 , d; ℓ

+
4 , e, f) , A

(1)
5:3(d, e; ℓ

+
1 , ℓ

+
4 , f). (3.6)

We would also expect A
(1)
5:2(ℓ

+
1 ; ℓ

+
4 , d, e, f) but these all cancel in the full colour sum due to

the antisymmetry of the A
(1)
5:2 amplitude, but we would expect at seven-point to see these
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contributing as the A
(1)
6:2 are symmetric. Pressing on we define seven functions

C1m
a (a, b, c; d, e, f) = A

(1)
5:1(ℓ

+
1 , ℓ

+
4 , d, e, f)V (a+, b+, c+)F1m(sab, sbc, tdef )

C1m
b (a, b, c; d, e, f) = A

(1)
5:1(ℓ

+
1 , d, ℓ

+
4 , e, f)V (a+, b+, c+)F1m(sab, sbc, tdef )

C1m
c (a, b, c; d, e, f) = A

(1)
5:2(d; ℓ

+
1 , ℓ

+
4 , e, f)V (a+, b+, c+)F1m(sab, sbc, tdef )

C1m
d (a, b, c; d, e, f) = A

(1)
5:2(d; ℓ

+
1 , e, ℓ

+
4 , f)V (a+, b+, c+)F1m(sab, sbc, tdef )

C1m
e (a, b, c; d, e, f) = A

(1)
5:3(ℓ

+
1 , ℓ

+
4 ; d, e, f)V (a+, b+, c+)F1m(sab, sbc, tdef )

C1m
f (a, b, c; d, e, f) = A

(1)
5:3(ℓ

+
1 , d; ℓ

+
4 , e, f)V (a+, b+, c+)F1m(sab, sbc, tdef )

C1m
g (a, b, c; d, e, f) = A

(1)
5:3(d, e; ℓ

+
1 , ℓ

+
4 , f)V (a+, b+, c+)F1m(sab, sbc, tdef ).

with the tree combinations absorbing the dimensional part of the box function

V (a+, b+, c+) =
−2[b|ac|b]
sabsbc

. (3.7)

and F1m being the dimensionless contribution (2.29). The cut solutions can then be inserted
to give the basis functions for the one-mass box contributions,

C1m
a (a, b, c; d, e, f) =

1

3

tabc〈c|dPbc|a〉+ 〈c|defPde|a〉+ 〈a|fPde|c〉sef
〈a b〉 〈b c〉 〈c a〉 〈c d〉 〈d e〉 〈e f〉 〈f a〉 × F1m(sab, sbc, tdef )

C1m
b (a, b, c; d, e, f) =

1

3

〈a|dPab|c〉〈c|dPbc|a〉+ 〈c a〉 (sef〈a|fPab|c〉 − 〈a|Pbc efd|c〉)
〈a b〉 〈b c〉 〈c a〉 〈a d〉 〈d c〉 〈c e〉 〈e f〉 〈f a〉

× F1m(sab, sbc, tdef )

C1m
c (a, b, c; d, e, f) = − 〈c a〉 [d|ef |d]− [d|Pabc|c〉[d|Pabc|a〉

〈a b〉 〈b c〉 〈c a〉 〈c e〉 〈e f〉 〈f a〉 × F1m(sab, sbc, tdef )

C1m
d (a, b, c; d, e, f) =

[d|Pabc|a〉[d|f |c〉 − [d|Pabc|c〉[d|e|a〉
〈a b〉 〈b c〉 〈a e〉 〈e c〉 〈c f〉 〈f a〉 × F1m(sab, sbc, tdef )

C1m
e (a, b, c; d, e, f) = −2

t2abc
〈a b〉 〈b c〉 〈c a〉 〈d e〉 〈e f〉 〈f d〉 × F1m(sab, sbc, tdef )

C1m
f (a, b, c; d, e, f) = −2

[d|Pabc|c〉2
〈a b〉 〈b c〉 〈c a〉 〈c e〉 〈e f〉 〈f c〉 × F1m(sab, sbc, tdef )

C1m
g (a, b, c; d, e, f) = −2

[d e]2 〈c a〉2
〈a b〉 〈b c〉 〈c a〉 〈a c〉 〈c f〉 〈f a〉 × F1m(sab, sbc, tdef ). (3.8)

We next need the two-mass box coefficients.
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3.2.2 Two-Mass Boxes Cut Solutions

The two-mass boxes have more complicated loop-momentum solutions. We will start with
the specifically six point RHS diagram of Figure 3.1 before generalising to n-point. We have
that

ℓ2 + ℓ1 = a,

ℓ2 + ℓ3 = −Pbc,

ℓ3 + ℓ4 = d,

ℓ4 + ℓ1 = −Pef . (3.9)

We first consider ℓ2

ℓ22 = [ℓ1 a] 〈ℓ1 a〉 = 0,

λℓ1 = α1λa, (3.10)

and then ℓ4 to find α1 in terms of λ̃ℓ1 ,

ℓ24 → α1[ℓ1|Pef |a〉 = −sef ,

α1 = − sef
[ℓ1|Pef |a〉

, (3.11)

which we use for ℓ23,

ℓ23 → −sef [ℓ1|Pbc|a〉 = tabc[ℓ1|Pef |a〉, (3.12)

and then using momentum conservation and a Schouten identity

sef [ℓ1|d|a〉 = (tdef − sef )[ℓ1|Pef |a〉,
= [d|Pef |d〉[ℓ1|Pef |a〉 = sef [ℓ1|d|a〉+ [d|Pef |a〉[ℓ1|Pef |d〉,
→ [d]|Pef |a〉[ℓ1|Pef |d〉 = 0,

→ [ℓ1|e|d〉+ [ℓ1|f |d〉 = 0,

λ̃ℓ1 = C1

(

〈f d〉 λ̃f + 〈e d〉 λ̃e

〈e d〉 〈f d〉

)

, (3.13)

where C1 is some new scale factor that will contain helicity information. We can then write

α1 = −〈e d〉 〈f d〉 sef
C1(〈f d〉 [f |e|a〉+ 〈e d〉 [e|f |a〉)

=
〈e d〉 〈f d〉
C1 〈d a〉

, (3.14)

where we have used a Schouten identity in the denominator and we see that the scales will
cancel in ℓ1. Writing 〈x y〉 λ̃x = |x|y〉, we therefore have the solutions

ℓ1 =
|Pef |d〉
〈d a〉 λa, (3.15)
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ℓ2 =
|Pbc|d〉
〈d a〉 λa, (3.16)

ℓ3 =
|Pbc|a〉
〈a d〉 λd, (3.17)

ℓ4 =
|Pef |a〉
〈a d〉 λd. (3.18)

We can test these satisfy momentum conservation as a quick check

ℓ1 + ℓ2 =
|Pbcef |d〉
〈d a〉 λa = −〈a d〉

〈d a〉 λ̃aλa = a (3.19)

ℓ3 + ℓ4 =
|Pbcef |a〉
〈a d〉 λd = −〈d a〉

〈a d〉 λ̃dλd = d (3.20)

ℓ1 + ℓ4 = λ̃f

(〈f d〉λa + 〈a f〉λd

〈d a〉

)

+ λ̃e

(〈e d〉λa + 〈a e〉λd

〈d a〉

)

= −Pef (3.21)

ℓ2 + ℓ3 = λ̃b

(〈b d〉λa + 〈a b〉λd

〈d a〉

)

+ λ̃c

(〈c d〉λa + 〈a c〉λd

〈d a〉

)

= −Pbc (3.22)

This generalises to an n-point box for the configuration in Figure 3.2,

i + r + 1

i− 1

K4

K2

Figure 3.2: An n-point two-mass-easy box withK2 = pi+. . .+pi+r andK4 = pi+r+2+. . .+pi−2

where the momentum labelling is modulo n.
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ℓ1 =
|K4|i+ r + 1〉

〈(i+ r + 1) (i− 1)〉λi−1,

ℓ2 =
|K2|i+ r + 1〉

〈(i+ r + 1) (i− 1)〉λi−1,

ℓ3 =
|K2|i− 1〉

〈(i− 1) (i+ r + 1)〉λi+r+1,

ℓ4 =
|K4|i− 1〉

〈(i− 1) (i+ r + 1)〉λi+r+1. (3.23)

The two four-point tree amplitudes are related by

A
(0)
4 (a−, b−, c+, d+) =

sac
sab

A
(0)
4 (a−, c+, b−, d+) (3.24)

and we therefore have the two box coefficients,

C2m
a (a; b, c; d; e, f) =

1

3

[e f ]2

〈a b〉 〈b c〉 〈c d〉 〈d a〉 × F2m(tabc, tbcd, sbc, sef )

C2m
b (a; b, c; d; e, f) =

1

3

[e f ]2

〈a b〉 〈b d〉 〈d c〉 〈c a〉 × F2m(tabc, tbcd, sbc, sef ). (3.25)

The procedure is to then colour dress each corner, use U(Nc) trace identities to derive the
trace structures for the external momentum, sum over all kinematically distinct diagrams
where for full colour the order of the external legs on each corner does not matter as all
permutations are captured in the colour decomposition. One can keep this in general form,
tagging every trace structure with the associated amplitude label and arguments before sub-
stituting the results in. We can then look at the full colour decomposition and find the
manifest symmetries by looking at the tags, bring the result into a manifestly symmetric
sum of the above coefficients and finally substitute in the results of these coefficients. This
allows us to then write the solution for the full colour finite polylogarithmic pieces as follows:

F
(2)
6:1 (a, b, c, d, e, f) =

∑

P6:1

(
C1m

a (a, b, c; d, e, f) + C2m
a (a; b, c; d; e, f)

)
, (3.26)

F
(2)
6:3 (a, b; c, d, e, f)

=
∑

P6:3

(

C1m
a (a, b, c; d, e, f) + C1m

a (a, c, b; d, e, f) + C1m
a (c, a, b; d, e, f)

− C1m
b (a, c, d; b, e, f)− C1m

b (c, a, d; b, e, f)− C1m
b (c, d, a; b, e, f)

− C1m
b (d, e, f ; c, a, b) +

1

2
C1m

g (d, e, f ; a, b, c)

+ 4C2m
a (c; d, e; f ; a, b) + C2m

a (b; e, f ; a; c, d) + C2m
a (f ; b, a; e; c, d)

− C2m
b (e; f, a; b; c, d)− C2m

b (f ; e, b; a; c, d)

+ C2m
b (d; e, b; f ; a, c)− C2m

a (b; d, e; f ; a, c)− C2m
a (d; e, f ; b; a, c)

)

, (3.27)
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F
(2)
6:4 (a, b, c; d, e, f)

=
∑

P6:4

(

1

3
C1m

e (a, b, c; d, e, f)− C1m
a (a, b, c; f, e, d)

+ C1m
b (d, b, a; c, e, f) + C1m

b (b, d, a; c, e, f) + C1m
b (b, a, d; c, e, f)

+ C2m
a (a; f, e; b; c, d)− 1

2
C2m

b (a; b, f ; e; c, d)− 1

2
C2m

b (f ; a, e; b; c, d)

+ C2m
b (a; b, d; c; e, f)− C2m

a (a; b, c; d; e, f)− C2m
a (d; a, b; c; e, f)

)

, (3.28)

F
(2)
6:2,2(a, b; c, d; e, f)

=
1

2

∑

P6:2,2

(

C1m
g (a, b, c; e, f, d) + C1m

g (b, a, c; e, f, d) + C1m
g (b, c, a; e, f, d)

+ 6C2m
a (d; a, b; c; e, f)− 3C2m

b (a; b, c; d; e, f)− 3C2m
b (b; a, d; c; e, f)

)

,

(3.29)

F
(2)
6:1B(a, b, c, d, e, f)

=
∑

P6:1

(

C1m
f (a, b, c; f, d, e)− C1m

f (c, b, a; d, e, f, )

+ C1m
f (b, f, e; a, c, d) + C1m

f (f, b, e; a, c, d) + C1m
f (f, e, b; a, c, d)

− C1m
f (f, b, c; a, d, e)− C1m

f (b, f, c; a, d, e)− C1m
f (b, c, f ; a, d, e)

+ 6C2m
b (f ; b, e; d; a, c)− 6C2m

a (b; f, e; d; a, c)− 6C2m
a (f ; e, d; b; a, c)

+ 6C2m
a (a; b, c; d; e, f) + 3C2m

a (f ; b, c; e; a, d) + 3C2m
a (c; e, f ; b; a, d)

− 3C2m
b (b; c, f ; e; a, d)− 3C2m

b (c; e, b; f ; a, d)

)

. (3.30)

We also wish to test these results by ensuring they satisfy the decoupling identities (2.17).
We therefore present the U(Nc) pieces

F
(2)
6:2 (a; b, c, d, e, f)

=
∑

P6:2

(

C1m
b (b, c, d; a, e, f) + C1m

c (b, c, d; a, e, f)− C1m
a (a, b, c; d, e, f)

− C1m
a (b, a, c; d, e, f)− C1m

a (b, c, a; d, e, f)− 2C2m
a (b; c, d; e; f, a)

+ C2m
b (b; c, a; d; e, f)− C2m

a (a; b, c; d; e, f)− C2m
a (b; c, d; a; e, f)

)

, (3.31)
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F
(2)
6:1,1(a; b; c, d, e, f)

=
∑

P6:1,1

(

C1m
d (c, d, e; a, b, f)− 3C2m

a (c; d, e; f ; a, b)

− C1m
c (b, c, d; a, e, f)− C1m

c (c, b, d; a, e, f)− C1m
c (c, d, b; a, e, f)

+ 3C2m
a (b; c, d; e; f, a) + 3C2m

a (c; d, e; b; f, a)− 3C2m
b (c; d, b; e; f, a)

)

,

(3.32)

and

F
(2)
6:1,2(a; b, c; d, e, f)

=
∑

P6:1,2

(

1

2
(C1m

c (c, b, d; a, e, f) + C1m
c (b, c, d; a, e, f) + C1m

c (b, d, c; a, e, f))

+
1

2
(C1m

c (c, b, d; a, f, e) + C1m
c (b, c, d; a, f, e) + C1m

c (b, d, c; a, f, e))

− 1

2
(C1m

g (a, d, e; b, c, f) + C1m
g (d, a, e; b, c, f) + C1m

g (d, e, a; b, c, f))

− 1

2
C1m

g (d, e, f ; b, c, a)− C1m
c (d, e, f ; a, b, c)

− C1m
d (b, d, e; a, c, f)− C1m

d (d, b, e; a, c, f)− C1m
d (d, e, b; a, c, f)

+ 3C2m
b (c; b, f ; e; a, d) + 3C2m

b (b; e, c; f ; a, d)

− 3C2m
a (b; e, f ; c; a, d)− 3C2m

a (e; b, c; f ; a, d)

+ 3C2m
a (c; d, e; f ; a, b) + 3C2m

a (d; e, f ; c; a, b)− 3C2m
b (d; e, c; f ; a, b)

− 3C2m
a (a; d, e; f ; b, c)− 3C2m

a (d; e, f ; a; b, c) + 3C2m
b (d; e, a; f ; b, c)

)

(3.33)

and have confirmed that they do satisfy the identities. Given these results are new we wanted
to check collinear limits explicitly. Interestingly, these six-point coefficients are conformally
invariant: a feature noticed for the five-point all-plus amplitude in [93].

3.3 Collinear Limits

The IR and UV behaviour of this amplitude has been discussed and found to be (1.106). The
divergent piece goes as

A(2)
n = A(1)

n I(1)n (3.34)

where

I(1)n =
n∑

i=1

Ii,i+1 (3.35)

and

Ii,i+1 =

[

− 1

ǫ2

(
µ2

si,i+1

)ǫ
]

(3.36)
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General forms of the full colour divergent piece are simple combinations of A
(1)
n:c and sums of

Ii,i+1 which we will denote by

U
(2)
n:λ = U

(1)
n:λI

(1)
n:λ (3.37)

We find the correct collinear limits numerically but it is interesting to view them analytically.
We will use the Tr(abc)Tr(def) term as an example.

U
(2)
6:4 (a, b, c; d, e, f) = U

(1)
6:4 (a, b, c; d, e, f)I

(1)
6:4 (a, b, c; d, e, f)

= A
(1)
6:4(a, b, c; d, e, f)

(

Ia,b + Ib,c + Ic,a + Id,e + Ie,f + If,d

)

+ A
(1)
6:1(a, b, c, d, e, f)

(

Ia,c − Ia,d − Ic,f + Id,f

)

+ A
(1)
6:1(c, a, b, d, e, f)

(

Ib,c − Ib,f − Ic,d + Id,f

)

+ A
(1)
6:1(a, b, c, e, f, d)

(

Ia,c − Ia,e − Ic,d + Id,e

)

+ A
(1)
6:1(c, a, b, e, f, d)

(

Ib,c − Ib,d − Ic,e + Id,e

)

+ A
(1)
6:1(a, b, c, f, d, e)(Ia,c − Ia,f − Ic,e + Ie,f ) + A

(1)
6:1(c, a, b, f, d, e)

(

Ib,c − Ib,e − Ic,f + Ie,f

)

+ A
(1)
6:1(b, c, a, d, e, f)

(

Ia,b − Ia,f − Ib,d + Id,f

)

+ A
(1)
6:1(b, c, a, e, f, d)

(

Ia,b − Ia,d − Ib,e + Id,e

)

+ A
(1)
6:1(b, c, a, f, d, e)

(

Ia,b − Ia,e − Ib,f + Ie,f

)

. (3.38)

In the collinear limit, ka → z ×K and kb → (1− z)×K = z̄ ×K, and we expect

U
(2)
6:4 (a, b, c; d, e, f)|a||b → S++,tree

− U
(2)
5:3 (k, c; d, e, f) + S

++,(1)
− A

(1)
5:3(k, c; d, e, f), (3.39)

where

U
(2)
5:3 (k, c; d, e, f) = U

(1)
5:3 (k, c; d, e, f)I

(1)
5:3 (k, c; d, e, f)

= A
(1)
5:3(k, c; d, e, f)

(

Ic,k + Ik,c + Id,e + Ie,f + If,d

)

+ A
(1)
5:1(k, c, d, e, f)

(

Id,f − Ic,f + Ik,c − Ik,d

)

+ A
(1)
5:1(c, k, d, e, f)

(

Ic,k − Ic,d ++Id,f − Ik,f

)

+ A
(1)
5:1(k, c, e, f, d)

(

Id,e − Ic,d + Ik,c − Ik,e

)

+ A
(1)
5:1(c, k, e, f, d)

(

Ic,k − Ic,e + Id,e − Ik,d

)

+ A
(1)
5:1(k, c, f, d, e)

(

Ie,f − Ic,e + Ik,c − Ik,f

)

+ A
(1)
5:1(c, k, f, d, e)

(

Ic,k − Ic,f + Ie,f − Ik,e

)

,

(3.40)

and S
++,(ℓ)
− are the splitting functions. We are not interested in the S

++,(1)
+ splitting function

here as it is purely rational. From the leading case [67] we expect to find additional terms
∆ coming from the Ii,j and expect these to cancel with the finite polylogarithmic piece. We
see that

A
(1)
6:4(a, b, c; d, e, f)|a||b → S++,tree

− × A
(1)
5:3(K, c; d, e, f),

A
(1)
6:1(a, b, c, d, e, f)|a||b → S++,tree

− × A
(1)
5:1(K, c, d, e, f),

and

A
(1)
6:1(a, c, b, d, e, f)|a||b → 0 (3.41)

62



as well as all other permutations of legs {c, d, e, f}. The last three terms in eq.(3.38) vanish
in the collinear limit and the remaining terms clearly go to the correct limit. We have for
i 6= b

Ia,i →
(

µ2

zski

)ǫ

≈ 1 + log

(
µ2

zski

)

ǫ+
1

2
log

(
µ2

zski

)2

ǫ2

=

(
µ2

ski

)ǫ

+ log

(
1

z

)

ǫ+
1

2

[

2log

(
ski
µ2

)

log (z) + log (z)2
]

ǫ2,

Ia,b →
(
µ2

sab

)ǫ

≈ 1 + log

(
µ2

sab

)

ǫ+
1

2
log

(
µ2

sab

)2

ǫ2, (3.42)

and
(

1

zz̄sab

)ǫ

≈ 1 + log

(
1

zz̄sab

)

ǫ+
1

2
log

(
1

zz̄sab

)2

ǫ2

= 1 + log

(
1

z

)

ǫ+ log

(
1

z̄

)

ǫ+ log

(
1

sab

)

ǫ

+
1

2

[

log

(
1

sab

)2

+ 2log (sab) log (zz̄) + log (zz̄)2
]

ǫ2. (3.43)

Combinations Iai− Iaj or Ibi− Ibj have cancelling
1
ǫ
terms and the combination Iia+ Iab+ Ibj

can recovers the correct r++
− factors where the non-cancelling 1

ǫ
terms are combined to form

the
(

µ2

zz̄sab

)ǫ

piece. We therefore find for the Iai − Iaj combination the undesired terms ∆−

are given by

∆a−
ij = −log

(
sai
saj

)

log (z) ,

∆b−
ij = −log

(
sbi
sbj

)

log (z̄) . (3.44)

and from the first term in eq.(3.38) we have

∆ = log

(
sab
µ2

)

log(zz̄)− log

(
sca
µ2

)

log(z)− log

(
sbc
µ2

)

log(z̄)− log(zz̄)− 1

3
zz̄ +

π2

4
. (3.45)

We therefore find in total

∆6:4 = S++,tree
− A

(1)
5:3(k, c; d, e, f)∆

+
∑

Z3(d,e,f)

(

S++,tree
− A

(1)
5:1(k, c, d, e, f)∆

a−
c,d + S++,tree

− A
(1)
5:1(c, k, d, e, f)∆

b−
c,f

)

(3.46)

We consequently require

P
(2)
6:4 (a, b, c; d, e, f) → S++,tree

− P
(2)
5:3 (k, c; d, e, f)−∆′

6:4 (3.47)

where ∆′
6:4 is the transcendental part of ∆6:4.

This piece is given by
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P
(2)
6:4 (a, b, c; d, e, f)

=
∑

P6:4

(

1

3
C1m

6:3i(a, b, c; d, e, f)− C1m
6:1i(a, b, c; f, e, d)

+ C1m
6:1ii(d, b, a; c, e, f) + C1m

6:1ii(b, d, a; c, e, f) + C1m
6:1ii(b, a, d; c, e, f)

+ C2m
i (a; f, e; b; c, d)− 1

2
C2m

ii (a; b, f ; e; c, d)− 1

2
C2m

ii (f ; a, e; b; c, d)

+ C2m
ii (a; b, d; c; e, f)− C2m

i (a; b, c; d; e, f)− C2m
i (d; a, b; c; e, f)

)

(3.48)

and we seek the correct collinear behaviour. The boxes vanish in the limit where the u-
channel becomes collinear. We also have vanishing coefficients for any two-mass box with
a, b ∈ K4, as well as for when a ∈ K2, b ∈ K4 and vice versa eg. C1m

6:1ii(d, a, c; b, e, f)
Using the identities

Li2(1− x) + Li2(1−
1

x
) = −1

2
log(x)2 (3.49)

and

Li2

(

1− 1

x

)

− Li2(x) = log(x)log(1− x)− 1

2
log(x)2 (3.50)

it can be shown that ∆′ is given by the combination of boxes

F 1m(sab, sbc, tabc) + F 1m(sca, sbc, tabc) = −∆′ (3.51)

where ∆′ is the irrational part of ∆. We see that in the first term

1

3

∑

Z3(def)

(

C1m
6:3i(a, b, c; d, e, f) + C1m

6:3i(c, a, b; d, e, f)

)

→ −S++,tree
− A

(1)
5:3(k, c; d, e, f)∆

′ (3.52)

cancels the first part of ∆6:4’. For the second part we look at the combination of boxes

F 1m(sba, sad, tbad)− F 1m(sca, sab, tcab) = ∆a−
c,d (3.53)

and find that the coefficients satisfy the correct collinear limits such that
∑

Z3(def)

(

− C1m
6:1i(c, a, b; f, e, d) + C1m

6:1ii(b, a, d; c, e, f) → −S++,tree
− A

(1)
5:1(k, c, d, e, f)∆

a−
c,d

)

,

∑

Z3(def)

(

− C1m
6:1i(a, b, c; f, e, d) + C1m

6:1ii(f, b, a; c, d, e) → −S++,tree
− A

(1)
5:1(c, k, d, e, f)∆

b−
c,f

)

(3.54)

which cancels the rest of ∆6:4.
Any remaining pieces cancel amongst themselves in the collinear limit. All remaining

collinear limits were found to work numerically, remembering to take the logarithmic argu-
ments off the real axis as prescribed by [94], such that

P 2
i,j → P 2

i,j + iδ. (3.55)

This includes both planar collinear limits, non-planar collinear limits and limits between trace
structures, for example taking the a||b limit of Tr[ac]Tr[bdef ]. With the cut-constructible
piece calculated, we can move onto augmented recursion.
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3.4 Recursion

The procedure is exactly the same as in the five-point case, albeit algebraically more com-
plicated. We choose legs {a, b, c} to undergo the Risager shift, breaking the symmetry and
allowing us to sum over only the channels excited by this shift. We take the rational results
of Chapter 2 for the (tree)-(two-loop) channels and must build off-shell currents as shown in
Figure 1.7. After colour dressing all channels we can use decoupling identities to relate all
currents to a basis set

τ
(1)
6:1 (α

−, β+, c+, d+, e+, f+) , τ
(1)
6:1 (α

−, c+, β+, d+, e+) and τ
(1)
6:1 (α

−, c+, d+, β+, e+, f+),
(3.56)

where due to the crossing symmetry we may relate all other currents to these three via
relabellings and flips. The six-point single-minus one-loop amplitude is

A
(1)
6:1(a

−, b+, c+, d+, e+, f+) =
1

3

(

[f |Pbc|a〉3
〈a b〉 〈b c〉 〈d e〉2 tabc[f |Pab|c〉

+
[b|Pcd|a〉3

〈c d〉2 〈e f〉 〈f a〉 tbcd[b|Pcd|e〉

+
[b f ]3

[a b] [f a] tcde

[
[b c] [c d]

〈d e〉 [b|Pcd|e〉
− [d e] [e f ]

〈c d〉 [f |Pab|c〉
+

[c e]

〈c d〉 〈d e〉

]

− 〈a c〉3 [b c] 〈b d〉
〈b c〉2 〈c d〉2 〈d e〉 〈e f〉 〈f a〉

+
〈a e〉3 [e f ] 〈d f〉

〈a b〉 〈b c〉 〈c d〉 〈d e〉2 〈e f〉2

− 〈a d〉3 〈c e〉 [d|Pbc|a〉
〈a b〉 〈b c〉 〈c d〉2 〈d e〉2 〈e f〉 〈f a〉

)

(3.57)

and we want to build the three leading currents from this.

3.4.1 The Adjacent Current

We start with the on-shell amplitude

A
(1)
6:1(α

−, β+, c+, d+, e+, f+)

=
1

3

(

[f |Pβc|α〉3
〈αβ〉 〈β c〉 〈d e〉2 tαβc[f |Pαβ|c〉

+
[β|Pcd|α〉3

〈c d〉2 〈e f〉 〈f α〉 tβcd[β|Pcd|e〉

+
[β f ]3

[αβ] [f α] tcde

[
[β c] [c d]

〈d e〉 [β|Pcd|e〉
− [d e] [e f ]

〈c d〉 [f |Pαβ|c〉
+

[c e]

〈c d〉 〈d e〉

]

− 〈α d〉3 〈c e〉 [d|Pβc|α〉
〈αβ〉 〈β c〉 〈c d〉2 〈d e〉2 〈e f〉 〈f α〉

− 〈α c〉3 [β c] 〈β d〉
〈β c〉2 〈c d〉2 〈d e〉 〈e f〉 〈f α〉

+
〈α e〉3 [e f ] 〈d f〉

〈αβ〉 〈β c〉 〈c d〉 〈d e〉2 〈e f〉2

)

(3.58)
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Collecting O(snαβ) singular terms

A
(1)
6:1(α

−, β+, c+, d+, e+, f+) =

1

3

(

1

〈αβ〉 〈β c〉 〈d e〉2

[

〈d f〉 〈α e〉3 [e f ]
〈c d〉 〈e f〉2

− 〈c e〉 〈α d〉3 [d|c|α〉
〈c d〉2 〈e f〉 〈f α〉

+
[f |c|α〉3

tαβc[f |k|c〉

]

+
[β f ]3

[f α] [αβ] tcde

[
[c e]

〈c d〉 〈d e〉 −
[d e] [e f ]

〈c d〉 [f |k|c〉 +
[β c] [c d]

〈d e〉 [β|Pcd|e〉

]

+
1

〈d e〉2 〈β c〉

[

〈c e〉 〈α d〉3 [d β]
〈c d〉2 〈e f〉 〈f α〉

+ 3
[β f ] [f |c|α〉2
[f |k|c〉tαβc

]

+
1

〈c d〉2 〈e f〉 〈f α〉

[

〈α c〉3 [c|β|d〉
〈d e〉 〈β c〉2

+
[β|Pcd|α〉3
[β|Pcd|e〉tβcd

])

+O(〈αβ〉) (3.59)

where k = Pαβ = α+ β. We want to build the current such that its leading singularities give
the correct factorisations. The double pole piece comes from

Fdp =
[β q] 〈α q〉2

〈β q〉 〈k q〉 sαβ
A

(1)
5:1(k

−, c+, d+, e+, f+)

=
1

3

〈α q〉2

〈β q〉2
1

sαβ

〈q|αβ|q〉
〈d e〉2 [q|k|q〉2

(

[c f ]3 [q|k|q〉2
[f |k|q〉[c|k|q〉 +

〈c e〉 [q|k|d〉3 [c d]
〈c d〉2 〈e f〉 [q|k|f〉

+
〈d f〉 [q|k|e〉3 [e f ]
〈c d〉 〈e f〉2 [q|k|c〉

)

. (3.60)

We build this from the O(〈αβ〉−1) piece so isolate this for now and calling it A
(1)
6:1,i

A
(1)
6:1,i(α

−, β+, c+, d+, e+, f+)

=
1

3

1

〈αβ〉 〈β c〉 〈d e〉2

(

〈d f〉 〈α e〉3 [e f ]
〈c d〉 〈e f〉2

− 〈c e〉 〈α d〉3 [d|c|α〉
〈c d〉2 〈e f〉 〈f α〉

+
[f |c|α〉3

tαβc[f |k|c〉

)

, (3.61)

to which we apply

1

〈αβ〉 〈β c〉 =
1

〈α q〉 〈β q〉2
(〈q|αβ|q〉[q|k|q〉

sαβ[q|k|c〉
+

〈q β〉 〈q c〉 [q|α|q〉
〈β c〉 [q|k|c〉

)

, (3.62)

giving

A
(1)
6:1,i(α

−, β+, c+, d+, e+, f+) =

i

3

1

〈α q〉 〈β q〉2 〈d e〉2
(〈q|αβ|q〉[q|k|q〉

sαβ[q|k|c〉
+

〈q β〉 〈q c〉 [q|α|q〉
〈β c〉 [q|k|c〉

)

×
(

〈d f〉 〈α e〉3 [e f ]
〈c d〉 〈e f〉2

− 〈c e〉 〈α d〉3 [d|c|α〉
〈c d〉2 〈e f〉 〈f α〉

+
[f |c|α〉3

tαβc[f |k|c〉

)

. (3.63)

We collect the three terms

A
(1)
6:1,i(α

−, β+, c+, d+, e+, f+) =

1

3

1

〈α q〉 〈β q〉2 〈d e〉2
〈q|αβ|q〉[q|k|q〉

sαβ[q|k|c〉

(

〈d f〉 〈α e〉3 [e f ]
〈c d〉 〈e f〉2

− 〈c e〉 〈α d〉3 [d|c|α〉
〈c d〉2 〈e f〉 〈f α〉

+
[f |c|α〉3

tαβc[f |k|c〉

)

.

(3.64)
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but we want to keep track of the finite terms as well so we will define A
(1),f
6:1,i as a collection of

these O(s0αβ) terms that we will keep adding to which originate from A
(1)
6:1,i,

A
(1),f
6:1,i (α

−, β+, c+, d+, e+, f+) =

1

3

1

〈α q〉 〈β q〉2 〈d e〉2
〈q β〉 〈q c〉 [q|α|q〉

〈β c〉 [q|k|c〉

(

〈d f〉 〈α e〉3 [e f ]
〈c d〉 〈e f〉2

− 〈c e〉 〈α d〉3 [d|c|α〉
〈c d〉2 〈e f〉 〈f α〉

+
[f |c|α〉3

tαβc[f |k|c〉

)

.

(3.65)

We need to take α and β off shell using axial gauge equation (1.123) where we again choose
the reference vectors from axial gauge and the Risager shift to be equal. Using

[β|k|X〉
[β|k|Y 〉 =

[q|k|X〉
[q|k|Y 〉

(

1 + k2 [β q] 〈Y X〉
[q|k|X〉[β|k|Y 〉

)

+ · · · (3.66)

and capping any 〈αX〉 in the bracket with [β α] we slowly move toward the pole

A
(1)
6:1,i(α

−, β+, c+, d+, e+, f+)

=
1

3

〈α q〉2

〈β q〉2 〈d e〉2
〈q|αβ|q〉

sαβ

[q|k|q〉
[q|k|c〉

×
[

〈d f〉 [q|k|e〉3 [e f ]
〈c d〉 〈e f〉2 [q|k|q〉3

(

1 + 3sαβ
[β|q|e〉

[q|k|e〉[β|k|q〉

)

− [f c]3 [q|k|c〉3
tαβc[f |k|c〉[q|k|q〉3

(

1 + 3sαβ
[β|q|c〉

[q|k|c〉[β|k|q〉

)

− 〈c e〉 [q|k|d〉3 [d c] [q|k|c〉
〈c d〉2 〈e f〉 [q|k|f〉[q|k|q〉3

(

1 + 3sαβ
[β|q|d〉

[q|k|d〉[β|k|q〉 + sαβ
[β q] 〈f c〉

[q|k|c〉[β|k|f〉

)]

+ · · · (3.67)

Here we have turned α♭ + β♭ → k and so the ellipsis stands for O(α2, β2) terms as they can
simply be removed due to condition C2 without effecting condition C1. Note k♭ 6= α♭ + β♭

which should be kept in mind as taking k♭ off-shell introduces k2 = sαβ terms which cannot
be thrown away and must be built into the current.

Gathering leading pole terms we have

τ dp6 =
1

3

〈α q〉2

〈β q〉2 〈d e〉2
〈q|αβ|q〉

sαβ

[q|k|q〉
[q|k|c〉

(

〈d f〉 [q|k|e〉3 [e f ]
〈c d〉 〈e f〉2 [q|k|q〉3

− [f c]3 [q|k|c〉3
tαβc[f |k|c〉[q|k|q〉3

− 〈c e〉 [q|k|d〉3 [d c] [q|k|c〉
〈c d〉2 〈e f〉 [q|k|f〉[q|k|q〉3

)

= Fdp + · · · (3.68)

and we give the same treatment to the A
(1),f
6:1,i but now add the subleading pole terms that we

67



have just found to give

A
(1),f
6:1,i (α

−, β+, c+, d+, e+, f+) =

1

3

〈α q〉2

〈β q〉2 〈d e〉2

[

〈q β〉 〈q c〉 [q|α|q〉
〈β c〉 [q|k|c〉

(

〈d f〉 [e f ] [q|k|e〉3
〈c d〉 〈e f〉2 [q|k|q〉3

− 〈c e〉 [q|k|d〉3 [d c] [q|k|c〉
〈c d〉2 〈e f〉 [q|k|q〉3[q|k|f〉

− [f c]3 [q|k|c〉3
tαβc[f |k|c〉[q|k|q〉3

)

+ 3
〈q|αβ|q〉

[q|k|c〉[q|k|q〉2

(

〈d f〉 [q|k|e〉3 [e f ]
〈c d〉 〈e f〉2

[β|q|e〉
[q|k|e〉[β|k|q〉 −

[f c]3 [q|k|c〉3
tαβc[f |k|c〉

[β|q|c〉
[q|k|c〉[β|k|q〉

− 〈c e〉 [q|k|d〉3 [d c] [q|k|c〉
〈c d〉2 〈e f〉 [q|k|f〉

[
[β|q|d〉

[q|k|d〉[β|k|q〉 +
[β q] 〈f c〉

3[q|k|c〉[β|k|f〉

])]

. (3.69)

We have now built the 〈αβ〉 → 0 factorisation into the current, next we seek to build the
[αβ] → 0 factorisation into the current. This is given by

Fsb =
〈α k〉 [β q]2

[α q] [k q] sαβ
A

(1)
5:1(k

+, c+, d+, e+, f+)

= − i

3

〈α q〉2

〈β q〉2
[q|β|q〉2
[q|α|q〉2

[q|αβ|q]
sαβ[q|k|f〉[q|k|c〉 〈c d〉 〈d e〉 〈e f〉

(scdtαβc + sef tαβf − [c|def |c〉)

(3.70)

The last line of (3.59) contains the [αβ]−1 term so we call this A6:1,ii

A6:1,ii(α
−, β+, c+, d+, e+, f+)

=
1

3

[β f ]3

[f α] [αβ] tcde

[
[c e]

〈c d〉 〈d e〉 −
[d e] [e f ]

〈c d〉 [f |k|c〉 +
[β c] [c d]

〈d e〉 [β|Pcd|e〉

]

(3.71)

and use the following rearrangements

1

[αβ]

(

[β X]

[β Y ]
−
[
k♭ X

]

[k♭ Y ]

)

=
1

[αβ]

[
β k♭

]
[X Y ]

[β Y ] [k♭ Y ]
= − 〈q α〉 [X Y ]

[β Y ] [Y |k|q〉 , (3.72)

[β f ]3

[αβ] [f α]
=

[β f ]2 [q f ]

[α q] [f α]
− [β f ]2 [β q]

[αβ] [α q]
, (3.73)

and

[β f ]2 [β q] 〈β α〉
[α q]

= −
〈
α k♭

〉
[β q]2

[α q] [k♭ q]

[
f k♭

]2
+ sαβ

[f |q|α〉
[q|k|q〉

([f β] [β q]
[
k♭ q
]
+ [β q]2

[
f k♭

]
)

[α q] [k♭ q]
.

(3.74)

We therefore write

A6:1,ii =
1

3

(

[β f ]2 [q f ]

[f α] [α q] tcde
+

〈
α k♭

〉
[β q]2

sαβ [α q] [k♭ q] tcde

[
f k♭

]2 − [f |q|α〉
[q|k|q〉

([f β] [β q]
[
k♭ q
]
+ [β q]2

[
f k♭

]
)

[α q] [k♭ q] tcde

)

×
( [

k♭ c
]
[c d]

〈d e〉 [k♭|Pcd|e〉
+

[c e]

〈c d〉 〈d e〉 −
[d e] [e f ]

〈c d〉 [f |k|c〉

)

+
〈q α〉 [β f ]3 [c d] [c|Pcd|e〉

3 [f α] [β|Pcd|e〉〈e|Pcdk|q〉 〈d e〉 tcde
(3.75)
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which we separate into the leading factorising singularity and a finite piece

τ sb6 = −1

3

〈α q〉2

〈β q〉2
[q|β|q〉2
[q|α|q〉2

[q|αβ|q]
sαβ[q|k|q〉2

[f |k|q〉2
tcde

(
[c|k|q〉 [c d]

〈d e〉 〈q|kPcd|e〉
+

[c e]

〈c d〉 〈d e〉 −
[d e] [e f ]

〈c d〉 [f |k|c〉

)

,

(3.76)

A
(1),f
6:1,ii =

1

3

(

[β f ]2 [q f ]

[f α] [α q] tcde
− [f |q|α〉

[q|k|q〉
([f β] [β q] [q|k|q〉 − [β q]2 [f |k|q〉)

[α q] [q|k|q〉tcde

)

×
(

[c|k|q〉 [c d]
〈d e〉 〈q|kPcd|e〉

+
[c e]

〈c d〉 〈d e〉 −
[d e] [e f ]

〈c d〉 [f |k|c〉

)

+
〈q α〉 [β f ]3 [c d] [c|Pcd|e〉

3 [f α] [β|Pcd|e〉〈e|Pcdk|q〉 〈d e〉 tcde
.

