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Abstract

This thesis explores the use of adaptive optics to create tailored laser profiles to
drive the process of high-order harmonic generation (HHG).

A deformable mirror controlled by a genetic, simulated-annealing algorithm (SA),
and a genetic-annealing hybrid algorithm (HA) have been used to create super-
Gaussian intensity profiles of orders ranging from P = 1 to P = 2 using a low-
powered He-Ne laser. Between these three algorithms it was found that there is a
compromise between the algorithm performance and reliability, and the algorithm
complexity.

Simulated super-Gaussian beam-shaping with a phase-only SLM has been performed
with a SA and HA algorithm and compared to a known π-shift method. The HA
has shown an improvement in super-Gaussian quality for high orders, P ≈ 2.6.

Simulations of HHG driven by super-Gaussian driver fields have been made using
both the simple dipole model and the strong field approximation. It has been shown
that HHG beam divergence decreases with increased order P . The fringe visibility
has also been calculated as a measure of coherence.
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Chapter 1

Introduction

"Try not to think too much about

it."

Joe Strong

In this thesis beam shaping techniques for applications to high-order harmonic gen-

eration (HHG) are investigated. In chapter 6 simulations have been made of HHG

driven by super-Gaussian laser profiles of increasing order, and it is shown that in-

creasing this order decreases the HHG beam divergence. Practically this means that

smaller volumes of interest could be irradiated and with a higher brightness. The

HHG process produces an extreme ultraviolet beam with pulses on the attosecond

timescale. This introduction starts with a brief overview of the technology leading

up to and including HHG, followed by an overview of beam shaping techniques for

high powered laser systems.

1.1 Ultrafast lasers

The laser is arguably one of the greatest technological achievements. In a non-

exhaustive list modern laser technology has allowed for: high precision materials

processing and micromachining [1], fast motion tracking and remote sensing meth-

ods (lidar) [2], precision length measurements, image and bar-code scanning, data

storage [3], medical techniques such as cornea correction [4], and advances in both

macroscopic and subatomic research [5]. In the current era it is hard to imagine life

without laser devices. For this reason it may be surprising to learn that the first
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Table 1.1: Common laser types [10].

Laser (continuous
wave)

Medium λ (nm) Power

HeCd Gas 325 <100mW
Kr ion Gas 531 0.1 - 10W
HeNe Gas 633 100mW
Dye Liquid 400 - 500 1 - 100W
GaAIAs Semiconductor 780 1 - 100W
Nd:YAG Solid state 1064 100W
CO2 Gas 10600 100W

Laser (pulsed) Medium λ (nm) Pulse du-
ration

Excimer KrCl Gas 222 250 ns
Excimer XeF Gas 351 1 - 30 ns
Ruby Solid state 694 20 ns - 1ms
Alexandrite Solid state 720 - 800 0.1ms
GaAS Semiconductor 904 15 fs
Ti:sapphire Solid state 700 - 1000 10 - 100 fs
Er:YAG Solid state 2940 10 ns

laser demonstration was initially rejected for publication in May 1960 [6–8]. In the

initial paper by Theodore Maiman, a high-powered flash lamp was shone on a silver

coated ruby rod to create a substantial amplification of light. Despite the initial

rejection Maimans’ report was accepted by Nature in the August of the same year.

At that time the applications of lasers were not yet realised. At present there are

many varieties of laser devices commercially available over a wide spectral range as

displayed in table 1.1. To emphasise the scale and importance of laser applicability

an article from 2017 stated that the ‘photonics technology produced in the United

Kingdom contributes £12.9 billion to the country’s economy annually’ [9].

In science it is often required to observe and measure objects or systems of inter-

est as they evolve over time to provide a deeper understanding of how nature behaves

and to predict the outcome of future events. The required temporal resolution of

measurements is problem dependent. In 1878 a debate was raised as to whether a

running horse was ever completely aloft [11]. This debate arose because the human
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eye has a perception rate of around 60 events per second which is not enough to

definitively answer this question. The added difficulty was that the best commercial

cameras at the time could only develop a single image on the order of minutes. The

solution demonstrated by Eadweard Muybridge was to align 12 cameras that were

triggered to each take a single image over a fraction of a second. After develop-

ment the filmstrip of images showed the dynamics of the running horse with all four

legs clearly off the ground [12]. The forefront of fast imaging has since moved on

and one current area of interest in science is to probe the dynamics of molecular

and sub-atomic systems where sub-nanometer spatial and sub-femtosecond temporal

resolutions are required.

One way to probe the dynamics of small structures is through the use of pulsed

laser systems. The first breakthrough into sub-nanosecond pulses was demonstrated

in the 1960s by Hellwarth and McClung using a Q-switching technique which utilised

electrically switched Kerr cell shutters in a ruby laser [13]. Q-switching is achieved

by putting a variable attenuator inside the optical resonator. When this attenuator

is functioning light leaving the gain medium does not return, which prevents lasing

but allows energy to accumulate in the gain medium. Switching off the attenuator

releases an intense light pulse, and then this process is repeated [14]. Typical pulses

that can be produced only by Q-switching are on the order of 10 s of nanoseconds.

Q-switching paved the way for science in the non-linear light-matter interaction

regime [15].

Following Q-switching techniques, mode-locking was introduced where a fixed

phase relationship is induced between the longitudinal modes of the resonant cavity.

If these modes are correctly in phase the output from the laser is typically zero

except for a short pulse where constructive interference occurs [16]. The train of

pulses are generated on the order of 100 s of femtoseconds [13, 17, 18]. To amplify

short pulses in the non-linear intensity regime the use of chirped pulse amplification

(CPA) is required to avoid damage to the medium used to amplify the laser. In CPA

an ultra-short laser pulse is stretched temporally by a grating pair on the order of
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103−4 times its initial duration. The stretched pulse is then amplified before re-

compression [19–23]. The advancements in pulse length over time is shown in figure

1.1.

Figure 1.1: “Historical progress of the ultrashort pulse technology. EL: laser
electric field; Vatom: atomic potential; MPI: multiphoton ionisation; REMPI:
resonance enhanced multiphoton ionisation; LOPT: lowest-order perturbation

theory; SFA: strong field approximation; and EIR: electric field of the infrared (IR)
laser at the moment of ionisation ti”. Figure from [15].

Coherent sources of extreme-ultraviolet (XUV) radiation with pulses on the at-

tosecond time scale are ideal for probing the dynamics of the molecular and sub-

atomic scales [15,24,25]. Synchrotrons and free electron lasers (FELs) are excellent

sources of incredibly bright XUV radiation, however the kilometre-scale size and

build costs (in the millions or even billions of pounds) strictly limit access to these

sites [3, 26]. At XUV wavelengths the difficulty to obtain lasing stems from the

required pump power which scales with λ−4 [27]. Compact ‘table top’ sources of

coherent XUV radiation offer an attractive alternative for many different types of

experiments that can be performed at a relatively low spectral brightness [3]. High-

order harmonic generation (HHG) is a relatively new technique in ultrafast optics

which emerged in the late 1970s [28]. In a typical HHG setup an intense femtosecond

titanium-sapphire laser is focused on to an atomic or molecular gas [8]. Prof. Paul
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Corkum rationalised the HHG process with a three-step model where an electron is

ionised in an intense laser field, it then propagates before recombining and releasing

an XUV photon [29,30]. The HHG process occurs at the extremum of the oscillating

driving field where electrons are liberated in ultra-short bunches much shorter than

the optical period. A driver laser of wavelength 800nm has an optical period of 2.7

fs, therefore the typical accelerated electron recombines and releases a photon after

no more than a few hundred attoseconds [31,32].

One application of HHG is for diffractive imaging [26,33]. The smallest structure

of size d that can be imaged is given by d = Kλ/A, where K is a numerical constant

that depends on the spatial coherence of the illumination of the object plane and

A is the aperture of the optical system. The short wavelengths and high spatial

coherence of HHG is therefore ideal for high resolution microscopy. The imaging of

biological samples with HHG is of particular interest due to the K-shell absorption

edges of oxygen and carbon at 2.3 nm and 4.4 nm respectively. Within this window

water is transparent, which leads to contrast differences throughout different tissue

types [26, 33].

Another application of HHG is in ultrafast holography. In 2007 Tobey et al.

demonstrated femtosecond time-resolved holography using the highly coherent XUV

light generated by HHG [34]. Using interferometric imaging techniques this study

used HHG XUV light to probe the femtosecond dynamics of electrons at a metal

surface.

1.2 Beam shaping for high-powered lasers

In this section beam shaping techniques and applications are discussed. The moti-

vation in this thesis is to tailor the driver beams for driving HHG.

The ability to manipulate the spatial or temporal structure of a laser beam has

applications such as micromachining, fibre optics [35], and beam steering [36]. Using

beam steering techniques ‘optical tweezing’ was the shared subject of the 2018 Nobel
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prize [37–39]. This particular application is discussed further in section 5.2.

One of the most common applications of beam shaping is the removal of often

undesirable spatial or temporal structures called aberrations. Aberrations present

on a beam can reduce the overall beam quality and lower properties such as the

maximum intensity. There are several ways to mathematically describe beam aber-

rations. Within this thesis the Zernike coefficients will be used as described in

appendix A1. Common causes of aberrations include, but are not limited to, mis-

alignment of optical components, the surface quality of optical components, thermal

effects, turbulence in the propagating medium, doping inhomogeneities in amplifying

crystals and non-linear effects [40].