(3.77)

We therefore have the two factorising terms and three non-factorising pieces

τ dp6 (α−, β+, c+, d+, e+, f+)

=
1

3

〈α q〉2

〈β q〉2 〈d e〉2
〈q|αβ|q〉

sαβ

[q|k|q〉
[q|k|c〉

(

〈d f〉 [q|k|e〉3 [e f ]
〈c d〉 〈e f〉2 [q|k|q〉3

− [f c]3 [q|k|c〉3
tαβc[f |k|c〉[q|k|q〉3

− 〈c e〉 [q|k|d〉3 [d c] [q|k|c〉
〈c d〉2 〈e f〉 [q|k|f〉[q|k|q〉3

)

, (3.78)

τ sb6 (α−, β+, c+, d+, e+, f+)

= −1

3

〈α q〉2

〈β q〉2
[q|β|q〉2
[q|α|q〉2

[q|αβ|q]
sαβ[q|k|q〉2

[f |k|q〉2
tcde

(
[c|k|q〉 [c d]

〈d e〉 〈q|kPcd|e〉
+

[c e]

〈c d〉 〈d e〉 −
[d e] [e f ]

〈c d〉 [f |k|c〉

)

,

(3.79)

A
(1),f
6:1,i (α

−, β+, c+, d+, e+, f+)

=
1

3

〈α q〉2

〈β q〉2 〈d e〉2

[

〈c q〉 [q|α|q〉
[q|k|c〉2[q|k|q〉2

(

〈d f〉 [e f ] [q|k|e〉3
〈c d〉 〈e f〉2

− 〈c e〉 [q|k|d〉3 [d c] [q|k|c〉
〈c d〉2 〈e f〉 [q|k|f〉

− [f c]3 [q|k|c〉3
tαβc[f |k|c〉

)

− 3
[q|β|q〉

[q|k|c〉[q|k|q〉2

(

〈d f〉 [q|k|e〉3[f |e|q〉
[q|k|e〉 〈c d〉 〈e f〉2

− [f c]3 [q|k|c〉3
tαβc[f |k|c〉

〈q c〉
[q|k|c〉

− 〈c e〉 [q|k|d〉3 [d c] [q|k|c〉
〈c d〉2 〈e f〉 [q|k|f〉

[ 〈q d〉
[q|k|d〉 +

[q|k|q〉 〈f c〉
3[q|k|c〉[q|k|f〉

])]

, (3.80)
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A
(1),f
6:1,ii(α

−, β+, c+, d+, e+, f+)

=
1

3

〈α q〉2

〈β q〉2

[(
[f |β|q〉2

[f |α|q〉[q|α|q〉 +
([f |β|q〉[q|β|q〉[q|k|q〉+ [q|β|q〉2[f |k|q〉)

[q|α|q〉[q|k|q〉2
)

× [f q]

tcde

(
[c|k|q〉 [c d]

〈d e〉 〈q|kPcd|e〉
+

[c e]

〈c d〉 〈d e〉 −
[d e] [e f ]

〈c d〉 [f |k|c〉

)

− [f |β|q〉3 [c d] [c|Pcd|e〉
[f |α|q〉〈q|βPcd|e〉〈e|Pcdk|q〉 〈d e〉 tcde

]

,

(3.81)

A
(1)
6:1,iii(α

−, β+, c+, d+, e+, f+) =

=
1

3

〈α q〉2

〈β q〉2

(

− 1

〈d e〉2

[

[d|β|q〉 〈c e〉 [q|k|d〉3
〈c d〉2 〈e f〉 [q|k|f〉[q|k|c〉[q|k|q〉

+ 3[f |β|q〉 [f c]2 [q|k|c〉
[f |k|c〉tαβc[q|k|q〉

]

− 1

〈c d〉2 〈e f〉

[

[c|β|d〉 [q|k|c〉
〈d e〉 [q|k|f〉 +

〈β q〉3 [β|Pcd|α〉3
〈q|βPcd|e〉tβcd 〈f α〉 〈q α〉2

])

. (3.82)

We have used simple rearrangements of the form

〈q|αβ|q〉[β|q|X〉
[β|k|q〉 = −[q|β|q〉 〈q X〉+O(β2) (3.83)

etc. to write the finite pieces as above where many simplifications can be made due to this
being the finite part of the current so any O(α2, β2, sαβ) terms may be discarded. The two
conditions are satisfied:

τ
(1)
6:1 (α

−, β+, c+, d+, e+, f+) = [τ dp6 + τ sb6 + A
(1),f
6:1,i + A

(1),f
6:1,ii + A

(1)
6:1,iii](α

−, β+, c+, d+, e+, f+)

= A
(1)
6:1(α

−, β+, c+, d+, e+, f+) +O(sαβ) +O(α2) +O(β2) (3.84)

where we have kept track of the O(sαβ) terms but ultimately they do not contribute to the
residue so we do not need them explicitly, and

lim
sαβ→0

τ
(1)
6:1 (α

−, β+, c+, d+, e+, f+) = Fdp + Fsb. (3.85)

To aid integration we use

[c|β|d〉 = [q|k|d〉
[q|k|q〉 [c|β|q〉+O(α2, β2, sαβ),

[q|β|q〉2
[q|α|q〉 = [q|α|q〉 − 2[q|k|q〉+ [q|k|q〉2

[q|α|q〉 ,

[f |β|q〉[q|β|q〉
[q|α|q〉 = −[f |β|q〉 − [f |α|q〉[q|k|q〉

[q|α|q〉 +
[f |k|q〉[q|k|q〉

[q|α|q〉 ,

[f |β|q〉2
[f |α|q〉[q|α|q〉 =

[f |α|q〉
[q|α|q〉 − 2

[f |k|q〉
[q|α|q〉 +

[f |k|q〉2
[f |α|q〉[q|α|q〉 ,

[f |β|q〉3
[f |α|q〉〈q|βPcd|e〉

= − [f |α|q〉2
〈q|βPcd|e〉

+ 3
[f |α|q〉[f |k|q〉
〈q|βPcd|e〉

− 3
[f |k|q〉2
〈q|βPcd|e〉

+
[f |k|q〉3

〈q|βPcd|e〉[f |α|q〉
,

(3.86)

70



as well as

[β|Pcd|α〉3 〈β q〉3

〈f α〉 tβcd〈q|βPcd|e〉 〈α q〉2
= − [q|k|q〉

[q|k|f〉

(
[β|Pcd|β〉2
〈q|βPcd|e〉

− [β|Pcd|β〉scd
〈q|βPcd|e〉

+
s2cd

〈q|βPcd|e〉
− s3cd

tβcd〈q|βPcd|e〉

)

,

[β|Pcd|β〉 =
〈α|Pcdα|q〉

〈q α〉 + ([c|k|c〉+ [d|k|d〉) +O(sαβ) (3.87)

This reduces everything to either triangles which we can integrate, quadratic pentagons (or
other such integrals which do not have rational pieces), and boxes which may be reduced to
triangles via (2.90). This current was calculated for general q in [69] but there is a mistake
in the paper for the integrated non-factorising current. Using the notation of that paper, the
correct integrated current for the non-factorising piece is,

71



Iα−β+
n.f. × 18 〈a b〉 〈d e〉2 [q|Pab|q〉2

[a b]
=

〈d e〉 [c|a+ 2b|q〉[q|Pab|c〉[q|Pab|d〉[q|Pab|q〉
〈c d〉2 〈e f〉 [q|Pab|f〉

+
〈d e〉2 〈a|Pcda|q〉[q|Pab|q〉3

(
− 3scd 〈q a〉 〈q|aPcd|e〉+ 〈a|Pcda|q〉(5〈q|aPcd|e〉+ 2〈q|bPcd|e〉

)

〈c d〉2 〈e f〉 〈q a〉2 〈q|aPcd|e〉2[q|Pab|f〉

+
2 〈d e〉2 〈a|Pcda|q〉[q|Pab|q〉3〈q|aPcd|e〉

(
〈a|Pcdb|q〉+ 3 〈q a〉 ([c|Pab|c〉+ [d|Pab|d〉)

)

〈c d〉2 〈e f〉 〈q a〉2 〈q|aPcd|e〉2[q|Pab|f〉

+

〈d f〉 [q|Pab|e〉2
(

− 〈c q〉 [e f ] [q|Pab|e〉[q|2a+ b|q〉+ 3[f |e|q〉[q|Pab|c〉[q|a+ 2b|q〉
)

〈c d〉 〈e f〉2 [q|Pab|c〉2

+
〈c e〉 [q|Pab|d〉2[d|a+ 2b|q〉[q|Pab|d〉[q|Pab|f〉[q|Pab|q〉

〈c d〉2 〈e f〉 [q|Pab|c〉[q|Pab|f〉2

+
〈c e〉 [q|Pab|d〉2 [d c] 〈c q〉 [q|Pab|d〉[q|Pab|f〉[q|2a+ b|q〉

〈c d〉2 〈e f〉 [q|Pab|c〉[q|Pab|f〉2

− 〈c e〉 [q|Pab|d〉2 [d c] [q|a+ 2b|q〉(3 〈q d〉 [q|Pab|c〉[q|Pab|f〉+ 〈f c〉 [q|Pab|d〉[q|Pab|q〉)
)

〈c d〉2 〈e f〉 [q|Pab|c〉[q|Pab|f〉2

+
[f c]2 [q|Pab|c〉

(
3[f |a+ 2b|q〉[q|Pab|q〉+ [f c] (〈c q〉 [q|2a+ b|q〉 − 3 〈q c〉 [q|a+ 2b|q〉)

)

[f |Pab|c〉tabc

+
〈d e〉 [c d]

tcde







[f q] [c|Pab|q〉
(

[f |a+ 2b|q〉[q|Pab|q〉+ [f |Pab|q〉
(
6[q|Pab|q〉 − [q|2a+ b|q〉

)
)

〈q|PabPcd|e〉

+

[c|d|e〉[f |a|q〉[q|Pab|q〉2
(

2〈q|bPcd|q〉[f |a|q〉+ 〈q|aPcd|q〉
(
5[f |a|q〉+ 2[f |b|q〉 − 9[f |Pab|q〉

)
)

〈e|PcdPab|q〉〈q|aPcd|e〉〈q|aPcd|q〉







+

〈d e〉 [c e] [f q]

(

[f |a+ 2b|q〉[q|Pab|q〉+ [f |Pab|q〉(6[q|Pab|q〉 − [q|2a+ b|q〉)
)

〈c d〉 tcde

+

〈d e〉2 [d e] [e f ] [f q]

(

− [f |a+ 2b|q〉[q|Pab|q〉+ [f |Pab|q〉(−6[q|Pab|q〉+ [q|2a+ b|q〉)
)

〈c d〉 [f |Pab|c〉tcde
,

(3.88)

where tijk = (pi + pj + pk)
2 and note the difference in convention of factorising a factor of

i out in (1.3). The remaining integrals from [69] are correct and so will not be presented
here. To be clear, it is only in the appendix of [69] that this mistake exists; the final results
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presented in [69] are correct. The remaining two currents are given by

τ
(1)
6:1 (α

−, c+, β+, d+, e+, f+)

=
1

3

(

〈d f〉 〈α e〉3 [e f ]
〈c β〉 〈d e〉2 〈e f〉2 〈α c〉 〈β d〉

− 〈α d〉3 〈β e〉 [d|c|α〉
〈c β〉 〈d e〉2 〈e f〉 〈f α〉 〈α c〉 〈β d〉2

+
[c|d|α〉3

〈e f〉 〈f α〉 〈β d〉2 [c|Pβd|e〉tcβd
+

[f |c|α〉3
〈c β〉 〈d e〉2 〈α c〉 [f |c|β〉[c|Pαβ|c〉

+
[c f ]3

[f α] [α c] tβde
×
[

[β e]

〈d e〉 〈β d〉 +
[c β] [β d]

〈d e〉 [c|Pβd|e〉
− [d e] [e f ]

〈β d〉 [f |c|β〉

])

+O(sαβ) (3.89)

and

τ
(1)
6:1 (α

−, c+, d+, β+, e+, f+)

=
1

3

(

− 〈c β〉 〈α d〉3 [c d]
〈c d〉2 〈d β〉2 〈e f〉 〈f α〉 〈β e〉

+
〈α e〉3 〈β f〉 [e f ]

〈c d〉 〈d β〉 〈e f〉2 〈α c〉 〈β e〉2

+
[c|d|α〉3

〈d β〉2 〈e f〉 〈f α〉 [c|Pdβ|e〉tcdβ
+

[f |Pcd|α〉3
〈c d〉 〈α c〉 〈β e〉2 [f |Pαc|d〉tαcd

+
[c f ]3

[f α] [α c] tdβe
×
[

[d e]

〈d β〉 〈β e〉 +
[c d] [d β]

〈β e〉 [c|Pdβ|e〉
− [e f ] [β e]

〈d β〉 [f |Pαc|d〉

])

+O(sαβ). (3.90)

Many of the terms in the non-adjacent currents do not give rationals upon integration. We
are thus left with

∫
dDℓ

ℓ2α2β2

i

(2π)D
[a|ℓ|q〉[b|ℓ|q〉
〈a q〉 〈b q〉 τ

(1)
6:1 (α

−, c+, β+, d+, e+, f+)|Q

=
1

6

[a b]

〈a b〉

(

〈d f〉 〈a e〉3 [e f ] 〈b q〉2

〈c b〉 〈d e〉2 〈e f〉2 〈a c〉 〈b d〉 〈a q〉2
− 〈a d〉3 〈b e〉 [d|c|a〉 〈b q〉2

〈c b〉 〈d e〉2 〈e f〉 〈f a〉 〈a c〉 〈b d〉2 〈a q〉2

+
[f |c|a〉3 〈b q〉2

〈c b〉 〈d e〉2 〈a c〉 〈a q〉2 [f |c|b〉[c|Pab|c〉

)

(3.91)

and

∫
dDℓ

ℓ2α2β2

i

(2π)D
[a|ℓ|q〉[b|ℓ|q〉
〈a q〉 〈b q〉 τ

(1)
6:1 (α

−, c+, d+, β+, e+, f+)|Q

=
1

6

[a b]

〈a b〉

(

〈a e〉3 〈b f〉 〈b q〉2 [e f ]
〈c d〉 〈d b〉 〈e f〉2 〈a c〉 〈a q〉2 〈b e〉2

− 〈c b〉 〈b q〉2 〈a d〉3 [c d]
〈c d〉2 〈d b〉2 〈e f〉 〈f a〉 〈a q〉2 〈b e〉

)

. (3.92)

Summing over all the channels excited by the Risager shift and all helicities we recover the
full colour two-loop amplitude. The results obey the correct collinear limits and decoupling
identities. As with the five-point calculation, the results in their present form are large and
have q’s scattered throughout, clearly involving massive redundancies. The next section will
discuss functional reconstruction using numerical fitting and ansatz building, rewriting the
answers in much more compact analytic form.
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3.5 Rational Results - Fitting a Function

For the leading in colour amplitude we expect the Parke-Taylor denominator (2.96) to be
able to be factorised out. With double poles we then expect to be able to fit functions that
might look like

1

〈a b〉 〈b c〉 〈c d〉 〈d e〉 〈e f〉 〈f a〉

( Ndp

〈i i+ 1〉 +
Noverlap

〈i i+ 1〉 〈i+ 1 i+ 2〉 +Nsp

)

, (3.93)

where we expectNdp andNoverlap to be obtained from factorisation theorems, the overlap part
being double poles that contribute to multiple channels and so we need to be careful about
overcounting terms. We can then fit Nsp by building an ansatz with no spinor weight/helicity
scaling and has momentum weight m = 4 such that

〈a b〉 〈b c〉 〈c d〉 〈d e〉 〈e f〉 〈f a〉R(2)
6:1 −

∑

i

( Ndp

〈i i+ 1〉 +
Noverlap

〈i i+ 1〉 〈i+ 1 i+ 2〉

)

= Nsp, (3.94)

where R
(2)
6:1 is the rational result that we will have calculated in terms of q in the previous

section. While this is not necessarily an easy process for leading in colour, it is a bit simpler
than at subleading colour orders. This is because the amplitude is maximally planar and
so we only have poles between adjacent gluons meaning the Parke Taylor denominator is
clearly able to be factorised out. For subleading in colour amplitudes, one might expect the
denominator to be a global Parke-Taylor-like one but for whichever manifest symmetry is
present such as with the all plus A

(1)
n:r

A(1)
n:r(1

+, 2+, 3+, · · · , r − 1; r · · ·n+) = −2
(P 2

1,r−1)
2

(〈1 2〉 〈2 3〉 · · · 〈(r − 1) 1〉)(〈r (r + 1)〉 · · · 〈n r〉 ,

but we find this to not be the case. We must subtract double and multiparticle poles and then
numerically sit near simple poles and test which types are present. This allows us to build a
picture of what kinds of structures we expect to see, allowing us to identify possible spurious
simple poles from the factorisations. Once the factorisations are identified, the author used
the singular structure from the factorisations to guess what kind of rational functions we
could expect. This will be more clear with an example.

We will go over some examples now to explain how we generated compact results for
subleading in colour.

3.5.1 R6:2,2

We first consider the Tr(ab)Tr(cd)Tr(ef) structure. This contains only multiparticle poles.
Colour dressing the factorisations and summing over diagrams gives us the following contri-
bution to the multiparticle pole

Rm
6:2,2 =

1

4

∑

P6:2,2

A
(1)
4:3(k

−, c+; a+, b+)
−1

tabc
A

(1)
4:3(k

+, d+; e+, f+) =
1

4

∑

P6:2,2

Rm,b
6:2,2. (3.95)

The other factorisations have no contribution to this amplitude. Looking at one term and
using the freedom to cycle legs according to the sum this gives

Rm,b
6:2,2 = 4

[d|Pdef |b〉[d|Pdef |c〉 [b c]
〈a b〉 〈b c〉 〈c a〉 〈e f〉2 tabc

. (3.96)
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R6:2,2 has no double poles so 〈e f〉2 is unphysical and needs to be removed. Multiplying by
〈d e〉
〈d e〉

and using

[d|Pdef |b〉 〈d e〉 = [d|Pdef |d〉 〈b e〉+ [d|Pdef |e〉 〈d b〉 = −[d|Pabc|d〉 〈b e〉+ [d|f |e〉 〈d b〉
= (tabc − sef ) 〈b e〉+ [f |d|b〉 〈e f〉 , (3.97)

cancels the physical tabc pole in one term which no longer contributes to the residue, and
cancels the double poles in the other two terms, leaving us with

Rm,b
6:2,2 = 4

[f |Pde|b〉[d|Pdef |c〉 [b c]
〈a b〉 〈b c〉 〈c a〉 〈d e〉 〈e f〉 tabc

+O(t0abc). (3.98)

We therefore have isolated the multiparticle pole contributions to the amplitude and can fit
the simple pole function. This looks close to an r = 4 Parke-Taylor like denominator and so
we rewrite it as

Rm,b
6:2,2 =

4

〈a b〉 〈b c〉 〈c a〉 〈d e〉 〈e f〉 〈f d〉
〈b|kfdk|c〉 [b c]

tabc

=
1

〈a b〉 〈b c〉 〈c a〉 〈d e〉 〈e f〉 〈f d〉G
[1]
6:2,2, (3.99)

as this might indicate a form for the simple pole structure. With this in mind we build the
ansatz,

R
(2)
6:2,2 =

∑

P6:2,2

[
1

〈a b〉 〈b c〉 〈c a〉 〈d e〉 〈e f〉 〈f d〉
(

G
[1]
6:2,2 +N6:2,2

)]

. (3.100)

Note the denominator partially breaks the P6:2,2 symmetry and so we cannot factorise it out
of the manifest symmetry sum. However there is an antisymmetry in Z2(a, b) and Z2(e, f)
and a symmetry in Z2({ab}, {ef})× Z2(c, d). The ansatz for N6:2,2 can be built to have this
partially broken symmetry and we finally get,

R
(2)
6:2,2 =

∑

P6:2,2

[
1

〈a b〉 〈b c〉 〈c a〉 〈d e〉 〈e f〉 〈f d〉
(
G1

6:2,2(a, b, c, d, e, f) +G2
6:2,2(a, b, c, d, e, f)

)
]

.

G
[1]
6:2,2(a, b, c, d, e, f) =

〈b|PabcfdPabc|c〉 [b c]
tabc

,

G
[2]
6:2,2(a, b, c, d, e, f) = sad[e|Pbc|e〉 − sac[e|Pfa|e〉 − safsae − saescd. (3.101)

3.5.2 R6:4

This colour structure has both double poles and multiparticle poles. Consider the Tr(abc)Tr(def)
structure. colour dressing the multiparticle and double pole factorisations gives

R6:4 =
1

9

∑

P6:4

∑

λ=±

[

A
(1)
4:1(k

λ, a+, b+, c+)A
(1)
4:2(k

−λ; d+, e+, f+) + 3A
(1)
3 (a+, b+, k+)A

(1)
5:3(k

−, c+; d+, e+, f+)

]

.

(3.102)
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First we may note that under the Z3(abc) symmetry within the P6:4 sum, we can cycle legs
freely to write

∑

Z3(abc)

A
(1)
4:2(k

+; a+, b+, c+) = −
∑

Z3(abc)

(

A
(1)
4:1(k

+, a+, b+, c+) + A
(1)
4:1(k

+, b+, c+, a+) + A
(1)
4:1(k

+, c+, a+, b+)
)

= −3
∑

Z3(abc)

A
(1)
4:1(k

+, a+, b+, c+) (3.103)

which reduces the rational piece to

R6:4

=
1

3

∑

P6:4

[

A
(1)
4:1(k

−, a+, b+, c+)A
(1)
4:2(k

+; d+, e+, f+) + A
(1)
3 (a+, b+, k+)A

(1)
5:3(k

−, c+; d+, e+, f+)

]

.

(3.104)

Next we consider the double pole factorisation. We have presented the form for this one-
loop single-minus at n-point in Chapter 2, and noting that again that with the freedom to
exchange legs according to the P6:4 symmetry, we may write

∑

P6:4

A
(1)
5:3(k

−, c; d, e, f) =
∑

P6:4

∑

Z3(def)

∑

c≤i<j≤f〈k|ij|k〉
〈c d〉 〈d e〉 〈e f〉 〈f c〉 = 3

∑

P6:4

∑

c≤i<j≤f〈k|ij|k〉
〈c d〉 〈d e〉 〈e f〉 〈f c〉 (3.105)

where the numerator is

〈k|c(d+ e+ f)|k〉〈k|d(e+ f)|k〉+ 〈k|ef |k〉 = 〈k|cd|k〉+ 〈k|ef |k〉 (3.106)

and we use the one-loop vertex (2.7) to write this factorisation as

Rdp
6:4 = −1

3

[a b]

〈a b〉2
〈a|cd|b〉+ 〈a|ef |b〉
〈c d〉 〈d e〉 〈e f〉 〈f c〉 . (3.107)

Next considering the multiparticle pole we have

A4:2(k
−; d, e, f) = − 〈k|de|k〉

〈d e〉 〈e f〉 〈f d〉 ,

A4:1(k
+, a, b, c) = −1

3

[k a]2

〈b c〉2
(3.108)

which gives

Rm
6:4 = −1

9

[a|Pbc|d〉[a|Pbc|e〉 [d e]
〈b c〉2 〈d e〉 〈e f〉 〈f d〉 tabc

(3.109)

which contains a spurious double pole in 〈b c〉. We again make use of a Schouten identity to
write

Rm
6:4 = −1

9

[b|Pabc|d〉[a|Pabc|e〉 [d e]
〈c a〉 〈b c〉 〈d e〉 〈e f〉 〈f d〉 tabc

+O(t0abc). (3.110)
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This hints to an ansatz of the form

R6:4 =
1

9

∑

P6:4

[

1

〈a b〉 〈b c〉 〈c a〉 〈d e〉 〈e f〉 〈f d〉 (G
m
6:4 +Nm

6:4)

+
[a b]

〈a b〉 〈c d〉 〈d e〉 〈e f〉 〈f c〉
(

Gdp
6:4 +N dp

6:4

)
]

. (3.111)

We find

A
(2)
6:4(a, b, c; d, e, f)|Q =

R6:4(a, b, c, d, e, f) =
1

36

∑

P6:4

[

1

〈a b〉 〈b c〉 〈c a〉 〈d e〉 〈e f〉 〈f d〉
(
G1

6:4(a, b, c, d, e, f) +G2
6:4(a, b, c, d, e, f)

)

+
12

〈a b〉 〈c d〉 〈d e〉 〈e f〉 〈f c〉
(
G3

6:4(a, b, c, d, e, f) +G4
6:4(a, b, c, d, e, f)

)

]

,

G1
6:4(a, b, c, d, e, f) =

4 〈e|Pabca|b〉[e|dPabc|b]
tabc

,

G2
6:4(a, b, c, d, e, f) = s2ad + 106 sabsad + 102 [a|bcd|a〉 − 4 [a|bde|a〉 − 4 [a|dbe|a〉

G3
6:4(a, b, c, d, e, f) = − [a b]

〈a b〉
(

〈a|cd|b〉+ 〈a|ef |b〉
)

G4
6:4(a, b, c, d, e, f) = [a|cd|b] + [a|ef |b] (3.112)

3.5.3 R6:3

This colour amplitude has overlapping double poles and multiparticle poles. If we consider
the factorisations given in Figure 3.3 and Figure 3.4

f

e

a
b

c
d

k

+ −

Figure 3.3: Double pole factorisation contributing to the 〈e f〉2 double pole.
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f

e

d

a

b

c

Figure 3.4: The tdef multiparticle factorisation. Both helicities are accounted for.

then we find something that looks like

∑

P6:3

Ndp(a, b, c, d, e, f)

〈a b〉 〈b c〉 〈c d〉 〈d e〉 〈e f〉2 〈f a〉 tdef
, (3.113)

from the double pole factorisation and

∑

P6:3

Nt(a, b, c, d, e, f)

〈a b〉 〈b c〉 〈c d〉 〈d e〉 〈e f〉2 〈f a〉 tdef
, (3.114)

from the multiparticle factorisation. The double pole and multiparticle poles are not spurious
and each factorisation gives contributions to both. There is clearly an overlap and therefore
an overcounting issue if we simply leave it like this. The goal is then to be able to rewrite
each factorisation as

∑

P6:3

Ndp(a, b, c, d, e, f)

〈a b〉 〈b c〉 〈c d〉 〈d e〉 〈e f〉2 〈f a〉 tdef

=
∑

P6:3

N ′
dp(a, b, c, d, e, f)

〈a b〉 〈b c〉 〈c d〉 〈d e〉 〈e f〉2 〈f a〉
+

Ntdp(a, b, c, d, e, f)

〈a b〉 〈b c〉 〈c d〉 〈d e〉 〈e f〉2 〈f a〉 tdef
+O(〈e f〉−1),

(3.115)

for the double pole factorisation where O(〈e f〉−1) implies that there are no double poles in
〈e f〉 but says nothing about the multiparticle poles, and

∑

P6:3

Nt(a, b, c, d, e, f)

〈a b〉 〈b c〉 〈c d〉 〈d e〉 〈e f〉2 〈f a〉 tdef

=
∑

P6:3

N ′
t (a, b, c, d, e, f)

〈a b〉 〈b c〉 〈c d〉 〈d e〉 〈e f〉 〈f a〉 tdef
+
∑

P6:3

Ntdp(a, b, c, d, e, f)

〈a b〉 〈b c〉 〈c d〉 〈d e〉 〈e f〉2 〈f a〉 tdef
+O(t0def ).

(3.116)

N ′
dp and N ′

t here are numerators for the function which only contains the double pole and
multiparticle pole respectively and we need to get Ntdp to be the same contribution from
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both channels, where we can then include a symmetry factor to account for the overcounting
(or equivalently throw one of them away). This can be done algebraically or we can try to
build an ansatz for this. For this amplitude we needed the following result

A
(1)
5:3(a

+, b+; c−, d+, e+) = A
(1)
5:3b(a

+, b+; c−, d+, e+) + A
(1)
5:3b(b

+, a+; c−, d+, e+)

− A
(1)
5:3b(a

+, b+; c−, e+, d+)− A
(1)
5:3b(b

+, a+; c−, e+, d+)

where

A
(1)
5:3b(a

+, b+; c−, d+, e+) = −i

(

〈c e〉 〈c|be|c〉
〈a b〉 〈a e〉 〈b e〉 〈c d〉 〈d e〉 +

[d e]
(
scd [b e]− [b|da|e]

)

〈a b〉 〈a d〉 〈d e〉 [c d] [c e]

)

.

(3.117)

which we fit numerically as it was easier to algebraically manipulate than using the decoupling
identity. We used this to find N ′

dp, N ′
t and Ntdp which we will see in the results section.

This covers the tricks used for numerical fitting and spurious pole cleaning that was
performed at six-point. As an aside, it seems going to seven-point also introduces overlapping
multiparticle poles. This does not cause issues, for example the R7:2,2(a, b; c, d; e, f, g) has
contributions to the tabe poles,

N1(a, b; c, d; e, f, g)

tabetcdf
+

N2(a, b; c, d; e, f, g)

tabetcdg
(3.118)

then we can manipulate the factors multiplying the t poles such that N1(a, b; c, d; e, f, g) =
N2(c, d; a, b; f, g, e) +O(tabe) and we can then halve this to account for the symmetry factor
when summing over the full P7:2,2 (1

2
because one of the two terms gets contributions from

the tcdg factorisation and the other term gets contributions from the tcdf channel). N is a
rational function not just a numerator. This implies the tabe contribution from this channel
would be

1

2

N1(a, b; c, d; e, f, g)

tabetcdf
+

1

2

N1(c, d; a, b; f, g, e)

tabetcdg
+O(t0abe), (3.119)

although going to seven-point clearly becomes algebraically/numerically more complicated.
Back to six-point, we find the following results.

3.6 R6:c

We below present the rational parts of each of the colour amplitudes in the two-loop colour
decomposition.

3.6.1 R
(2)
6:1

R
(2)
6:1(a, b, c, d, e, f) =

1

9

∑

P6:1

G1
6:1 +G2

6:1 +G3
6:1 +G4

6:1 +G5
6:1

〈a b〉 〈b c〉 〈c d〉 〈d e〉 〈e f〉 〈f a〉 (3.120)
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where

G1
6:1(a, b, c, d, e, f) =

scdsdf〈f |aPabc|e〉
〈f e〉 tabc

+
sacscd〈a|f Pdef |b〉

〈a b〉 tdef
,

G2
6:1(a, b, c, d, e, f) =

[a b] [e f ]

〈a b〉 〈e f〉 〈a e〉
2 〈b f〉2 + 1

2

[f a] [c d]

〈f a〉 〈c d〉 〈a c〉
2 〈d f〉2 ,

G3
6:1(a, b, c, d, e, f) =

sdf 〈f a〉 〈c d〉 [a c] [d f ]
tabc

,

G4
6:1(a, b, c, d, e, f) =

〈a|be|f〉tabc
〈a f〉 (3.121)

and

G5
6:1(a, b, c, d, e, f) = sfasbc + sacsbe +

5

2
safscd − 8[a|bcf |a〉 − 8[a|cde|a〉 − 1

2
[a|cdf |a〉 − 11

2
[b|cef |b〉

(3.122)

This was first calculated in [68] and later presented in a alternate form [69]. It was susequently
confirmed by Badger et al in [95].

3.6.2 R
(2)
6:3

R
(2)
6:3(a, b; c, d, e, f) =

∑

P6:3

[

1

3

(

H1
6:3(a, b, c, d, e, f)−H1

6:3(a, b, c, d, f, e)
)

+
1

3

(

G2
6:3(a, b, c, d, e, f) +G3

6:3(a, b, c, d, e, f) +G4
6:3(a, b, c, d, e, f)

)

〈a b〉 〈b c〉 〈c a〉 〈d e〉 〈e f〉 〈f d〉

+
1

12

G5
6:3(a, b, c, d, e, f)

〈a b〉 〈b c〉 〈c d〉 〈d e〉 〈e f〉 〈f a〉

]

(3.123)

where

H1
6:3(a, b, c, d, e, f) =

G1
6:3(a, b, c, d, e, f)

〈a b〉 〈b c〉 〈c d〉2 〈d e〉 〈e f〉 〈f a〉
+

[c d]

〈c d〉2
〈c f〉 〈d b〉 [b|f |d〉

〈a b〉 〈a f〉 〈b f〉 〈d e〉 〈e f〉
G1

6:3(a, b, c, d, e, f) = sce〈c|bf |d〉 − scf〈c|be|d〉

G2
6:3(a, b, c, d, e, f) =

[d|Pdefb|a]〈d|fPdef |a〉+ sde[f |cbd|f〉+ [b|df |e]〈b|cPabc|e〉
tdef

G3
6:3(a, b, c, d, e, f) = −sdf〈d|fb|c〉[c|Pab|e〉

〈d e〉 tdef
− sde〈f |db|c〉[c|d|e〉

〈e f〉 tdef
G4

6:3(a, b, c, d, e, f) = −sbdsde − [a|bde|a〉+ [b|cde|b〉 − [a|bdf |a〉
+ [b|cdf |b〉+ [b|cef |b〉 − [b|def |b〉

G5
6:3(a, b, c, d, e, f) = −4s2ac + 2sabsad − 2sacsad + 2sabsae − 2sacsae + 2s2bd − 2s2be + 2s2bf

− 8sacscd + 4sbcscd + 12sbdscd + 6s2cd − 8sacsce + 12sbcsce + 16sbdsce

+ 4sbesce + 8scdsce + 2s2ce + 2s2cf − 8sacsde − 4sadsde − 4sbcsde + 4scdsde

+ 4scesde − 8[a|bce|a〉 − 39[a|bcf |a〉 − 18[a|bdf |a〉+ 2[a|bef |a〉
− 10[a|cdf |a〉 − 2[a|cef |a〉 − 4[a|def |a〉+ 8[b|cde|b〉 − 4[b|cdf |b〉
− 4[b|cef |b〉 − 4[b|def |b〉 − 4[c|def |c〉 (3.124)
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We chose to organise the results to follow the form of A5:3(a
+, b+; k−, c+, d+) here but we

could have organised it by pole structures as we do for the other amplitudes.

3.6.3 R
(2)
6:4

R
(2)
6:4(a, b, c, d, e, f) =

1

36

∑

P6:4

[
(

G1
6:4(a, b, c, d, e, f) +G2

6:4(a, b, c, d, e, f)
)

〈a b〉 〈b c〉 〈c a〉 〈d e〉 〈e f〉 〈f d〉

+ 12

(

G3
6:4(a, b, c, d, e, f) +G4

6:4(a, b, c, d, e, f)
)

〈a b〉 〈c d〉 〈d e〉 〈e f〉 〈f c〉

]

, (3.125)

where

G1
6:4(a, b, c, d, e, f) =

4 〈e|Pabca|b〉[e|dPabc|b]
tabc

,

G2
6:4(a, b, c, d, e, f) = s2ad + 106 sabsad + 102 [a|bcd|a〉 − 4 [a|bde|a〉 − 4 [a|dbe|a〉,

G3
6:4(a, b, c, d, e, f) = − [a b]

〈a b〉
(

〈a|cd|b〉+ 〈a|ef |b〉
)

,

G4
6:4(a, b, c, d, e, f) = [a|cd|b] + [a|ef |b]. (3.126)

3.6.4 R
(2)
6:2,2

R
(2)
6:2,2(a, b; c, d; e, f) =

∑

P6:2,2

G1
6:2,2(a, b, c, d, e, f) +G2

6:2,2(a, b, c, d, e, f)

〈a b〉 〈b c〉 〈c a〉 〈d e〉 〈e f〉 〈f d〉 , (3.127)

where

G1
6:2,2(a, b, c, d, e, f) =

〈b|Pabcf |d〉[b|cPabc|d]
tabc

,

G2
6:2,2(a, b, c, d, e, f) = sad[e|Pbc|e〉 − sac[e|Pfa|e〉 − safsae − saescd. (3.128)

3.6.5 R
(2)
6:1B

We will conjecture an n-point formula for this amplitude in Chapter 4 for which we find full
agreement here.

R
(2)
6:1B(a, b, c, d, e, f) = R

(2)
6:1B1

(a, b, c, d, e, f) +R
(2)
6:1B2

(a, b, c, d, e, f) (3.129)

where

R
(2)
6:1B1

(a, b, c, d, e, f) =
−2

Cy(a, b, c, d, e, f)
×

∑

a≤i<j<k<l≤f

ǫ(i, j, k, l) (3.130)
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and

R
(2)
6:1B2

(a, b, c, d, e, f) = 4
( ǫ(c, d, e, f)

Cy(a, b, d, e, c, f)
+

ǫ(c, d, e, f)

Cy(a, b, e, c, d, f)
+

ǫ(c, d, e, f)

Cy(a, b, e, d, c, f)

+
ǫ(a, b, c, d)

Cy(a, c, d, b, e, f)
− ǫ(a, b, c, f)

Cy(a, c, d, e, b, f)
+

ǫ(a, b, c, d)

Cy(a, d, b, c, e, f)
− ǫ(a, c, d, f)

Cy(a, d, b, e, c, f)

+
ǫ(a, b, c, d)

Cy(a, d, c, b, e, f)
+

ǫ(a, b, d, f)

Cy(a, d, c, e, b, f)
− ǫ(a, c, d, f)

Cy(a, d, e, b, c, f)
+

ǫ(a, b, d, f)

Cy(a, d, e, c, b, f)

− ǫ(a, d, e, f)

Cy(a, e, b, c, d, f)
+

ǫ(a, c, e, f)

Cy(a, e, b, d, c, f)
+

ǫ(a, c, e, f)

Cy(a, e, d, b, c, f)
− ǫ(a, b, e, f)

Cy(a, e, d, c, b, f)

)

.(3.131)

where Cy(a1, a2, a3, a4, a5, a6) is the cyclic Parke-Taylor denominator for six gluons,

Cy(a, b, c, d, e, f) = 〈a b〉 〈b c〉 〈c d〉 〈d e〉 〈e f〉 〈f a〉 . (3.132)

3.6.6 R
(2)
6:1,1

We also calculate the U(Nc) amplitudes

R
(2)
6:1,1(a; b; c, d, e, f) =

∑

P6:1,1

(

G1
6:1,1(a, b, c, d, e, f) +G2

6:1,1(a, b, c, d, e, f)

〈b c〉 〈c d〉 〈d b〉 〈a e〉 〈e f〉 〈f a〉

+
G3

6:1,1(a, b, c, d, e, f)

〈a c〉 〈c d〉 〈d b〉 〈b e〉 〈e f〉 〈f a〉

)

(3.133)

where

G1
6:1,1(a, b, c, d, e, f) =

[c|Pbcd efPbcd b|c〉
tbcd

,

G2
6:1,1(a, b, c, d, e, f) = 2sabscd − sacsae + sacscd + sadscd − s2cd − scdsce − scdscf − scdsdf

− [a|cde|a〉+ 1

2
[c|def |c〉

and

G3
6:1,1(a, b, c, d, e, f) = 2sabsac + 2s2ac + 2sacsad + 2sacsae + 2sacsbc − saesbc + sabscd + sacscd

+ sadscd − 2saescd + 2sadsce − 2saesce − scdsce − s2ce − scdscf + scesdf

− 1

2
scdsef + 2[a|cbd|a〉+ 2[a|cbe|a〉+ 4[a|cde|a〉 − [c|def |c〉. (3.134)

3.6.7 R
(2)
6:1,2

R
(2)
6:1,2(a; b, c; d, e, f) =

∑

P6:2,1

(

G1
6:1,2(a, b, c, d, e, f) +G2

6:1,2(a, b, c, d, e, f)
)

〈e f〉 〈f a〉 〈a e〉 〈b c〉 〈c d〉 〈d b〉 (3.135)

where

G1
6:1,2(a, b, c, d, e, f) = − [e|fPbcdbPcd|e〉+ [e|PcdbcPbda|e〉

tbcd
,

G2
6:1,2(a, b, c, d, e, f) = [a|bce|a〉 − 2[b|dce|b〉+ [b|def |b〉 (3.136)
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3.6.8 R
(2)
6:2

It is compactly written by its decoupling identity which was checked numerically.

R
(2)
6:2(a; b, c, d, e, f) = −

∑

P6:2

R
(2)
6:1(a, b, c, d, e, f) (3.137)

where the sum is over legs Z5(b, c, d, e, f). These expressions are valid for both U(Nc) and
SU(Nc) gauge groups and are remarkably compact. We have confirmed that they satisfy the
constraints arising from the decoupling identities. The SU(Nc) amplitudes have the correct
collinear limits: all non-adjacent and inter-trace limits vanish and adjacent limits within a
single trace factorise correctly. All of the partial amplitudes have the correct symmetries.
Again, recursion involves choosing specific legs to shift, breaking the symmetry of the am-
plitude. Restoration of this symmetry is a powerful check of the validity of our results. We
have checked that none of the R

(2)
6:c are annihilated by the conformal operator.

This was the first full-colour, six-point, two-loop amplitude to be calculated. Going to
seven-point, we should not see any more types of currents needed and the leading, adjacent
current has already been calculated in [69]. Indeed, the seven-point, full-colour, two-loop, all-
plus helicity amplitude has been fully calculated and we now have compact forms, although
this publication is presently being prepared. Of course, n-point expressions are highly desir-
able and we move now onto an n-point calculation and conjecture.
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Chapter 4

n-point QCD Two-Loop Amplitudes

4.1 Introduction

We have thus far looked at how the study of scattering amplitudes has evolved over the years,
from Feynman diagrams to the techniques of today. In this discussion we have covered the use
of four-dimensional unitarity and augmented recursion to simplify calculation, and in doing
so have calculated the full-colour, two-loop amplitudes for the all-plus helicity configuration
for five- and six-points. We briefly mention how the seven-point version of this amplitude has
also been calculated but we await the publication of compact results for the rational part of it.
These calculations become more complicated with added legs, although we argue that with
these techniques, higher multiplicity does not pose anything more complicated than larger
ansatz and numerical files to fit against in the functional reconstruction step. Nevertheless,
an n-point formula for amplitudes is clearly highly desirable.

In this chapter, we continue the all-plus helicity discussion and we will present a conjecture
for a very specific colour partial two-loop amplitude which is valid for an arbitrary number
of legs. We have already discussed this amplitude as being the “maximally non-planar”
amplitude A

(2)
n:1B from (1.90). From a very different viewpoint, this partial amplitude arises

in open string theory from the non-planar, two loop orientable surface. Although it is very
specific this hopefully will provide a useful multi-leg two loop expression from which to study
the structure and properties of amplitudes.

We will also explicitly calculate the n-point, full-colour, cut-constructible part of the two-
loop, all-plus helicity amplitude (cut-constructible from a four-dimensional unitarity perspec-
tive). While this is not the full amplitude as we do not get the rational piece, it serves as a
good check for future calculations.

4.2 A String Theory Interlude

We assume here that the reader has already read the details of two-loop colour structures from
previous chapters. As a summary, there are no decoupling identities that relate A

(2)
n:1B to other

partial amplitudes but they do exhibit a tree-like decoupling identity (2.18). Further group

theory relations exist [39] which do give relations between A
(2)
n:1B and other SU(Nc) amplitudes

but do not fully constrain this amplitude beyond five-points. The origin of this partial
amplitude is easier to understand from a string theory perspective, although we do not go
into the details of string theory in this thesis.
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String theory contains massless gauge bosons as part of its spectrum of states and much
can be gleaned from the string theory organisation of the scattering amplitudes. An open
string has endpoints with the quantum numbers of quarks and anti-quarks (Chan-Paton
factors). A string amplitude is obtained by summing over all world sheets linking the external
states. A simple example is shown in Figure 4.1.

Figure 4.1: In open string theory, the surface linking external open string states may be
mapped to a disc where the external states are vertex operators lying on the boundary.

The surface linking the external states can be conformally mapped to the surface shown
with vertex operators attached to the boundary. Each vertex operator contains an adjoint
colour matrix T a. Tracing over the colour indices naturally gives an expansion of the ampli-
tude in terms of colour traces

A =
∑

(colour traces)× A(α)

where α is the string tension. The string theory amplitude contains contributions from an
infinite number of states however in the infinite string tension limit the amplitude reduces to
that of field theory. The colour structure survives this limit.

Figure 4.2: A typical surface with three boundaries. Vertex operators can be attached to any
of the boundaries.

A typical surface contributing at two-loop is shown in Figure 4.2. This has three bound-
aries to which gauge boson vertex operators may be attached. If any edge is free of gauge
bosons, a factor of Nc is generated by summing over the colours the boundary may have.
Populating this surface by vertex operators generates the expansion of (1.90) except for the

single trace term A
(2)
n:1B. This arises from a different category of surface. If we consider the

surface shown in Figure 4.3 with the edges identified as shown then the surface is a two-loop
surface which is non-planar, but nonetheless is oriented and has a single boundary. Attaching
gauge bosons to the edge gives the single trace term and is, in string theory, the source of
A

(2)
n:1B.
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Figure 4.3: This surface with edges A− B and C −D identified is an oriented surface with
a single edge. In string theory attaching vector bosons to the edge of this surface generates
the sub-sub-leading single trace colour term.

4.3 The All-plus Amplitudes

We are now in a position to look at the specific amplitude where all gluons have the same
helicity. Again we will assume the reader has seen the details of this amplitude in the
previous chapter so we will only summarise here. The tree-level amplitude vanishes for
this helicity configuration. Consequently, the one-loop amplitude is rational (to order ǫ0 in
the dimensional regularisation parameter) and the two-loop amplitudes will have a simpler
singular structure in ǫ.

The leading in colour one-loop partial amplitude has an all-n expression [63]

A
(1)
n:1(1

+, 2+, . . . , n+) = −1

3

1

〈1 2〉 〈2 3〉 · · · 〈n 1〉
∑

1≤i<j<k<l≤n

tr−[ijkl] +O(ǫ) . (4.1)

This expression is order ǫ0 but all-ǫ expressions exist for the first few amplitudes in this
series [46]. In this expression,

tr−[ijkl] ≡ tr(
(1− γ5)

2
/ki/kj/kk/kl) =

1

2
tr( /ki/kj/kk/kl)−

1

2
ε(i, j, k, l) = 〈i j〉 [j k] 〈k l〉 [l i] , (4.2)

and ε(i, j, k, l) = tr+[ijkl]− tr−[ijkl]. tr+[ijkl] is similarly tr(1+γ5
2

/ki/kj/kk/kl). This amplitude
has the same denominator as the Parke-Taylor amplitude. This combination will reappear
in many places so we define

CPT(a1, a2, a3, · · · , an) ≡
1

〈a1 a2〉 〈a2 a3〉 · · · 〈an a1〉
≡ 1

Cy(a1, a2, a3, · · · , an)
. (4.3)

Interestingly, the numerator of (4.1) can be split into trace terms and ε pieces (originally
called En and On in ref [63]). Specifically for the five point amplitude,

A
(1)
5:1(1

+, 2+, 3+, 4+, 5+) = −1

3

s12s23 + s23s34 + s34s45 + s45s51 + s51s12 + ε(1, 2, 3, 4)

〈1 2〉 〈2 3〉 〈3 4〉 〈4 5〉 〈5 1〉 +O(ǫ) .

(4.4)
The expression (4.1) was first conjectured by studying collinear limits starting with n = 5 and
later proven correct using off-shell recursion [96]. This division into En and On and collinear
limit viewpoint is important as we will shortly conjecture an n-point expression using only
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collinear limits and inspired by this division. In fact, we will see that On appears again in
the two-loop amplitude.

Continuing with the all-plus summary, in [70] and Chapter 2, we presented compact
expressions for the subleading terms

A
(1)
n:2(1

+; 2+, 3+, · · · , n+) = − 1

〈2 3〉 〈3 4〉 · · · 〈n 2〉
∑

2≤i<j≤n

[1 i] 〈i j〉 [j 1]

= −
∑

2≤i<j≤n [1 i] 〈i j〉 [j 1]
Cy(2, 3, · · · , n)

and for r ≥ 3

A(1)
n:r(1

+, 2+, · · · , r − 1+; r+, · · · , n+) = −2
(K2

1···r−1)
2

(〈1 2〉 〈2 3〉 · · · 〈(r − 1) 1〉)(〈r (r + 1)〉 · · · 〈n r〉)

= −2
(K2

1···r−1)
2

Cy(1, 2, · · · , r − 1)Cy(r, r + 1, · · · , n) .

These expressions are remarkably simple given the number of terms arising in the naive
application of (2.3). They will also be useful in calculating the n-point cut-constructible
piece.

At two-loop, the all-plus amplitude has been computed for four, five and six-points, its
relative simplicity making it the first target in computations. We have already covered the
five and six-point calculation in this thesis and we previously separated the amplitude into a
cut-constructible piece and a rational piece,

A(2)
n:c = P (2)

n:c +R(2)
n:c.

Here, by cut-constructible piece we mean singular pieces and polylogarithmic pieces, four-
dimensional unitarity might recover some rational pieces but it will not capture the whole
contribution and so we discard anything rational and finite, using augmented recursion to
obtain the entire rational piece as a separate calculation.

The IR singular structure of a colour partial amplitude is determined by general theo-
rems [33]. Consequently we can split the cut-constructible amplitude into a term containing

both the IR and UV divergences, U
(2)
n:c , and finite terms F

(2)
n:c ,

P (2)
n:c = U

(2)
n:c + F

(2)
n:c +O(ǫ) (4.5)

where F
(2)
n:c is the “infrared finite hard” function of reference [87].

We have seen that for this helicity configuration, both the UV divergences and collinear
IR divergences are proportional to n and cancel leaving only the soft IR singular terms [32].

We have also seen that U
(2)
n:c is known via general theorems [33] and that it is given for c = 1B

in (1.106).

Given the general expressions for U
(2)
n:c , the challenge is to compute the finite parts of the

amplitude: F
(2)
n:c and R

(2)
n:c. We calculate the polylogarithmic piece using four-dimensional

unitarity and for this partial amplitude we can calculate the rational term using only the
factorisation properties of the amplitude, which we will discuss in the following section.
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4.4 Factorisation Properties of A
(2)
n:1B

In this section we make some comments regarding the singularity structure of the sub-sub
leading amplitudes: A

(2)
n:1B and A

(2)
n:s,t. In general amplitudes have:

1. Multiparticle Poles

2. Double Complex Poles

3. Complex Poles

4. Collinear Poles

We will demonstrate that An:1B is lacking the first two and that only the last is determined
by general theorems. Fortunately this will be sufficient to generate a form for the rational
functions.

As the all-plus amplitude vanishes at tree level, multiparticle poles can only arise if the
amplitude factorises into two one-loop factors,

A1−loop(· · · , Kλ
i )×

1

K2
×A1−loop(· · · ,−K−λ

i ) . (4.6)

This is non-zero with one amplitude being the single minus one-loop amplitude and the other
the all-plus. Both of these are rational. Only the subleading amplitudes from each of the
one-loop factors will contribute to the N0

c term and the colour terms must be of the form

∼ Tr(iS1) Tr(S2)× Tr(iS3) Tr(S4) (4.7)

where we sum over the colour matrix T i and we have suppressed the explicit colour matrices
for the lists of legs Si. The S1 and S3 may be null and if both are null, we obtain a factor of
Nc. Otherwise we obtain

Tr(S1S3) Tr(S2) Tr(S4) . (4.8)

So there are (one-loop)-(one-loop) factorisations in A
(2)
n:s,t but not in A

(2)
n:1B. Therefore A

(2)
n:1B

has no 1/K2 terms for K being made up of more than two particles. The presence of
the single minus amplitude within the factorisation makes all-n expressions difficult to find
because there is no compact n-point expression for the one-loop single-minus amplitude.

Amplitudes also contain double poles in complex momentum. These arise from diagrams
such as shown in Figure 4.4 where one factor arises from the explicit pole and the other from
the loop integral.

Figure 4.4: Contributions to amplitudes giving a double pole with color indices shown.
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The colour structure of the double pole diagram therefore contains

faikf bijfkjmA(m, · · · ) . (4.9)

We can turn this into colour traces and evaluate:

(Tr[aki]− Tr[kai]) (Tr[bji]− Tr[jbi]) (Tr[kjm]− Tr[kmj])

= NcTr[bam]−NcTr[abm] .

Hence there is no N0
c contribution and so both A

(2)
n:1B and A

(2)
n:s,t are free of double poles.

Unfortunately, the single poles are not as simple as one might imagine. For example, at
five point the potential factorisation

A
(2)
5:1B −→ A

(0)
3 (a+, b+, K−)× 1

sab
× A

(2)
4:1B(K

+, · · · ) (4.10)

vanishes since A
(2)
4:1B(1

+, 2+, 3+, 4+) = 0, nonetheless A
(2)
5:1B has poles in 〈a b〉. These single

poles arise from non-factorisating terms as computed in [70,71] where the double and single
poles are determined for the n = 5 and n = 6 cases. These may be seen as “pole under the
pole” parts of double poles as seen with other colour structures, but with the coefficient of
the double pole piece being zero.

Finally we consider collinear limits. If adjacent legs a and b become collinear with ka = zK
and kb = (1− z)K, then we expect

A
(2)
n:1B(· · · , a+, b+, · · · ) −→ S++

− (a, b,K)A
(2)
n−1:1B(· · · , K+, · · · ) (4.11)

where

S++
− (a, b,K) =

1
√

z(1− z) 〈a b〉
. (4.12)

The amplitude has no collinear singularity if a and b are not adjacent. Demanding the
correct collinear behaviour was sufficient to generate the conjecture for the one-loop all plus
amplitude, and we will now generate a conjecture for the rational part of A

(2)
n:1B using collinear

limits. This will be proceeded by an explicit calculation of the finite polylogarithmic part of
the full all-plus amplitude at n-points.

4.5 Explicit Formula of R
(2)
n:1B

The four point amplitude R
(2)
4:1B has been calculated in [78, 79] as part of the full four point

computation and found to vanish:

R
(2)
4:1B(1

+, 2+, 3+, 4+) = 0 . (4.13)

The five point amplitude has been computed. In [87] , five point amplitudes A
(2)
5:1 and A

(2)
5:3

were computed explicitly. Using the results of [39] this implies a form of A
(2)
5:1B. In [70] the

A
(2)
5:r were recomputed using augmented recursion [64,69] and four dimensional unitarity and
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A
(2)
5:1B was computed directly in a simple form. The explicit form is

R
(2)
5:1B(1

+, 2+, 3+, 4+, 5+) = 2ε (1, 2, 3, 4)
∑

Z5(1,2,3,4,5)

CPT(1, 2, 5, 3, 4)

= 2ε (1, 2, 3, 4)

(

CPT(1, 2, 5, 3, 4) + CPT(2, 3, 1, 4, 5) + CPT(3, 4, 2, 5, 1)

+ CPT(4, 5, 3, 1, 2) + CPT(5, 1, 4, 2, 3)

)

Since the summation is over the five cyclic permutations of the legs (1, 2, 3, 4, 5) this expression
is manifestly cyclically symmetric. However it is far from unique since the Parke-Taylor
factors CPT are not all linearly independent. Since they are manifestly cyclic symmetric there
are clearly (n− 1)! terms. They also satisfy identities identical to the decoupling identity for
tree amplitudes which can be used to reduce these to a basis of (n− 2)! independent terms.
Specifically we can rewrite

∑

(a2,a3,·,an)∈P (2,3,··· ,n)

αiCPT(1, a2, a3, · · · , an) =
∑

(a2,a3,·,an−1)∈P (2,3,··· ,n−1)

α′
iCPT(1, a2, a3, · · · , an−1, n)

(4.14)

If we choose to rewrite R
(2)
n:1B in terms of this reduced set, cyclic symmetry will not be manifest

but there is the advantage of working with a basis rather than a spanning set. For the five
point amplitude we then have

R
(2)
5:1B(1

+, 2+, 3+, 4+, 5+) = 2ε (1, 2, 3, 4)

(

−CPT(1, 2, 3, 4, 5) (4.15)

+2
(

CPT(1, 3, 4, 2, 5) + CPT(1, 4, 3, 2, 5) + CPT(1, 4, 2, 3, 5)
)
)

This can be split into two parts

R
(2)
5:1B(1

+, 2+, 3+, 4+, 5+) = R
(2)
5:1B1

(1+, 2+, 3+, 4+, 5+) +R
(2)
5:1B2

(1+, 2+, 3+, 4+, 5+)(4.16)

where

R
(2)
5:1B1

(1+, 2+, 3+, 4+, 5+) = −2ε (1, 2, 3, 4)CPT(1, 2, 3, 4, 5) (4.17)

R
(2)
5:1B2

(1+, 2+, 3+, 4+, 5+) = 4ε (1, 2, 3, 4) (CPT(1, 3, 4, 2, 5) + CPT(1, 4, 3, 2, 5) + CPT(1, 4, 2, 3, 5))

The term R
(2)
5:1B1

is reminiscent of the one loop expression which allows us to propose the
n-point expression

R
(2)
n:1B1

(1+, 2+, · · · , n+) = −2CPT(1, 2, · · · , n− 1, n)×
∑

1≤i<j<k<l≤n

ε(i, j, k, l) (4.18)

90



The expression for R
(2)
6:1B2

has fourteen terms,

R
(2)
6:1B2

(1+, 2+, 3+, 4+, 5+, 6+) = 4i
( ε(3, 4, 5, 6)

Cy(1, 2, 4, 5, 3, 6)
+

ε(3, 4, 5, 6)

Cy(1, 2, 5, 3, 4, 6)
+

ε(3, 4, 5, 6)

Cy(1, 2, 5, 4, 3, 6)

+
ε(1, 2, 3, 4)

Cy(1, 3, 4, 2, 5, 6)
− ε(1, 2, 3, 6)

Cy(1, 3, 4, 5, 2, 6)
+

ε(1, 2, 3, 4)

Cy(1, 4, 2, 3, 5, 6)
− ε(1, 3, 4, 6)

Cy(1, 4, 2, 5, 3, 6)

+
ε(1, 2, 3, 4)

Cy(1, 4, 3, 2, 5, 6)
+

ε(1, 2, 4, 6)

Cy(1, 4, 3, 5, 2, 6)
− ε(1, 3, 4, 6)

Cy(1, 4, 5, 2, 3, 6)
+

ε(1, 2, 4, 6)

Cy(1, 4, 5, 3, 2, 6)

− ε(1, 4, 5, 6)

Cy(1, 5, 2, 3, 4, 6)
+

ε(1, 3, 5, 6)

Cy(1, 5, 2, 4, 3, 6)
+

ε(1, 3, 5, 6)

Cy(1, 5, 4, 2, 3, 6)
− ε(1, 2, 5, 6)

Cy(1, 5, 4, 3, 2, 6)

)

. (4.19)

This expression was first constructed by demanding it satisfy the correct collinear limits and
subsequently verified using augmented recursion techniques as we saw in Chapter 3.

While this is the minimal expression, it is not the best for generalising. Defining

ε({a1, a2, · · · , am}, b, c, {d1, d2, · · · , dp}) ≡
m∑

i=1

p
∑

j=1

ε(ai, b, c, dj) , (4.20)

we can replace ε(3, 4, 5, 6) by ε({1, 2}, 4, 3, 6) etc. which makes the following pattern clearer
[97].

Then by demanding the correct collinear limits we are led to the expression

R
(2)
n:1B2

(1+, 2+, · · · , n+) = 4
n−4∑

r=1

n∑

s=r+4

s−2∑

i=r+1

s−1∑

j=i+1

ε({1, · · · , r}, j, i, {s, · · · , n})(−1)i−j+1 ×
∑

α∈Sr,s,i,j

CPT({αSr,s,i,j
}) . (4.21)

To define Sr,s,i,j we divide the list of indices,

{1, 2, 3, · · · , n} = {1, · · · , r; r + 1, · · · , i− 1; i; i+ 1, · · · , j − 1; j; j + 1, · · · , s− 1; s, · · · , n}
≡ {1, · · · r, } ⊕ S1 ⊕ {i} ⊕ S2 ⊕ {j} ⊕ S3 ⊕ {s, · · · , n} (4.22)

with

S1 = {r + 1, · · · , i− 1}, S2 = {i+ 1, · · · , j − 1}, S3 = {j + 1, · · · , s− 1} . (4.23)

The sets Si may be null. Then

Sr,s,i,j = Mer(S1, S̄2, S3) (4.24)

where S̄2 is the reverse of S2 and Mer(S1, S̄2, S3) is the set of all mergers of the three sets
which respect the ordering within the Si and

αSr,s,i,j
= {1, · · · , r} ⊕ {j} ⊕ α⊕ {i} ⊕ {s, · · · , n} . (4.25)

The expression for R
(2)
n:1B2

presumably has other realisations, however within the chosen
basis the coefficients of the CPT are uniquely given. The expression has the correct collinear
limit of legs n−1 and n but does not have manifest cyclic symmetry, however we have checked
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to a large number of external legs (up to 14) that the expression is cyclically symmetric, that it

has all the correct collinear limits and it has the correct flip properties. The R
(2)
n:1B1

and R
(2)
n:1B2

do not individually satisfy the decoupling identity however the combination R
(2)
n:1B1

+ R
(2)
n:1B2

does, another strong check satisfied.

The term R
(2)
n:1B1

can be rewritten in a form which looks more similar to R
(2)
n:1B2

by manip-
ulating the tensors

R
(2)
n:1B1

(1+, 2+, · · · , n+) = −2CPT(1, 2, · · · , n)×
∑

1≤i<j<k<l≤n

ε(i, j, k, l) (4.26)

= −2CPT(1, 2, · · · , n)×
n−4∑

r=1

n∑

s=r+4

ε({1, 2, · · · , r}, r + 1, s− 1, {s, s+ 1, · · · , n}) .

This result, while only conjectured, satisfies several highly non-trivial properties and is the
first n-point rational amplitude at two-loops for QCD. An:1B will in fact be the first two-loop
QCD amplitude for arbitrary numbers of legs after we calculate the finite polylogarithmic
piece. We will now calculate this piece and will do so for the full all-plus amplitude.

4.6 Polylogarithmic Terms

We will now calculate the finite polylogarithmic piece of the all-plus amplitude F
(2)
n:c . This

will give future calculations a formula to test against. It also gives F
(2)
n:1B which along with

R
(2)
n:1B and the known IR divergent piece, will give the full n-point partial amplitude.

K4

kaK2

kb
− +

+

−
+−−

+

i

j

k

l

Figure 4.5: Four dimensional cuts of the two-loop all-plus amplitude involving an all-plus
one-loop vertex (indicated by • ). K2 may be null but K4 must contain at least two external
legs. ka and kb are single legs and all external legs are positive helicity.

We will again assume you have read the details of previous chapters but will summarise
what is needed for the calculation here. The expression for the F

(2)
n:c for the all-plus colour

amplitudes is [92] of the form

F (2)
n:c =

∑

i

ciF
2m
i

where summation variable i refers to summing over different configuration of scalar boxes, ci
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are rational coefficients of these boxes, and

F2m[S, T,K2
2 , K

2
4 ] = Li2

(

1− K2
2

s

)

+ Li2

(

1− K2
2

t

)

+ Li2

(

1− K2
4

s

)

+ Li2

(

1− K2
4

t

)

−Li2

(

1− K2
2K

2
4

st

)

+
1

2
log2

(s

t

)

.

The F2m are the combination of polylogs which appear in the two-mass box with the ori-
entation of Figure 4.5 with s = (K2 + ka)

2 and t = (K2 + kb)
2. In the specific case where

K2
2 = 0,

F2m[s, t, 0, K2
4 ] = Li2

(

1− K2
4

s

)

+ Li2

(

1− K2
4

t

)

+
1

2
log2

(s

t

)

+
π2

6
.

The key features needed for the calculation are as follows: the ability to reduce the two-loop
problem to a pseudo one-loop problem which we argued for in Chapter 2; quadruple cuts then
completely constrain the loop momentum and we can solve the box coefficients in (1.108);
compact, analytic forms of the subleading in colour, one-loop all-plus helicity amplitudes
which are presented again in Chapter 2 and presented below,

A
(1)
n:1(1

+, 2+, 3+, · · · , n+) = −1

3

∑

i<j<k<l Tr−(ijkl)

〈1 2〉 〈2 3〉 · · · 〈n 1〉

A
(1)
n:2(1

+; 2+, 3+, · · · , n+) = −
∑

i<j[1|ij|1]
〈2 3〉 〈3 4〉 · · · 〈n 2〉

A
(1)
n:3(1

+, 2+; 3+, · · · , n+) = 2
[1 2]2

〈3 4〉 〈4 5〉 · · · 〈n 3〉

A(1)
n:r(1

+, 2+, 3+, · · · , r − 1; r · · ·n+) = −2
(P 2

1...r−1)
2

(〈1 2〉 〈2 3〉 · · · 〈(r − 1) 1〉)(〈r (r + 1)〉 · · · 〈n r〉 .

Looking to an n-point calculation we change to set-based notation, allowing us to write things
in terms of sets of arbitrary numbers of legs. We start by defining the dimensionless two-mass
box function where the massive corners are described by the sets of legs A1 and A2,

F (a, b;A1;A2) = F 2m[K2
aA1

, K2
A1b

, K2
A1
, K2

A2
],

and

F (a, b; {}, A2) = F (a, b;A1, {}) = 0. (4.27)

We then need to consider all of the possible partial amplitudes that might appear on each
corner. We therefore define the following kinematic coefficients with associated box function,
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starting with the leading in colour amplitude where T1 or T2 might be empty,

C1(a, b, S1, S2, T1, T2)

= A
(0)
S (k−, S1, l

−, S2)A
(0)
3 (a+, k+, j−)A

(0)
3 (l+, b+, i−)A

(1)
T :1(i

+, T1, j
+, T2)

=
1

3
〈a b〉2 CPT (a, S1, b, S2)CPT (b, T1, a, T2)

×
(

〈b|T1T2|b〉〈a|T1T2|a〉
〈a b〉2

+
∑

u<v<w<x∈K4

tr−[uvwx] +
∑

u<v∈T1

K2
4〈b|uv|a〉+ 〈a|T2uvK4|b〉

〈b a〉

+
∑

u<v∈T2

〈b|K4uvT2|a〉
〈b a〉 +

∑

u<v<w∈K4

〈b|uvwK4|a〉
〈a b〉 +

∑

u<v<w∈T1

〈b|K4uvw|a〉
〈a b〉

+
∑

u<v<w∈T2

〈a|uvwK4|b〉
〈b a〉

)

× F (a, b;K2 = S1 ⊕ S2;K4 = T1 ⊕ T2), (4.28)

where S = |S1 ⊕ S2| + 2 and T = |T1 ⊕ T2| + 2 etc. For A
(1)
n:r with r − 1 > 1 there are two

cases,

C2(a, b, S1, S2, T1, T2, T3)

= A
(0)
S (k−, S1, l

−, S2)A
(0)
3 (a+, k+, j−)A

(0)
3 (l+, b+, i−)A

(1)
T :r(i

+, T1, j
+, T2;T3)

= 2 〈a b〉2 CPT (b, T1, a, T2)CPT (T3)CPT (a, S1, b, S2)×
(

K2
T3

)2

× F (a, b;S1 ⊕ S2;T1 ⊕ T2 ⊕ T3) (4.29)

where r − 1 = |T3| and
C3(a, b, S1, S2, T1, T2)

≡ A
(0)
S (k−, S1, l

−, S2)A
(0)
3 (a+, k+, j−)A

(0)
3 (l+, b+, i−)A

(1)
T :r(i

+, T1; j
+, T2)

= 2〈a|KT2KT1|b〉2CPT (aS1bS2)CPT (bT1)CPT (T2a).

× F (a, b;S1 ⊕ S2;T1 ⊕ T2) (4.30)

where r − 1 = |T2|+ 1. For the U(1) corners we have two coefficients

C4(a, b, S1, S2, T1, T2, t3)

≡ A
(0)
S (k−, S1, l

−, S2)A
(0)
3 (a+, k+, j−)A

(0)
3 (l+, b+, i−)A

(1)
T :2(t3 ; i

+, T1, j
+, T2)

= 〈a b〉2 CPT (a, S1, b, S2)CPT (b, T1, a, T2)

×
(

[t3|K4|a〉[t3|(KT1 −KT2)|b〉
〈a b〉 + 2[t3|T2T1|t3] +

∑

v<w∈K4

[t3|vw|t3]
)

× F (a, b;S1 ⊕ S2;T1 ⊕ T2 ⊕ t3) (4.31)

where t3 is a single leg within K4 so K4 = KT1 +KT2 + k3 = −i− j and

C5(a, b, S1, S2, T1)

= A
(0)
S (k−, S1, l

−, S2)A
(0)
3 (a+, k+, j−)A

(0)
3 (l+, b+, i−)A

(1)
T :2(i

+; j+, T1)

= −CPT (a, T1)CPT (a, S1, b, S2)×
(

K2
4〈a|T1K4|a〉+

∑

u<v∈T1

〈a|K4uvK4|a〉
)

× F (a, b;S1 ⊕ S2;T1). (4.32)
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This fifth coefficient will never contribute to the boxes when fully colour dressed due to the
ever present colour contribution

(Tr[bil]− Tr[bli])Tr[i] = Tr[bl]− Tr[bl] = 0, (4.33)

where b, i and l are the momentum around the tree corner indicated in Figure 4.5. Colour
dressing the two-mass boxes we extract the contribution to each trace structure in the fol-
lowing section.

4.6.1 Leading

Defining the sets

Uab = {a+ 1, a+ 2, · · · , b− 1} and Vab = {b+ 1, · · · , a− 1} (4.34)

ie split the list {1, 2, · · · , n} into {a, Uab , b, Vab} where a is cycled to the front we have

F
(2)
n:1(1

+, 2+, · · · , n+) =
∑

a<b

(

C1(a, b, Uab , 0, Vab , 0) + C1(a, b, 0, Vab , 0, Uab).

)

(4.35)

This is another way of writing the previously obtained n-point result [69].

4.6.2 SU(Nc) Nc Double Trace Terms

Considering terms like Tr[X]Tr[Y ] =Tr[x1, x2, · · · , xr−1]Tr[y1, y2, · · · , yn+1−r], if a and b are
within the same trace we define Uab and Vab as before with respect to the elements of this
trace, and define new lists Xi, Yj = X/{i} and Y/{j} respectively. The ordering of these sets
matters, for example Xi is defined to start with the (i+ 1)th element such that,

X = {1, 2, · · · , r} → {i, i+ 1, · · · , i− 1} → Xi = {i+ 1, i+ 2, · · · , i− 1}. (4.36)

We also need to define Spl2 as the set of splits of a list into two lists maintaining list order.
So if U = {u1, u2, · · · , ur}

Spl2(U) = {U i} = ({u1, u2, · · · , ui}, {ui+1, · · · , ur}). (4.37)

This includes splits involving the empty set ({}, U) and (U, {}) and counts them sepa-
rately. For later convenience we will define the sum over Spl2(Ua) as the sum over the
sets {(Ai

1, A
i
2)} ∈ Spl2(Ua) and similarly for leg b, {(Bi

1, B
i
2)} ∈ Spl2(Ub), where legs a and b

are the legs on the massless corners of the two-mass box.

Finally it will also be useful to define the following double sum

∑

CSpl2(U)

≡
∑

V ∈Z(U)

∑

Spl2(V )

, (4.38)
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which is a sum over the splits of all cycles of the set U . We can now write the amplitude as

F (2)
n:r (1

+, 2+, · · · (r − 1)+; r+, · · · , n+) = F (2)
n:r (X;Y )

=−
∑

a∈X

∑

b∈Y

∑

Spl2(Xa)

∑

Spl2(Yb)

[

C1(a, b, B
j
2, A

i
2, B

j
1, A

i
1) + C1(a, b, A

i
1, B

j
1, A

i
2, B

j
2)
]

+
∑

Z2(X,Y )

∑

a<b∈X

(
[

C2(a, b, 0, Vab, 0, Uab, Y ) + C2(a, b, Uab, 0, Vab, 0, Y )
]

+
∑

(Ai
1,A

i
2)∈CSpl2(Y )

[

C1(a, b, Uab, A
i
1, Vab, A

i
2) + C1(a, b, A

i
1, Vab, A

i
2, Uab)

]
)

, (4.39)

where we have suppressed notation such as the sum over Z2 meaning swapping X and Y
within that sum and a < b ∈ X being in terms of the ordering of X. This expression
works for r = 2 with the suitable U(1) modification. For example when |Y | = 1 we replace
C2(a, b, 0, Vab, 0, Uab, Y ) with C4(a, b, 0, Vab, 0, Uab, Y ) and many of the above sums become
trivial.

4.6.3 SU(Nc) Triple Trace Terms

We now consider terms like Tr[X]Tr[Y ]Tr[Z] with obvious generalisations of previously de-
fined sets.

F
(2)
n:s,t(1

+, · · · , s+; (s+ 1)+, · · · , (s+ t)+; (s+ t+ 1)+, · · · , n+) = F
(2)
n:s,t(X;Y ;Z)

=
∑

Z3(X,Y,Z)

( ∑

Z2(X,Y )

∑

a<b∈X

∑

(Ai
1,A

i
2)∈CSpl2(Y )

[

C2(a, b, Uab, A
i
1, Vab, A

i
2, Z) + C2(a, b, A

i
1, Vab, A

i
2, Uab, Z)

]

−
∑

a∈X

∑

b∈Y

∑

Spl2(Xa)

∑

Spl2(Yb)

[

C2(a, b, B
j
2, A

i
2, B

j
1, A

i
1, Z) + C2(a, b, A

i
1, B

j
1, A

i
2, B

j
2, Z)

])

. (4.40)

Again if s = 1 or s = t = 1 we simply replace C2 with C4 in the sum where appropriate.

4.6.4 Nc-independent Single Trace Term

Finally, completing the A
(2)
n:1B all-plus amplitude, we have

F
(2)
n:1B(1

+, 2+, 3+, · · · , n+) =

∑

a<b

(

−
∑

(U i
1:U

i
2)∈Spl2(Uab)

∑

(V i
1 :V

i
2 )∈Spl2(Vab)

[

C3(a, b, U
i
2, V

i
2 , V

i
1 , U

i
1) + C3(a, b, U

i
1, V

i
1 , U

i
2, V

i
2 )
]

+
∑

(V i
1 ,V

i
2 ,V

i
3 )∈Spl3(Vab)

C3(a, b, Uab, V
i
2 , V

i
1 , V

i
3 ) +

∑

(U i
1,U

i
2,U

i
3)∈Spl3(Uab)

C3(a, b, U
i
2, Vab, U

i
3, U

i
1)

)

.

(4.41)

These results are easy enough to encode and have been shown to satisfy the decoupling
identities (3.2) for up to n = 7. This is the last piece of the colour decomposition and so we

now have the full F
(2)
n finite-polylogarithmic piece.
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4.7 Conclusions

We have presented an ansatz for a very specific colour amplitude at two loops which is valid
for an arbitrary number of external legs. Although we are short of a proof of the ansatz
it satisfies consistency conditions and factorisations which suggest it is correct. We have
explicitly calculated the all-n finite cut-constructible piece of the all-plus helicity amplitude.
All-n formulae provide a very useful laboratory for testing conjectures and behaviour. For
example, it was recently shown in ref. [93] that the one-loop all-plus amplitude is conformally

invariant: however the all-n expression allows us to check that R
(2)
n:1B is not conformally

invariant although the coefficients C3 are. The all-plus amplitude at one-loop is very special
and has relations to amplitudes in other theories. In particular the N = 4 MHV amplitude
is related to it by a dimension shift of integral functions [46] and also the one-loop amplitude
coincides with that of self-dual Yang-Mills [98,99]. It would be very interesting to see if any
of these or similar properties extend to two-loop and beyond.

We have so far discussed full colour, all-plus helicity amplitudes. They have proven to be
remarkably simple using four-dimensional unitarity, with the main bottleneck being the need
for augmented recursion and functional reconstruction for the rational piece. We will now
turn to the leading in colour amplitude for a different helicity configuration, the single-minus,
two-loop amplitude.
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Chapter 5

Five-point, Two-Loop, Single-Minus
Amplitude

5.1 Preliminaries

We wish to calculate the leading in colour amplitude A
(2)
5:1(a

−, b+, c+, d+, e+). We will again
assume knowledge of certain details from previous chapters but we will review necessary
details here. We can split the amplitude into two pieces

A
(2)
5:1(a

−, b+, c+, d+, e+) = P
(2)
5:1 (a

−, b+, c+, d+, e+) +R
(2)
5:1(a

−, b+, c+, d+, e+), (5.1)

where P refers to cut constructible pieces and R refers to the rational contribution. R will not
be fully captured with four-dimensional unitarity and therefore needs augmented recursion.
This chapter will focus on calculating P

(2)
5:1 (a

−, b+, c+, d+, e+). P5:1 can be further split into
two pieces

P
(2)
5:1 (a

−, b+, c+, d+, e+) = U
(2)
5:1 (a

−, b+, c+, d+, e+) + F
(2)
5:1 (a

−, b+, c+, d+, e+), (5.2)

where U (2) is the diverging piece and F (2) is the finite remainder. As with the all-plus case, the
tree amplitude of this helicity configuration vanishes and so, for reasons given in Chapter 1,
we will deal with unrenormalised amplitudes. We know that the infrared diverging piece
takes the simple form [33],

U
(2)
5:1 (a

−, b+, c+, d+, e+) = A
(1)
5:1(a

−, b+, c+, d+, e+)× I5[a, b, c, d, e] (5.3)

where I5 is given by (1.101). We again use four-dimensional unitarity to calculate P
(2)
5:1 and

we can use U
(2)
5:1 as a good check that the calculation is correct. This amplitude is already

known and has been calculated in [2]. We develop this technique with an eye on automation,

once it has been finalised it should scale well to higher multiplicities. We will discuss R
(2)
5:1

at the end but we believe it should be at worst algebraically more difficult than the all-plus
case and should not present any further issues.

Moving on to the calculation; in the previous chapters we were able to make use of
properties of the all-plus amplitudes to reduce a two-loop problem to a pseudo one-loop
problem. A good indication that this was viable was looking at three-point, one-loop all-plus
insertions on a scalar box. For the single-minus case we may perform similar tests but discover
an issue. Using the configuration in Figure 5.1 as an example, we now need ℓ2 = αℓ2λ̃aλb
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for A(0)(l+2 , a
−, l−3 ) to be finite but this causes (2.6) to diverge. The other cut solution causes

the tree corner to diverge which tells us the problem cannot be reduced to a pseudo one-loop
problem. We must therefore approach this as an explicit two-loop calculation.

+

−
−
+

+ −

+ −

b+ c+

d+

e+a−

Figure 5.1: An insert which diverges on a quadruple cut. The small black circle indicates the
one-loop insert.

We generate numerators for a given diagram using four-dimensional unitarity. We dis-
cussed in Chapter 2 that we classify two types of diagrams; genuine two loop diagrams such
as the tricorner box where you must cut (in a topological sense) more than one internal
line to reduce the diagram to two separate diagrams, and (one− loop)2 diagrams which are
reducible by a single topological cut. Our strategy is to then look at all of the continuous
triple unitarity cuts that contribute to a product of tree amplitudes, fully constraining the
numerators of the genuine two loop diagrams. All (one− loop)2 diagrams vanish on such
cuts. We discussed this for the all-plus helicity configuration, in which case there were not
enough negative helicity legs to make a non-zero product of trees on a triple cut. The single
minus has no such problem.

ℓ1
ℓ2

ℓ3
a−

b+ c+

d+

e+

Figure 5.2: An example of a triple cut on a tricorner box. This contributes
to A(0)(a−, ℓλ1

1 , ℓλ2
2 , ℓλ3

3 ) × A(0)(−ℓ−λ3
3 ,−ℓ−λ2

2 ,−ℓ−λ1
1 , b+, c+, d+, e+) where {λ1, λ2, λ3} ∈

{−,+,+}.
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The technique was to look at all of the cuts and try to form numerators that could be
generalised and mostly blind to helicity. For example we might look at the cut,

∑

λ1,λ2,λ3

A(0)(a−, ℓλ1
1 , ℓλ2

2 , ℓλ3
3 )× A(0)(−ℓ−λ3

3 ,−ℓ−λ2
2 ,−ℓ−λ1

1 , b+, c+, d+, e+) (5.4)

where the sum over λi’s is the sum over all helicity configurations for the cut loop momenta,
many of which will vanish but all must be accounted for. We would expect the cut in
Figure 5.2 to contribute to (5.4), and so we can manipulate this equation in a way that
would provide a numerator for the remaining set of uncut propagators of this diagram. If
one then accounts for all remaining cuts that can be achieved in Figure 5.2, we can look for
a numerator that is common to all cuts for that diagram, and this numerator is then the
starting point for integration.

This needs to be done for all possible cuts of the amplitude, and we do it in a way
that manages to achieve a general set of numerators, Nη(a, k, a, i, j, ω). Here η indicates
which diagram the numerator is for, a is the single negative-helicity leg and the remaining
arguments refer to the external legs indicated on Figure 5.3 etc. Any of these remaining
arguments may be a, but a is labelled as such to indicate that all numerators vanish for
a = a. We will shortly discuss how these numerators get pieced together, but for now the
numerators and associated diagram are given as follows [100]:

Ntbx = 〈a a〉 [a|(−L3)|a〉〈ω|QL2|a〉[ω|L1PL2|a〉, (5.5)

a i
j

ωk

Q

P

ℓz

L1

L2

L3

ℓw

Figure 5.3: Tricorner box. η = tbx

Nfbbx = 〈a a〉 [a|ℓω|ω〉〈a|LALB|a〉[ω|ℓzℓωLA|a〉. (5.6)
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a i
j

ωk

L3

ℓw

ℓw

LA LB

L1

ℓz

Figure 5.4: Bubble in box between two null corners. η = nfbbx.

The remaining numerators for diagrams with all-plus bubbles will be left to Appendix A.
It will later be shown that while they are needed for the cuts they all vanish upon integration
as they contain 〈a|LALB|a〉. The remaining all-plus triangle diagrams are as follows:

Nstt =− 〈a a〉 [a|(−L3)|a〉〈a|L2Q|k〉[k|L2|a〉
+ δja 〈a a〉 [a|(−L3)|a〉 〈a k〉 [k|L1Q(−L3)|a〉, (5.7)

a

k
i
j

ω

L1

L2

L3ℓw

QP

Figure 5.5: Triangle in triangle, η = stt. There is an extra term when the negative helicity
leg is in the middle of the massive corner a = j.

where here δja indicates an additional term only present when a = j is in the middle of
massive corner. Pressing on we have

NK21 = 〈a a〉 [a|ℓw|a〉 〈a k〉 [k|P |a〉
+δja 〈a a〉 [a|P |a〉 〈a k〉 [k|P |a〉
+δja 〈a a〉 [a|ℓw|a〉 〈a k〉 [k|ℓw|a〉, (5.8)
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i j ω

ka ℓw P

L3

L2

L1

Figure 5.6: Kite diagram with two null corners and one massive corner, with η = K21. There
are extra terms when the negative helicity leg is in the middle of the massive corner a = j.

NK31 = 〈a a〉 [a|ℓw|a〉 〈aω〉 [ω|L1|a〉, (5.9)

a

k

ω

i

j
ℓzL1

ℓw L3

L2

Figure 5.7: Kite diagram with three null corners and one massive corner, with η = K31.

NK12 = 〈a a〉 [a|(−L3)|a〉〈a|L2(−L3)|a〉, (5.10)

ji

a

ω

k
ℓwL3

Q ℓz

L2

Figure 5.8: Kite diagram with one null corner and two massive corners, with η = K12.
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and finally,

NK1Q =
1

2
〈a|aL3|a〉〈a|aQ|a〉. (5.11)

ji

a

ω k

ℓwL3

Q P

L2

Figure 5.9: Kite diagram with one null corner and one massive corner, with η = K1Q.

Note that the numerators are written in a way that is valid for on-shell or off-shell loop
momenta. The flips of these diagrams were also built into the numerators, where the flips
of the diagrams are demonstrated in Figure 5.10. Using the same normalisation as in the
all-plus cases, the numerators were built such that in total we need

I(2)(a−, b+, c+, d+, e+) =

=
2

〈a b〉 〈b c〉 〈c d〉 〈d e〉 〈e a〉
∑

{k,a,i,j,w}

∑

η

(

Nη(a, k, a, i, j, ω)

Pη(a, k, a, i, j, ω)
+

Nη(a, k, ω, j, i, a)

Pη(a, k, ω, j, i, a)

)

(5.12)

where the sum over {k, a, i, j, w} is over Z5(a, b, c, d, e), Pη are the propagators for the dia-
gram, and I(2) is the object that needs to be integrated. One must not forget any relevant
symmetry factors for diagrams such as K21 whose flips are not distinct diagrams. Noting
that all of the t < 7 diagrams with all-plus triangles may be related to the tricorner box with
various propagators pinched, the task is then to integrate these numerators, first using the
two-mass triangle parametrisation of the all-plus triangle in η = tbx. For the second integral,
one could either separate them out into box, triangle and bubble integrals but, as we will
see, we elected to treat the second integral as a box parametrisation across all structures.

Figure 5.10: Two distinct diagrams but whose numerators will be related by a flip.

Before we integrate, it behoves us to address the (one− loop)2 diagrams. We can view
these diagrams as pseudo one-loop diagrams with loop inserts in a similar way to the all-plus
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case. The difference here is that a quadruple cut will not simply give us a product of tree
amplitudes and we need to calculate the numerators for each insert. This is done by looking
at double cuts on the already constrained numerators such as the one in Figure 5.11 which
contributes to the following amplitude cut,

Cabl =
1

32π2

∑

λ1,λ2

A(1)(a−, b+, ℓλ1
1 , ℓλ2

2 )× A(0)(−ℓ−λ2
2 ,−ℓ−λ1

1 , c+, d+, e+). (5.13)

ℓ1
ℓ2

ℓ3
a−

b+ c+

d+

e+

Figure 5.11: An example of a double cut on a tricorner box. The cut will act on the numerator
Ntbx(a, a, b, c, d, e) in this case.

We then find the inserts via

I(1,1)
abℓ (a−, b+, c+, d+, e+) = Cabℓ −

µ4−D

iπ
D
2 e−ǫγ

∫

dDℓ I(2)(a−, b+, c+, d+, e+)|abℓ (5.14)

where I(1,1)
abℓ is referring to the pseudo one-loop insert pieces that will need to be integrated,

abℓ is referring to cuts which constrain legs a and b to the one-loop side of the cut. We take
ǫ → 0 once the first integral of the genuine two loop pieces I(2) is done as it is a cut in four
dimensions.

It is important to remember that a given insert might contribute to multiple cuts and we
therefore need to find the overlaps between cuts to ensure we have the correct numerator.
For example, in Figure 5.12, if we have b+ on the loop corner as with Figure 5.11, then

the left diagram contributes to A(1)(a−, b+, ℓ
λℓ1
1 , ℓ

ℓλ2
2 ) × A(0)(−ℓ

−ℓλ2
2 ,−ℓ

−ℓλ1
1 , c+, d+, e+) while

the right diagram contributes to A(1)(ℓ
ℓλ1
1 , ℓ

ℓλ2
2 , b+, c+, d+)× A(0)(e+, a−,−ℓ

−λℓ2
2 ,−ℓ

−ℓλ1
1 ). We

therefore need to look at both of these cuts of the amplitude and find a common numerator
to each with the associated uncut box propagators. We do this for every cut and look for
every diagram that contributes to multiple cuts. Once this is done, the remainder will then
be inserts into one-mass triangles and massive bubbles which only contribute to one cut (and
as we will see are the source of the IR piece for this amplitude).
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Figure 5.12: A loop insert that contributes to multiple double cuts, with the loop given by
the black circle. We find the numerator that is associated with each box of this type such
that it correctly contributes to each cut.

These inserts are given in Appendix A [100]. We can use standard one-loop techniques
such as generalised unitarity to isolate scalar box, triangle and bubble coefficients. We will
therefore begin by integrating the inserts as this simply uses techniques discussed in the
all-plus configuration.

5.2 Inserts

We now have a set of genuine two-loop numerators which gives us the correct triple-cuts
into tree-tree pieces. We also have a set of inserts in one-mass boxes, two-mass triangles,
one-mass triangles and bubbles that, along with the two-loop numerators, give us the correct
double cuts into (one-loop)-tree and tree-(one-loop) pieces. The inserts already have one loop
momentum accounted for, and so we can use generalised unitarity to calculate the remaining
loop integral. This will involve performing quadruple cuts, triple cuts and double cuts in a
way that isolates the coefficients of the scalar box, triangle and bubble integrals.

5.2.1 Quadruple cuts

We will begin with the quadruple cuts. As previously discussed, we perform four cuts which
can fully constrain the loop momentum. The previous calculation of the quadruple cuts
were for the specific case of factorising the all-plus amplitudes into a product of three tree
amplitudes and a one-loop amplitude, where one solution caused the trees to vanish and the
remaining solution gave the entire coefficient. Here we are cutting a box with an already
specified numerator so we will need both solutions. Keeping the general external momentum
labels as in Figure 5.3 we have

ℓ1 − ℓ2 = ω

ℓ2 − ℓ3 = k

ℓ3 + ℓ4 = a

ℓ4 + ℓ1 = Pij. (5.15)

105



Solving for ℓ2

ℓ21 = [ℓ2 ω] 〈ℓ2 ω〉 = 0, (5.16)

ℓ23 = [ℓ2 k] 〈k ℓ2〉 = 0, (5.17)

ℓ
(1)
2 = α

(1)
ℓ2
λ̃kλω, (5.18)

ℓ
(2)
2 = α

(2)
ℓ2
λ̃ωλk. (5.19)

We solve αℓ2 using momentum conservation around two corners

ℓ24 = (Pka − ℓ2)
2 = −[ℓ2|Pka|ℓ2〉+ ska = 0,

α
(1)
ℓ2

=
〈k a〉
〈ω a〉 ,

α
(2)
ℓ2

=
[k a]

[ω a]
,

ℓ
(1)
1 =

〈ω a〉 λ̃ω + 〈k a〉 λ̃k

〈ω a〉 λω , ℓ
(2)
1 =

[ω a]λω + [k a]λk

[ω a]
λ̃ω. (5.20)

We then average over both solutions after simply substituting them into the insert numera-
tors.

5.2.2 Triple Cuts

As discussed in previous chapters, the triple cuts will leave one variable unconstrained and
also picks up contributions from the scalar boxes. There are simple enough ways of approach-
ing this problem, for example one way of extracting this coefficient is given in [101] but one
has to be careful of the Jacobian when performing these cuts on box structures. This prac-
tically translates to there being a vanishing solution and non-vanishing solution depending
on which propagator you start your parametrisation with, and then you must average over
these two solutions. This takes some extra work to ensure you have the correct solution and
so we develop a new parametrisation for triangles with at least one massless corner.

We start with the general condition that cut momentum ℓ0 flows away from a massless
corner and towards a massive corner, as shown in Figure 5.13. The number of legs in the
massive corner is irrelevant and the following is blind to what the mass is on the third corner.
We have the three δ-functions:

δ
(
ℓ20
)

δ
(
(ℓ0 − P )2

)
δ
(
(ℓ0 + e)2

)
(5.21)

and we can write P as a sum of two null momenta as we have done previously

P = P ♭ +
P 2

[η|P |η〉η = P ♭ + P ♯. (5.22)

ℓ0P e

Figure 5.13: Triple cut configuration, with ℓ0 flowing from null leg e2 = 0 and towards P 2 6= 0.
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We may use the null momenta in (5.22) to construct an orthogonal basis for ℓ0. We choose

ℓ0 = A(P ♭ + P ♯) + B(P ♭ − P ♯) + C

(

f

〈
q P ♭

〉

〈q P ♯〉 λ̃P ♭λP ♯ + f

[
q P ♭

]

[q P ♯]
λ̃P ♯λP ♭

)

+ iD

(

f

〈
q P ♭

〉

〈q P ♯〉 λ̃P ♭λP ♯ − f

[
q P ♭

]

[q P ♯]
λ̃P ♯λP ♭

)

. (5.23)

Here f is an arbitrary scalar and q an arbitrary null vector. To keep ℓ0 real we impose that
A, B, C, D, f, P ♯, P ♭ and q are all real. This is clear when writing

ℓ20 = P 2
(
A2 −B2 + f 2 [q|P ♭|q〉

[q|P ♯|q〉(C
2 +D2)

)

= P 2
(
A2 −B2 + C2 +D2

)
(5.24)

where we have made an obvious choice of f 2 for the last line. We also make the choice in
(5.22) that η = e, so that

〈
P ♯ e

〉
=
[
P ♯ e

]
= 0 and we can write

(ℓ0 − P )2 = P 2
(
(A− 1)2 −B2 + C2 +D2

)

(ℓ0 + e)2 = P 2
(
A2 − B2 + C2 +D2

)
+ 2(A+B)e · P ♭. (5.25)

Making the change of variables to {A,B,C,D}
∫

d4ℓ0 → (P 2)2
∫

dAdBdCdD, (5.26)

and recalling that

δ|g(x)| =
∑

i

δ(x− xi)

| d
dx
g(x)|x=xi

=
∑

i

δ(x− xi)

|δ′i|
, (5.27)

where xi are the roots of g(x), we do the B integration using δ1 = δ(ℓ20)

B2 = A2 + C2 +D2 and
1

|δ′| =
1

|2
√
A2 + C2 +D2P 2|

. (5.28)

Next we can do the A integration using δ2 = δ
(
(ℓ0 − P )2

)
= δ
(
P 2[(A− 1)2 − A2]

)
, finding

A =
1

2
and

1

|δ′| =
1

|2P 2| . (5.29)

The last constraint is δ3 = δ
(
(ℓ0 + e)2

)
= δ

(
[1±

√
1 + 4C2 + 4D2]e · P ♭

)
which leads to

(performing the C integration)

1

|δ′| =
√
1 + 4C2 + 4D2

|4e · P ♭C| . (5.30)

There is an issue here that the only real solution to the constraint is that C2 + D2 = 0 →
C = D = 0 and the integral diverges. Luckily this is just a coordinate singularity and we
can switch to polar coordinates for the remaining integrals

C = ρ cos(θ) D = ρ sin(θ)

∫

dCdD →
∫

ρ dρ dθ, (5.31)
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and so

∫

dCδ
(

[1±
√
1 + 4C2 + 4D2]e · P ♭

)

→
∫

dρ
ρ
√

1 + 4ρ2δ|ρ|
ρ|4e · P ♭| , (5.32)

where we see the ρ in the Jacobian cancels the ρ from the δ function and we can constrain
ρ = 0. There may be cases where this integrand being naively finite might cause issues but it
would be easy enough to put in a small mass for e which would keep ρ small but finite, and
then set e massless later. However, this might be overcautious as everything here is algebraic
and we find that this parametrisation matches the parametrisation in [101] with the suitable
corrections already discussed in place. The remaining integral is just an angular integral and
we see that cutting a box, with uncut propagator P(ℓ0) and numerator N (ℓ0), schematically
gives us

∫

d4ℓ0δ1δ2δ3
N (ℓ0)

P(ℓ0)
=

∫

d4ℓ0δ1δ2δ3

(
cbox
P(ℓ0)

+ ctri

)

, (5.33)

where cbox is the coefficient from the quadruple cuts and ctri is the scalar triangle coefficient
associated with this cut. We then simply have

ctri =
N (ℓ0)− cbox

P(ℓ0)

∣
∣
ℓ0=P ♯ . (5.34)

One then just has to be careful that nothing diverges at ℓ0 = P ♯ = P 2

[e|P |e〉
e, but otherwise

(5.34) is a very simple way of extracting the triangle coefficients. There are some interesting
patterns in the results thus far that may be worth further investigation. The box and two-
mass triangle inserts were organised so we could identify which pieces would contribute to
different double cuts. We then had the one-mass triangle and bubble inserts which only
contributed to one double cut. We find that for every box and two-mass triangle insert,
N (P ♯) = 0. This means that all of the ctri for these inserts go as − cbox

P(P ♯)
, and so the IR

contributions of the box cuts cancel exactly with the triangle cuts on these inserts. We are
then left with the one-mass triangle and bubble inserts. Triangle cuts on the bubble inserts
vanish. Interestingly we found that for every one-mass triangle insert,

ci,i+1
tri I1m3 (si,i+1) =

1

ǫ2
N i,i+1(P ♯)

si,i+1

(−si,i+1)
−ǫ = − 1

ǫ2
A

(1)
5 (a−, b+, c+, d+, e+)(−si,i+1)

−ǫ

= A
(1)
5 (a−, b+, c+, d+, e+)× I

(2)
i,i+1, (5.35)

where N i,i+1 is referring to the insert in the one-mass triangle with mass P 2
i,i+1, and I

(2)
i,i+1 is

the IR divergent structure (1.97). This is true of all of these inserts and so summing over all
of the triangles gives the entire IR piece. Perhaps there is some deeper reason for this but this
was surprising to me as it means we should expect an overall zero coefficient for the 1

ǫ2
pieces

from the (tree)-(tree) genuine two-loop side, and that any remaining 1
ǫ
pieces from bubble

cuts should cancel with all 1
ǫ
pieces from the genuine two-loop side. The inserts themselves do

not resemble each other apart from ones that can be related by flips so it was also a surprise
that they all reduced to the one-loop single-minus amplitude. Closer inspection of the inserts
may be warranted as there may be lessons learned from seeing which pieces cancel with each
other. Can we reduce calculation further if we know a priori where the redundancies occur?
These are questions that the author did not have time to study further unfortunately.
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5.2.3 Double Cuts

We use the canonical basis approach [91] to extract the scalar bubble coefficients. This
involves rewriting numerators on specific cuts into a canonical form where the coefficient of
the respective scalar bubble integral may be extracted. The canonical bases can be organised
into terms with uncut “massless” propagators of the form (ℓ1 ± k)2 where k2 = 0 and ℓ1 is
one of the cut loop momenta, or “massive” propagators where k2 6= 0. Of course they are all
massless in the sense that there is no internal mass but we will hereby refer to massless and
massive to indicate the value of k2, similarly to how we refer to massive triangles etc.

Looking to higher multiplicities there were some interesting features that simplified the
form of the massive propagator results, independently of the number of legs.

ℓ1

ℓ2

P −P

Figure 5.14: The bubble considered in the double cuts.

First lets review some results of [91] for completeness. In the following ℓ1 and ℓ2 refer to
the cut momenta flowing in the directions indicated by Figure 5.14. Note that this differs
from how we have defined them in the double cut, A(1) × A(0), where ℓ1 → −ℓ1. Starting
with an example, a piece of an insert may be written in a canonical form with a massless
propagator

H1(A;B; ℓ1) =
〈ℓ1 B〉
〈ℓ1 A〉

= − [A|ℓ1|B〉
(ℓ1 − kA)2

(5.36)

where k2
A = 0 and kA is taken to be real. This was then evaluated as a covariant, linear

triangle integral shown in Figure 5.15 and then the coefficient of − log(−P 2) was extracted
to give

H1(a;B;P ) =
[A|P |B〉
[A|P |A〉 . (5.37)

−P

ℓ1

kA

P − kA ℓ2

Figure 5.15: Double cut on a triangle. Configuration used for H1 calculation.

This is all easy enough to automate in Mathematica, where one has to rewrite the inserts
into canonical form but then can simply replace the canonincal forms with the results. The
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massive propagator cases take a bit more work to automate. Starting with the example

G0(B;D;Q; ℓ1) =
[D|ℓ1|B〉
(ℓ1 +Q)2

, (5.38)

one can define null linear combinations of P and Q,

P̂ µ =
1

2
√
∆3

(

P 2Qµ −
(

P ·Q−
√
∆3

2

)

P µ

)

, Q̂µ =
1

2
√
∆3

(

−P 2Qµ +
(

P ·Q+

√
∆3

2

)

P µ

)

,

(5.39)

where ∆3 = 4(P · Q)2 − 4P 2Q2 is the Gram determinant of the triangle integral that has
legs of momenta P, Q and −P − Q. This linear combination (5.39) is of course valid for
any momenta P and Q. The scalar bubble coefficient associated with (5.38) can then be
separated into two H1 pieces which are rational conjugates of each other, and then combined
to give the totally rational,

G0(B;D;Q;P ) =
[D|P (QP − PQ)|B〉

∆3

=
[D|P [Q,P ]|B〉

∆3

. (5.40)

This again is easily generalised for a given configuration, needing only P and Q to be specif-
ically entered as arguments and with B and D being determined by code similar to the
massless cases. Going to O(ℓ) and higher, naively plugging the results from [91] gets messy
but there are features of double cutting two-mass easy boxes that simplify the form of the
results, and we can reduce the redundancies a bit earlier rather than at the end. This will
be done in a way that scales to any number of legs and can be automated.

Higher order, massive propagator terms can be reduced to G2
1 and G1

1 forms, where

Gn
1 = fn(ℓ)

[D ℓ] 〈C ℓ〉 〈B ℓ〉
[ℓ|Q|ℓ〉 〈Aℓ〉 , (5.41)

with fn(ℓ) being a polynomial of degree n in ℓ, and we have used the fact that (ℓ− P )2 = 0
to rewrite the massive propagator

(ℓ+Q)2 = Q2 + [ℓ|Q|ℓ〉 = [ℓ|Q+
Q2

P 2
P |ℓ〉 = [ℓ|Q|ℓ〉. (5.42)

We can rewrite (5.41) as

Gn
1 〈A|PQ|A〉

=
P 2fn(ℓ) 〈B ℓ〉

[ℓ|Q|ℓ〉

(

[D|Q|A〉 〈C A〉
〈Aℓ〉 +

4

P 2

(

[D|Q|P̂ 〉〈C|P̂ Q̂|A〉
〈

ℓ P̂
〉 +

[D|Q|Q̂〉〈C|Q̂P̂ |A〉
〈

ℓ Q̂
〉

))

− fn(ℓ) 〈B ℓ〉
(

[D|P |A〉 〈C A〉
〈Aℓ〉 +

4

P 2

(

[D|P |P̂ 〉〈C|P̂ Q̂|A〉
〈

ℓ P̂
〉 +

[D|P |Q̂〉〈C|Q̂P̂ |A〉
〈

ℓ Q̂
〉

))

.

(5.43)

Here the P̂ and Q̂ are the null linear combination (5.39) but with Q → Q. This splits Gn
1

into pieces with either only massless propagators, or terms with the massive propagator but
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of lower order in ℓ. This can be iteratively applied until everything is in a canonical form.
The remaining terms of interest are then

GQ̂
1 =

[D ℓ] 〈C ℓ〉 〈B ℓ〉
[ℓ|Q|ℓ〉

〈

Q̂ ℓ
〉 , (5.44)

GQ̂
1 = 2

[D|[Q, P ]P |C〉[Q̂|P |B〉+
(
P 2[D|Q|B〉 − (P · Q+

√
∆3/2))[D|P |B〉

)
[Q̂|P |C〉

P 2∆3

,

(5.45)

and a similar result at O(ℓ), again all given in [91]. GP̂
1 is simply related to (5.45) via rational

conjugation.

These results generalise to any multiplicity but quickly become unwieldy and we would
like to reduce the size of our results for faster numerical evaluation, especially in future
calculations when numerical fitting will be required. Naively applying these results for this
case leads to a lot of redundancies which can be dealt with analytically without losing much
generality, the only constraint being that the cuts are on “two-mass-easy” boxes, including
the one-mass box limit of this as we see in the five-point case. This constraint is fine for
single-minus calculations as we do not expect to see “two-mass-hard” boxes or higher mass
boxes [100].

w Q

k = −(P +Q)

P − w

ℓ1

ℓ2

ℓ1

ℓ2

P

k = −(P +Q)
Q− w

w

Figure 5.16: The two independent double cuts that contribute to the non-zero scalar bubble
coefficients. Here k2 = (P +Q)2 = 0.

The simplification comes from making a suitable choice of ℓ1 such that (P + Q)2 = 0.
This can always be achieved for the two-mass-easy boxes, as shown in Figure 5.16. Of course
it may be easier, depending on the numerator, to write the uncut propagators as both being
massless but with different cut momenta ℓ1 and ℓ2, but this often leads to canonical forms
that require more work. From here we see that

Q2 = Q2 +
Q4

P 2
+ 2

Q2

P 2
P ·Q =

Q2

P 2
(P +Q)2 = 0. (5.46)

This is useful as if we write P̂ and Q̂ as nullified combinations of each other the corresponding
Gram determinant simplifies to ∆3 = 4 (P · Q)2 and so

√
∆3 is rational. Keeping the labelling

from Figure 5.16 such that P + Q = −k, it is easy to show that further simplifications can
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be made such as

2P · Q = 2P ·
(

Q+
Q2

P 2
P

)

= [k|P |k〉,

P̂ µ =
P 2

4P · QQµ,

Q̂µ =
1

4P · Q ,
(
−P 2Qµ + 2P · QP µ

)
=

P 2

2[k|P |k〉k
µ,

〈X|PQ|Y 〉 = 〈X|kP |Y 〉,

〈X|kQ|Y 〉 = [k|P |k〉
P 2

〈X|kP |y〉,
∆(P,Q) = 4(P ·Q)2 − 4P 2Q2

=
(
(P +Q)2 − P 2 −Q2

)2 − 4P 2Q2 = (P 2 −Q2)2 = [k|P |k〉2. (5.47)

Q being null only relies on the massive propagator being (ℓ1 +Q)2 with (ℓ1 − P )2 = 0 such
that (P +Q)2 = 0, or equivalently with ℓ1 → −ℓ1. The uncut propagators simply specify P
and Q. All of the above allows us to write the reduction (5.43) in a more useful form

[D|ℓ|C〉 〈B ℓ〉
[ℓ|Q|ℓ〉 〈Aℓ〉 =

〈B ℓ〉
〈A|Pk|A〉

(

P 2

[ℓ|Q|ℓ〉

(
[D|Q|A〉 〈C A〉

〈Aℓ〉 +
P 2[D|Q|Q̂〉〈C|kQ|A〉

[k|P |k〉2
〈

ℓ Q̂
〉

)

−
(
[D|P |A〉 〈C A〉

〈Aℓ〉 +
P 2

[k|P |k〉2
(
[D|P |P̂ 〉〈C|Qk|A〉

〈

ℓ P̂
〉 +

[D|P |Q̂〉〈C|kQ|A〉
〈

ℓ Q̂
〉

)))

, (5.48)

as well as

GQ̂
1 = 2

[D|[Q,P ]P |C〉[Q̂|P |B〉 − P 2[D|k|B〉[Q̂|P |C〉
P 2[k|P |k〉2 ,

GP̂
1 = 2

[D|[Q,P ]P |C〉[P̂ |P |B〉+
(
P 2[D|Q|B〉+Q2[D|P |B〉

)
[P̂ |P |C〉

P 2[k|P |k〉2 . (5.49)

At two-loop we only see cubic terms so this only needs to be performed once per cubic term
as the results for all of the special cases are known up to quadratic order. All of these results
are easily coded up with only P and Q needing to be specified. The results here work for
any two-mass easy box with any number of legs so this should all scale well going to higher
multiplicity and reduce computational requirements.

One final thing, the inserts required a new canonical form to be calculated of the form

H3
0(D1, D2, D3, B1, B2, B3) = [D1|ℓ|B1〉[D2|ℓ|B2〉[D3|ℓ|B3〉. (5.50)

A new parametrisation is proposed here where we again define P = P ♭+P ♯ for ℓ2 = (ℓ−P )2 =
0:

ℓ = (P ♭ + P ♯)A+ (P ♭ − P ♯)B + λP ♭λ̃P ♯C + λP ♯λ̃P ♭C∗ (5.51)

and we want to change to spherical polar coordinates. To do this we need to be careful that
P ♭
0 > 0 and P ♯

0 > 0. This is because the magnitudes of the basis vectors are P 2, −P 2, −P 2
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and −P 2, and for the mostly minus metric we want P 2 > 0 to have the correct spherical
integration region. Having changed to spherical polar coordinates and imposing the cuts, we
have left over

ℓ =
P ♭ + P ♯

2
+ cos(θ)

P ♭ − P ♯

2
+ sin(θ)eiφ

λP ♭λ̃P ♯

2
+ sin(θ)e−iφλP ♯λ̃P ♭

2

= cos2
(
θ

2

)

P ♭ + sin2

(
θ

2

)

P ♯ + sin

(
θ

2

)

cos

(
θ

2

)

eiφλP ♭λ̃P ♯ + sin

(
θ

2

)

cos

(
θ

2

)

e−iφλP ♯λ̃P ♭ ,

(5.52)

and we can read off that

λℓ = cos

(
θ

2

)

λP ♭ + sin

(
θ

2

)

e−iφλP ♯ , λ̃ℓ = cos

(
θ

2

)

λ̃P ♭ + sin

(
θ

2

)

eiφλ̃P ♯ . (5.53)

We may then define

z = e−iφ, (5.54)

include a normalisation measure of

− sin(θ)

2(2πi)z
, (5.55)

and then perform the θ integral and the z integral via Cauchy’s Theorem to obtain (after a
little tidying)

H3
0 (D1, D2, D3, B1, B2, B3, P )

=
1

4
[D1|P |B1〉[D2|P |B2〉[D3|P |B3〉 −

P 2

12
[D2 D3] 〈B2 B3〉 [D1|P |B1〉

− P 2

12
[D3 D1] 〈B3 B1〉 [D2|P |B2〉 −

P 2

12
[D1 D2] 〈B1 B2〉 [D3|P |B3〉

=
1

12

∑

i∈Z3(1,2,3)

(

[Di|P |Bi〉[Di+1|P |Bi+1〉[Di+2|P |Bi+2〉 − P 2 [Di Di+1] 〈Bi Bi+1〉 [Di+2|P |Bi+2〉
)

.

(5.56)

We therefore have target canonical forms, an automated piece of code which takes them and
gives the coefficient of the scalar bubble, and a way of reducing the algebraic complexity
of massive propagator pieces on two-mass easy boxes. This is all written to scale to higher
multiplicities.

Some preliminary tests that we can perform include checking the correct flip symmetries
of the results. We expect the insert numerators to have the same flip symmetries as the
amplitude, and indeed the numerators have been built to accommodate these flip symmetries.
We therefore expect the cuts and integrated results to also have the same flip symmetries, as
indicated by the example given in Figure 5.17.
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a b+c

d
e

ℓ1

ℓ2

ℓ1 ℓ2

d+ e

a
b

c

Figure 5.17: Two insert structures related by flips. The integrated result of the left diagram
with {a, b, c, d, e} = {1, 2, 3, 4, 5} is equal to that of the right diagram with {a, b, c, d, e} =
{1, 5, 4, 3, 2}.

With that said we now have all of the inserts integrated and can move on to the genuine
two-loop structures.

5.3 Two-Loop Pieces

We have so far only needed to deal with pseudo one-loop calculations but it now behoves us
to look at explicit two-loop integrals. We can look at the structures and expect at worst a
two-mass triangle integral followed by a box integral. These integrals will have varying powers
on the propagators and Feynman parameters in the numerators. Every numerator associated
with a diagram that contains a bubble within an internal propagator looks schematically like

(LA|a〉)n〈a|LAℓw|a〉
L2
A(LA − ℓw)2

→ (LA|a〉)n〈a|LAℓw|a〉
(
(LA − xℓw)2 + x(1− x)ℓ2w

)2 → ((LA + xℓw)|a〉)n〈a|LAℓw|a〉
(
L2
A + x(1− x)ℓ2w

)2

(5.57)

where we have suppressed integral notation, (LA|a〉)n indicates that any other factors of LA

are capped with leg a, and x is the Feynman shift variable. We are then left with tensor
integrals that integrate to 0 either because they are odd powers of LA as there is always at
least one power, or because the result contains 〈a a〉 .

We therefore only have contributions from diagrams with triangle insertions. We see some
of the numerators go up to as much as (L3)

4 and so expect at worst quartic powers in the
Feynman parameters. We can solve these integrals using some well established techniques
such as dimension shifting the integrals and making use of generalised scalar box integrals.
We will briefly review these two techniques but then calculate a new version of the generalised
box result which is much more compact and easier to perform ǫ-expansions on.

5.3.1 Dimension Shifting

We make use of the identities for the general Feynman parametrisation

1

Dν1
1 Dν2

2 . . . Dνn
n

=
Γ [σ]

∏n
i=1 Γ(νi)

∫ ∞

0

n∏

i=1

dxix
νi−1
i

δ
(

1−∑n
j=1 xj

)

[x1D1 + x2D2 + . . .+ xnDn]
σ , (5.58)
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where σ =
∑n

i=1 νi, and the loop momentum integral

∫
dDℓ

iπ
D
2

ℓµ1 . . . ℓµ2m

[ℓ2 −R2 + iδ]σ
= (−1)σ

[
(g...)⊗m

]{µ1...µ2m}
(

−1

2

)m Γ[σ −m− D
2
]

Γ[σ]
(R2 − iδ)−σ+m+D

2 ,

(5.59)

where
[
(g...)⊗m

]{µ1...µ2m}
means that µi are distributed over m copies of g in all possible ways.

Given
∑

i xi = 1 we complete the square to write

x1D1 + · · · xnDn → ℓ2 −R2 + iδ, (5.60)

and so we can combine (5.58) and (5.59) to give a scalar integral

ID
s (ν1, . . . , νn) :=

∫
dDℓ

Dν1
1 . . . Dνn

n

= (−1)σ
Γ(σ − D

2
)

∏n
i=1 Γ(νi)

∫ ∞

0

n∏

i=1

dxix
νi−1
i

iπ
D
2 δ(1−∑n

j=1 xj)

[R2 − iδ]σ−
D
2

,

(5.61)

where D is the dimension and does not have to be 4 − 2ǫ. We also need to consider tensor
integrals with possible extra powers of the Feynman parameters δνi,

ID
t (ν1, δν1, ν2, δν2, · · · , νn, δνn)

= p1µ1 . . . p2mµ2m

Γ(σ)
∏n

i=1 Γ(νi)

∫

dDℓ

∫ ∞

0

n∏

i=1

dxix
νi−1
i

∏n
j=1 x

δνj
j ℓµ1 . . . ℓµ2mδ(1−∑n

k=1 xk)

[x1D1 + x2D2 + . . .+ xnDn]
σ

= p1µ1 . . . p2mµ2m

[
(g...)⊗m

]{µ1...µ2m}
(

−1

2

)m Γ(σ −m− D
2
)

∏n
i=1 Γ(νi)

×
∫ ∞

0

n∏

i=1

dxix
νi+δxi−1
i

iπ
D
2 δ(1−∑1

j=1 xj)(−1)σ

[R2 − iδ]σ+δσ−[D
2
+m+δσ]

= p1µ1 . . . p2mµ2m

[
(g...)⊗m

]{µ1...µ2m}
(

−1

2

)m

×
n∏

i=1

Γ(νi + δνi)

Γ(νi)
π

D
2
− D̃

2 (−1)δσID̃
s (ν1 + δν1, · · · , νn + δνn), (5.62)

where δσ =
∑n

i=1 δνi and the shifted dimension is

D̃ = D + 2m+ 2δσ. (5.63)

This allows us to relate any tensor integrals with bonus powers of Feynman parameters in
the numerator to be related to scalar integrals with shifted powers on the propagators and
shifted dimensions. Again, we expect at worst a two-mass triangle integral followed by a
one-mass box integral with quartic power of loop momentum. We therefore would like to
consider a general form of a scalar one-mass box integral with arbitrary dimension or powers
of propagators. This has been previously calculated but we will push it further and provide
a much more compact form.
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5.3.2 Generalised scalar one-mass box integral

k4

ν4

ν3
k3

ν2

k2

k1
ν1

Figure 5.18: A generalised one-mass box with k2
4 = M2 and all other k2

i = 0. The internal
propagators {A1, A2, A3, A4} have arbitrary powers {ν1, ν2, ν3, ν4}.

Our starting point was the result from [1] which used a derivation in [102] which we will
summarise here. Starting with the labels in Figure 5.18, the generic scalar one-mass box
integral is given by

ID4 (ν1, ν2, ν3, ν4; s, t,M
2) =

∫
dDℓ

iπ
D
2

1

Aν1
1 Aν2

2 Aν3
3 Aν4

4

(5.64)

where more generally the {s, t,M2} = {Q2
i } are all external kinematic scales for a given setup.

We use incoming external momentum ki for this derivation so we can write the propagators
as

A1 = ℓ2 + iδ, Ai = (ℓ+
i−1∑

j=1

kj)
2 + iδ, i 6= 1, (5.65)

where for the one-mass box we consider k2
4 = M2. This ordering of νi will be used for the

rest of this paper. We rewrite (5.64) using Schwinger parameters xi,

ID4 (ν1, ν2, ν3, ν4; {Q2
i }) = (−1)σ

4∏

i=1

1

Γ(νi)

∫ ∞

0

dxi x
νi−1
i

∫
dDℓ

iπ
D
2

e
∑4

i=1 xiAi

=

∫

Dx

∫
dDℓ

iπ
D
2

e
∑4

i=1 xiAi , (5.66)

and then perform the Gaussian integral to give

ID4 (ν1, ν2, ν3, ν4; {Q2
i }) =

∫

Dx
1

P D
2

eQ/P , (5.67)

where

P = x1 + x2 + x3 + x4, (5.68)

and

Q = x1x3s+ x2x4t+ x1x4M
2. (5.69)
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This is then evaluated using the suggestions found in [103–105], where we treat the dimension
D as a negative, even integer for (5.66) and (5.67). This allows us to write (5.66) and 1

P
D
2
in

(5.67) as a multinomial expansion. This expansion can be written as

ID4 (ν1, ν2, ν3, ν4; s, t,M
2)

=

∫

Dx
∑

n1,n2,n3,n4≥0

∫
dDℓ

iπ
D
2

(x1A1)
n1

n1!

(x2A2)
n2

n2!

(x3A3)
n3

n3!

(x4A4)
n4

n4!

=

∫

Dx
∑

S≥0

(x1x3s)
q1(x2x4t)

q2(x1x4M
2)q3

q1!q2!q3!

xp1
1 xp2

2 xp3
3 xp4

4

p1!p2!p3!p4!
× (p1 + p2 + p3 + p4)!, (5.70)

S = {q1, q2, q3, p1, p2, p3, p4} and with the constraint

q1 + q2 + q3 + p1 + p2 + p3 + p4 = −D

2
, (5.71)

which ensures the powers of P and Q are correct. This equality in (5.70) comes from ex-
panding (5.66) and (5.67), and given that the xi are independent variables the integrands
themselves must be equal. Calling νi = −ni, we can take the x−νi

i coefficients and compare
these with the other side of the equality, extracting the Schwinger integrand to give

ID4 (ν1, ν2, ν3, ν4; s, t,M
2) =

∑

S≥0

Γ[1 + p1 + p2 + p3 + p4]

Γ[1 + q1]Γ[1 + q2]Γ[1 + q3]

×
(

4∏

i=1

Γ[1− νi]

Γ[1 + pi]

)

sq1tq2(M2)q3 , (5.72)

where we can read off the constraints

q1 + q3 + p1 = −ν1,

q2 + p2 = −ν2,

q1 + p3 = −ν3,

q2 + q3 + p4 = −ν4,

q1 + q2 + q3 + p1 + p2 + p3 + p4 = −D

2
. (5.73)

We are left with a system of five constraints on seven summation variable, meaning two
variables will always be unconstrained and so we have fifteen possible pairings (twenty-one
total pairings but six have no solutions). We have also assumed here that both D and νi are
negative integers and need to analytically continue the solutions to forms that converge for
positive and possibly non-integer D and νi. The procedure for presenting these solutions in
a sensible closed form is to first convert any Γ-functions into Pochhammer symbols

(z)n =
Γ[z + n]

Γ[z]
, (5.74)

as this is the most suitable way of presenting generalised hypergeometric functions. Following
the example in [1] and solving for variables q1 and q2, we have the solution (labelled I{q1,q2}
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for obvious reasons)

I{q1,q2} = (M2)
D
2
−σ Γ[1− ν1]Γ[1− ν4]Γ[1 + σ −D]

Γ
[
1 + D

2
− σ

]
Γ
[
1 + ν123 − D

2

]
Γ
[
1 + ν234 − D

2

]

×
∑

q1,q2≥0

(
σ − D

2

)

q1+q2
(ν3)q1(ν2)q2

(
1 + ν123 − D

2

)

q1

(
1 + ν234 − D

2

)

q2

( s
M2 )

q1

q1!

( t
M2 )

q2

q2!

= (−1)
D
2 (M2)

D
2
−σΓ

[
σ − D

2

]
Γ
[
D
2
− ν123

]
Γ
[
D
2
− ν234

]

Γ [ν1] Γ [ν4] Γ [D − σ]

× F2

[

σ − D

2
; ν3, ν2; 1 + ν123 −

D

2
, 1 + ν234 −

D

2
;S, T

]

, (5.75)

where S = s
M2 , T = t

M2 , νij = νi + νj, νijk = νi + νj + νk, F2 is a generalised hypergeometric
function, in this case the Appell function

F2[a; b, b
′; c, c′; x, y] :=

∑

m,n≥0

(a)m+n(b)m(b
′)n

(c)m(c′)n

xm

m!

yn

n!
, (5.76)

and we have used the identity

3∏

i=1

Γ[αi]

Γ[βi]
= (−1)

∑3
i=1(βi−αi)

3∏

i=1

Γ[1− βi]

Γ[1− αi]
, (5.77)

with
∑3

i=1(βi − αi) =
D
2
and we assume D

2
is an integer. This assumption has already been

made when performing the multinomial expansion. This final result is analytic inD and νi for
D being non-integer and νi being positive integers. It is also analytic for non-integer νi, which
is something we will have to consider. A similar process may be followed for the remaining
fourteen solutions. In all cases we can write the solutions as some prefactor multiplying a
generalised hypergeometric function, a total list of the relevant functions is given in [102].

These generalised hypergeometric functions have different convergence regions. These
regions are fully detailed in [102] but as an example, for F2 we require |x|+ |y| < 1 whereas
for the Horn function H2 has convergence for −|x|+ 1

|y|
> 1, |x| < 1, |y| < 1. We can divide

the kinematic regions indicated in Figure 5.19 which is provided in [1], and as follows:
region I
|s|+ |t| < M2;
region II(a)
|t| > M2 + |s| and M2 > |s|;
region II(b)
|t| > M2 + |s| and M2 < |s|;
region III(a)
|s| > M2 + |t| and M2 > |t|;
and finally region III(b)
|s| > M2 + |t| and M2 < |t|.
In any one region there will be solutions to the system that converge and solutions that do
not converge. The generalised scalar box integral is then the sum of all of the convergent
functions in any given region. Some of the solutions will appear in multiple kinematic regions
and there are certain values of νi that would appear to cause individual solutions to diverge
but they can be regularised and seen to cancel in the full sum. It is also possible to relate
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the functions to each others via analytic continuation. This is the main result of [1] but we
would like to take it further.

Figure 5.19: The kinematic regions for the one-loop box with one off-shell leg as shown in [1].
The solid line shows the phase-space boundary |s| + |t| = M2, together with the reflections
|s| = |t|+M2 and |t| = |s|+M2. The reflections are relevant for the convergence properties
of the hypergeometric functions which only involve the absolute values of ratios of the scales.
The dashed lines show the boundaries |s| = M2 and |t| = M2 .

We will only consider working in the fundamental region (region I) as this helps when we
need to perform a Mellin-Barnes expansion. In this region the general one-mass scalar box
integral has the form

ID4 (ν1, ν2, ν3, ν4; s, t,M
2) = I{q1,q2} + I{p1,q1} + I{p1,p4} + I{p4,q2} (5.78)

where it is to be understood that the functions on the right hand side of the equality have
the same arguments as on the left hand side. We have already seen I{q1,q2}, the remaining
three are

I{p1,q1} = (−1)
D
2 T

D
2
−ν234(M2)

D
2
−σΓ[ν234 − D

2
]Γ[D

2
− ν123]Γ[

D
2
− ν34]

Γ[ν2]Γ[ν4]Γ[D − σ]

× F2

[

ν1; ν3,
D

2
− ν34; 1 + ν123 −

D

2
, 1 +

D

2
− ν234;S, T

]

, (5.79)
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I{p1,p4} = (−1)
D
2 S

D
2
−ν123T

D
2
−ν234(M2)

D
2
−σ

× Γ[ν123 − D
2
]Γ[ν234 − D

2
]Γ[D

2
− ν12]Γ[

D
2
− ν23]Γ[

D
2
− ν34]

Γ[ν1]Γ[ν2]Γ[ν3]Γ[ν4]Γ[D − σ]

× F2

[
D

2
− ν23;

D

2
− ν12,

D

2
− ν34; 1 +

D

2
− ν123, 1 +

D

2
− ν234;S, T

]

, (5.80)

and

I{p4,q2} = (−1)
D
2 S

D
2
−ν123(M2)

D
2
−σΓ[ν123 − D

2
]Γ[D

2
− ν12]Γ[

D
2
− ν234]

Γ[ν1]Γ[ν3]Γ[D − σ]

× F2

[

ν4;
D

2
− ν12, ν2; 1 +

D

2
− ν123, 1 + ν234 −

D

2
;S, T

]

. (5.81)

These are results that we pick up from. Looking ahead to the second integration, we expect
to see boxes that have undergone a Mellin-Barnes identity which we will see functionally
adds a further infinite sum to these boxes. We expect to see many different types of boxes
and would like to eventually ǫ-expand them all which we can already see will be an unwieldy
endeavour.

5.3.3 A New Compact Form of the Scalar One-Mass Box

We would like to push these results to a more manageable form. We will be making use of
hypergeometric identities which can be found in many places such as [106].

First note that these have a common structure

(−1)
D
2 (M2)

D
2
−σf(S, T )

Γ[ν1]Γ[ν2]Γ[ν3]Γ[ν4]Γ[D − σ]
Γ[a]Γ[b]Γ[b′]Γ[1− c]Γ[1− c′]F2[a; b, b

′; c, c′;S, T ], (5.82)

where f(S, T ) are combinations of S
D
2
−ν123 and T

D
2
−ν234 . I{q1,q2} and I{p4,q2} have b′ and c′ in

common so we will add them together for now

I{q1,q2} + I{p4,q2}

= (−1)
D
2 (M2)

D
2
−σ Γ[D

2
− ν234]

Γ[ν1]Γ[D − σ]

×
(

Γ[σ − D
2
]Γ[D

2
− ν123]

Γ[ν4]
F2

[

σ − D

2
; ν3, ν2; 1 + ν123 −

D

2
, 1 + ν234 −

D

2
;S, T

]

+ S
D
2
−ν123

Γ[ν123 − D
2
]Γ[D

2
− ν12]

Γ[ν3]
+ F2

[

ν4;
D

2
− ν12, ν2, 1 +

D

2
− ν123, 1 + ν234 −

D

2
;S, T

])

= (−1)
D
2 (M2)

D
2
−σ Γ[D

2
− ν234]

Γ[ν1]Γ[D − σ]

∑

n≥0

(ν2)n

(1 + ν234 − D
2
)n

T n

n!

×
(

Γ[σ − D
2
]Γ[D

2
− ν123](σ − D

2
)n

Γ[ν4]
2F1

[

σ − D

2
+ n, ν3; 1 + ν123 −

D

2
;S

]

+ S
D
2
−ν123

Γ[ν123 − D
2
]Γ[D

2
− ν12](ν4)n

Γ[ν3]
2F1

[

ν4 + n,
D

2
− ν12; 1 +

D

2
− ν123;S

])

, (5.83)
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where we have used the fact that

F2[a; b, b
′; c, c′; x, y] =

∑

n≥0

(a)n(b
′)n

(c′)n

yn

n!
2F1(a+ n, b; c; x). (5.84)

This begins to look like the identity

2F1(a, b, c; z) =
Γ[c]Γ[b− a]

Γ[b]Γ[c− a]
(1− z)−a

2F1

[

a, c− b; a− b+ 1;
1

1− z

]

+
Γ[c]Γ[a− b]

Γ[a]Γ[c− b]
(1− z)−b

2F1

[

b, c− a; b− a+ 1;
1

1− z

]

, (5.85)

if we set a = σ − D
2
+ n, b = ν4 + n, c = ν34 + n. This leads us to

I{q1,q2} + I{p4,q2}

= (−1)
D
2 (M2)

D
2
−σ Γ[D

2
− ν234]

Γ[ν1]Γ[ν4]Γ[D − σ]

∑

n≥0

(ν2)n

(1 + ν234 − D
2
)n

T n

n!

Γ[a]Γ[b]Γ[c− a]

Γ[c]
S−a

×
(

SaΓ[c]Γ[b− a]

Γ[b]Γ[c− a]
2F1[a, c− b; a− b+ 1;S] + SbΓ[c]Γ[a− b]

Γ[a]Γ[c− b]
2F1[b, c− a; b− a+ 1;S]

)

= (−1)
D
2 S

D
2
−σ(M2)

D
2
−σΓ[

D
2
− ν234]Γ[

D
2
− ν12]

Γ[ν1]Γ[ν4]Γ[D − σ]
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n≥0

(ν2)n

(1 + ν234 − D
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)n

(T
S
)n

n!

× Γ[σ − D
2
+ n]Γ[ν4 + n]

Γ[ν34 + n]
2F1

[

σ − D

2
+ n, ν4 + n; ν34 + n;

S − 1

S

]

, (5.86)

where we have set S = 1
1−z

. Similarly for the other pair

I{p1,q1} + I{p1,p4}

= (−1)
D
2 T

D
2
−ν234(M2)

D
2
−σΓ[ν234 − D

2
]Γ[D

2
− ν34]

Γ[ν2]Γ[ν4]Γ[D − σ]

∑

n≥0

(D
2
− ν34)n

(1 + D
2
− ν234)n

T n

n!

×
(

Γ

[
D

2
− ν123

]

(ν1)n 2F1

[

ν1 + n, ν3; 1 + ν123 −
D

2
;S

]

+ S
D
2
−ν123

Γ[ν123]− D
2
]Γ[D

2
− ν12]Γ[

D
2
− ν23](

D
2
− ν23)n

Γ[ν1]Γ[ν3]

× 2F1

[
D

2
− ν23 + n,

D

2
− ν12; 1 +

D

2
− ν123;S

])

(5.87)

121



where we now set a = ν1 + n, b = D
2
− ν23 + n, c = D

2
− ν2 + n and rewrite

I{p1,q1} + I{p1,p4}

= (−1)
D
2 T

D
2
−ν234(M2)

D
2
−σ Γ[ν234 − D

2
]Γ[D

2
− ν34]

Γ[ν1]Γ[ν2]Γ[ν4]Γ[D − σ]

∑

n≥0

(D
2
− ν34)n

(1 + D
2
− ν234)n

T n

n!

Γ[a]Γ[b]Γ[c− a]

Γ[c]
S−a

×
(

SaΓ[c]Γ[b− a]

Γ[b]Γ[c− a]
2F1[a, c− b; a− b+ 1;S] + SbΓ[c]Γ[a− b]

Γ[a]Γ[c− b]
2F1[b, c− a; b− a+ 1;S]

)

= (−1)
D
2 S−ν1T

D
2
−ν234(M2)

D
2
−σΓ[ν234 − D

2
]Γ[D

2
− ν12]Γ[

D
2
− ν34]

Γ[ν1]Γ[ν2]Γ[ν4]Γ[D − σ]

∑

n≥0

(D
2
− ν34)n

(1 + D
2
− ν234)n

(T
S
)n

n!

× Γ[ν1 + n]Γ[D
2
− ν23 + n]

Γ[D
2
− ν2 + n]

2F1

[

ν1 + n,
D

2
− ν23 + n;

D

2
− ν2 + n;

S − 1

S

]

. (5.88)

We can push these expressions further by using a Pfaff transformation [107],

2F1[a, b; c; z] = (1− z)−a
2F1

[

a, c− b; c;
z

z − 1

]

(5.89)

and then writing the hypergeometric function in integral representation

I{q1,q2} + I{p4,q2}

= (−1)
D
2 S

D
2
−σ(M2)

D
2
−σΓ[

D
2
− ν234]Γ[

D
2
− ν12]

Γ[ν1]Γ[ν4]Γ[D − σ]

∑

n≥0

(ν2)n
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(T
S
)n

n!

× Γ[σ − D
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+ n]Γ[ν4 + n]

Γ[ν34 + n]
2F1

[

σ − D

2
+ n, ν4 + n; ν34 + n;

S − 1

S

]

= (−1)
D
2 S

D
2
−ν123(M2)

D
2
−σΓ[σ − D

2
]Γ[D

2
− ν234]Γ[

D
2
− ν12]

Γ[ν1]Γ[ν4]Γ[D − σ]

×
∑

n≥0

(ν2)n

(1 + ν234 − D
2
)n

T n

n!

(σ − D
2
)n]Γ[ν4 + n]

Γ[ν34 + n]
2F1

[
D

2
− ν12, ν4 + n; ν34 + n; 1− S

]

= (−1)
D
2 S

D
2
−ν123(M2)

D
2
−σΓ[σ − D

2
]Γ[D

2
− ν234]Γ[

D
2
− ν12]

Γ[ν1]Γ[ν4]Γ[D − σ]

×
∫ 1

0

du(1− u(1− S))ν12−
D
2 uν4−1(1− u)ν3−1

∑

n≥0

(σ − D
2
)n](ν2)n

(1 + ν234 − D
2
)n

(uT )n

n!
(5.90)

and following the same steps

I{p1,q1} + I{p1,p4}

= (−1)
D
2 S

D
2
−ν123T

D
2
−ν234(M2)

D
2
−σΓ[ν234 − D

2
]Γ[D

2
− ν12]Γ[

D
2
− ν34]

Γ[ν2]Γ[ν3]Γ[ν4]Γ[D − σ]

×
∫ 1

0

duu
D
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−ν23−1(1− u)ν3−1(1− u(1− S))ν12−

D
2

∑

n≥0

(D
2
− ν34)n(ν1)n

(1 + D
2
− ν234)n

(uT )n

n!
. (5.91)

Strictly speaking, (5.89) is only valid for z /∈ {1,∞} which is not true for S−1
S

in some parts
of the fundamental region. We will see in Section 5.5.4 that it actually benefits us to be a bit
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loose with which region we are in for intermediate steps, and worry about which Riemann
sheet we are on later. Having said that, it is still good to keep these assumptions in mind as
we never know what complications might arise for higher multiplicities.

We can then combine all four terms, pushing towards (5.85) with a = ν2, b =
D
2
−ν34, c =

ν12 and uT = 1
1−z

to give

ID4 (ν1, ν2, ν3, ν4; s, t,M
2) = I{q1,q2} + I{p4,q2} + I{p1,q1} + I{p1,p4}
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2
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]

Γ[ν2]Γ[σ − D
2
]

(D
2
− ν34)n(ν1)n

(1 + D
2
− ν234)n

(uT )n

n!

]

(uT )−ν2

= (−1)
D
2 S

D
2
−ν123(M2)

D
2
−σΓ[σ − D

2
]Γ[D

2
− ν12]Γ[

D
2
− ν34]
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(5.92)

where the last line comes from performing a Pfaff transformation followed by an Euler trans-
formation

2F1[a, b; c; z] = (1− z)c−a−b
2F1[c− a, c− b; c; z]. (5.93)

We arrive at a compact form of a general one-mass scalar box function. It is an integral
involving a hypergeometric function, or as we will see, an infinite sum of Appell F1 functions
but we will see later it is quite simple to ǫ−expand and usually simplifies greatly for specific
cases. We will also see later that with a bit of work we can simplify the Mellin-Barnes sum
of the general box that we will need for the tricorner box.

With the triangle integral in mind, we can use this result to derive an expression for a
general two-mass triangle by setting ν3 → 0. We use Picard’s integral representation of the
F1 function,

F1[a; b1, b2; c; x, y] =
Γ[c]

Γ[a]Γ[c− a]

∫ 1

0

duua−1(1− u)c−a−1(1− ux)−b1(1− uy)−b2 (5.94)

for Re(a) > 0 and Re(c− a) > 0, as well as

F1[a; b1, b2; a; x, y] = (1− x)−b1(1− y)−b2 (5.95)
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to express (5.92) as

ID,2m
3 (ν1, ν2, ν4; t,M
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D
2 (M2)

D
2
−σΓ[

D
2
− ν12]Γ[σ − D

2
]Γ[D

2
− ν4]

Γ[ν4]Γ[ν12]Γ[D − σ]
2F1

(

σ − D

2
, ν2; ν12; 1− T

)

. (5.96)

This agrees with previous calculation although it is more compact than the form presented
in [102]. We can do the exact same procedure for one-mass triangles by setting ν4 → 0 to get

ID,1m
3 (ν1, ν2, ν3; s) = ID4 (ν1, ν2, ν3, ν4 → 0; s, t,M2)

= (−1)
D
2 s

D
2
−ν123

Γ[D
2
− ν12]Γ[σ − D

2
]Γ[D

2
− ν23]

Γ[ν3]Γ[ν1]Γ[D − σ]
, (5.97)

agreeing with the already well established result. These results were checked numerically for
several configurations. A quick check of the standard scalar triangles shows us

ID,2m
3 (1, 1, 1; p21, p

2
2) = (−1)2−ǫ(p22)

−1−ǫΓ[−ǫ]Γ[1 + ǫ]Γ[1− ǫ]

Γ[1− 2ǫ]
2F1

[

1 + ǫ, 1; 2; 1− p21
p22

]

=
(−1)−ǫrΓ

ǫ2
(p22)

−1−ǫ

[
(p22)

1+ǫ((p21)
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−ǫ)

p21 − p22

]

=
rΓ
[
(−p21)

−ǫ − (−p22)
−ǫ
]

ǫ2(p21 − p22)

ID,1m
3 (1, 1, 1; s) = (−1)2−ǫs−1−ǫΓ[−ǫ]2Γ[1 + ǫ]

Γ[1− 2ǫ]
= rΓ

(−s)−ǫ

ǫ2s

as we would expect.
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5.3.4 Integrating the Numerators

a i
j

ωk

Q

P

ℓz

L1

L2

L3

ℓw

We are now prepared to perform the first integration. Using the labels in Figure 5.3 and
above, we choose L3 as the loop momentum to integrate and so rewrite

L2 = Q− L3 lw = −L3 − a . (5.98)

Using the tricorner box numerator as an example

N = 〈a|a(−L3)|a〉〈a|L2PL1wQL2|a〉
= 〈a|a(−L3)|a〉〈a|(Q− L3)PL1wQ(Q− L3)|a〉
= 〈a|a(−L3)|a〉〈a|QPL1wQ(−L3)|a〉+ 〈a|a(−L3)|a〉〈a|(−L3)PL1wQ(−L3)|a〉+ . . .

(5.99)

where the ellipsis means a propagator was cancelled creating lower order diagrams (which we
still keep track of). Next we Feynman parametrise

L2
2L

2
3l

2
w →

(

(1− x2 − x3)L
2
3 + x3(Q− L3)

2 + x2(−L3 − a)2
)3

=
(

L2
3 + 2L3 · (x2a− x2Q) + x3Q

2
)3

=
(

(L3 + x2a− x3Q)2 + x3(1− x3)Q
2 + x2x3[a|Q|a〉

)

.

L3 → L3 + x3Q− x2a. (5.100)

Note here that every L3 in the numerator appears as . . . L3|a〉 so any tensor integral involving
the L3 would be proportional to 〈a a〉 = 0. This is all easily automated in a way that performs
the substitutions and counts the powers of the Feynman parameters. This can then easily be
generalised by combining (5.62) and (5.96) to give

∫
dDℓ

iπ
D
2

xm
2 x

n
3

(L2
3)

ν1((L3 + a)2)ν2((L3 −Q)2)ν4

=
Γ[ν2 +m]Γ[ν4 + n]

Γ[ν2]Γ[ν4]
(−1)m+nID=4+2m+2n−2ǫ,2m

3 (ν1, ν2 +m, ν4 + n;P 2, Q2), (5.101)

where given it is the first integral ν1 = ν2 = ν4 = 1 here. These integrals had previously
been calculated using Feynman integration and provided to me but (5.101) served as a good
check.
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We can inspect the results here to find they each provide bonus powers of the remaining
loop integral propagators,

(Q2)m−ǫ

(P 2 −Q2)1+m
,

(P 2)m−ǫ

(P 2 −Q2)1+m
. (5.102)

where m = {0, 1, 2}, as well as various Γ functions and powers of ǫ which are kept track of.
These are the bonus powers of propagators that come from the first triangle integrals. We will
eventually need to expand the (P 2−Q2) in the denominator using a Mellin-Barnes expansion
but there are some simplifications we can do first. We use the following replacements

[ω|L1P |a] → L2
1 [ω a] + [ω|L1k|a], [ω|L1PQ|a〉 → L2

1[ω|Q|a〉+ [ω|L1kQ|a〉,
[k|L1Q|a] → −P 2 [k a] , [ω|L1Q|a] → −P 2 [ω a]− [ω|kQ|a],
[a|P |a〉 → −[a|Q|a〉, [k|L1|a〉 → −[k|a|a〉 − [k|Q|a〉,
[ω|L1|a〉 → −[ω|Pka|a〉 − [ω|Q|a〉, [k|P |a〉 → −[k|a|a〉 − [k|Q|a〉 (5.103)

followed by further replacements

[a|Q|a〉 → [a|Q|k〉 〈a a〉+ [a|Q|a〉 〈k a〉
〈k a〉

[ω|Q|a〉 → 1

〈k ω〉

(

L2
1[a|Pωk|a〉
[k a]

+ ℓ2z 〈k a〉 −
P 2[a|ω|a〉

[k a]
− [ω|Pka|a〉 〈k ω〉+

[a|Q|k〉[k|ω|a〉
[a k]

)
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[ω a]
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1[a|Pωk|a〉
〈k ω〉 +

ℓ2z 〈k a〉 [k a]
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〈k ω〉 − [ω|Pka|a〉 [k a]
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[a|Q|k〉 [k ω] 〈a k〉 〈ω a〉

〈k a〉 〈k ω〉 +
[a|Q|a〉[ω|k|a〉

〈k a〉

)

[a|Q|ω〉 → 1

〈k a〉

(

[a|Q|k〉 〈ω a〉+ [a|Q|a〉 〈k ω〉
)

[ω|L1|k〉 → → 1

[k a]

(

P 2 [ω a]− L2
1 [ω a]− [a|Q|k〉 [k ω]

)

[ω|L1|a〉 →
1

〈ω k〉

(

L2
1[a|Pkω|a〉
[k a]

− ℓ2z 〈a k〉+
P 2 [ω a] 〈ω a〉

[k a]
− [a|Q|k〉 [k ω] 〈ω a〉

[k a]

)

.

(5.104)

with the goal of having all the loop momentum contributions being in the form of either
an inverse propagator, [a|Q|a〉 = P 2 − Q2 to reduce the Mellin-Barnes denominator, or
[k|Q|a〉. This means our second integral either has cancelled propagators or only an x4

Feynman parameter being contributed. This means ν3 ≤ 1 for all terms which makes the
later expansions more simple.

Something to note here is that a triangle with an ℓ2z× [k|Q|a〉 will pick up a tensor integral
if the second integration is Feynman parametrised as a triangle. This can either be dealt
with by explicitly performing this tensor integral but we found it to be easier to automate
by simply treating this as a box with ν4 = −1. It is easy to show these methods are equal,
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for example

∫
dP

iπ
D
2

ℓ2z[k|P |a〉
P 2(P + a)2(P − k)2

=

∫
dP

iπ
D
2

(P − k − ω)2[k|P |a〉
P 2(P + a)2(P − k)2

=

∫
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iπ
D
2

∫

dx2dx3
(p2 − x2x3ska + skω − [ω|p− x2a+ x3k|ω〉 − [k|p− x2a|k〉)[k|p|a〉

[
p2 −R2 + iδ

]3

= 0−
∫

dp

iπ
D
2

∫

dx2dx3
[ω|p|ω〉[k|p|a〉
[
p2 −R2 + iδ

]3

= −
∫

dp

iπ
D
2

∫

dx2dx3
(2ω · p)(2λaλ̃k · p)
[
p2 −R2 + iδ

]3 =
1

2
(4ω · λaλ̃k)× I6−2ǫ

s (1, 1, 1, 0)

= [k|ω|a〉 × I6−2ǫ
s (1, 1, 1, 0) (5.105)

where here we have used (5.62) to perform the tensor integral after a triangle Feynman
parametrisation. Opting instead for the box parametrisation

P → p− x2a+ x3k + x4Pkω, (5.106)

we see schematically, again using (5.62),

∫
dP

iπ
D
2

[k|P |a〉
P 2Q2L2

1(ℓ
2
z)

−1
→
∫

dp

iπ
D
2

x4[k|ω|a〉
P 2Q2L2

1(ℓ
2
z)

−1

= [k|ω|a〉 Γ[0]

Γ[−1]
(−1)I6−2ǫ

s (1, 1, 1,−1 + 1) = [k|ω|a〉 × I6−2ǫ
s (1, 1, 1, 0) (5.107)

and so we see (5.105) and (5.107) are equal. All cases of tensors being treated as scalar pseudo-
boxes have been checked by hand and numerically. Having now rewritten the numerators
to simplify the second integral and choosing to use a box Feynman parametrisation for
everything to avoid the need for tensor integrals and to aid in automation, we must now
consider the Mellin-Barnes expansion.

5.4 Mellin-Barnes Expansion

We now have a set of integrated structures which can be sorted into boxes, two-mass triangles,
one-mass triangles and massless bubbles. We have written the numerators of these structures
to contain only propagators, [a|Q|a〉 and [k|Q|a〉 so we expect only scalar integrals. We also
have (P 2 − Q2) terms in the denominator which need to be expanded via a Mellin-Barnes
expansion

1

[a|Q|a〉1+κ
=

1

2πi

1

Γ[1 + κ]

∫ c+i∞

c−i∞

dz
Γ[−z]Γ[1 + κ+ z]

(P 2)−z(−Q2)z+1+κ
. (5.108)

The Γ function is never zero so we can use Cauchy’s Residue Theorem by closing the contour
either to capture the poles in Γ[−z] or Γ[1 + κ+ z] to solve the z integral depending on the
relative size of the Feynman parameters associated with P and Q. This can be seen with a
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simple example

1

(Q2)ν1(P 2)ν2L2
1ℓ

2
z[a|Q|a〉1+κ
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×
∫

dx1

∫
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∫
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×
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dx2
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[
p2 −R2 + iδ

]α0+β0+2

(
x1

x2

)z

. (5.109)

where any cases of ν1 before the Mellin-Barnes expansion will pick up 1+ κ+ z and ν2 picks
up −z. We have denoted this as ν1 = α0 − 1 − κ and ν2 = β0. After the expansion any
cases of ν1+ ν2 will have cancelling z and will not contribute to the contour integral. Closing

the contour on left side of the complex plane, the residue at Γ[−N ] is (−1)N

Γ[1+N ]
= (−1)N

N !
which

happens for all integer N ≥ 0 and so we can write the contour integral as

∑

N≥0

(−1)2N

N !

Γ[1 + κ+N ]

Γ[α0 +N ]Γ[β0 −N ]

(
x1

x2

)N

. (5.110)

x1 is always smaller than x2 and so this summation converges, allowing us to interchange the
integral and summation representation. This all translates to us being able to simply rewrite
our functions as

f(ν1̂, ν2, ν3, ν4) →
∑

N≥0

(−1)1+κ (1 + κ)N
N !

f(ν1 +N, ν2 −N, ν3, ν4) (5.111)

where we define ν1̂ = ν1 − 1− κ. We can now go back to our simplified general box function
(5.92) and look at a Mellin-Barnes expansion, where the reason for choosing the fundamental
region can now be made clear. If we want to perform a loop integral on objects of the form
(5.111) then we would ideally like to commute the dz and dℓ integrals. However, in doing
so we might introduce new poles if the loop integral result has gamma functions of the form
Γ[ν1] etc, and there is an ambiguity about whether to include these poles in the contour
integral. Looking at (5.92), we see that all gamma functions are either free of ν1 and ν2,
come with the combination ν1 + ν2 where the z cancels, or do not contain poles within our
chosen contour.

Pressing on, we can rewrite (5.92) using an Euler transformation,

(−1)
D
2 (M2)

D
2
−σ(S)

D
2
−ν123

Γ[D
2
− ν12]Γ[σ − D

2
]Γ[D

2
− ν34]

Γ[ν3]Γ[ν4]Γ[ν12]Γ[D − σ]

×
∫ 1

0

du
∑

n≥0

(1− u(1− S))ν12−σuν4−1(1− u)ν3−1

[

(ν1)n(
D
2
− ν34)n

(ν12)n

(1− uT )n

n!
(uT )

D
2
−ν234

]

(5.112)
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where we can see that the bit that the Mellin-Barnes expansion effects is

Sn = (−1)1+κ
∑

N≥0

∑

n≥0

(ν1 +N)n(
D
2
− ν34)n

(ν12)n

(1− uT )n

n!
(1 + κ)N

(uT )
D
2
+N−ν234

N !

= (−1)1+κ
∑

N≥0

∑

n≥0

(ν1)N+n(
D
2
− ν34)n(1 + κ)N

(ν12)n(ν1)N

(1− uT )n

n!

(uT )
D
2
+N−ν234

N !

= (−1)1+κ(uT )
D
2
−ν234F2

[

ν1;
D

2
− ν34, 1 + κ; ν12, ν1; 1− uT, uT

]

= (−1)1+κ(uT )
D
2
−ν234(1− uT )−1−κF1

[
D

2
− ν34; ν1̂, 1 + κ; ν12; 1− uT, 1

]

= (−1)1+κ(uT )
D
2
−ν234(1− uT )−1−κΓ[ν12]Γ[σ̂ − D

2
]

Γ[ν1̂2]Γ[σ − D
2
]
2F1

[
D

2
− ν34, ν1̂; ν1̂2; 1− uT

]

= (−1)1+κ(1− uT )−1−κΓ[ν12]Γ[σ̂ − D
2
]

Γ[ν1̂2]Γ[σ − D
2
]
2F1

[

σ̂ − D

2
, ν2; ν1̂2; 1− uT

]

, (5.113)

where we have used the identity

F2[a; b, b
′; c, a; x, y] = (1− y)−b′F1

[

b; a− b′, b′; c; x,
x

1− y

]

, (5.114)

and the fact that

F1[a; b1, b2; c; z, 1] = 2F1[a, b2; c; 1] 2F1[a, b1; c− b2; z], (5.115)

which further reduces via

2F1[a, b; c; 1] =
Γ[c]Γ[c− a− b]

Γ[c− a]Γ[c− b]
. (5.116)

This last reduction has the condition that c− a− b > 0 so we have assumed σ̂− D
2
> 0 with

σ̂ = σ− 1− κ. This condition is not satisfied for all of the boxes, but it always contains ǫ so
we can analytically continue the ǫ into a range that keeps this condition satisfied, then bring
it back for the expansion. Sn has now been reduced from a double infinite sum back down
to a single infinite sum and can now be replaced in (5.112) to give

ID,MB
4 (ν1, ν2, ν3, ν4; s, t,M

2)

= (−1)
D
2
+1+κ(M2)

D
2
−σS

D
2
−ν123

Γ[D
2
− ν12]Γ[σ̂ − D

2
]Γ[D

2
− ν34]

Γ[ν3]Γ[ν4]Γ[ν1̂2]Γ[D − σ]

×
∫ 1

0

du(1− u(1− S))ν12−
D
2 (1− uT )−1−κuν4−1(1− u)ν3−1

2F1

[

σ̂ − D

2
, ν2; ν1̂2; 1− uT

]

(5.117)

which trivially simplifies to (5.92) for κ = −1. With these results, we took our numerators
and performed the first integral, then took the box Feynman shift, counted the extra x4

powers and performed the necessary dimension shifting. It is easy enough to store the values
of {ν1 = ν1̂ + 1 + κ, ν2, ν3, ν4, δx4, κ, D̃}, strip the coefficients from the relevant terms and
compile a list of all of the boxes to be ǫ-expanded. While we treat everything as a box in
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terms of the Feynman shift it is convenient to separate the terms into boxes, triangles and
bubbles for a few reasons: it made it easier to track down bugs, we only expect to see certain
initial structures as a triangle followed by a triangle etc, one-mass triangles reduced to Γ
functions so we could just use Mathematica’s built in Series function to ǫ-expand them and
we can discard massless bubbles straight away as they have no kinematic scale (although this
was of course checked in the debugging stage to be sure). Regardless we will hereby refer to
all structures as “boxes” for simplicity as they have all been treated as such with respect to
the Feynman parametrisation.

It should be noted here that this procedure has been so-far automated in a way that is
blind to the number of legs in the massive corner of the box. Our numerators are written
entirely in terms of a, k, ω and loop momenta so this, along with the inserts code which has
all been written to scale with multiplicity, should be simple enough to translate to higher
multiplicities. The only additional structures we expect to see would be two-mass-easy boxes
which would need the same treatment as (5.117).

5.5 ǫ-Expansions

There are several ways we can expand these boxes. An easily automated method is the nested
sums approach which we will review later as there was a small number of cases where this
approach was straightforward and bypassed issues of diverging integration spaces. The form
of (5.117) however suggests we should expand this in an integral form. Schematically this
involved taking a piece like (1− uZ)a+bǫ and expanding it as

∫ 1

0

duf(u)(1− uZ)a+bǫ =

∫ 1

0

du f(u)(1− uZ)a
(

1 + bǫlog[1− uZ] +
b2ǫ2

2
log[1− uZ]2

)

(5.118)

and integrating the result. In some cases the integral diverges near the limits but it was
mostly enough to integrate with respect to u and take the series expansion of u = 1− δ and
u = δ, seeing that the divergences cancelled explicitly. In a few cases this was not enough
and some extra work was needed which will be outlined shortly. Indeed, these integrations
are being done using Mathematica which has its own built in Riemann sheet and branch cuts
which we will ignore for now. Once we have covered the ǫ-expansion in a bit more detail we
will outline how we fixed the correct Riemann sheet but suffice to say that the worst problem
this approach seemed to cause was somewhat large and unwieldy intermediate expressions,
although still no larger than ≈ 10kb in size per box.

Using this method we found 55 boxes (ν3 = 1 and ν4 ≥ 1), 27 two-mass triangles (ν3 = 0
and ν4 ≥ 1) and 22 non-vanishing one-mass triangles (ν3 = 1 and ν4 ≤ 0). The vanishing
referred to here is specifically due to parametrising the triangles as a pseudo-box, where in
some cases this leads to the triangle gaining ℓ2z powers due to x4 shifts, promoting it from
a one-mass triangle to a box again. In any such cases, the coefficient trivially vanishes due
to the Γ[ν4+δν4]

Γ[ν4]
factor. These cases can be identified and discarded, reducing the number

of terms needed (again, in the debugging stage these were checked to make sure there was
no diverging box which might multiply this zero to give something finite). Within the 22
one-mass triangles, a few of the triangles integrate to zero so are also vanishing. The rest
were all massless bubbles (ν3 = 0 and ν4 ≤ 0) which integrate to zero. Any cases of κ < −1
simply had their [a|Q|a〉 expanded in the numerator as P 2 −Q2.
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It is possible for both loop integrals to provide 1
ǫ2

terms although we expect cancellations.
The boxes and triangles generally come in pairs of

I4(ν1 = m+ ǫ, ν2 = n)− I4(ν1 = m, ν2 = n+ ǫ) (5.119)

where m and n are integers and whose leading order in ǫ terms cancel. When we perform the
Feynman shift and collect the full coefficients of each box for the second integrations, we see
that some boxes do not have a pair (more accurately they have a pairing box with vanishing
coefficient). These unpaired boxes were at worst O(ǫ−3), which meant overall we see at
worst 1

ǫ3
terms at leading order, so our 1

ǫ4
coefficient is correctly vanishing. Perhaps some

closer inspection into the nature of these cancellations would be enlightening, for example it
seems that the leading nature of the (P 2)−ǫ term differing from the (Q2)−ǫ term has some
dependence on whether P leads to a null corner and Q leads to a non-null corner.

On the subject of future investigations, it is worth noting that when going to higher
multiplicities we expect to see a lot of overlap of these one-mass boxes and triangles. The
numerators should not get any higher in powers of loop momenta and so we expect to see a
lot of the one-mass boxes have already been expanded here.

5.5.1 Boxes

We will now review some techniques we used to aid in the ǫ-expansions. First it is useful to
highlight cases of (5.117) where the hypergeometric function collapses. In cases of ν2 = 0
and ν2 = −1 we can rewrite (5.117) as

ID,MB
4,ν2=0 = (−1)

D
2
+1+κ(M2)

D
2
−σS

D
2
−ν123

Γ[D
2
− ν12]Γ[σ̂ − D

2
]Γ[D

2
− ν34]

Γ[ν3]Γ[ν4]Γ[ν1̂2]Γ[D − σ]

×
∫ 1

0

du(1− u(1− S))ν12−
D
2 uν4−1(1− u)ν3−1(1− uT )−1−κ

= (−1)
D
2
+1+κ(M2)

D
2
−σS

D
2
−ν123

Γ[D
2
− ν12]Γ[σ̂ − D

2
]Γ[D

2
− ν34]

Γ[ν34]Γ[ν1̂2]Γ[D − σ]

× F1

[

ν4;
D

2
− ν12, 1 + κ; ν34; 1− S, T

]

(5.120)

and

ID,MB
4,ν2=−1 = (−1)

D
2
+1+κ(M2)

D
2
−σS

D
2
−ν123

Γ[D
2
− ν12]Γ[σ̂ − D

2
]Γ[D

2
− ν34]

Γ[ν34]Γ[ν1̂2]Γ[D − σ]

×
(

F1

[

ν4;
D

2
− ν12, 1 + κ; ν34; 1− S, T

]

− σ̂ − D
2

ν1̂2
F1

[

ν4;
D

2
− ν12, κ; ν34; 1− S, T

])

.

(5.121)

For the ν2 = 1 cases, we have the freedom to push the hypergeometric sum forward without
changing the factorial in the denominator. This is not always needed but in some cases
σ̂ − D

2
was causing divergences when expanding so it helped to make this argument bigger.

It also allows us to rewrite the Mellin-Barnes expanded boxes in ways that relate to the
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pre-expanded boxes

ID,MB
4,ν2=1 = (−1)

D
2
+1+κ(M2)

D
2
−σS

D
2
−ν123

Γ[D
2
− ν12]Γ[σ̂ − D

2
]Γ[D

2
− ν34]

Γ[ν3]Γ[4]Γ[ν1̂2]Γ[D − σ]

×
∫ 1

0

du(1− u(1− S))ν12−
D
2 uν4−1(1− u)ν3−1(1− uT )−1−κ

×
[

κ∑

p=0

(σ̂ − D
2
)p

(ν1̂2)p
(1− uT )p +

∞∑

q=p−κ−1=0

(σ̂ − D
2
)q+κ+1

(ν1̂2)q+κ+1

(1− uT )q+κ+1

]

= (−1)
D
2
+1+κ(M2)

D
2
−σS

D
2
−ν123

Γ[D
2
− ν12]Γ[

D
2
− ν34]

Γ[ν3]Γ[ν4]Γ[D − σ]
[

κ∑

p=0

Γ[σ̂ − D
2
+ p]Γ[ν3]Γ[ν4]

Γ[ν1̂2 + p]Γ[ν34]
F1

[

ν4;
D

2
− ν12, 1 + κ− p; ν34; 1− S, T

]

+
Γ[σ − D

2
]

Γ[ν12]

∫ 1

0

du(1− u(1− S))ν12−
D
2 uν4−1(1− u)ν3−1

2F1

[

σ − D

2
, 1; ν12; 1− uT

] ]

,

(5.122)

which is a sum of Appell F1 functions followed by the pre-Mellin Barnes expanded box up to
a factor of (−1)1+κ. For the (P 2)−ǫ cases we perform a Pfaff transformation to give

ID,MB
4 = (−1)

D
2
+1+κ(M2)

D
2
−σS

D
2
−ν123

Γ[D
2
− ν12]Γ[σ̂ − D

2
]Γ[D

2
− ν34]

Γ[ν3]Γ[ν4]Γ[ν1̂2]Γ[D − σ]
T

D
2
−σ̂

×
∫ 1

0

du(1− u(1− S))ν12−
D
2 u

D
2
−ν1̂23−1(1− u)ν3−1(1− uT )−1−κ

× 2F1

[

σ̂ − D

2
, ν1̂; ν1̂2;

uT − 1

uT

]

. (5.123)

and can similarly look at collapsing ν1̂ = −1 and ν1̂ = 0 cases. This time we may use the
identity

F1[a; b1, b2; b1 + b2; x, y] = (1− x)−a
2F1

[

a, b2; b1 + b2;
y − x

1− y

]

(5.124)
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to reduce one of the summations and give

ID,MB
4,ν1̂=0

= (−1)
D
2
+1+κ(M2)

D
2
−σS

D
2
−ν123

Γ[D
2
− ν12]Γ[σ̂ − D

2
]Γ[D

2
− ν34]

Γ[ν3]Γ[ν4]Γ[ν1̂2]Γ[D − σ]
T

D
2
−σ̂

×
∫ 1

0

du(1− u(1− S))ν12−
D
2 u

D
2
−ν1̂23−1(1− u)ν3−1(1− uT )−1−κ

= (−1)
D
2
+1+κ(M2)

D
2
−σS

D
2
−ν123

Γ[D
2
− ν12]Γ[σ̂ − D

2
]Γ[D

2
− ν34]Γ[

D
2
− ν1̂23]

Γ[D
2
− ν1̂2]Γ[ν4]Γ[ν1̂2]Γ[D − σ]

T
D
2
−σ̂

× F1

[
D

2
− ν1̂23;

D

2
− ν12, 1 + κ;

D

2
− ν1̂2; 1− S, T

]

= (−1)
D
2
+1+κ(M2)

D
2
−σS

D
2
−ν123

Γ[D
2
− ν12]Γ[σ̂ − D

2
]Γ[D

2
− ν34]Γ[

D
2
− ν1̂23]

Γ[D
2
− ν1̂2]Γ[ν4]Γ[ν1̂2]Γ[D − σ]

T
D
2
−σ̂

× Sν1̂23−
D
2 2F1

[
D

2
− ν1̂23, 1 + κ;

D

2
− ν1̂2;

S + T − 1

S

]

(5.125)

and

ID,MB
4,ν1̂=−1

= (−1)
D
2
+1+κ(M2)

D
2
−σS

D
2
−ν123

Γ[D
2
− ν12]Γ[σ̂ − D

2
]Γ[D

2
− ν34]

Γ[ν4]Γ[ν1̂2]Γ[D − σ]
T

D
2
−σ̂

×
[

Γ[D
2
− ν1̂23]

Γ[D
2
− ν1̂2]

Sν1̂23−
D
2 2F1

[
D

2
− ν1̂23, 1 + κ;

D

2
− ν1̂2;

S + T − 1

S

]

+
σ̂ − D

2

ν1̂2

Γ[D
2
− ν1̂23 − 1]

Γ[D
2
− ν1̂2 − 1]

S1+ν1̂23−
D
2 2F1

[
D

2
− ν1̂23 − 1, κ;

D

2
− ν1̂2 − 1;

S + T − 1

S

] ]

.

(5.126)

We can peel off the κ’s again for ν1̂ = 1 cases to give

ID,MB
4,ν1̂=1

= (−1)
D
2
+1+κ(M2)

D
2
−σS

D
2
−ν123

Γ[D
2
− ν12]Γ[

D
2
− ν34]

Γ[ν3]Γ[ν4]Γ[D − σ]

×
[

κ∑

p=0

(−1)p
Γ[σ̂ − D

2
+ p]Γ[ν3]Γ[

D
2
− ν1̂23 − p]

Γ[ν1̂2 + p]Γ[D
2
− ν1̂2 − p]

T
D
2
−σ̂−pSp+ν1̂23−

D
2

× 2F1

[
D

2
− ν1̂23 − p, 1 + κ− p;

D

2
− ν1̂2 − p;

S + T − 1

S

]

+ (−1)1+κΓ[σ − D
2
]

Γ[ν12]
T

D
2
−σ

∫ 1

0

du(1− u(1− S))ν12−
D
2 u

D
2
−ν123−1(1− u)ν3−1

× 2F1

[

σ − D

2
, 1; ν12;

uT − 1

uT

] ]

. (5.127)

This is a sum of hypergeometrics but unlike the ν2 = 1 case the last term is not exactly the
pre-Mellin Barnes expanded box as we have the ν1̂ = 1 argument in the hypergeometric. We
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may define ν2̂ = ν2+1+κ and then the final term looks like the pre-Mellin Barnes expanded
box but with ν1̂ and ν2̂ as arguments instead of ν1 and ν2.

From here, most of the expansions could be done using the integral representations and
then using (5.118) as a schematic way of expanding as we have previously discussed. However
in some cases the integration region near the limits would diverge in a way that would not
allow this simple method. We can find ways around this by deriving some identities using
Appell functions and summations. For example, we often consider the F1[a; b, b

′; c; x, y] with
a = ν4 and c = ν34 in F1[a; b, b

′; c; x, y] and for all of our boxes/triangles we have ν3 ≤ 1 which
gives commonly occuring special cases of c = 1 + a. Taking the ν3 = 1 boxes, we will take
the general case of expanding in some small variable δ, rewriting the logarithms in (5.118) as
their summation representation

F1[a; δ, b
′; 1 + a; x, y] =

Γ[1 + a]

Γ[a]

∫ 1

0

duua−1(1− ux)−δ(1− uy)−b′

= 2F1[a, b
′; 1 + a; y] + δ

Γ[1 + a]

Γ[a]

∞∑

k=1

xk

k

∫ 1

0

duua+k−1(1− uy)−b′ + . . .

= 2F1[a, b
′; 1 + a; y] + δ

∞∑

k=1

xk

k

(a)k
(1 + a)k

2F1[a+ k, b′; 1 + a+ k; y] + . . . .

(5.128)

We can relate F1 to an infinite sum of 2F1’s via

F1[a; b, b
′; c; x, y] =

∞∑

k=0

(b)k(a)k
(c)k

xk

Γ[1 + k]
2F1[a+ k, b′; c+ k; y] (5.129)

and then remove the k from the logarithm and relabel the summation variable

∂

∂x

∞∑

k=1

xk

k

(a)k
(1 + a)k

2F1[a+ k, b′; 1 + a+ k; y]

=
Γ[a]

Γ[2 + a]

∞∑

q=0

xq

Γ[1 + q]

(1)q(1 + a)q
(2 + a)q

2F1[1 + a+ q, b′; 2 + a+ q; y]

=
1

a(1 + a)
F1[1 + a; 1, b′; 2 + a; x, y]. (5.130)

We would then like to integrate this with respect to x but first lets derive a useful result for
this. Using

∑

m,n≥0

f(m+ n,m− n) →
∑

s=m+n≥0

s∑

∆=0

f(s, 2∆− s) (5.131)
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we can resum an F1 function as

F1[a; 1, 1; 1 + a; x, y] =
∑

m,n≥0

(a)m+n

(1 + a)m+n

xmyn

=
∑

m,n≥0

(a)m+n

(1 + a)m+n

x([m+n]+[m−n])/2y([m+n]−[m−n])/2

=
∑

s≥0

s∑

∆=0

(a)s
(1 + a)s

x∆ys−∆

=
∑

s≥0

(a)s
(1 + a)s

(
xs+1 − ys+1

x− y

)

=
x 2F1[a, 1; 1 + a, x]− y 2F1[a, 1; 1 + a; y]

x− y
.

(5.132)

We can then take the special case of (5.130) with a = b′ = 1

∂

∂x

∞∑

k=1

xk

k

(1)k
(2)k

2F1[1 + k, 1; 2 + k; y]

=
1

2
F1[2; 1, 1; 3; x, y] =

x 2F1[1, 2; 3; x]− y 2F1[1, 2; 3; y]

x− y

=
xlog[1− y]− ylog[1− x]

(x− y)xy
(5.133)

which we can integrate between boundaries {0, x} to give us

F1[1; δ, 1; 2; x, y] = − log[1− y]

y

+ δ
log[ 1−y

1−x
]log[y−x

y−1
]− Li2[x]− Li2[

x−1
y−1

]− log[1− y]log[ y
y−1

] + Li2[
1

1−y
]

y
(5.134)

and similarly

F1[1; δ1, 1; 2 + δ2; x, y] = − log[1− y]

y

+ δ1
log[ 1−y

1−x
]log[y−x

y−1
]− Li2[x]− Li2[

x−1
y−1

]− log[1− y]log[ y
y−1

] + Li2[
1

1−y
]

y

+ δ2
−log[1− y] + π2

6
+ log[1− y]log[ y

y−1
] + Li2[

1
1−y

]

y
. (5.135)

We can then perform exactly the same tricks multiple times, differentiating to deal with the
1
k
from the logs, collapsing F1’s to 2F1’s then resumming these back into to F1’s which can
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again collapse, then integrating. This allows us to find

F1[1; 1 + δ, 1; 2; x, y] =
1

y − x
log

[
1− x

1− y

]

+
2δ

y − x

[

log

[
1− y

1− x

]

log

[
y − x

y − 1

]

− Li2

[
x− 1

y − 1

]

− log[1− y]log

[
y

y − 1

]

+ Li2

[
1

1− y

]

+ log[1− x]log

[
x

x− 1

]

− Li2

[
1

1− x

]

+
π2

6

]

+ . . . (5.136)

If we need to go to higher orders in δ, these again usually can be expanded and then integrated
without too much issue using Mathematica. If not we can use the same tricks to get general
expansions of F1’s. For example the second order term for the above expansion involves

∑

k≥1

∑

k′≥1

xk

k

xk′

k′

(a)k+k′

(1 + a)k+k′
F1[a+ k + k′; 1, 1; 1 + a+ k + k′; x, y]

=
∑

k,k′≥1

xkxk′

kk′

(a)k+k′

(1 + a)k+k′

x 2F1[1, a+ k + k′; 1 + a+ k + k′; x]− y 2F1[1, a+ k + k′; 1 + a+ k + k′; y]

x− y

(5.137)

and we can again deal with the 1
kk′

by differentiating as

∂

∂w

∂

∂w′

∑

k,k′≥1

wk

k

(w′)k
′

k′

(a)k+k′

(1 + a)k+k′
2F1[1, a+ k + k′; 1 + a+ k + k′;Z]

=
Γ[1 + a]Γ[2 + a]

Γ[a]Γ[3 + a]

∑

q,q′,m≥0

wq(w′)q
′

Zm (2 + a)q+q′+m

(3 + a)q+q′+m

=
∑

q≥0

Γ[1 + a]Γ[2 + a+ q]

Γ[a]Γ[3 + a+ q]
F1[2 + a+ q; 1, 1; 3 + a+ q;w′, Z]

=
∑

q≥0

Γ[1 + a]Γ[2 + a+ q]

Γ[a]Γ[3 + a+ q]

w′
2F1[1, 2 + a+ q; 3 + a+ q;w′]− Z 2F1[1, 2 + a+ q; 3 + a+ q;Z]

w′ − Z
,

(5.138)

where we we need to consider the Z = x and Z = y cases. In both of these cases we integrate
w and w′ between boundaries [0, x]. This is easy enough to do in Mathematica and gives us
F1[1; 1 + δ, 1; 2; x, y] to second order in δ. The same game can be played for expansions on
other arguments in F1.

This procedure can be generalised to cases with c 6= 1 + a. We can look at the box with
arguments {ν1 = 2, ν2 = 1+ ǫ, ν3 = 1, ν4 = 5, D = 12− 2ǫ, κ = 0} as an example and go into
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some detail to give an example of tricks used.

ID,MB
4,ν1̂=1 [2, 1 + ǫ, 1, 5, 12− 2ǫ, 0]

=
(−1)−ǫ(M2)−3−2ǫS2−2ǫT−3−2ǫΓ[3− 2ǫ]Γ[−ǫ]

(24Γ[3− 3ǫ]Γ[2 + ǫ]Γ[3 + ǫ])

×
(

− T Γ[3 + ǫ]Γ[2 + 2ǫ]

∫ 1

0

duu2−2ǫ(1− u(1− S))−3+2ǫ(1− uT )−1

+ Γ[2 + ǫ]Γ[3 + 2ǫ]

∫ 1

0

du(u1−2ǫ(1− u(1− S))−3+2ǫ
2F1

[

3 + 2ǫ, 1, 3 + ǫ,
uT − 1

uT

])

= pre(caIa + cbIb) (5.139)

where pre is the prefactor in the second line and we take ci to be the kinematic coefficient of
the integral Ii on the third and fourth lines. Taking the first integral,

Ia ≈
∫ 1

0

duu2(1− u(1− S))−3(1− uT )−1
(

1 + 2ǫ
∑

k≥1

(1− u)k

k
− 2ǫ

∑

k≥1

uk(1− S)k

k

)

,

(5.140)

where the leading order term is simply 1
3
F1(3; 3, 1; 4; 1 − S, T ) which is simple to evaluate.

The first O(ǫ) term goes as

2ǫ
∂

∂X

∑

k≥1

∫ 1

0

duu2(1− u(1− S))−3(1− uT )−1 (1− u)kXk

k

= 2ǫ
∑

k≥0

∫ 1

0

duu2(1− u(1− S))−3(1− uT )−1(1− u)k+1Xk

= 2ǫ
∑

k≥0

Γ[3]Γ[2 + k]Xk

Γ[5 + k]
F1[3; 3, 1; 5 + k; 1− S, T ]

= 2ǫS−3(1− T )−1
∑

k≥0

Γ[3]Γ[2 + k]Xk

Γ[5 + k]
F1

[

2 + k; 3, 1; 5 + k;
S − 1

S
,

T

T − 1

]

= 2ǫS−3(1− T )−1
∑

k≥0

∑

m≥0

∑

n≥0

Γ[3]Γ[2 + k +m+ n](3)m(1)k(1)n
Γ[5 + k +m+ n]

Xk(S−1
S

)m( T
T−1

)n

k!m!n!
.

Closing the k and n sums

= 2ǫ
Γ[3]S−3(1− T )−1

Γ[5]

∑

m≥0

(2)m(3)m(
S−1
S

)m

(5)mm!
F1

[

2 +m; 1, 1; 5 +m;X,
T

T − 1

]

. (5.141)

We can reduce the F1 by partial fractioning and then a reordering of the sums into m± n as
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before,

F1[a; 1, 1; 3 + a; x, y] =
Γ[3 + a]

Γ[a]

∑

m≥0

∑

n≥0

xmyn

(a+ 2 +m+ n)(a+ 1 +m+ n)(a+m+ n)

=
Γ[3 + a]

Γ[a]

∑

m≥0

∑

n≥0

xmyn
( 1

2(2 + a+m+ n)
− 1

1 + a+m+ n
+

1

2(a+m+ n)

)

=
Γ[3 + a]

Γ[a]

∑

s≥0

s∑

∆=0

x∆ys−∆
( 1

2(2 + a+ s)
− 1

1 + a+ s
+

1

2(a+ s)

)

=
Γ[3 + a]

Γ[a]

∑

s≥0

(xs+1 − ys+1

x− y

)

×
( 1

2(2 + a+ s)
− 1

1 + a+ s
+

1

2(a+ s)

)

=
Γ[2 + a]

2Γ[a]

x 2F1[1, 2 + a; 3 + a; x]− y 2F1[1, 2 + a; 3 + a; y]

x− y

− Γ[3 + a]Γ[1 + a]

Γ[2 + a]Γ[a]

x 2F1[1, 1 + a; 2 + a; x]− y 2F1[1, 1 + a; 2 + a; y]

x− y

+
Γ[3 + a]

2Γ[1 + a]

x 2F1[1, a; 1 + a; x]− y 2F1[1, a; 1 + a; y]

x− y
. (5.142)

Applying this to (5.141) we have (with Y = T
T−1

)

2ǫ
Γ[3]S−3(1− T )−1

Γ[5]

∑

m≥0

(2)m(3)m(
S−1
S

)m

(5)mm!

×
(

Γ[4 +m]

2Γ[2 +m]

X 2F1[1, 4 +m; 5 +m;X]− Y 2F1[1, 4 +m; 5 +m;Y ]

X − Y

− Γ[5 +m]Γ[3 +m]

Γ[2 +m]Γ[4 +m]

X 2F1[1, 3 +m; 4 +m;X]− Y 2F1[1, 3 +m; 4 +m;Y ]

X − Y

+
Γ[5 +m]

2Γ[3 +m]

X 2F1[1, 2 +m; 3 +m;X]− Y 2F1[1, 2 +m; 3 +m;Y ]

X − Y

)

= 2ǫ
S−3(1− T )−1

2(X − Y )

×
(

Γ[4]

Γ[5]
XF1

[

4; 3, 1; 5;
S − 1

S
,X

]

− 2
Γ[3]

Γ[4]
F1

[

3; 3, 1; 4;
S − 1

S
,X

]

+
Γ[2]

Γ[3]
F1

[

2; 3, 1; 3;
S − 1

S
,X

]

− Γ[4]

Γ[5]
Y F1

[

4; 3, 1; 5;
S − 1

S
, Y

]

+ 2
Γ[3]

Γ[4]
Y F1

[

3; 3, 1; 4;
S − 1

S
, Y

]

− Γ[2]

Γ[3]
Y F1

[

2; 3, 1; 3;
S − 1

S
, Y

])

(5.143)

From here we can integrate these F1’s with respect to X between boundaries [0, 1−S], again
not being too careful about the Riemann sheet here. For the next piece we can simply use
derivative tricks to push the arguments of the F1 function around. For example it is easy to
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show

F1[a+ 1; b+ 1, b′; c+ 1; x, y] =
c

ab

∂

∂x
F1[a; b, b

′; c; x, y],

F1[a+ 1; b, b′ + 1; c+ 1; x, y] =
c

ab′
∂

∂y
F1[a; b, b

′; c; x, y], (5.144)

as well as a general result

F1[a; 1 +N + δ, b′; c; x, y] =
1

(1 + δ)N

1

xδ

∂N

∂xN

[

xN+δF1[a; 1 + δ, b′; c; x, y]
]

. (5.145)

With these results in mind we can calculate the last part of the expansion of I55a

− 2ǫ
∂

∂X

∑

k≥1

∫ 1

0

duu2+k(1− u(1− S))−3(1− uT )−1X
k

k

= −2ǫ
∑

k≥0

∫ 1

0

duu3+k(1− u(1− S))−3(1− uT )−1Xk

= 2ǫ
∑

k≥0

Γ[4 + k]Xk

Γ[5 + k]
F1(4 + k; 3, 1; 5 + k; 1− S, T )

= ǫ
∑

k≥0

(1)k(2)kX
k

(3)kk!

∂2
∂2Y

F1(2 + k; 1, 1; 3 + k;Y, T )

= ǫ
∂2
∂2Y

∑

k≥0

(1)k(2)kX
k

(3)kl!

(
T 2F1(2 + k, 1; 3 + k;T )− Y 2F1(2 + k, 1; 3 + k;Y )

T − Y

)

= ǫ
∂2
∂2Y

(
TF1(2; 1, 1; 3;X,T )− Y F1(2; 1, 1; 3;X, Y )

T − Y

)

. (5.146)

We know that F1(2; 1, 1; 3; x, y) = 2(xlog[1−y]−ylog[1−x])
xy(x−y)

so this expression can be integrated

with respect to X between boundaries [0, 1 − S], and then differentiated with respect to Y
and set Y → 1 − S. Ib does not provide any other tricks so we will stop this example here,
but needless to say these are easy to generalise and adapt from one problem to another. It
is also apparent that many of the same F1 functions will appear so these expansions become
very quick to perform.

The final term in the ν1̂ = 1 and ν2 = 1 cases can largely be dealt with by converting
the hypergeometric function into its integral form and performing the same tricks. Care
must be taken when looking at the integral representation as it diverges for some arguments
of the function. In these cases we found it easier to expand the hypergeometric function
using nested sums and then perform the u integration after. Nested sums quickly become
cumbersome as the value of their arguments increase but most of the problematic terms we
find have simple arguments. We will now review this approach.

5.5.2 Nested Sums and Expansions of Hypergeometric functions

This technique is explored in more detail in [108]. Appendix B has a detailed calculation of
an Appell F2 expansion using nested sums. It is clear from this that while it may be possible
to automate the nested sums approach it takes a lot more computing power than necessary

139



when the integral representations are easily expanded. We will review the necessary steps
for the present calculation.

We define the sums

Zµ[n] = Sµ[n] =
n∑

i=1

1

iµ
,

Zµν [n] =
∑

1≤i<j≤n

1

iµjν
,

and

Sµν [n] =
∑

1≤i≤j≤n

1

iµjν
= Zµν [n] + Zµ+ν [n]. (5.147)

Note the difference in the double sum between Z and S is simply i < j instead of i ≤ j. The
gamma function for positive integer a is

Γ[a+ ǫ] = (a− 1 + ǫ)(a− 2 + ǫ) . . . (1 + ǫ)Γ(1 + ǫ). (5.148)

Extracting the ǫ coefficients we have

Γ[a+ ǫ] = Γ[1 + ǫ]Γ[a]
(
1 + ǫZ1[a− 1] + ǫ2Z11[a− 1] + . . .

)
(5.149)

and the reciprocal expansion

1

Γ[a+ ǫ]
=

1

Γ[1 + ǫ]Γ[a]

(
1− ǫS1[a− 1] + ǫ2S11[a− 1] + . . .

)
. (5.150)

For hypergeometric expansions we will need the more general nested sum

Z[n;m1, . . . ,mk; x1, . . . , xk] =
n∑

i=1

xi
1

im1
Z[i− 1;m2, . . . ,mk; x2, . . . , xk] (5.151)

and

S[n;m1, . . . ,mk; x1, . . . , xk] =
n∑

i=1

xi
1

im1
S[i;m2, . . . ,mk; x2, . . . , xk] (5.152)

We also define Z[n] = 1 for n ≥ 0, Z[n] = 0 for n < 0 and S[n] = 1 for n > 0, S[n] = 0 for
n ≤ 0. We finally need the special case of

Z[∞;m1, . . . ,mk; x1, . . . , xk] = Limk,...,m1 [xk, . . . , x1], (5.153)

where Limk,...,m1 [xk, . . . , x1] are the multiple polylogarithms of Gonochorov [109]. These are
a whole subject to themselves and while more work was done on them in Appendix B, we
did not need to go very far with them for the final version of the calculation. What we
will need to know is that a subset of these multiple polylogarithms are Nielsen’s generalised
polylogarithms [110]

Sn,p[x] = Li1,1,...,1,n+1[1, . . . , 1, x] (5.154)
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where there are p arguments of Li so there are (p − 1) “1’s”. These functions are very
well documented and can be easily related to the standard polylogarithms. For cases where
mi 6= 1 but with all but the last xi = 1, we have the harmonic polylogarithms of Remiddi
and Vermaseren [111]

Hm1,...,mk
[x] = Limk,...,m1 [1, 1, . . . , 1, x], (5.155)

noting the reversed orderings of the subscript labellings between Z, Li and H. They have the
useful property that you can find simple enough ways of manipulating the order of mi using
relations like

Hm1+1,m2,...,mk
[x] =

∫ x

0

dx1 f0[x1]Hm1,m2,...,mk
[x1] (5.156)

and

H±1,m2,...,mk
[x] =

∫ x

0

dx1 f±1[x1]Hm2,...,mk
[x1] (5.157)

where

f0[x] =
1

x
, f±1[x] =

1

1∓ x
. (5.158)

We can then combine all of these definitions to calculate some hypergeometric expansions
where we rewrite the hypergeometric 2F1 as

2F1[a, b; c; x] = 1 +
Γ[c]

Γ[a]Γ[b]

∑

i≥1

xiΓ[i+ a]Γ[i+ b]

Γ[i+ c]Γ[i+ 1]
, (5.159)

and we can then use all of the above together to perform this expansion. For example we
have a box with parameters as before, {1,−1+ ǫ, 1, 2, 6−2ǫ,−1}. The spinor coefficient from
the first integral is finite and the box looks like

ID4,ν1̂=1[1,−1 + ǫ, 1, 2, 6− 2ǫ,−1]

= −(−1)−2ǫ(M2)−2ǫS2−2ǫT−2ǫΓ[3− 2ǫ]Γ[−ǫ]Γ[2ǫ]

Γ[3− 3ǫ]Γ[ǫ]

×
∫ 1

0

duu1−2ǫ(1− u(1− S))−3+2ǫ
2F1

[

2ǫ, 1; ǫ,
uT − 1

uT

]

= −(−1)−2ǫ(M2)−2ǫS2−2ǫT−2ǫΓ[3− 2ǫ]Γ[−ǫ]Γ[2ǫ]

Γ[3− 3ǫ]Γ[ǫ]

×
∫ 1

0

duu1−2ǫ(1− u(1− S))−3+2ǫ

(

1− 2(1− uT )(1 + ǫlog[uT ])

)

+O(ǫ2) (5.160)

where we have used nested sums to rewrite the hypergeometric function as

2F1[aǫ, 1; bǫ; x] = 1 +
Γ[bǫ]

Γ[aǫ]

∞∑

i=1

xiΓ[i+ aǫ]

Γ[i+ bǫ]

= 1 +
Γ[1 + aǫ]Γ[bǫ]

Γ[1 + bǫ]Γ[aǫ]

∞∑

i=1

xi

(

1 + (a− b)ǫZ1[i− 1] + aǫ2Z11[i− 1] + bǫ2S11[i− 1] + . . .

)

= 1 +
a

b

x

1− x

(

1 + (b− a)ǫlog[1− x]

)

+O(ǫ2). (5.161)
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The coefficient is finite and the box goes as O(ǫ−1), so we only needed to go to O(ǫ) but had
we needed to go to O(ǫ2) then we could rewrite S11[i − 1] = Z11[i − 1] + Z2[i − 1] and each
of these cases can be related to a Nielsen’s polylogarithm. We find similar results

2F1(1 + aǫ, 1; 1 + bǫ; x) =
1

1− x
+ ǫ(b− a)

log[1− x]

1− x
+ . . . , (5.162)

2F1(−1 + aǫ, 1;−1 + bǫ; x)

= 1 +
Γ[−1 + bǫ]

Γ[−1 + aǫ]

∞∑

i=1

xiΓ[−1 + i+ aǫ]

Γ[−1 + i+ bǫ]

= 1 + x(1 + (b− a)ǫ) + x
Γ[−1 + bǫ]

Γ[−1 + aǫ]

∞∑

i=1

xiΓ[i+ aǫ]

Γ[i+ bǫ]

= 1 + x(1 + (b− a)ǫ) + x
a(aǫ− 1)

b(bǫ− 1)

∞∑

i=1

xi(1 + (a− b)ǫZ1[i− 1])

= 1 + x(1 + (b− a)ǫ) +
ax2

b(1− x)

(

1 + ǫ(b− a)(1 + log[1− x])
)

, (5.163)

and

2F1(2 + aǫ, bǫ; 1 + cǫ; x)

= 1 + (bǫ− abǫ2)

(

x

1− x
− log[1− x]

)

+ abǫ2
(

−2log[1− x]− xlog[1− x]

1− x
+

1

2
log[1− x]2 + Li2[x]

)

+ b2ǫ2(Li−1,2[1, x] + Li0,2[1, x])− bcǫ2
(

−log[1− x]− xlog[1− x]

1− x
+

1

2
log[1− x]2 + Li2[x]

)

.

(5.164)

This last expansion was needed to O(ǫ2) for the box {−1+ ǫ, 1, 1, 1, 4−2ǫ,−1} which we will
briefly discuss. The spinor coefficient of the box is finite and the box goes as

ID4,ν2=1[−1 + ǫ, 1, 1, 1, 4− 2ǫ,−1]

=
(−1)−2ǫ(M2)−2ǫS1−2ǫΓ[2− 2ǫ]Γ[−ǫ]Γ[2ǫ]

Γ[2− 3ǫ]Γ[ǫ]

∫ 1

0

du(1− u(1− S))−2+2ǫ
2F1(2ǫ, 1; ǫ; 1− uT )

=
(−1)−2ǫ(M2)−2ǫS1−2ǫΓ[2− 2ǫ]Γ[−ǫ]Γ[2ǫ]

Γ[2− 3ǫ]Γ[ǫ]

×
∫ 1

0

du(uT )−1(1− u(1− S))−2+2ǫ
2F1

(

−ǫ, 1; ǫ;
uT − 1

uT

)

=
(−1)−2ǫ(M2)−2ǫS1−2ǫΓ[2− 2ǫ]Γ[−ǫ]Γ[2ǫ]

Γ[2− 3ǫ]Γ[ǫ]

×
∫ 1

0

du(uT )−1(1− u(1− S))−2+2ǫ
(

2− uT − 2ǫ(1− uT )log[uT ]
)

, (5.165)
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but there is a convergence issue at u = 0. This is an issue with our general box result but
we can take a step back to earlier results for this. We have

I
{q1,q2}
D + I{p4,q2}|ν4=1 = (M2)

D
2
−σ(S)

D
2
−ν123

Γ[D
2
− ν12]Γ[σ − D

2
]Γ[D

2
− ν234]

Γ[ν1]Γ[ν34]Γ[D − σ]
∑

n≥0

(ν2)n(ν4)n
(ν34)n

T n

n!
2F1

(
D

2
− ν12, ν4 + n; ν34 + n; 1− S

)

= (M2)
D
2
−σ(S)

D
2
−ν123

Γ[D
2
− ν12]Γ[σ − D

2
]Γ[D

2
− ν234]

Γ[ν1]Γ[ν34]Γ[D − σ]
F1

(

ν4;
D

2
− ν12, ν2; ν34; 1− S, T

)

,

(5.166)

and given that for this box we have ν2 = ν3 = ν4 we have some freedom to relabel things
(this is very much not general!). ν4 = 1 gives cancellations and so we write

I
{p1,q1}
D + I{p1,p4}|ν2=1 = (T )

D
2
−ν234(M2)

D
2
−σ(S)

D
2
−ν123

Γ[D
2
− ν12]Γ[ν234 − D

2
]Γ[D

2
− ν23]Γ[

D
2
− ν34]

Γ[ν2]Γ[ν4]Γ[D − σ]Γ[D
2
− ν2]

∑

n≥0
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These results then look like

I
{p1,q1}
D + I{p1,p4} =

(M2)−2ǫS1−2ǫT−1−ǫΓ[2− 2ǫ]Γ[−ǫ]2Γ[1 + ǫ]

Γ[2− 3ǫ]Γ[1− ǫ]

× F1(−ǫ; 2− 2ǫ,−1 + ǫ; 1− ǫ; 1− S, T )

=
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and

I
{q1,q2}
D + I{p4,q2}

=
(M2)−2ǫS1−2ǫΓ[2− 2ǫ]Γ[−1− ǫ]Γ[2ǫ]

Γ[2− 3ǫ]Γ[−1 + ǫ]
F1(1, 2− 2ǫ, 1, 2, 1− S, T ). (5.169)

The Appell function is easily expanded using the integral representation and we now have the
nested sums results to expand the hypergeometric function. This was the only case of (5.117)
not converging properly and there were only four cases where nested sums were needed at
all. Everything else was expanded using (5.118) and we used the other tricks covered in this
section in some rare cases. With the boxes done we can now look at two-mass and one-mass
triangles.
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5.5.3 Triangles

We take the triangles to be special cases of our general box result (5.117). We have already
done something similar for κ = −1 cases earlier but now we can do the same for Mellin-Barnes
expanded cases.
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Take the ν3 → 0 limit and get
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and for the one-mass triangle with ν4 → 0
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Recalling we used a box shift to avoid tensor triangles, we expect cases of ν4 = −1 with
ν3 = 1. With this in mind, we will need to use

1

Γ[0]
F1(−1; a, b; 0; x, y) = −(ax+ by), (5.173)
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which is easy enough to derive using the summation representation, to give
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These were the only exceptional cases, the remaining one-mass and two-mass triangles were
easy enough to expand using methods outlined previously or even just Mathematica’s inbuilt
Series function. Now that we have introduced all of the tools necessary for the ǫ-expansions,
we can discuss how the Riemann sheets were fixed.

5.5.4 Riemann Sheet Problems and Solutions

We know what our target solution is from [2] but there are other tests that our solution must
satisfy. We know that the IR piece is (5.3) but we also know a priori how the transcendentality
of the result should look. If we define τ to mean the order of transcendentality, i.e. τ 0 implies
rational functions, τ 1 implies logarithms and π’s etc, then we expect the amplitude to have
maximum transcendentality

2∑

i=0

τ i

ǫ2−i
, (5.175)

where we say maximum transcendality because we also expect rational pieces at O(ǫ−1) and
rational and τ 1 terms at O(ǫ0). This was the first clue that we were on the wrong Riemann
sheet as we will discuss shortly. Looking back to (5.12) these expansions were all performed
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for the general arguments {k, a, i, j, ω} with the aim of summing over all configurations after
the expansion was performed. We chose to work in the fundamental region but we were
intentionally careless about kinematic regions when expanding the boxes, making sure they
worked for 0 < S < 1, 0 < T < 1 and S + T < 1 only. This does not cover the whole
fundamental region but we will see this is fine.

After completing all of the expansions and summing all of the contributions, we first
found that the O(ǫ−3) vanished, we had the correct O(ǫ−2) terms but there were problems
beyond this. There were τ 2 terms at O(ǫ−1) and τ 3 terms at O(ǫ0). For the kinematic region
that we were expanding in these pieces were numerically zero, but taking the result outside
of this region we found non-zero results. We of course expect zero to analytically continue
to zero so this was a good first test to ensure we were on the right Riemann sheet.

To resolve this, we can make a few observations. Firstly, the result from [2] tells us a
posteri that it can be presented in terms of six-dimensional boxes. One can therefore write
code that would give the initial alphabet of arguments in the polylogarithms and try to
manipulate them in such a way that reduces them to only having arguments {1− S, 1− T}
for the dilogarithms and explicitly vanishing τ 3 terms. The ambiguity would then lie in
the logarithms, where log[x] → log[−x] + ciπ, where we are uncertain of which value from
c = {−1, 0, 1} should be taken on a logarithm to logarithm case. We hereby take c to mean
that each logarithm gets a tag ci ∈ c and we hope to constrain all of the ci’s to give us the
correct Riemann sheet.

Secondly, the form of (5.117) makes it clear that for 0 < S < 1, 0 < T < 1 and S+T < 1,

the boxes will be completely real apart from the (−1)
D
2 factor. Removing this factor allows

us to track any time a branch cut was crossed and therefore some imaginary value would be
picked up. The idea here is that the final result should be completely real in this kinematic
region, so if we could isolate the imaginary contributions after bringing the result into a form
with the correct alphabet in this region then we could test for a solution of c which caused
this imaginary part to vanish, and what was left over would be the result on the correct
Riemann sheet.

First we looked at the boxes individually. For example if we take the box with Glover
parameters {ν1 = 0, ν2 = ǫ, ν3 = 1, ν4 = 1, D = 4−2ǫ, κ = 0}, we find that there are only three
dilogarithms present, {Li2[1− S],Li2

[
S

1−T

]
,Li2

[
S+T−1

S

]
}. Noticing that S+T−1

S
= 1−

(
1−T
S

)

and using

Li2[z] + Li2[1− z] = −log[1− z]log[z] +
π2

6
, (5.176)

followed by
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[
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]

= −1

2
log[−z]2 − π2

6
, (5.177)

we get to

Li2

[
S + T − 1

S

]

→ Li2

[
S
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]

+
1

2
log

[
T − 1

S

]2

− log

[
1− T

S

]

log

[
S + T − 1

S

]

+
π2

3
. (5.178)

This did not cancel the existing Li2
[

S
1−T

]
, but if we create a list of all boxes whose coefficients

from the first integral were equal to each other up to some real rational factors, then the sum
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of these boxes reduced to only having Li2[1 − S]. Again we are being intentionally careless
with kinematic regions, (5.177) requires z /∈ (0, 1) and it is unclear where 1−T

S
lies in the this

range, but we press on. Now that we have this combination of boxes reduced to only having
dilogarithms Li2[1− S], we can look at the logarithms. We again are focusing on the region
0 < S < 1, 0 < T < 1 and S + T < 1 so we can rewrite the logarithms in a way that they
would be real and then include a tagged iπ as previously mentioned. For example

log

[
S + T − 1

S

]

→ log[1− S − T ]− log[S] + c(iπ) (5.179)

where c is just a tag to keep track of these pieces. Rewriting all of the logarithms this way
then the combination of boxes reduced to

∑

i∈B1

CiI
D,MB
4,i

= f
(

log[s], log[t], log[M2],Li2[1− S],Li2[1− T ], (ciπ)2
)

+ g
(

ciπlog[1− T ]
)

(5.180)

where B1 = {1, 2, 3, 4, 10, 11, 13}. What is interesting here is that when crossing branch cuts
and going between kinematic regions (and therefore picking up an imaginary part), we see the
entire imaginary part is contained in the function g, and in fact g is entirely this imaginary
part. f is therefore the real part and the piece that matches the expansion for 0 < S < 1,
0 < T < 1 and S + T < 1. There is a non-trivial solution for all of the tags c that eliminates
g and this is the solution that puts us on the correct Riemann sheet, practically translating
to just keeping f. It is important that it is non-trivial as f contains (ciπ)2 = −|c|2π2 and
which requires |c| = 1 in the final result.

This is essentially the procedure that was used for all boxes but we will highlight a case
which made use of a further identity. The box with Glover parameters {ν1 = 1, ν2 = ǫ, ν3 =
1, ν4 = 2, D = 6− 2ǫ, κ = 1} has the dilogarithms

{

Li2(1− S),Li2(1− T ),Li2

(
S

1− T

)

,Li2

(
T

S + T − 1

)

,Li2

(
ST

S + T − 1

)}

, (5.181)

upon expansion, and again we collect all boxes with similar coefficients. Noting the identity

Li2(wz) + Li2

(
z(1− w)

1− wz

)

+ Li2

(
w(1− z)

1− wz

)

= Li2(w) + Li2(z)− log

(
1− w

1− wz

)

log

(
1− z

1− wz

)

, (5.182)

we can use 1 − ST
S+T−1

= (1−S)(1−T )
1−S−T

and the solve for
{

T
S+T−1

= z(1−w)
1−wz

, (1−S)(1−T )
1−S−T

= w(1−z)
1−wz

}

which gives us
{
w = 1− T, z = 1

S

}
. We then use (5.177) on the Li2(z) and Li2(wz) terms.

This successfully reduces these boxes to having only Li2(1− S) and Li2(1− T ).
We earlier mentioned the existence of τ 3 terms at O(ǫ0). We performed the exact same

tricks but making use of identities such as

Li3[z] = Li3

[
1

z

]

− 1

6
log3[−z]− π2

6
log[−z] (5.183)
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and

Li3[z] + Li3

[
z

z − 1

]

+ Li3[1− z]

=
1

6
log3[1− z]− 1

2
log[z]log2[1− z] +

π2

6
log[1− z] + ζ(3). (5.184)

We were generally aiming for the alphabet
{

S
S+T−1

, T
S+T−1

, ST
S+T−1

}
as these seemed like com-

mon arguments across all boxes. We found that using these identities and reaching this
alphabet would lead to these trilogarithms having vanishing coefficients, and then rewrit-
ing the logarithms as discussed above lead to all τ 3 terms explicitly vanishing. With these
techniques discussed we can look closer at the structure of the results.

5.6 A Summary of Results

We can break down the possible contributions in terms of powers of ǫ and transcendental
weight, as shown in (5.175) and in Table 5.1. We will quickly discuss the contributions to
each piece and summarise how the genuine two-loop diagrams and inserts interact to give
the amplitude.

ǫ−4 ǫ−3 ǫ−2 ǫ−1 ǫ0

τ 3 X X X X X

τ 2 X X X X X

τ 1 X X X X ×
τ 0 X X X X ×

Table 5.1: A table to show the current results compared to the results presented in [2]. ǫ
refers to the dimensional regulation scalar and τ i are terms of transcendental weight i.

ǫ−4

We expect vanishing coefficient at O(ǫ−4) and indeed we get no contributions at all to this
order.

ǫ−3

We also expect vanishing coefficient for O(ǫ−3). We do get individual contributions to O(ǫ−3)
from the one-mass triangles coming from η = {K21}. These contributions arise only from
the “a in middle” part of this structure and we find they cancel amongst themselves leaving
us with an overall zero coefficient.

ǫ−2, τ 0

We expect O(ǫ−2) to follow the universal IR equation (5.3). We see that all contributions
that come from the box and two mass triangle inserts cancel with each other, and the whole
IR contribution comes from the triple cuts on the one-mass triangle inserts. All contributions
from the genuine two-loop structures cancel amongst themselves.
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ǫ−1, τ1 and τ0

We again expect this to follow the universal IR equation (5.3). We can expect interac-
tion between the genuine two-loop and insert pieces here. This is because double cuts on
the inserts will provide rational contributions to this piece, but the IR function is only made
of logarithms at this order in ǫ. The double cuts should then be completely cancelled by
the genuine two loop integrals. Indeed, we see the double cuts are completely cancelled by
the one-mass triangles η = {stt,K21}. The box-like second integrals of η = {tbx,K31}
and two-mass triangle-like η = {K12} have completely cancelling divergent pieces amongst
themselves.

ǫ0, τ0

We already know that this will not get all contributions due to four-dimensional unitar-
ity losing rational pieces and so we can discard these for now, where we will use augmented
recursion to calculate this contribution at a later date.

ǫ0, τ 2

We find full agreement with [2]. We get contributions from the box cuts on the inserts
and then contributions from η = {tbx, stt,K31, K21}.

ǫ0, τ 1

We find agreement with three of these pieces, as demonstrated in Table 5.2. Interestingly,
the π contributions match which suggests the correct Riemann sheet has been found.

The pieces that we do not find agreement are the logarithms of Mandelstam variables
including only positive helicity legs. This immediately suggests that the possible bug comes
from the one-mass triangles as these vanish or integrate to zero if either of the massless legs
are the negative helicity leg. Further evidence of this is found by sitting near kinematic poles.
As an example, if we extract the coefficient for the log[sbc] from our result and the result
of [2], we can then numerically evaluate them near various poles, finding that if

I(2)
stt |〈x y〉→0 ∼ 〈x y〉i

then the difference between the two results is also O
(
〈x y〉i

)
. This is true for all poles for

each of the mismatching logarithm coefficients, suggesting that either the bug is contained
within the η = stt structure or that there is a piece elsewhere that should be consistently
cancelling this η = stt piece.

π log[sab] log[sea] log[sbc] log[scd] log[sde]
X X X × × ×

Table 5.2: A table showing the present agreement with the results given in [2] for ǫ0. Here
the helicity assignment is {a−, b+, c+, d+, e+}.

If there was a mistake in the insert calculations, it could only come from the bubble cuts.
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We would need there to be contributions of the form,

C(pa, pb, pc, pd, pe)×
(
I2(sbc) + I2(sde)− 2I2(scd)

)
, (5.185)

or any such combination of bubble integrals that have cancelling 1
ǫ
terms but non-cancelling

logarithmic terms where C is some common kinematic coefficient that can be factorised out.
This would provide transcendental one terms at finite order without effecting the already
correct IR singular terms.

We already have flip symmetry checks on the results that are all satisfied. We have also
recalculated them using a different method; where we initially had ℓ1 = ℓ2 +P and generally
tried to write things in terms of ℓ1, we decided to calculate the double cuts again with most
things written in terms of ℓ2. This required a completely different series of algebraic manip-
ulations and required different types of canonical forms and we found complete agreement
with the first set of results. This leads us to strongly believe that the insert calculations are
correct and therefore that the problem must lie either in genuine two-loop integrals or in
something more fundamental.

There are numerical checks at every step of the automated two-loop integral and coefficient
generator. These checks allowed us to track down errors in the 1

ǫ3
calculation. The new

checks lead us to also believe that the generation of the lists of box/triangle integrals and
their associated coefficient is also working correctly. Much of this stage has also been checked
by hand and found to match.

The unitarity stage also has extensive numerical checks, and so the most likely location of a
calculational error would be the epsilon expansions and integrals themselves. The expansions
of the boxes have been checked numerically against the explicit Appell functional forms (5.78)
from [1] for kinematic points 0 < S < 1, |T | < 1 and S+T < 1. The final form of the expanded
boxes after the Riemann sheet cleanup has also been tested numerically and found to be the
correct to O(ǫ) in this region.

For the triangles, these tests are harder to perform due to slow convergence of the sums
if comparing specifically against the form (5.64). There are forms of the one-mass and two-
mass triangles presented in [102] that we may compare against for triangles that do not need
a Mellin-Barnes expansion. Alternative derivations of the Mellin-Barnes expanded triangles
are given in Appendix C. All integrals are then tested numerically and found to have the
correct expansions.

There are a few other consistency checks we performed: changing the algebra for generat-
ing the list of one-mass triangles such that we had a new list with a different set of triangles
and coefficients, but the final expanded result matched the previous list. We see in the “a in
middle” part of the η = K21 numerator that the two terms are flips of each other, and inte-
grating one side first necessarily gives us a scalar triangle as the first integration. We isolated
this piece and changed the order of integration such that there was always an x3 Feynman
parameter in the numerator but found this to match as well. The specific integrand,

ℓ2z
P 2Q2L2

1

, (5.186)

provides the case of ν4 = −1 and ν3 = 1 case which was presented earlier. This integral is
calculated explicitly using triangle parametrisations as a tensor integral in Appendix C.

One last note is that while there are no checks stated in [2], the coefficients generated
for the all-plus logarithms in our calculation are certainly incorrect. Sitting on the collinear
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limit a− ∼ b+, we expect the result to have the limit

lim
a||b

A
(2)
5:1(a

−, b+, c+, d+, e+) =
2∑

ℓ=0

∑

λ

S
(ℓ)
λ (a−, b+)× A

(2−ℓ)
4:1 (−K−λ, c+, d+, e+). (5.187)

The flip symmetry here implies that in this limit we should expect the coefficient of log[scd]
and log[sde], defined as Ccd and Cde respectively, to obey

lim
a||b

Ccd = − lim
a||b

Cde, (5.188)

and indeed the coefficient in [2] obeys this whereas our coefficients do not.
With hundreds of integrals needed to be calculated, there is of course the possibility that

one of these tests has not been performed correctly, and indeed this is likely to be the case. If
this is not the case, then the technique must have a more fundamental problem that we have
overlooked, although with so many of the pieces being correct in highly non-trivial ways, it
is more likely the case that there is some undiscovered bug in the code. Unfortunately, the
author ran out of time in locating this bug.

5.7 Conclusion

In this calculation we

• Used four-dimensional unitarity and triple cuts to constrain some numerators for various
two-loop structures.

• Used double cuts to find one-loop insert type structures built into one-loop structures.

• Used existing and developed new one-loop techniques to calculate the inserts.

• Used dimension shifting, a new representation of generalised scalar one-mass boxes and
new techniques in ǫ−expansions to calculate the genuine two-loop integrals to finite
order.

• Summed these results over all diagrams.

We have unfortunately not been able to calculate the correct coefficient for the all-plus
logarithms at finite order, but we are hopeful that this is simply an overlooked bug in the code.
Should this be the case, then the technique will in theory scale well to higher multiplicities.
The existence of a compact n-point tree amplitude for the MHV configurations means that
numerators for the genuine two-loop structures are able to be calculated for n-points, and
indeed they have been calculated [100]. The challenge would then be to calculate the loop
inserts, calculate a compact form for general two-mass easy boxes and extend augmented
recursion to the single-minus configuration. This is of course academic until the technique
can be proven to work for the five-point case.

Regardless, this calculation has uncovered many new results for generalised hypergeomet-
ric functions, for general scalar integrals and ǫ-expansions, as well as a simple method for
fixing the Riemann sheets. While it is disappointing that the final result was not able to be
calculated in time for this thesis, the investigation has been interesting and has felt like a
very worthwhile endeavour.
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It is worth noting that some steps have already been taken towards future calculations
and they are showing some promising results. Pieces of the augmented recursion for the
single-minus calculation have already been calculated and a set of numerators for the genuine
two-loop structures has been calculated at n-points. This set of numerators has been built in
a way that require generalised two-mass easy boxes and so the next stage of the calculation
would be to find a compact form of this ready for ǫ-expanding. The initial steps for this, as
well as some notes on augmented recursion for the single-minus amplitude, are included in
Appendix D.
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Chapter 6

Conclusion

In this thesis we have calculated new and existing results using four-dimensional unitarity
and augmented recursion. The technique scales very well to higher multiplicities. The largely
algebraic nature of the calculations allow close inspection of the intermediate steps and un-
covers interesting relations between different structures. Augmented recursion has previously
been used to calculate the full rational piece of amplitudes of various theories, and we extend
this technique to the full colour, pure Yang-Mills case for all-plus helicities. It continues
to prove the most promising method of calculating rational contributions containing double
poles.

In Chapter 2, we calculated the full colour, five-point all-plus amplitude at two loops,
agreeing with the previously calculated result. This involved extending the pseudo one-
loop calculation to one which included the full colour one-loop insert, made easier by the
compact forms of the subleading in colour amplitudes presented. The rational calculation
also extended the augmented recursion technique to full colour, instead opting to use the
decoupling identities to express each subleading in colour current in terms of two independent
leading in colour currents.

Chapter 3 calculated the two-loop, six-point, full colour, all-plus amplitude using the same
techniques as for five-point. This was a new result and required functional reconstruction of
the rational piece.

Chapter 4 calculated the cut-constructible part of the full two-loop, all-plus amplitude at
n-points. We also conjecture the rational part of the A

(2)
n:1B amplitude for all-plus helicities,

completing this partial amplitude. The conjecture matches the explicit calculation for up to
seven gluons.

Finally, in Chapter 5 we present a new technique for calculating the cut-constructible
part of the five-point single-minus amplitude at two-loops. This leading in colour calculation
has not been completed, although the IR divergent piece and finite, transcendental two
pieces are correctly calculated which are highly non-trivial results. Only the finite order,
all-plus helicity logarithms are incorrect, and an extensive list of consistency checks has been
presented. Several new results are calculated for generalised hypergeometric functions, for
general scalar integrals and ǫ-expansions, as well as a simple method for fixing the Riemann
sheets.
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Appendix A

Bubble Structures and Inserts

A.1 Genuine Two-Loop Bubble Contributions

We showed in Chapter 5 that all contributions of bubbles in propagators vanish upon inte-
gration. They are still required for the unitarity checks and so we will list the numerators
here. Starting with η = fbbx for completeness,

Nnfbbx = 〈a a〉 [a|ℓω|ω〉〈a|LALB|a〉[ω|ℓzℓωLA|a〉. (A.1)

a i
j

ωk

L3

ℓw

ℓw

LA LB

L1

ℓz

Figure A.1: Bubble in box between two null corners. η = fbbx for no pinched propagators,
η = pbbx for ℓw pinched towards a. No contributions for both ℓw propagators pinched.

Nnpbbx = 〈a a〉 [a|ℓωL1ω|a〉〈a|LALB|a〉, (A.2)
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a i
j

ωk

L3

ℓw

LA LB

L1

ℓz

Figure A.2: Bubble in box between two null corners with a pinched propagator. η = npbbx.
No contribution for the other ℓw being pinched.

Nmfbbx = 〈a a〉 [a|ℓω|ω〉〈a|LALB|a〉[ω|ℓzL3LA|a〉. (A.3)

a i
j

ωk

L3 L3

LA

LB

ℓw

L1

ℓz

Figure A.3: Bubble in box between two massive corners. η = mfbbx.

Nmpbbx = 〈a a〉 [a|ℓω|ω〉〈a|LALB|a〉[ω|ℓzL3LA|a〉. (A.4)
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a i
j

ωk

L3

LA

LB

ℓw

L1

ℓz

Figure A.4: Bubble in box between two massive corners. η = mpbbx. No contributions for
both L3 propagators pinched.

Nmft1m = 〈a a〉 [a|LMLSLA|a〉〈a|LALB|a〉, (A.5)

k

a

i
j

ω

LN LM

LA

LB

LS

Figure A.5: Bubble in one-mass triangle between a massive corner and null corner. η =
mft1m

Nmpt1m = (δia + δωa )〈a|ak|a〉〈a|LALB|a〉, (A.6)

where δia and δωa are one when the single minus gluon is in position i or ω respectively and
zero in all other cases.

k

a

i
j

ω

LN LM

LA

LB

LS

Figure A.6: Bubble in one-mass triangle between a massive corner and null corner with a
pinched propagator. η = mpt1m. No contribution for doubly pinched bubbles.
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Nnft1m = [a|k|a〉(〈a|LALB|a〉)2, (A.7)

k

ji ω

a

LN LM

LA

LB

LS

Figure A.7: Bubble in one-mass triangle between two null corners. η = nft1m

Nnpt1m = −〈a|kLA|a〉〈a|LSLB|a〉+ 〈a|aLA|a〉〈a|LSLB|a〉, (A.8)

k

ji ω

a

LN LM

LA

LB

LS

Figure A.8: Bubble in one-mass triangle between two null corners with a pinched propagator.
η = npt1m. No contributions from doubly pinched propagators.

Nft2m = 〈a|aLA|a〉〈a|LBLA|a〉, (A.9)

a

ji

ω
k

LN LM

LA

LB

LS

Figure A.9: Bubble in two-mass triangle between a null corner and a massive corner with a
pinched propagator. η = ft2m. No other contributions.
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A.2 Inserts

The following inserts contribute to multiple double cuts, with the loop insert being indicated
by the vertex in the corresponding figure. The following is for {a−, b+, c+, d+, e+} and the
propagators are left out of the equations but are indicated by the corresponding figure. There
is also a Parke-Taylor denominator factorised out 1/(〈a b〉 〈b c〉 〈c d〉 〈d e〉 〈e a〉).

Ib1 =
(P1 + d)2 〈a d〉2 〈a c〉 [a|P1|c〉[c|(P1 + Pde)|a〉 〈e a〉

6 〈c d〉 〈d e〉

− 〈a b〉 〈e a〉 sbc[b|c|d〉[c|P1|a〉[b|(P1 + Pde)|c〉
6 [a b] 〈d e〉 (A.10)

d+

e+

a−b+

c+

P1

P2

P3

P4

Figure A.10: Insert diagram corresponding to Ib1. The vertex on the massive corner indicates
the one-loop insertion.

Ib2 = −〈a b〉2 〈a c〉2 [a|P1|c〉[c|(P1 + Pde)|a〉 [b c]
6 〈b c〉

+
〈a b〉 〈a c〉2 〈a d〉 [a|P1|c〉[c|(P1 + Pde)|a〉 [b c]

6 〈c d〉 (A.11)

d+

e+

a−b+

c+

P1

P2

P3

P4

Figure A.11: Insert diagram corresponding to Ib2. The vertex on the massive corner indicates
the one-loop insertion.
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Ib3 =
(P1 + b)2 〈a c〉2 〈a d〉 [a|(P1 + Pbc)|d〉[d|P1|a〉 〈b a〉

6 〈b c〉 〈c d〉

− 〈e a〉 〈a b〉 sde[e|d|c〉[d|(P1 + Pbc)|a〉[e|P1|d〉
6 [e a] 〈b c〉 (A.12)

b+

c+

d+e+

a−

P1

P2

P3

P4

Figure A.12: Insert diagram corresponding to Ib3. The vertex on the massive corner indicates
the one-loop insertion.

Ib4 = −〈e a〉2 〈a d〉2 [d|P1|a〉[a|(P1 + Pbc)|d〉 [d e]
6 〈d e〉

+
〈e a〉 〈a d〉2 〈a c〉 [a|(P1 + Pbc)|d〉[d|P1|a〉 [d e]

6 〈c d〉 (A.13)

b+

c+

d+e+

a−

P1

P2

P3

P4

Figure A.13: Insert diagram corresponding to Ib4. The vertex on the massive corner indicates
the one-loop insertion.

Ib5 =
〈e a〉2 〈c e〉 [e|(P1 + Pab|a〉[e|P1 + Pab|a〉[c|P1|d〉

6 〈d e〉 (A.14)
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a−

b+

c+d+

e+

P1

P2

P3

P4

Figure A.14: Insert diagram corresponding to Ib5. The vertex on the massive corner indicates
the one-loop insertion.

Ib6 = −〈a c〉2 〈d e〉 [c|P1|a〉[c|P1|a〉[e|(P1 + Pab)|c〉
6 〈c d〉

+
〈a b〉 〈a c〉 〈d e〉 [d|P1|a〉[c|P1|a〉[e|(P1 + Pab)|c〉

6 〈b c〉 (A.15)

a−

b+

c+d+

e+

P1

P2

P3

P4

Figure A.15: Insert diagram corresponding to Ib6. The vertex on the massive corner indicates
the one-loop insertion.

Ib7 = −〈a b〉 〈a c〉 〈e a〉 [a|P1|a〉[c|P1|a〉[e|(P1 + Pab)|c〉
6 〈b c〉 (A.16)

a−

b+

c+d+

e+

P1

P2

P3

P4

Figure A.16: Insert diagram corresponding to Ib7. The vertex on the massive corner indicates
the one-loop insertion.
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Ib8 =
〈a b〉2 〈d b〉 [b|P1|a〉[b|P1|a〉[d|(P1 + Pea)|c〉

6 〈b c〉 (A.17)

e+

a−

b+c+

d+

P1

P2

P3

P4

Figure A.17: Insert diagram corresponding to Ib8. The vertex on the massive corner indicates
the one-loop insertion.

Ib9 =
〈a d〉2 〈b c〉 [d|(P1 + Pea)|a〉[d|(P1 + Pea)|a〉[b|P1|d〉

6 〈c d〉

+
〈e a〉 〈a d〉 〈b c〉 [c|(P1 + Pea)|a〉[d|(P1 + Pea)|a〉[b|P1|d〉

6 〈d e〉 (A.18)

e+

a−

b+c+

d+

P1

P2

P3

P4

Figure A.18: Insert diagram corresponding to Ib9. The vertex on the massive corner indicates
the one-loop insertion.

Ib10 = −〈e a〉 〈a d〉 〈a b〉 [a|(P1 + Pea)|a〉[d|(P1 + Pea)|a〉[b|P1|d〉
6 〈d e〉 (A.19)
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e+

a−

b+c+

d+

P1

P2

P3

P4

Figure A.19: Insert diagram corresponding to Ib10. The vertex on the massive corner indicates
the one-loop insertion.

Ib11 =
〈a b〉2
6 〈b c〉

(

〈e c〉 [e|P1|a〉[a|b|a〉[b|(P1 + Pcd)|a〉+ [e|P1|e〉 〈e c〉 [e|b|a〉[b|(P1 + Pcd)|a〉

− (P1)2 〈e c〉 [e|b|a〉[b|P1 + Pcd|a〉+ [b|(P1 + Pcd)|b〉 〈e c〉 [e|P1|a〉[b|(P1 + Pcd)|a〉

− [e|P1|e〉 〈b c〉 [b|(P1 + Pcd)|a〉[b(P1 + Pcd|a〉
)

(A.20)

c+

d+

e+a−

b+

P1

P2

P3

P4

Figure A.20: Insert diagram corresponding to Ib11. The vertex on the massive corner indicates
the one-loop insertion.

Ib12 =
〈a b〉2 〈e c〉 [b|(P1 + Pcd)|a〉[b|(P1 − e)|c〉[c|P1|d〉[e|P1|c〉

6 〈b c〉 〈c d〉 [a b]

+
〈e a〉2 〈b d〉 [e|P1|a〉[e|(P1 − a)|d〉

12 〈c d〉 〈d e〉 [e a]

×
(

− (P4)
2[b|P1|c〉+

(
(P1 + c)2 − [d|P1|d〉

)
[b|(P1 + Pcd)|c〉+ [b|(P1 + Pcd)P1d|c〉

)

− 〈a b〉 〈e a〉 〈b c〉 〈d e〉 [b e]3
6 〈c d〉 [a b] [e a]

(

((P1)
2 − (P2)

2)[b|P1|b〉 − (P1)
2[e|b|e〉+ [b|P1|e〉[e|Pcd|b〉

)

(A.21)
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c+

d+

e+a−

b+

P1

P2

P3

P4

Figure A.21: Insert diagram corresponding to Ib12. The vertex on the massive corner indicates
the one-loop insertion.

Ib13 =
〈e a〉2 [e|P1|a〉

6 〈d e〉 ×
(

− (P1)
2 〈a b〉 [b|(P1 + Pcd)|d〉

+ (P2)
2
(
〈b d〉 〈e a〉 [e b] + 〈a b〉 [b|(P1 + Pcd)|d〉

)

− 〈e a〉
(
〈b d〉 [a b] [e|P1|a〉+ ((P3)

2 − (P4)
2)[e|P1|d〉

)

(A.22)

c+

d+

e+a−

b+

P1

P2

P3

P4

Figure A.22: Insert diagram corresponding to Ib13. The vertex on the massive corner indicates
the one-loop insertion.

Ib14 =
〈a c〉2 [c|P1|a〉
6 〈b c〉 〈c d〉

(

〈b c〉 (−〈c d〉 [c|P1|a〉+ 〈d a〉 [c|(P1 + Pab|c〉

+ 〈a b〉 〈c d〉 ([d|(P1 + Pab)|d〉+ [e|(P1 + Pab|e〉
)

(A.23)
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c+

e+d+

a−
b+

P2 P4

P1

Figure A.23: Insert diagram corresponding to Ib14. The vertex on the massive corner indicates
the one-loop insertion.

Ib15 = − 〈e a〉 [c|P1|a〉
6sde 〈d e〉 [a b]

(

2 〈d e〉 [b|(P1 + Pab)|c〉[e|(P1 + Pab|a〉[e|(P1 + Pab)|e〉

− sde 〈a c〉 [a b]
(
〈d e〉 [e|(P1 + Pab|a〉 − 2 〈e a〉 [e|(P1 + Pab)|d〉

+ 〈d a〉 (sde + [e|(P1 + Pab)|e〉)
)

+ sde 〈a d〉 (〈d a〉 〈e c〉 [a b] [d e] + 2[b|(P1 + Pab)|c〉[e|(P1 + Pab)|e〉))
)

(A.24)

c+

e+d+

a−
b+

P2 P4

P1

Figure A.24: Insert diagram corresponding to Ib15. The vertex on the massive corner indicates
the one-loop insertion.

Ib16 =
〈e a〉

6 〈c d〉 〈d e〉 [a b]
(

〈a c〉 〈a d〉2 〈a e〉 [a b] [d e] [a|P1|d〉+ sbc 〈a b〉 〈c d〉2 [b c] [b|P1|a〉
)

(A.25)
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a−

b+ c+

d+
e+

P2 P4

P1

Figure A.25: Insert diagram corresponding to Ib16. The vertex on the massive corner indicates
the one-loop insertion.

Ib17 = − 〈a b〉
6 〈b c〉

(

〈a b〉 〈a c〉2 〈a d〉 [b c] [a|P1|c〉
〈c d〉 +

sde 〈e a〉 〈c d〉 [d e] [e|P1|a〉
[e a]

)

(A.26)

a−

b+ c+

d+
e+

P2 P4

P1

Figure A.26: Insert diagram corresponding to Ib17. The vertex on the massive corner indicates
the one-loop insertion.

Ib18 =
〈e a〉2 [e|P1|a〉2

6
(A.27)

e+

a−b+

c+
d+

P2 P4

P1

Figure A.27: Insert diagram corresponding to Ib18. The vertex on the massive corner indicates
the one-loop insertion.
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Ib19 =
〈a b〉 〈e a〉 [b|(P1 + Pcd)|a〉[e|P1|a〉

6
(A.28)

e+

a−b+

c+
d+

P2 P4

P1

Figure A.28: Insert diagram corresponding to Ib19. The vertex on the massive corner indicates
the one-loop insertion.

Ib20 = − 1

6scd 〈b c〉 〈c d〉 〈d e〉 [a b] [e a]
(

〈a c〉 〈c d〉 〈d e〉 [e a] [b|(P1 + Pcd)|e〉[d|(P1 + Pcd|a〉[e|P1|d〉
× (〈b c〉 [c|(P1 + Pcd|a〉 − 〈a b〉 [c|(P1 + Pcd|c〉)

+ scd 〈b c〉 [b|(P1 + Pcd)|d〉[e|P1|a〉
×
(
〈d a〉 sea 〈d e〉 [d|(P1 + Pcd|c〉 − 〈c d〉 〈e a〉 (〈d e〉 [c e] [d|P1|c〉+ sea[d|(P1 + Pcd)|d〉)

)

+ scd 〈c a〉 〈d e〉 [a b] [e a]
×
(
〈a d〉 〈a b〉 〈c e〉 [d|(P1 + Pcd)|a〉[e|P1|d〉

+ 〈e a〉 〈c d〉 (〈b c〉 [c|(P1 + Pcd)|a〉[e|P1|a〉+ 〈a b〉 [d|(P1 + Pcd)|a〉[e|P1|d〉)
))

(A.29)

e+

a−b+

c+
d+

P2 P4

P1

Figure A.29: Insert diagram corresponding to Ib20. The vertex on the massive corner indicates
the one-loop insertion.
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Ib21 =
〈d a〉2 [d|P1|a〉(〈e a〉 〈c d〉 ([b|(P1 + Pbc)|b〉+ [c|(P1 + Pbc|c〉)

6 〈c d〉 〈d e〉

− 〈d a〉2 [d|P1|a〉(〈c d〉 [d|P1|a〉+ 〈c a〉 [d|(P1 + Pbc)|d〉)
6 〈c d〉 (A.30)

d+

e+ a−

b+
c+

P2 P4

P1

Figure A.30: Insert diagram corresponding to Ib21. The vertex on the massive corner indicates
the one-loop insertion.

Ib22 =
〈a b〉 [d|P1|a〉
6sbc 〈b c〉 [e a]

(

− 2 〈b c〉 [b|(P1 + Pbc|a〉[b|(P1 + Pbc|b〉[e|(P1 + Pbc)|d〉

− sbc 〈a c〉2 〈b d〉 [e a] [b c]
− sbc 〈a d〉 [e a] (〈b c〉 [b|(P1 + Pbc|a〉 − 2 〈a b〉 [b|(P1 + Pbc)|c〉)
+ sbc 〈a c〉

(
〈a d〉 [e a] (sbc − [b|(P1 + Pbc)|b〉) + 2[b|(P1 + Pbc)|b〉[e|(P1 + Pbc)|d〉

))

(A.31)

d+

e+ a−

b+
c+

P2 P4

LB

Figure A.31: Insert diagram corresponding to Ib22. The vertex on the massive corner indicates
the one-loop insertion.

Ib23 = −〈a b〉2 [b|P1|a〉2
6

(A.32)
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b+

c+ d+

e+
a−

P2 P4

LB

Figure A.32: Insert diagram corresponding to Ib23. The vertex on the massive corner indicates
the one-loop insertion.

Ib24 =
〈a b〉 〈e a〉 [b|P1|a〉[e|P1|a〉

6
(A.33)

b+

c+ d+

e+
a−

P2 P4

LB

Figure A.33: Insert diagram corresponding to Ib24. The vertex on the massive corner indicates
the one-loop insertion.

Ib25 = − 1

6scd 〈b c〉 〈c d〉 〈d e〉 [a b] [e a]
(

〈a d〉 〈b c〉 〈c d〉 [a b] [b|P1|e〉[c|(P1 + Pea|a〉[e|(P1 + Pea)|b〉
× (〈d e〉 [d|(P1 + Pea|a〉 − 〈e a〉 [d|(P1 + Pea|d〉)

+ scd 〈c a〉 〈b c〉 [a b]
×
(
〈a d〉 〈b d〉 sea[b|P1|c〉[c|(P1 + Pea)|a〉

+ 〈a b〉 〈d e〉 [b|P1|a〉[c|(P1 + Pea)|d〉[e|(P1 + Pea)|c〉
)

− scd 〈c d〉 〈a b〉 〈a d〉 〈b c〉 [a b] [e a]
× (〈e a〉 [b|P1|c〉[c|(P1 + Pea)|a〉+ 〈d e〉 [b|P1|a〉[d|(P1 + Pea)|a〉)

+ scd 〈c d〉 〈a b〉 〈d e〉 [b|P1|a〉
× (sab[c|(P1 + Pea)|c〉[e|(P1 + Pea)|c〉+ 〈b c〉 [b d] [c|(P1 + Pea)|d〉[e|(P1 + Pea|c〉)

)

(A.34)

168



b+

c+ d+

e+
a−

P2 P4

LB

Figure A.34: Insert diagram corresponding to Ib25. The vertex on the massive corner indicates
the one-loop insertion.

The remaining inserts are either one-mass triangles or one-mass bubbles, both of which
only contribute to one channel on a four-dimensional double cut. As an example, for
A

(0)
4 (a−, b+, ℓ1, ℓ2) × . . . we denote the insert Itab whereas the A

(1)
4 (a−, b+, ℓ1, ℓ2) × . . . is de-

noted Iℓab. We define ℓ1 and ℓ2 to be going away from the massless corners. We present
the insert as they appear on the cut, with cut propagators removed and, in the case of the
one-mass triangle, the uncut propagator remaining. We still factorise out the Parke-Taylor
denominator.

Iℓab = −〈a b〉2 〈a ℓ1〉 〈ℓ2 c〉 [ℓ2|ℓ1|a〉
6 〈b c〉 〈b ℓ1〉

(A.35)
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Itab

=
1

6

(

〈b a〉 〈c a〉 〈ℓ1 a〉2 〈ℓ2 d〉 [b ℓ1]
〈c d〉 〈ℓ1 ℓ2〉

+
〈a c〉 〈a e〉 〈d a〉 〈e a〉 [c e]

〈d e〉

− 〈a c〉 〈b a〉 〈ℓ1 a〉2 〈ℓ2 c〉 [c ℓ1]
〈b c〉 〈ℓ1 ℓ2〉

− 〈a c〉 〈b a〉 〈d b〉 〈ℓ1 a〉3 〈ℓ2 c〉2 [c ℓ1]
〈b ℓ1〉 〈c b〉 〈c d〉 〈ℓ1 ℓ2〉 〈ℓ2 a〉

+
〈b c〉 〈c d〉 〈e a〉 〈ℓ2 a〉 [b ℓ2] [c b] [c ℓ2]

〈d e〉 [a b] [a ℓ2]
+

〈a c〉 〈e a〉 〈ℓ1 a〉2 〈ℓ2 d〉2 [d c]
〈d e〉 〈ℓ1 ℓ2〉 〈ℓ2 ℓ1〉

− 〈a c〉 〈d a〉 〈e a〉 〈ℓ1 a〉 〈ℓ2 d〉 [d e]
〈c d〉 〈ℓ1 ℓ2〉

− 〈a c〉 〈e a〉 〈ℓ1 a〉2 〈ℓ2 d〉2 [d e]
〈c d〉 〈ℓ1 ℓ2〉 〈ℓ2 ℓ1〉

+
〈b a〉 〈c e〉 〈e a〉 〈ℓ1 a〉3 〈ℓ2 d〉3 [d e]
〈b ℓ1〉 〈c d〉 〈d e〉 〈ℓ1 ℓ2〉 〈ℓ2 a〉 〈ℓ2 ℓ1〉

+
〈a d〉 〈d a〉 〈e a〉 〈ℓ1 a〉 [d ℓ1]

〈d e〉

− 〈a c〉 〈d a〉2 〈e a〉 〈ℓ1 a〉 〈ℓ2 d〉 [d ℓ1]
〈c d〉 〈d e〉 〈ℓ2 a〉

+
〈b d〉 〈d a〉 〈e a〉 〈ℓ1 c〉 〈ℓ1 d〉 〈ℓ2 a〉 [b e] [d ℓ1]

〈c d〉 〈d e〉 〈ℓ1 ℓ2〉 [a e]

− 〈a c〉 〈b a〉 〈c a〉 〈ℓ1 a〉 〈ℓ2 d〉 [c ℓ2] [d ℓ1]
〈b c〉 〈c d〉 [c d] − 〈a b〉 〈a ℓ1〉 〈e a〉 〈ℓ2 a〉 [e ℓ2]

〈b ℓ1〉

+
〈e a〉 〈ℓ1 a〉 〈ℓ2 a〉2 [e ℓ2]

〈ℓ1 ℓ2〉
+

〈b e〉 〈e a〉 〈ℓ1 a〉 〈ℓ1 d〉 〈ℓ2 a〉2 [e ℓ2]
〈b ℓ1〉 〈d e〉 〈ℓ1 ℓ2〉

+
〈a d〉 〈e a〉 〈ℓ1 a〉 〈ℓ2 a〉 〈ℓ2 e〉 [e ℓ2]

〈d e〉 〈ℓ1 ℓ2〉
− 〈c a〉2 〈ℓ1 a〉2 〈ℓ2 d〉 [ℓ1 c]

〈c d〉 〈ℓ1 ℓ2〉

− 〈b c〉 〈e a〉 〈ℓ1 a〉 〈ℓ1 d〉3 〈ℓ2 a〉2 [ℓ1 d]
〈b ℓ1〉 〈c d〉 〈d e〉 〈ℓ1 ℓ2〉2

+
〈a d〉 〈e a〉 〈ℓ1 a〉 〈ℓ2 a〉 [ℓ1 ℓ2]

〈d e〉

+
〈a b〉2 〈c a〉 〈ℓ1 a〉 〈ℓ2 c〉 〈ℓ2 d〉 [ℓ2 b]

〈b c〉 〈c d〉 〈ℓ1 ℓ2〉
+

〈a ℓ2〉 〈c a〉 〈e a〉 〈ℓ2 d〉 [c ℓ2] [ℓ2 b]
〈d e〉 [a b]

− 〈c a〉 〈ℓ1 a〉 〈ℓ2 a〉 〈ℓ2 d〉 [c ℓ2] [d ℓ1] [ℓ2 b]
〈c d〉 [a b] [c d] − 〈b a〉 〈c a〉 〈ℓ1 a〉 〈ℓ2 c〉 〈ℓ2 d〉 [c ℓ2] [d ℓ1] [ℓ2 b]

〈b c〉 〈c d〉 [a b] [c d]

− 〈b c〉 〈e a〉 〈ℓ1 d〉3 〈ℓ2 a〉3 [ℓ2 d]
〈b ℓ1〉 〈c d〉 〈d e〉 〈ℓ1 ℓ2〉2

− 〈b c〉 〈c d〉 〈e a〉 〈ℓ1 a〉 〈ℓ2 a〉2 [c ℓ2]2
〈b ℓ1〉 〈d e〉 〈ℓ1 ℓ2〉 [ℓ2 ℓ1]

+
〈a b〉 〈a c〉 〈ℓ1 a〉 〈ℓ2 a〉 [ℓ2 ℓ1]

〈b c〉 +
〈a b〉 〈b c〉 〈d e〉 〈e a〉 [e b]3 [b|ℓ2|b〉

[b|ℓ1|b〉 〈c d〉 [a b] [e a]

− 〈b c〉 〈d e〉 〈e a〉 〈ℓ1 a〉 (3[e|b|a〉2 + 3[e|b|a〉[e|ℓ2|a〉+ [e|ℓ2|a〉2
〈b ℓ1〉 〈c d〉 〈ℓ1 ℓ2〉 [ℓ2 ℓ1]

+
2 〈e a〉 〈ℓ1 a〉 〈ℓ2 a〉 [ℓ1 e] [ℓ2 b] [e|ℓ2|e〉

〈d e〉 [a b] [d e] +
〈a c〉 〈d a〉 〈e a〉 〈ℓ1 e〉 〈ℓ2 a〉 [c e]

〈d e〉 〈ℓ1 ℓ2〉

)

(A.36)
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Iℓbc =
1

6

(

〈a b〉 〈c a〉 〈a|ℓ2ℓ1|a〉
〈b c〉 +

〈a b〉2 〈a c〉2 [b c]
〈b c〉

− 〈a b〉 〈a c〉 〈a d〉 〈ℓ2 c〉 [c ℓ2] [b|c|a〉
sbc 〈c d〉

− 〈a b〉 〈a c〉2 〈d a〉 [b|ℓ1|b〉
〈b c〉 〈c d〉

+
〈a b〉 〈c a〉 〈ℓ1 b〉 [e ℓ1] [b|ℓ2|a〉

〈c b〉 [e a] +
2 〈a b〉2 〈ℓ1 c〉 [e ℓ1] [b|ℓ2|a〉

〈c b〉 [e a]

+
〈a b〉 〈a c〉 〈a d〉 [b|ℓ1|b〉[b|ℓ2|a〉

sbc 〈c d〉
+

〈a b〉 〈ℓ1 a〉 [e ℓ1] [b|ℓ1|b〉[b|ℓ2|a〉
sbc [e a]

− 〈a b〉 〈b a〉 [b|ℓ2|a〉2
sbc

− 〈a b〉 〈ℓ1 b〉 [e ℓ1] [b|ℓ2|a〉2
sbc [e a]

+
2 〈a b〉 〈a c〉 〈a ℓ1〉 [e ℓ1] [b|ℓ2|b〉

〈b c〉 [e a] − 〈a b〉 〈a c〉 〈c a〉 [c|ℓ1|a〉
〈b c〉

+
〈a b〉 〈a c〉 〈a d〉 〈ℓ2 c〉 [b ℓ2] [c|ℓ1|a〉

sbc 〈c d〉
− 〈a b〉 〈a c〉 〈c b〉 [b|c|a〉[c|ℓ1|a〉

[c|ℓ1|c〉 〈b c〉

− 〈a b〉 〈a c〉 [b|ℓ1|a〉[c|ℓ1|a〉
sbc

+
〈a b〉 〈a c〉 [b|ℓ2|a〉[c|ℓ1|a〉

[c|ℓ1|c〉

+
〈a b〉 〈a c〉 〈a d〉 [b|ℓ2|c〉[c|ℓ2|a〉

[c|ℓ1|c〉 〈c d〉
+

〈a b〉 〈c b〉 [b|ℓ2|a〉2[c|ℓ2|a〉
sbc[b|ℓ2|b〉

)

(A.37)
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Itbc =
1

6

(

− 〈a b〉 〈a d〉 〈a e〉 〈d ℓ2〉 〈e a〉 [d e]
〈d e〉 〈ℓ2 b〉

− 〈a d〉2 〈a e〉 〈c b〉 〈d ℓ2〉 〈e a〉 [d e]
〈c d〉 〈d e〉 〈ℓ2 b〉

− 〈a d〉3 〈c b〉 〈c ℓ2〉 〈e a〉 〈ℓ1 e〉 [d e]
〈c d〉 〈c ℓ1〉 〈d e〉 〈ℓ2 b〉

− sbc 〈a b〉 〈c d〉 〈e a〉 [b c] [e b]
〈d e〉 [a b] [e a]

+
〈a b〉 〈d a〉 〈ℓ1 a〉 〈ℓ2 a〉 [ℓ1 d]

〈ℓ2 b〉
+

2 〈a b〉 〈a ℓ1〉 〈e a〉 〈ℓ2 d〉 [e d] [ℓ1 e]
〈ℓ2 b〉 [e a]

+
〈a b〉 〈d ℓ2〉 〈e a〉 〈ℓ1 a〉2 [ℓ1 a] [ℓ1 e]

〈d e〉 〈ℓ2 b〉 [a e]
+

〈a b〉 〈a c〉 〈a ℓ1〉2 〈c ℓ2〉 〈d e〉 〈d ℓ2〉 [ℓ1 ℓ2]
〈c d〉 〈c ℓ1〉 〈e d〉 〈ℓ2 b〉

− 〈a b〉 〈d ℓ2〉 〈e a〉 〈ℓ2 d〉 [e d]2 [ℓ2 e]
〈ℓ2 b〉 [e a]2

− 〈a b〉 〈d ℓ2〉 〈e a〉 〈ℓ1 a〉 〈ℓ2 d〉 [d e] [ℓ1 a] [ℓ2 e]
〈d e〉 〈ℓ2 b〉 [e a]2

− 〈a b〉 〈c ℓ2〉 〈d ℓ2〉 〈e a〉 〈ℓ1 a〉 [ℓ1 e] [ℓ2 e]
〈c d〉 〈ℓ2 b〉 [e a]

− 〈a b〉 〈c ℓ2〉 〈d ℓ2〉 〈e a〉 〈ℓ2 d〉 [d e] [ℓ2 e]2

〈c d〉 〈ℓ2 b〉 [e a]2

+
〈a b〉 〈d ℓ2〉 〈e a〉 〈ℓ1 ℓ2〉 〈ℓ2 d〉 [d e] [ℓ1 a] [ℓ2 e]2

〈d e〉 〈ℓ2 b〉 [e a]3
− 〈a b〉 〈c ℓ2〉 〈d ℓ2〉 〈e a〉 〈ℓ1 ℓ2〉 [ℓ1 e] [ℓ2 e]2

〈c d〉 〈ℓ2 b〉 [e a]2

+
〈a b〉 〈d ℓ2〉 〈e a〉 〈ℓ1 ℓ2〉2 [ℓ1 a] [ℓ1 e] [ℓ2 e]2

〈d e〉 〈ℓ2 b〉 [e a]3
+

〈a d〉 〈a ℓ2〉 〈e a〉 〈ℓ1 a〉 [ℓ2 ℓ1]
〈d e〉

+
〈a b〉 〈d ℓ2〉 〈e a〉 〈ℓ1 ℓ2〉2 [ℓ1 e] [ℓ2 e] [ℓ2 ℓ1]

〈d e〉 〈ℓ2 b〉 [e a]2
− sbc 〈a b〉 〈a d〉 〈e a〉 [e b] [c|ℓ2|c〉

[c|ℓ1|c〉 〈d e〉 [e a]

− 〈a b〉 〈b c〉 〈e a〉 [b e] [c b] [e b] [c|ℓ2|c〉
[c|ℓ1|c〉 [a b] [e a]

− sbc 〈a b〉 〈a d〉 〈e a〉 [b c] [e|ℓ2|c〉
[c|ℓ1|c〉 〈d e〉 [e a]

− 〈a c〉 〈a d〉2 〈e a〉 [c|ℓ1|e〉[e|ℓ2|c〉
[c|ℓ1|c〉 〈c d〉 〈d e〉

− 〈a b〉 〈d a〉 〈e a〉 [b c] [e|ℓ2|c〉2
[c|ℓ1|c〉 〈c d〉 [e a]

)

(A.38)
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Iℓcd =
1

6

(

− 〈a c〉 〈a d〉 〈a|ℓ2ℓ1|a〉
〈c d〉 +

〈a d〉2 〈a e〉 〈ℓ1 a〉 〈ℓ1 c〉 [c ℓ1] [d ℓ1]
scd 〈d e〉

− 〈a b〉 〈b c〉 〈d e〉 〈e a〉 [b e]3
〈c d〉 [a b] [e a] +

〈a b〉 〈e c〉 〈ℓ1 c〉 〈ℓ1 d〉 〈ℓ2 a〉 [c ℓ1] [d ℓ2] [e b] [e ℓ1]
scd 〈c b〉 [a b] [e a]

+
〈a b〉 〈e c〉 〈ℓ1 c〉 〈ℓ2 a〉 〈ℓ2 d〉 [c ℓ2] [d ℓ1] [e b] [e ℓ2]

scd 〈c b〉 [a b] [e a]
+

〈a d〉 〈ℓ1 a〉2 〈ℓ1 c〉 [c ℓ1] [d ℓ1] [ℓ1 b]
scd [a b]

− 〈a e〉 〈ℓ1 a〉 〈ℓ1 c〉 〈ℓ2 d〉 [c ℓ2] [d ℓ2] [e c] [ℓ1 b]
〈d e〉 [a b] [c d] [e a] − 〈a c〉 〈a d〉 〈ℓ1 a〉 〈ℓ2 a〉 [ℓ1 ℓ2]

〈c d〉

+
〈a d〉 〈c a〉 〈ℓ1 a〉 〈ℓ1 c〉 [c ℓ1] [ℓ2 b]

〈c d〉 [a b] +
〈a d〉 〈ℓ1 a〉2 〈ℓ1 c〉 [c ℓ1] [d ℓ1] [ℓ2 b]

scd [a b]

+
〈a e〉 〈ℓ1 a〉 〈ℓ1 c〉 〈ℓ2 d〉 [c ℓ1] [d ℓ2] [e c] [ℓ2 b]

〈d e〉 [a b] [c d] [e a] − 〈a e〉2 〈ℓ1 a〉 〈ℓ2 d〉 [c ℓ1] [e b] [ℓ2 d]
〈d e〉 [a b] [c d]

+
〈a d〉2 〈a e〉 〈ℓ1 c〉 [d ℓ2] [c|ℓ1|a〉

scd 〈d e〉
− 〈a b〉 〈ℓ1 a〉 〈ℓ2 a〉 [d ℓ2] [e ℓ1] [c|ℓ1|c〉

〈c b〉 [d c] [e a]

− 3 〈c a〉2 〈d a〉 [d c] [c|ℓ2|a〉
[c|ℓ2|c〉

− 3 〈c a〉 〈d a〉2 [c d] [d|ℓ1|a〉
[c|ℓ1|c〉

− 〈a c〉 〈a d〉 [c|ℓ2|a〉[d|ℓ2|a〉
scd

− 〈a c〉 〈a d〉 [c|ℓ1|a〉[d|ℓ1|a〉
scd

− 〈a d〉 〈a e〉 〈d c〉 [c|ℓ1|a〉[d|ℓ1|a〉
scd 〈d e〉

+
〈a d〉 〈ℓ1 c〉 [e ℓ2] [c|ℓ1|a〉[d|ℓ1|a〉

scd [e a]
+

〈a d〉 〈a e〉 〈ℓ1 c〉 [e ℓ2] [c|ℓ1|a〉[d|ℓ1|d〉
scd 〈d e〉 [e a]

+
〈a b〉 〈a c〉2 〈ℓ1 d〉 [c ℓ1] [d|ℓ2|a〉

scd 〈c b〉
− 〈a b〉 〈a c〉 〈ℓ1 d〉 [ℓ1 b] scd[d|ℓ2|a〉

scd 〈c b〉 [a b]

− 〈a b〉 〈ℓ2 a〉 [e ℓ2] [c|ℓ1|c〉[d|ℓ2|a〉)
〈c b〉 [d c] [e a] − 〈a b〉 〈a c〉 〈ℓ1 d〉 [ℓ1 b] [c|ℓ1|c〉[d|ℓ2|a〉

scd 〈c b〉 [a b]

− 〈a b〉 〈a c〉 〈c d〉 [c|ℓ2|a〉[d|ℓ2|a〉
scd 〈c b〉

+
〈a c〉 〈ℓ1 d〉 [ℓ1 b] [c|ℓ2|a〉[d|ℓ2|a〉

scd [a b]

)

(A.39)

Itcd =
1

6

(

− 〈a b〉 〈a c〉 〈a ℓ2〉2 〈d b〉 〈e a〉 〈ℓ1 c〉 [b ℓ2]
〈a e〉 〈c b〉 〈d ℓ1〉 〈ℓ1 c〉

− 〈a b〉 〈b c〉 〈d e〉 〈e a〉 〈ℓ1 ℓ2〉 [b e]3
〈d ℓ1〉 〈ℓ1 c〉 [a b] [e a]

+
〈a d〉 〈a ℓ1〉2 〈c e〉 〈d ℓ2〉 〈e a〉 [e ℓ1]

〈d e〉 〈d ℓ1〉 〈ℓ1 c〉
+

〈a c〉 〈e a〉 〈ℓ1 a〉 〈ℓ2 a〉 [ℓ1 e]
〈ℓ1 c〉

− 〈a b〉 〈a c〉 〈a ℓ2〉2 〈ℓ1 c〉 [ℓ1 ℓ2]
〈c b〉 〈ℓ1 c〉

+
〈a d〉 〈b a〉 〈ℓ1 a〉 〈ℓ2 a〉 [ℓ2 b]

〈ℓ1 d〉

− 〈a d〉 〈a e〉 〈a ℓ1〉2 〈ℓ2 d〉 [ℓ2 ℓ1]
〈d e〉 〈ℓ1 d〉

)

(A.40)
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Iℓde =
1

6

(

− 〈a c〉 〈a d〉2 〈a e〉 〈ℓ1 d〉 [d ℓ1]
〈d c〉 〈e d〉 +

〈a d〉 〈a e〉2 〈d a〉 [e d]
〈d e〉

+
〈a c〉 〈a d〉 〈a e〉 〈ℓ1 d〉 [e ℓ1] [d|ℓ2|a〉)

sde 〈d c〉
+

2 〈a e〉 〈ℓ2 a〉 [ℓ2 b] [e|d|a〉
[a b]

+
2 〈a e〉 〈ℓ2 a〉 [ℓ2 b] [e|ℓ1|a〉

[a b]
+

〈a d〉 〈a e〉 [d|ℓ2|a〉[e|ℓ1|a〉
[d|l2|d〉

− 〈a e〉 〈e a〉 [e|ℓ1|a〉2
sde

+
〈a e〉 〈d e〉 [d|ℓ1|a〉[e|ℓ1|a〉2

sde[e|ℓ1|e〉

+
〈a c〉 〈a d〉 〈a e〉 [d|ℓ2|a〉[e|ℓ1|d〉

[d|l2|d〉 〈d c〉 − 〈a d〉 〈a e〉 [d|e|a〉[d|ℓ2|a〉[e|ℓ1|d〉
sde[d|l2|d〉

− 〈a c〉 〈a d〉 〈a e〉 〈ℓ2 e〉 [e ℓ2] [e|ℓ2|a〉
sde 〈d c〉

− 2 〈a e〉 〈ℓ2 a〉 〈ℓ2 e〉 [e ℓ2] [ℓ2 b] [e|ℓ2|a〉
sde [a b]

+
〈a d〉 〈a e〉 [d|ℓ1|d〉[d|ℓ2|a〉[e|ℓ2|a〉

sde[d|l2|d〉
− 〈a e〉 〈d a〉 〈ℓ2 a〉 [ℓ2|ℓ1|a〉

〈d e〉

)

(A.41)
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Itde =
1

6

(

− 〈a b〉 〈a c〉 〈a e〉 〈b a〉 〈c ℓ1〉 [c b]
〈c b〉 〈ℓ1 e〉

− 〈a b〉 〈a c〉2 〈b a〉 〈c ℓ1〉 〈d e〉 [c b]
〈c b〉 〈d c〉 〈ℓ1 e〉

− 〈a c〉3 〈b a〉 〈d e〉 〈d ℓ1〉 〈ℓ2 b〉 [c b]
〈c b〉 〈d c〉 〈d ℓ2〉 〈ℓ1 e〉

− 〈a e〉 〈b a〉 〈c a〉 〈d ℓ2〉 [e d] [e ℓ2]
〈c b〉 [e a]

+
〈a c〉2 〈a d〉 〈b a〉 〈d ℓ1〉 〈ℓ2 b〉 [ℓ1 b]

〈c b〉 〈d c〉 〈d ℓ2〉
− 〈a e〉 〈b a〉 〈c ℓ1〉 〈ℓ1 c〉 [b c]2 [ℓ1 b]

〈ℓ1 e〉 [b a]2

− sde 〈a e〉 〈b a〉 〈c ℓ1〉 〈d ℓ1〉 [e b] [ℓ1 b]
〈d c〉 〈ℓ1 e〉 [b a] [e a]

− 〈a e〉 〈b a〉 〈c ℓ1〉 〈d ℓ1〉 〈ℓ1 c〉 [c b] [ℓ1 b]2

〈d c〉 〈ℓ1 e〉 [b a]2

+
sde 〈a e〉 〈b a〉 〈c b〉 〈d ℓ1〉2 [e b] [ℓ1 b]2

[e|ℓ1|e〉 〈d c〉 〈d e〉 [b a] [e a]
+

〈a c〉2 〈a d〉 〈a ℓ1〉 [ℓ1 c]
〈d c〉

− 〈a d〉 〈a ℓ1〉 〈c a〉2 [ℓ1 c]
〈d c〉 +

〈a c〉 〈a ℓ1〉 〈b a〉 〈ℓ2 a〉 [ℓ1 ℓ2]
〈c b〉

+
sde 〈a e〉 〈b a〉 〈c ℓ1〉 〈ℓ2 ℓ1〉 [e b] [ℓ1 ℓ2]

〈c b〉 〈ℓ1 e〉 [b a] [e a]
− 〈a e〉 〈b a〉 〈c ℓ1〉 〈ℓ1 c〉 〈ℓ2 a〉 [c b] [ℓ1 b] [ℓ2 a]

〈c b〉 〈ℓ1 e〉 [a b]2

+
〈a e〉 〈b a〉 〈c ℓ1〉 〈ℓ1 c〉 〈ℓ2 ℓ1〉 [c b] [ℓ1 b]2 [ℓ2 a]

〈c b〉 〈ℓ1 e〉 [b a]3
+

2 〈a e〉 〈a ℓ2〉 〈b a〉 〈ℓ1 c〉 [b c] [ℓ2 b]
〈ℓ1 e〉 [b a]

+
sde 〈a e〉 〈b a〉 〈c ℓ1〉 〈ℓ2 ℓ1〉 [ℓ1 b] [ℓ2 b]

〈c b〉 〈ℓ1 e〉 [b a]2
− 〈a e〉 〈b a〉 〈c ℓ1〉 〈d ℓ1〉 〈ℓ2 a〉 [ℓ1 b] [ℓ2 b]

〈d c〉 〈ℓ1 e〉 [b a]

− 〈a e〉 〈b a〉 〈c ℓ1〉 〈d ℓ1〉 〈ℓ2 ℓ1〉 [ℓ1 b]2 [ℓ2 b]
〈d c〉 〈ℓ1 e〉 [b a]2

+
〈a e〉 〈b a〉 〈c ℓ1〉 〈ℓ2 a〉2 [ℓ2 a] [ℓ2 b]

〈c b〉 〈ℓ1 e〉 [a b]

+
〈a e〉 〈b a〉 〈c ℓ1〉 〈ℓ2 ℓ1〉2 [ℓ1 b]2 [ℓ2 a] [ℓ2 b]

〈c b〉 〈ℓ1 e〉 [b a]3
+

〈a e〉 〈c a〉 〈ℓ1 a〉 〈ℓ2 a〉 [ℓ1 c]
〈ℓ1 e〉

+
〈a d〉 〈a e〉 〈a ℓ2〉2 〈c b〉 〈c ℓ1〉 〈d ℓ1〉 [ℓ2 ℓ1]

〈b c〉 〈d c〉 〈d ℓ2〉 〈ℓ1 e〉
− sde 〈a c〉 〈a e〉 〈b a〉 〈d ℓ1〉 [ℓ1 b] [e|ℓ2|d〉

[e|ℓ1|e〉 〈d c〉 〈d e〉 [e a]

+
sde 〈a e〉 〈b a〉 〈c a〉 〈d ℓ1〉 [ℓ1 d] [e|ℓ2|d〉

[e|ℓ1|e〉 〈c b〉 〈d e〉 [e a]

)

(A.42)

Iℓea = −〈a e〉2 〈e a〉 〈ℓ1 d〉 [e ℓ1] [e|ℓ2|a〉
6 〈e d〉 〈e ℓ2〉 [ℓ2 e]

(A.43)
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Itea =
1

6

(

〈a b〉2 〈c ℓ2〉 〈e d〉 〈ℓ1 a〉2 〈ℓ1 c〉2 [b c]
〈c b〉 〈d c〉 〈e ℓ2〉 〈ℓ2 ℓ1〉2

− 〈a e〉 〈a ℓ2〉 〈b a〉 〈ℓ1 a〉 [b ℓ1]
〈e ℓ2〉

+
〈b a〉 〈e c〉 〈ℓ1 a〉2 〈ℓ2 a〉 〈ℓ2 b〉 [b ℓ1]

〈c b〉 〈e ℓ2〉 〈ℓ2 ℓ1〉
+

〈a b〉 〈a c〉 〈b a〉 〈ℓ2 a〉 [b ℓ2]
〈c b〉

+
〈a c〉 〈b a〉 〈d a〉 〈ℓ1 c〉 〈ℓ2 a〉 [c b]

〈d c〉 〈ℓ1 ℓ2〉
+

〈b a〉 〈d a〉 〈ℓ1 c〉2 〈ℓ2 a〉2 [c b]
〈d c〉 〈ℓ1 ℓ2〉 〈ℓ2 ℓ1〉

+
〈b a〉 〈d b〉 〈e a〉 〈ℓ1 c〉3 〈ℓ2 a〉3 [c b]
〈c b〉 〈d c〉 〈e ℓ2〉 〈ℓ1 a〉 〈ℓ1 ℓ2〉 〈ℓ2 ℓ1〉

− 〈a c〉 〈b a〉 〈d a〉 〈ℓ1 c〉 〈ℓ2 a〉 [c d]
〈c b〉 〈ℓ1 ℓ2〉

+
〈a c〉2 〈b a〉 〈d a〉 〈ℓ1 c〉 〈ℓ2 a〉 [c ℓ2]

〈c b〉 〈d c〉 〈ℓ1 a〉
− 〈b a〉 〈d a〉 〈e d〉 〈ℓ1 a〉2 〈ℓ1 c〉3 [d c]

〈c b〉 〈d c〉 〈e ℓ2〉 〈ℓ2 ℓ1〉2

− 2 〈a c〉 〈b a〉 〈d a〉 〈ℓ2 a〉 [d ℓ2]
〈c b〉 − 〈a d〉 〈e a〉 〈ℓ1 d〉 〈ℓ2 a〉2 [d ℓ2]

〈e d〉 〈ℓ2 ℓ1〉

− 〈a d〉 〈c e〉 〈e a〉 〈ℓ1 d〉2 〈ℓ2 a〉3 [d ℓ2]
〈d c〉 〈d e〉 〈e ℓ2〉 〈ℓ1 a〉 〈ℓ2 ℓ1〉

+
〈b a〉 〈d a〉 〈ℓ1 c〉2 〈ℓ2 a〉 [c d] [e ℓ1]

〈c b〉 〈ℓ1 ℓ2〉 [e a]

+
〈b a〉 〈d c〉 〈e d〉 〈ℓ1 a〉2 〈ℓ2 a〉 [d ℓ1]2

〈c b〉 〈e a〉 〈ℓ2 ℓ1〉 [ℓ1 a]
− 2 〈d a〉 〈ℓ1 c〉 〈ℓ2 a〉2 [d ℓ2] [e ℓ2] [ℓ1 c]

〈d c〉 [d c] [e a]

− 〈d a〉2 〈ℓ1 c〉 〈ℓ2 a〉 〈ℓ2 e〉 [d ℓ2] [e ℓ2] [ℓ1 c]
〈d c〉 〈e d〉 [d c] [e a] +

〈a ℓ1〉 〈b a〉 〈ℓ1 b〉 〈ℓ2 a〉 [b ℓ2] [ℓ1 b] [ℓ1 e]
〈c b〉 [c b] [e a]

+
〈a d〉 〈a e〉 〈ℓ1 a〉 〈ℓ2 a〉 [ℓ1 ℓ2]

〈e d〉 +
〈d a〉2 〈e a〉 〈ℓ1 c〉 〈ℓ2 a〉 [ℓ1 ℓ2]

〈d c〉 〈e d〉

− sde 〈b a〉 〈d c〉 〈ℓ1 a〉 〈ℓ2 a〉 [d ℓ1] [ℓ1 ℓ2]
〈c b〉 〈e a〉 [a e] [ℓ1 a]

+
〈b a〉 〈c a〉 〈ℓ1 b〉 〈ℓ2 a〉 [ℓ1 e] [ℓ2 b]

〈c b〉 [e a]

+
〈a d〉 〈b a〉 〈ℓ1 b〉 〈ℓ2 a〉 [b d] [ℓ1 e] [ℓ2 b]

〈c b〉 [c b] [e a] − 〈a ℓ2〉 〈b a〉 〈ℓ1 b〉 〈ℓ2 a〉 [b ℓ2] [ℓ1 e] [ℓ2 b]
〈c b〉 [c b] [e a]

− 〈d a〉2 〈ℓ1 c〉 〈ℓ2 a〉2 [ℓ2 d]
〈d c〉 〈ℓ2 ℓ1〉

+
〈b a〉 〈c a〉 〈ℓ1 b〉 〈ℓ2 a〉 [b ℓ1] [ℓ2 e]

〈c b〉 [e a]

− 〈b a〉 〈c ℓ1〉 〈d a〉 〈ℓ2 a〉 [ℓ1 d] [ℓ2 e]
〈c b〉 [e a]

− 〈b a〉 〈c b〉 〈e d〉 〈ℓ2 a〉
(
3[b|e|a〉2 + 3[b|e|a〉[b|ℓ1|a〉+ [b|ℓ1|a〉2

)

〈d c〉 〈e ℓ2〉 〈ℓ2 ℓ1〉 [ℓ1 ℓ2]

+
〈a b〉 〈a c〉 〈e c〉 〈ℓ2 d〉 [b e] [e ℓ2] [c|ℓ2|c〉

〈c b〉 〈d c〉 [a b] [a e] − 〈b a〉 〈c b〉 〈e a〉 〈e d〉 [b e]3 [e|ℓ1|e〉
[e|ℓ2|e〉 〈d c〉 [a b] [e a]

)

(A.44)
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Appendix B

F2 Expansion via Nested Sums

We consider the expansion of F2(1+ δ1; 1, 1; 2+ δ2, 2+ δ3; x, y) using a nested sums approach,
mainly to demonstrate how much more efficient the integral method is. Writing it as

F2(1 + δ1; 1, 1; 2 + δ2, 2 + δ3; x, y)

= 1 +
Γ(2 + δ2)

Γ(1 + δ1)

∞∑

i=1

xiΓ(i+ 1 + δ1)

Γ(i+ 2 + δ2)
+

Γ(2 + δ3)

Γ(1 + δ1)

∞∑

i=1

yi
Γ(i+ 1 + δ1)

Γ(i+ 2 + δ3)

− Γ(2 + δ2)Γ(2 + δ3)

Γ(1 + δ1)

∞∑

n=1

Γ(n+ 1 + δ1)

Γ(n+ 1)

× (−1)
n−1∑

i=1

(
n

i

)

(−1)i(−x)i
Γ(i+ 1)

Γ(i+ 2 + δ2)
yn−i Γ(n− i+ 1)

Γ(n− i+ 2 + δ3)
. (B.1)

we start by defining

Zµ[n] = Sµ[n] =
n∑

i=1

1

iµ
,

Zµν [n] =
∑

1≤i<j≤n

1

iµjν
,

Sµν [n] =
∑

1≤i≤j≤n

1

iµjν
= Zµν [n] + Zµ+ν [n]. (B.2)

We also define Z[n] = 1 for n ≥ 0, Z[n] = 0 for n < 0 and S[n] = 1 for n > 0, S[n] = 0 for
n ≤ 0. The gamma functions expand to
(
n

i

)

(−1)i(−x)iyn−iΓ(i+ 1)Γ(n− i+ 1)Γ(2 + δ2)Γ(2 + δ3)Γ(n+ 1 + δ1)

Γ(i+ 2 + δ2)Γ(n− i+ 2 + δ3)Γ(n+ 1)Γ(1 + δ1)

=

(
n

i

)
(−1)i(−x)iyn−i

(i+ 1)(n− i+ 1)
×
(

1 + δ2(1− Z1[i+ 1]) + δ3(1− Z1[n− i+ 1]) + δ1Z1[n]

+ δ1Z1[n](δ2(1− Z1[i+ 1]) + δ3(1− Z1[n− i+ 1])) + δ2δ3(1 + Z1[i+ 1]Z1[n− i+ 1])

− (δ2 + δ3)(δ2Z1[i+ 1] + δ3Z1[n− i+ 1]) + δ21Z11[n] + δ22S11[i+ 1] + δ23S11[n− i+ 1]

)

→
(
n

i

)
(−1)i(−x)iyn−i

(i+ 1)(n+ 2)
×
(

. . .

)

+ {x ↔ y, δ2 ↔ δ3} (B.3)
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where the last line has made use of the partial fractioning as before. We can reduce the
denominator (i+ 1) → i via

n−1∑

i=1

(
n

i

)

(−1)i
xi

(i+ c)m
S[i, . . .] =

(

−1

x

)
1

n+ 1

n+1−1∑

i=1

(
n+ 1

i

)

(−1)i
xi

i+ c− 1
iS[i− 1, . . .].

(B.4)

B.1 Leading

For this case we have (B.4) with S[i] of zero depth. Therefore the i = 1 term in the RHS
vanishes.

∞∑

n=1

n−1∑

i=1

(
n

i

)
yn(−1)i(−x

y
)i

(i+ 1)(n+ 2)
=
(y

x

) ∞∑

n=1

n∑

i=2

(
n+ 1

i

)
yn(−1)i(−x

y
)i

(n+ 2)(n+ 1)

=
∞∑

n=1

1

(n+ 1)(n+ 2)

(

y

x
(y + x)n − yn+1

x
+ (y + x)n − xn − (1 + n)yn

)

. (B.5)

We are therefore left with sums of the form

∞∑

n=1

1

(n+ 2)
Xn = −

(
1

2
+

1

X
+

Log(1−X)

X2

)

and

∞∑

n=1

1

(n+ 1)(n+ 2)
Xn =

(1−X)Log(1−X) +X

X2
− 1

2
(B.6)

The leading part of the binomial piece is therefore

(1− y − x)Log(1− y − x)

x(x+ y)
− y(1− x)Log(1− x) + x(1− y)Log(1− y) + xy

x2y

+
1

2
+

1

y
+

Log(1− y)

y2
+ x ↔ y (B.7)

The leading result for the first 3 terms in F2 give in total

1 +
∞∑

i=1

(
Γ(2 + δ2)

Γ(1 + δ1)
xiΓ(i+ 1 + δ1)

Γ(i+ 2 + δ2)
+

Γ(2 + δ3)

Γ(1 + δ1)
yi
Γ(i+ 1 + δ1)

Γ(i+ 2 + δ3)

)

= −1− Log(1− x)

x
− Log(1− y)

y
+O(ǫ) (B.8)

Putting both results together and simplifying yields

F2(1 + δ1; 1, 1; 2 + δ2, 2 + δ3; x, y)

=
(1− x− y)Log(1− x− y)− (1− x)log(1− x)− (1− y)log(1− y)

xy
+O(ǫ) (B.9)
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B.2 O(δ) Terms

We have for the binomial bit

∞∑

n=1

n−1∑

i=1

(
n

i

)
yn(−1)i(−x

y
)i

(i+ 1)(n+ 2)

(

δ2 + δ3 + δ1Z1[n]− δ2Z1[i+ 1]− δ3Z1[n− i+ 1]

)

(B.10)

The first two terms are given by (B.7) so we’ll focus on the Z1 sums.

δ1

The δ1 term has no i-dependence so is given by (B.5)×δ1Z[n]. We therefore have terms like

∞∑

n=1

Z1[n]

(n+ 2)
Xn =

∞∑

n=1

Z1[n− 1]

(n+ 2)
Xn +

∞∑

n=1

1

(n+ 2)n
Xn

=
1

X

[

1

X

∞∑

i=1

Xn

n
Z1[n− 1]−

∞∑

n=1

Xn

(n)(n+ 1)

]

=
S2
0(X)

X2
− (1−X)log(1−X)

X2
− 1

X

=
log(1−X)2

2X2
− (1−X)log(1−X)

X2
− 1

X
(B.11)

and

∞∑

n=1

Z1[n]

(n+ 1)(n+ 2)
Xn =

∞∑

i=1

[

Z1[n]

(n+ 1)
Xn − Z1[n]

(n+ 2)
Xn

]

=
(X − 1)log(1−X)2

2X2
+

(1−X)log(1−X)

X2
+

1

X
. (B.12)

We then have from the non-binomial terms

∞∑

i=1

xi

(i+ 1)
Z1[i] =

log(1− x)2

2x
(B.13)

In total this comes to

F2(1 + δ1; 1, 1; 2 + δ2, 2 + δ3; x, y)|δ1

=
δ1
2xy

(

(1− x)log(1− x)× (log(1− x)− 2) + (1− y)log(1− y)× (log(1− y)− 2)

− (1− x− y)log(1− x− y)× (log(1− x− y)− 2)

)

(B.14)
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B.2.1 δ2

We will begin by considering just the first set of terms in (B.3) ie will include the {x ↔
y, δ2 ↔ δ3} after. Starting with the binomial term

∞∑

n=1

yn

(n+ 2)

n−1∑

i=1

(
n

i

)
(−1)i(−x

y
)i

(i+ 1)
Z1[i+ 1]

=
∞∑

n=1

yn

(n+ 2)(n+ 1)

(y

x

) n∑

i=1

(
n+ 1

i

)

(−1)i
(

−x

y

)i

Z1[i]−
∞∑

n=1

yn

(n+ 2)

=
∞∑

n=1

yn

(n+ 2)(n+ 1)

(y

x

) n+1∑

i=1

(
n+ 1

i

)

(−1)i
(

−x

y

)i

Z1[i]

−
∞∑

n=1

xn

(n+ 2)(n+ 1)
Z1[n+ 1]−

∞∑

n=1

yn

(n+ 2)
(B.15)

The first term can be evaluated by introducing raising and lowering operators

(x+)m · 1 =
1

m
lnm(x)

x+ · f(x) =
∫ x

0

f(x′)

x′
dx′

x− · f(x) = x
d

dx
f(x) (B.16)

and then redefining the Z1[i] = S1[i] via

S1[i] = S1[N ]−
N∑

j=i+1

xj
1

j
(B.17)

where we will take an N → ∞ limit and an x1 → 1 limit at the end. Consider the second
term and rewrite the sum using the raising operator

−
∞∑

n=1

yn

(n+ 2)(n+ 1)

(y

x

)

x+
1

n+1∑

i=1

(
n+ 1

i

)

(−1)i
(

−x

y

)i N∑

j=i+1

xj
1 (B.18)

The j-sum is evaluated using

N∑

j=i+1

xj
1 =

x1

1− x1

xi
1 −

x1

1− x1

xN
1 (B.19)
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where the second term can be neglected as it vanishes under the x+
1 operator in the N → ∞.

Calling X = x
y
for convience we have

−
∞∑

n=1

yn

X(n+ 2)(n+ 1)
x+
1

x1

1− x1

n+1∑

i=1

(
n+ 1

i

)

(Xx1)
i

= −
∞∑

n=1

yn

X(n+ 2)(n+ 1)
x+
1

x1

1− x1

((1 +Xx1)
n+1 − 1)

=
∞∑

n=1

yn

X(n+ 2)(n+ 1)

(

− (1 +X)n+1

n+1∑

i=1

1

i

(
1

1 +X

)i

× (1− (1 +Xx1)
i)

− ((1 +X)n+1 − 1)
N∑

i=1

1

j
.

)

(B.20)

The last line cancels the S1[N ] from (B.17). NOTE typo in eq.(57) of [108] where sum to ∞
should be a sum to n. Taking the x1 → 1 limit leaves us with

∞∑

n=1

yn

(n+ 2)(n+ 1)

(y

x

) n+1∑

i=1

(
n+ 1

i

)

(−1)i
(

−x

y

)i

Z1[i]

−
∞∑

n=1

xn

(n+ 2)(n+ 1)
Z1[n+ 1]−

∞∑

n=1

yn

(n+ 2)

=
∞∑

n=1

(x+ y)n+1

x(n+ 2)(n+ 1)

(

Z1[n+ 1]−
n+1∑

i=1

1

i(1 + x
y
)i

)

−
∞∑

n=1

xn

(n+ 2)(n+ 1)
Z1[n+ 1]−

∞∑

n=1

yn

(n+ 2)
(B.21)

Focusing on the second term we need to first define the general nested sums

Z[N ;m1,m2, . . . ,mk; x1, x2, . . . , xk] :=
N∑

i=1

xi
1

im1
Z[N − 1;m2, . . . ,mk; x2, . . . , xk] (B.22)

S[N ;m1,m2, . . . ,mk; x1, x2, . . . , xk] :=
N∑

i=1

xi
1

im1
S[N ;m2, . . . ,mk; x2, . . . , xk] (B.23)

allowing us to write the second term as

−
∞∑

n=1

(x+ y)n+1

x(n+ 2)(n+ 1)
Z
[

n+ 1; 1;
y

x+ y

]

= −
∞∑

n=1

(x+ y)n+1

x(n+ 2)(n+ 1)

(

Z
[

n− 1; 1;
y

x+ y

]

+
yn

n(x+ y)n
Z[n− 1] +

yn+1

(n+ 1)(x+ y)n+1
Z[n− 1]

)

.

(B.24)
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The first term goes as

−
∞∑

n=1

(x+ y)n+1

x(n+ 2)(n+ 1)
Z
[

n− 1; 1;
y

x+ y

]

= −(x+ y)

x

∞∑

n=1

(x+ y)n
(

1

n+ 1
− 1

n+ 2

)

Z
[

n− 1; 1;
y

x+ y

]

(B.25)

Leaving us with terms
∞∑

n=1

(x+ y)n

(n+ 1)
Z
[

n− 1; 1;
y

x+ y

]

=
1

(x+ y)

∞∑

n=1

(x+ y)n

n
Z
[

n− 1; 1;
y

x+ y

]

−
∞∑

n=1

yn

n(n+ 1)
Z[n− 1]

=
1

(x+ y)
Z
[

∞; 1, 1; x+ y,
y

x+ y

]

+
log(1− x− y)

x+ y
+ 1

=
1

(x+ y)
Li1,1

( y

x+ y
, x+ y

)

+
log(1− x− y)

x+ y
+ 1. (B.26)

The multipolylogarithm is defined as

Lim1,...,mn(x1, . . . , xn) =
∑

0<i1<i2<...<in

xi1
1

im1
1

xi2
2

im2
2

. . .
xin
n

imn
n

(B.27)

We can evaluate the Multiple Polylogarithm (MPL) Li11(
y

x+y
, x+y) by considering it’s relation

to Generalised Polylogarithms (GPL) [112]

G(a1, . . . , an; x) =

∫ x

0

dy

y − a1
G(a2, . . . , an; y) (B.28)

G(; x) ≡ 1 (B.29)

Limn,...,m2,m1(zn, . . . , z2, z1) = (−1)nG



0, . . . , 0
︸ ︷︷ ︸

m1−1

,
1

z1
, 0, . . . , 0
︸ ︷︷ ︸

m2−1

,
1

z1z2
, . . . , 0, . . . , 0

︸ ︷︷ ︸

mn−1

,
1

∏n
i=1 zi

; 1





(B.30)

and so evaluating the integral gives us (within the fundamental region |x|+ |y| < 1)

Li1,1

(

z1, z2

)

= log
(z1 − z1z2

z1 − 1

)

log
(

1− z1z2

)

+ Li2

(1− z1z2
1− z1

)

− Li2

( 1

1− z1

)

Li1,1

( y

x+ y
, x+ y

)

= log(1− y)log
( x

(x+ y − 1)

)

+ Li2

( 1− y

(1− x− y)

)

− Li2

( 1

(1− x− y)

)

.

(B.31)

Returning to (B.25) we have the term

∞∑

n=1

(x+ y)n

(n+ 2)
Z
[

n− 1; 1;
y

x+ y

]

=
1

(x+ y)

∞∑

n=1

(x+ y)n

(n+ 1)
Z
[

n− 1; 1;
y

x+ y

]

−
∞∑

n=1

yn

n(n+ 2)
Z[n− 1] (B.32)

the first of which has been evaluated and the second is standard.

182



B.2.2 δ3 piece

Finally we have

−
∞∑

n=1

n−1∑

i=1

(
n

i

)
yn(−1)i(−x

y
)i

(i+ 1)(n+ 2)
Z1[n− i+ 1]

= −
∞∑

n=1

n−1∑

i=1

(
n

i

)
yn(−1)i(−x

y
)i

(i+ 1)(n+ 2)

(

Z1[n− i] +
1

(n− i+ 1)

)

(B.33)

where the second term partial fractions to

−
∞∑

n=1

n−1∑

i=1

(
n

i

)
yn(−1)i(−x

y
)i

(n+ 2)2

( 1

(i+ 1)
+

1

(n− i+ 1)

)

= −
∞∑

n=1

yn

(n+ 2)2

( (x+ y)n+1

x(n+ 1)yn
− xn

yn(n+ 1)
− y

x(1 + n)
− 1
)

+ {x ↔ y}

=
∞∑

n=1

(

xn

(n+ 2)2(n+ 1)
+

y

x

yn

(n+ 2)2(n+ 1)
+

yn

(n+ 2)2
− (x+ y)

x

(x+ y)n

(n+ 2)2(n+ 1)

)

+ {x ↔ y}. (B.34)

These easily evaluate to polylogarithms. The other term is

−
∞∑

n=1

n−1∑

i=1

(
n

i

)
yn(−1)i(−x

y
)i

(i+ 1)(n+ 2)
Z1[n− i]

= −
∞∑

n=1

yn+1

x(n+ 1)(n+ 2)

n∑

i=2

(
n+ 1

i

)

(−1)i
(

−x

y

)i

Z1[n+ 1− i]

= −
∞∑

n=1

yn

xn(n+ 1)

n−1∑

i=2

(
n

i

)

(−1)i
(

−x

y

)i

Z1[n− i]

= −
∞∑

n=1

yn

xn(n+ 1)

n−1∑

i=1

(
n

i

)

(−1)i
(

−x

y

)i

Z1[n− i] +
∞∑

n=1

yn

(n+ 2)
Z1[n] (B.35)

where we have reduced the i + 1 denominator, the i = 1 term vanishes due to an implicit
S[i− 1] term in the second line and we relabel n → n− 1 in the third line. We’ve evaluated
the last term before, and upon relabelling i → n− i and using the result implicitely derived
in the δ2 section

n∑

i=1

(
n

i

)

xiZ1[i] = (1 + x)nZ1[n]− (1 + x)nZ

[

n− 1; 1;
1

(1 + x)

]

− 1

n
(B.36)
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we can rewrite (B.35) as (dropping the last sum)

−
∞∑

n=1

yn

xn(n+ 1)

n−1∑

i=1

(
n

i

)(
x

y

)n−i

Z1[i]

=
∞∑

n=1

xn−1

n(n+ 1)

((y

x

)n

Z1[n] +
1

n
+
(x+ y

x

)n

Z
[

n− 1; 1;
x

x+ y

]

−
(x+ y

x

)n

Z1[n]

)

=
1

x

∞∑

n=1

( xn

n2(n+ 1)
+

yn

n(n+ 1)
Z1[n] +

(x+ y)n

n(n+ 1)
Z
[

n− 1; 1;
x

x+ y

]

− (x+ y)n

n(n+ 1)
Z1[n]

)

.

(B.37)

We now have all of the O(δ) pieces for the binomial terms. Returning to the non-binomial
bit we have

Γ(2 + δ2)

Γ(1 + δ1)

∞∑

n=1

xnΓ(n+ 1 + δ1)

Γ(n+ 2 + δ2)

=
∞∑

n=1

xn

(n+ 1)
(1 + δ2)× (1 + δ1Z1[n] + δ21Z11[n] + δ31Z111[n] + . . .)

× (1− δ2S1[n+ 1] + δ22S11[n+ 1]− δ32S111[n+ 1]) (B.38)

which can be evaluated easily.

B.3 O(δ2) terms

B.3.1 δ21

Starting with non-binomial terms we have

∞∑

n=1

xn

(n+ 1)
Z11[n] =

∞∑

n=1

xn

(n+ 1)

(

Z11[n− 1] +
1

n
Z1[n− 1]

)

=
∞∑

n=1

(1

x

xn

n
Z11[n− 1]− xn

n(n+ 1)
Z1[n− 1] +

xn

(n+ 1)

1

n
Z1[n− 1]

)

=
1

x
Li111(1, 1, x) = − log(1− x)3

6x
+ {x ↔ y}. (B.39)

From the binomial we have terms like

∞∑

n=1

Xn

(n+ 2)
Z11[n] =

∞∑

n=1

1

X

Xn

(n+ 1)
Z11[n− 1]

= − log(1−X)3

6X3
− 1

X

∞∑

n=1

(
Xn

n
Z1[n− 1]− Xn

(n+ 1)
Z1[n− 1]

)

= − log(1−X)3

6X3
− log(1−X)2

2X
+

1

X

∞∑

n=1

( 1

X

Xn

n
Z1[n− 1]− Xn

n(n+ 1)

)

(B.40)
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all of which are previous results. The other terms to consider are

∞∑

n=1

Xn

(n+ 1)(n+ 2)
Z11[n] =

∞∑

n=1

( Xn

(n+ 1)
− Xn

(n+ 2)

)

Z11[n] (B.41)

both of which have been calculated.

B.3.2 δ22

We need to consider

=
∞∑

n=1

n−1∑

i=1

(
n

i

)
(−1)i(−x)iyn−i

(i+ 1)(n− i+ 1)
× δ22(S11[i+ 1]− S1[i+ 1])

→
∞∑

n=1

n−1∑

i=1

(
n

i

)
(−1)i(−x)iyn−i

(i+ 1)(n+ 2)
× δ22(S11[i+ 1]− S1[i+ 1]) + {x ↔ y, δ2 ↔ δ3} (B.42)

where the S1[i+ 1] term was previously evaluated so first consider

n−1∑

i=1

(
n

i

)

(−1)i
X i

(i+ 1)
× S11[i+ 1] =

n∑

i=1

(
n

i

)

(−1)i
X i

(i+ 1)
× S11[i+ 1]− (−X)n

(n+ 1)
S11[n+ 1].

(B.43)

where we’ll first consider

n∑

i=1

(
n

i

)

(−1)i
X i

(i+ 1)
× S11[i+ 1] =

(

− 1

X

) 1

(n+ 1)

n+1∑

i=1

(
n+ 1

i

)

(−1)iX iS11[i]− 1. (B.44)

As before we redefine

S11[i] = S11[N ]− S1[N ]
N∑

i1=i+1

xi1
1

i1
+

N∑

i1=i+1

N∑

i2=i1+1

xi1
1

i1

xi2
2

i2
(B.45)

where we will take the i1, i2 → 1 and N → ∞ limits at the end. The fist term can be
rewritten as

S11[N ] =

(

Z11[N ] +
N∑

i=1

1

i2

)
∣
∣
∣
N→∞

=
log(1− x1)

2

2

∣
∣
∣
x1→1

+
π2

6
=

S1[N ]2

2
+

π2

6
. (B.46)

The second term is similar to the O(δ2) term. Let’s generalise this.

n∑

i=1

(
n

i

)

(−1)iX i

N∑

i1=i+1

xi1
1

i1
=

n∑

i=1

x+
1

(
n

i

)

(−1)i(Xx1)
i x1

1− x1

= −x+
1

x1

1− x1

(

1− (1−Xx1)
n
)

= (1−X)n
n∑

i=1

1

i

( 1

1−X

)i[

1− (1−X)i
]

−
(

1− (1−X)n
)

S1[N ]

= (1−X)n
(

S
[

n; 1;
1

1−X

]

− S1[n]
)

−
(

1− (1−X)n
)

S1[N ] (B.47)
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The last term contains terms like

x+
2 · x+

1 · x2

1− x2

x1x2

1− x1x2

[

1− (1−Xx1x2)
n+1
]

= −(1−X)n+1

n+1∑

i=1

1

i

( 1

1−X

)i

x+
2 · x2

1− x2

[1− (1−Xx2)
i]

+
(
1− (1−X)n+1

)
N∑

i=1

N∑

i2=i+1

xi
1

i

xi2
2

i2
. (B.48)

The last line cancels the S11[N ] contribution from (B.46). The operator x+
2 acts as

x+
2 · x2

1− x2

[

1− (1−Xx2)
i
]

=
(

1− (1−X)i
)

S1[N ]

+
(

1− (1−X)i
)

x+
2 · x2

1− x2

xN
2 − (1−X)i

i∑

j=1

1

j

(
1

1−X

)j [

1− (1−Xx2)
j
]

. (B.49)

The second term vanishes as discussed earlier as

x+
2

x2

1− x2

xN
2 =

∞∑

i=N+1

x2

i
(B.50)

so vanishes in the N → ∞ limit. (B.48) therefore reduces to

(1−X)n+1S1[n+ 1]S1[N ]− (1−X)n+1S1[N ]S
[

n+ 1; 1;
1

1−X

]

+ (1−X)n+1

n+1∑

i=1

(

1

i

(

S
[

i; 1;
1

1−X

]

− S1[i]
)
)

= (1−X)n+1S1[n+ 1]S1[N ]− (1−X)n+1S1[N ]S
[

n+ 1; 1;
1

1−X

]

+ (1−X)n+1

(

S
[

n+ 1; 1, 1; 1,
1

1−X

]

− S11[n+ 1]

)

(B.51)

The first line cancels the S1[N ]
∑∞

i1=i+1
x
i1
1

i1
contribution and we are left with

n∑

i=1

(
n

i

)

(−1)i
X i

(i+ 1)
× S11[i+ 1]

=
(

− 1

X

) 1

(n+ 1)
(1−X)n+1

(
n+1∑

i=1

i∑

j=1

1

i

1

j
−

n+1∑

i=1

i∑

j=1

1

i

1

j(1−X)j

)

− 1

=
(

− 1

X

) 1

(n+ 1)
(1−X)n+1

(

S11[n+ 1]− S
[

n+ 1; 1, 1; 1,
1

1−X

]
)

− 1. (B.52)
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Returning to the original problem we have

∞∑

n=1

yn

(n+ 2)

(
n∑

i=1

(
n

i

)

(−1)i
X i

(i+ 1)
× S11[i+ 1]− (−X)n

(n+ 1)
S11[n+ 1].

)

|X→−x
y

=
∞∑

n=1

yn

(n+ 2)(n+ 1)

(
(

− 1−X

X

)

(1−X)n
(

S11[n+ 1]− S
[

n+ 1; 1, 1; 1,
1

1−X

])

− (−X)nS11[n+ 1]− (n+ 1)

)

|X→−x
y
. (B.53)

First we look at terms like

∞∑

n=1

Xn

(n+ 2)(n+ 1)
S11[n+ 1] =

∞∑

n=1

Xn

(n+ 2)(n+ 1)

(

Z11[n+ 1] + Z2[n+ 1]
)

=
∞∑

n=1

Xn

(n+ 2)(n+ 1)

( 1

(n+ 1)2
+

1

n2
+ Z11[n] +

1

(n+ 1)
Z1[n] + Z2[n− 1]

)

. (B.54)

We consider terms

∞∑

n=1

Xn

n
Z2[n− 1] = Z[∞; 1, 2;X, 1] = Li2,1(1, X) = H1,2(X) (B.55)

where Hm1,...(x) are the harmonic polylogarithms [111] which we evaluate in Section B.4. We
also look at

∞∑

n=1

Xn

(n+ 1)2(n+ 2)
Z1[n] =

∞∑

n=1

Xn
( 1

(n+ 1)2
− 1

(n+ 1)(n+ 2)

)

Z1[n]. (B.56)

We’ve evaluated the second term before so look at

∞∑

n=1

Xn

(n+ 1)2
Z1[n] =

1

X

∞∑

n=1

Xn

n2
Z1[n− 1] =

Li1,2(1, X)

X
=

S2
1(X)

X
. (B.57)

where Sρ
ν (x) is the Nielsen generalised polylogarithm. Next we consider terms of the form

∞∑

n=1

(X · Y )n

(n+ 2)(n+ 1)
S[n+ 1; 1, 1; 1,

1

X
] (B.58)

where first we rewrite in terms of useful Z sums via

S[n+ 1; 1, 1; 1, X] = Z[n+ 1; 1, 1; 1, X] + Z[n+ 1; 2;X]

= Z[n− 1; 1, 1; 1, X] +
( 1

n
+

1

(n+ 1)

)

Z[n− 1; 1;X] +
Xn

n(n+ 1)

+ Z[n− 1; 2;X] +
Xn+1

(n+ 1)2
+

Xn

n2
(B.59)
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and so we will need to look at terms
∞∑

n=1

(X · Y )n

n
Z
[

n− 1; 1, 1; 1,
1

X

]

= Li1,1,1

( 1

X
, 1, X · Y

)

= −G
( 1

XY
, 1,

1

Y
; 1
)

, (B.60)

∞∑

n=1

(X · Y )n

n
Z
[

n− 1; 2;
1

X

]

= Li2,1

( 1

X
,X · Y

)

= G
(

0,
1

X · Y ,
1

Y
; 1
)

, (B.61)

∞∑

n=1

(X · Y )n

n
Z
[

n− 1; 1;
1

X

]

= Li1,1(
1

X
,X · Y ) = G

( 1

XY
,
1

Y
; 1
)

(B.62)

and

∞∑

n=1

(X · Y )n

n2
Z
[

n− 1; 1;
1

X

]

= Li1,2(
1

X
,X · Y ) = G

( 1

XY
, 0,

1

Y
; 1
)

. (B.63)

B.3.3 δ23

We look at

=
∞∑

n=1

n−1∑

i=1

(
n

i

)
(−1)i(−x)iyn−i

(i+ 1)(n− i+ 1)
× δ23S11[n− i+ 1]

→
∞∑

n=1

n−1∑

i=1

(
n

i

)
(−1)i(−x)iyn−i

(i+ 1)(n+ 2)
× δ23S11[n− i+ 1] + {x ↔ y, δ2 ↔ δ3}

(B.64)

As previously seen we can evaluate this by reducing the S sum

∞∑

n=1

n−1∑

i=1

(
n

i

)
(−1)i(−x)iyn−i

(i+ 1)(n+ 2)
× δ23

(

S11[n− i] +
1

(n− i+ 1)
S1[n− i+ 1]

)

(B.65)

and starting with the second term we partial fraction to give

∞∑

n=1

n−1∑

i=1

(
n

i

)
(−1)i(−x)iyn−i

(n+ 2)2

( 1

(n− i+ 1)
+

1

(i+ 1)

)

S1[n− i+ 1] (B.66)

where here the first term can be related to (B.47) via a relabeling and the second term goes
as (B.35) where we reduce the denominator offset and then relabel. We are thus left with
the term

∞∑

n=1

n−1∑

i=1

(
n

i

)
(−1)i(−x)iyn−i

(n+ 2)(i+ 1)
S11[n− i]

=
(y

x

) ∞∑

n=1

yn

(n+ 1)(n+ 2)

n∑

i=2

(
n+ 1

i

)

(−1)i
(

− x

y

)i

S11[n− i+ 1]

=
(y

x

) ∞∑

n=1

yn

(n+ 1)(n+ 2)

n∑

i=1

(
n+ 1

i

)

(−1)i
(

− x

y

)i

S11[n− i+ 1]−
∞∑

n=1

yn

(n+ 2)
S11[n]

=
1

x

∞∑

n=1

xn

n(n+ 1)

n−1∑

i=1

(
n

i

)(y

x

)i

S11[i]−
∞∑

n=1

yn

(n+ 2)
S11[n]. (B.67)
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Generalising from earlier

n−1∑

i=1

(
n

i

)

X iS11[i] =
n∑

i=1

(
n

i

)

X iS11[i]−XnS11[n]

= −(1 +X)n

(

S
[

n; 1, 1; 1,
1

1 +X

]

− S11[n]

)

−XnS11[n] (B.68)

reducing the problem to

1

x

∞∑

n=1

xn

n(n+ 1)

(

(x+ y)n

xn

(

S11[n]− S
[

n; 1, 1; 1,
x

x+ y

]
)

−
(y

x

)n

S11[n]

)

−
∞∑

n=1

yn

(n+ 2)
S11[n]

(B.69)

which can be evaluated by converting S sums to Z sums and reducing denominators etc. For
completeness we’ll look at (B.66) more explicitly. Taking the first term
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=
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=
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1
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)(y
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=
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∞∑
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i=1

(
n

i

)(y

x

)i

S1[i]−
1

y

∞∑

n=1

yn

n(n+ 1)2
S1[n]−

∞∑

n=1

xn

(n+ 2)2
(B.70)

all of which have been previously evaluated. The second piece is

∞∑

n=1

n−1∑

i=1

(
n

i

)
(−1)i(−x)iyn−i

(n+ 2)2
1

(i+ 1)
S1[n− i+ 1]

(B.71)

which is same as (B.33) except with (n + 2) → (n + 2)2 but otherwise has the exact same
procedure. Finally we have the non-binomial terms for both δ22 and δ23

=
∞∑

n=1

xn

(n+ 1)
(S11[n+ 1]− S1[n+ 1]) =

1

x

∞∑

n=1

xn

n
(S11[n]− S1[n]) (B.72)

which have already been evaluated.

B.3.4 δ1δ2 and δ1δ3

Starting with the non-binomial term we have

δ1δ2

∞∑

n=1

xn

(n+ 1)
(Z1[n]− Z1[n]Z1[n+ 1]) + {x ↔ y, δ2 ↔ δ3} (B.73)
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where we have evaluated the first term before and the second term required us to deal with
products of Z-sums for the first time. This can be done by reducing the argument to the
same value and using the formula

Z[n;m1, . . . ,mk; x1, . . . , xk]× Z[n;m′
1, . . . ,m

′
l; x

′
1, . . . , x

′
ℓ]

=
n∑

i=1

xi
1

im1
Z[i− 1;m2, . . . ,mk; x2, . . . , xk]Z[i− 1;m′

1, . . . ,m
′
ℓ; x

′
1, . . . , x

′
ℓ]

+
n∑

i=1

x′i
1

im
′

1
Z[i− 1;m1, . . . ,mk; x1, . . . , xk]Z[i− 1;m′

2, . . . ,m
′
ℓ; x

′
2, . . . , x

′
ℓ]

+
n∑

i=1

(x1x
′
1)

i

im1+m′

1
Z[i− 1;m2, . . . ,mk; x2, . . . , xk]Z[i− 1;m′

2, . . . ,m
′
ℓ; x

′
2, . . . , x

′
ℓ] (B.74)

which reduces Z1[n]
2 to 2Z11[n] + Z2[n]. For the binomial piece we have

δ1δ2

∞∑

n=1

n−1∑

i=1

(
n

i

)
(−1)i(−x)iyn−i
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The first term for both δ1δ2 and δ1δ3 has been evaluated previously and the second term of
δ1δ2 can be derived from (B.21).
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(B.76)

all of which have previously been evaluated. Looking at the second term of δ1δ3 we use (B.34)
and (B.37) to split it into two parts

∞∑

n=1

Z1[n− 1]

(

1
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n(n+ 1)2
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x

yn
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x
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n(n+ 1)2

)

+ {x ↔ y}. (B.77)
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and

=
1

x

∞∑

n=1

Z1[n− 1]
( xn

n2(n+ 1)
+

yn

n(n+ 1)
Z1[n] +
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[
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B.3.5 δ2δ3

This goes as

δ2δ3

∞∑

n=1
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n

i

)
(−1)i(−x)iyn−i
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+ {x ↔ y, δ2 ↔ δ3} (B.79)

The first three terms have been previously calculated so we consider the last term. This
cannot be reduced to product sums of the same limit so we need a new technique. First we
reduce the Z-sums to
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(B.80)

We reduce the offset of the denominator for the first term
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(B.81)

and look at the first term which can be rewritten using [108]
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to
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(B.83)

all of which can be rewritten as Z[∞; . . .] after some algebra. We next look at
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(B.84)

which requires the evaluation of
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and the rest has been previously evaluated. Returning to (B.80) we next to consider
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(B.86)

which is simply (B.66). The third term of (B.80) involves reducing the Z-sum arguments,
reducing the offset of the denominator and then various partial fractions and denominator
reductions but overall introduces no new techniques or general results. The last term is

−
∞∑

n=1

n−1∑
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(
n
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)
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(B.87)

where again we’ve done enough that this introduces nothing new. We now have all of the
O(ǫ2) terms. Clearly the integral method is better.
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B.4 Multiple and Harmonic Polylogarithms

A few results are given here

G(y, y, xy; 1) = −1

2
log
[ x

(x− 1)

]

log[−y]2

− 1

2
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((−1 + x)y)

]

)− log[−y] Li2

[ 1

(1− x)

]

+ log[1− y](log
[ x

(x− 1)

]

log[−y] + Li2

[ 1

(1− x)

]

) + Li3

[ 1

(1− x)

]

− Li3

[ (1− y)

(x− 1)

]

(B.88)

Looking at Li2,1(1, X) we have

∫ 1

0
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∫ x1

0
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0
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x1 − 1
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dx1 = X

∫ 1

0

Li2(x1)

1−Xx1

dx1. (B.89)

Alternatively noticing this is a Harmonic polylogarithm we can use the relations

Hm1+1,m2,...,mk
(x) =

∫ x

0

dx1f0(x1)Hm1,m2,...,mk
(x1) (B.90)

and

H±1,m2,...,mk
(x) =

∫ x

0

dx1f±1(x1)Hm2,...,mk
(B.91)

where

f0(x) =
1

x
, f±1(x) =

1

1∓ x
. (B.92)

We therefore have

H1,2(x) =

∫ x

0

dx1f1(x1)

∫ x1

0
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(x− 1)

]

+
1

3
log[1− x]3. (B.93)

We also need

H1,3(x) =

∫ x

0

dx1f1(x1) Li3(x) = (B.94)

H2,2(x) =

∫ x

0

dx1f0(x1)H1,2(x2)

= −1

2
Li2[x]

2 − 2 Li4[x] (B.95)

We similarly calculate H1,1,2(x) and H1,2,1(x).
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Appendix C

Mellin-Barnes Expansions of Triangles
and a Specific Triangle Integral

C.1 Mellin-Barnes Expanded Triangles

First the two-mass triangle. Starting from (5.96) we close the contour on the left side of the
complex plane (after performing the initial Gauss shift)
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For the one-mass triangles we similarly have
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C.2 A Tensor Integral

There is a tensor integral of the form
∫
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2
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where the triangle mass is ska and
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This agrees with the box result presented in the main body of the thesis when setting ν4 = −1.
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Appendix D

Starting Points for Future
Calculations

D.1 General Two-Mass-Easy Box

We can add in the second mass to the derivation of the generalised one-mass box. {Q2
i } from

(5.66) now contains {s, t,M2
1 ,M

2
2}.

k4

ν4

ν3
k3

ν2

k2

k1
ν1

Figure D.1: A generalised two-mass easy box with k2
4 = M2

1 , k
2
2 = M2

2 and all other k2
i = 0.

The internal propagators {A1, A2, A3, A4} have arbitrary powers {ν1, ν2, ν3, ν4}.

This extends to the two-mass case as follows:

P = x1 + x2 + x3 + x4, (D.1)

and

Q = x1x3s+ x2x4t+ x1x4M
2
1 + x2x3M

2
2 . (D.2)

The proceeding multinomial expansion can be written as,
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=
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∑

n1,n2,n3,n4≥0

∫
dDℓ

iπ
D
2

(x1A1)
n1

n1!

(x2A2)
n2

n2!

(x3A3)
n3

n3!

(x4A4)
n4

n4!

=

∫

Dx
∑

S≥0

(x1x3s)
q1(x2x4t)

q2(x1x4M
2
1 )

q3(x2x3M
2
2 )

q4

q1!q2!q3!

xp1
1 xp2

2 xp3
3 xp4

4

p1!p2!p3!p4!
× (p1 + p2 + p3 + p4)!,

(D.3)
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S = {q1, q2, q3, q4, p1, p2, p3, p4} and with the constraint

q1 + q2 + q3 + q4 + p1 + p2 + p3 + p4 = −D

2
, (D.4)

which ensures the powers of P and Q are correct. Calling νi = −ni we can take the x−νi
i

coefficients and compare these with the other side of the equality, extracting the Schwinger
integrand to give

ID,2m
4 (ν1, ν2, ν3, ν4; s, t,M

2
1 ,M

2
2 ) =

∑

S≥0

Γ[1 + p1 + p2 + p3 + p4]

Γ[1 + q1]Γ[1 + q2]Γ[1 + q3]Γ[1 + q4]

×
(

4∏

i=1

Γ[1− νi]

Γ[1 + pi]

)

sq1tq2(M2
1 )

q3(M2
2 )

q4 , (D.5)

where we can read off the constraints

q1 + q3 + p1 = −ν1,

q2 + q4 + p2 = −ν2,

q1 + q4 + p3 = −ν3,

q2 + q3 + p4 = −ν4,

q1 + q2 + q3 + p1 + p2 + p3 + p4 = −D

2
. (D.6)

There are 56 potential solutions to S under these constraints but there are only 35 existing
solutions. There is plenty to explore here, both in terms of kinematic regions and in pushing
the results to a single, compact form such as with (5.117), and the result will be required for
pushing our single-minus technique further to higher multiplicities.

D.2 Augmented Recursion for Single-Minus Amplitudes

This thesis has not touched upon the rational part of the single-minus amplitudes. We
expect that we can use the BCFW shift for this amplitude which will reduce the number
of factorisations needed to be considered, and indeed with the results known this has been
tested and the rational contribution does vanish for large z under this shift.

In the all-plus case, there were double poles originating from the all-plus, three-point, one-
loop vertex. There was no contributions from the two-loop vertex because the tree amplitude
in the factorisation vanished for the all-plus configuration. The single-minus amplitude will
contain contributions from the two-loop vertex as now the tree becomes an MHV tree. We
could look at all of the two-loop diagrams that would contribute double poles individually
but it might be easier to take two separate currents as shown in Figure D.2.
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b̂+

c+

â−

d+

β

γ

Figure D.2: Schematic diagram for the (two-loop)-(tree) channel containing the double pole
contribution which comes from the two-loop, all-plus, three point vertex. The LHS circle
indicates a doubly off-shell two-loop, four-point current. The RHS circle indicates a doubly
off-shell n-point, tree amplitude. The external legs are BCFW shifted on legs â− and b̂+.

The remaining channels either contain simple poles and only need standard recursion, or
use the same methods as seen for the all-plus configuration.
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