Recent advancements in engineering have lead to the development of adaptive

optics (AOs) which offer more versatility than static optics for tailored beam shaping.

In this thesis beam shaping using a deformable mirror is investigated experimentally

and its application to HHG investigated via a simulation.

An experiment from 2015 performed by Sun et al. combined two adaptive optics

in to one optics system. Namely these were a deformable mirror (DM) and a spatial

light modulator (SLM). Sun et al. demonstrated decoupled spatial and temporal

control to compensate for effects such as propagation time difference (PTD) where

there is slipage between slippage between pulse-fronts and wavefronts of a pulsed

beam through a medium [41]. This is discussed further in section 2.2.4.

Numerical methods such as learning algorithms are often used to control AO

devices for beam shaping, such as in [40, 42–44] where deformable mirrors were

used to either minimise beam aberrations or to shape Gaussian beams into super-

Gaussian intensity profiles. At present there are hundreds of learning algorithms

that can be used for numerical optimisation. One of the focuses of this thesis is

to show the performance of beam shaping using AOs controlled by a genetic, and

a simulated algorithm which are amongst the most common used to control AO

devices, as well as a hybrid algorithm made by this author.

The high damage threshold of modern AOs such as reflective DMs make these
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devices ideal for use in high powered laser systems. Many experiments now com-

monly use DMs to optimise the driving laser used HHG. Most of these experiments

focus on removing Zernike aberrations to increase the maximum driver beam in-

tensity [42, 45, 46]. Optimising HHG flux is of great interest due to the inefficiency

of HHG which is on the order of 10−6 to 10−8 for photon energies in the range of

50 − 100 eV using typical titanium-sapphire lasers. In the keV range the efficiency

drops to ≈ 10−15 [47]. Due to the non-linearity of HHG the process is extremely

sensitive to changes in both the driver beam intensity and phase profile.

In HHG driver beam shaping can be applied to ensure as much of the transverse

intensity profile is above the threshold for generating high-harmonics. If the power

is increased to maintain the same maximum beam intensity this will increase the

number of XUV sources, and therefore the XUV photon flux. This is of interest

for applications such as diffractive imaging experiments. Super-Gaussians profiles

could offer such sought-after properties. For a fixed width these profiles become more

flat-top-like at the expense of lowing the maximum intensity of the beam. Super-

Gaussians of order 1 < P < 2 and width w in the form I(r) ∝ exp[−2(r2/w2)P ]

have been shown to be achievable using adaptive optics. This thesis builds on the

work of [43,44] to create super-Gaussians with a single DM to profiles of user-defined

orders. In a recent experiment by Treacher et al. a single SLM was used to create

a super-Gaussian profile for driving HHG to optimise for brightness [48]. Within

this thesis a numerical simulation is made of this shaping method and compared

with an SLM controlled by a learning algorithm to show what improvements may

be possible experimentally.

A shaping experiment performed by Constant et al. used a two-optical-path

(TOP) mirror to generate flattop beams profiles for HHG [49]. The disadvantage

with this technique is that a TOP mirror cannot compensate for beam aberrations,

and the user is limited to only one type of beam shaping. Work presented in this

thesis is towards being able to use adaptive optics that can make arbitrary beam

shapes for driving HHG.
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1.3 Thesis overview and author contribution

This thesis comprises of two main themes: the creation of tailored transverse beam

profiles using optimisation routines, and the simulation of HHG using such profiles.

Chapter 2 covers some of the basic concepts and tools used throughout the

thesis. These include the definition of the super-Gaussian, imaging moments, beam

propagation methods, and a classical model of high-order harmonic generation.

In chapter 3 the performance of multiple learning algorithms are compared for

finding the maximum of a known one-dimensional function. This leads into chapter 4

where the generic, simulated-annealing, and hybrid algorithms are used experimen-

tally to control a deformable mirror with the goal of shaping the Gaussian transverse

profile of a helium-neon laser into super-Gaussians of orders, P = 1 through P = 2.

In chapter 5 beam shaping simulations are performed with a phase-only spatial

light modulator (SLM). The performance of a learning algorithm to control the SLM

is compared with a known π-shift method for super-Gaussian generation [49,50].

In chapter 6 the effects of super-Gaussian spatial shaping on HHG are investi-

gated through simulations using both the strong field approximation and the simple

dipole model. Investigations have been made for harmonic beam divergence and

fringe visibility.

All simulated and experimental learning algorithms were made in MATLAB R©

by this author. Experiments with the deformable mirror were performed by this

author. The codes for the strong field approximation were created by Dr Adam

Wyatt and adapted by this author as described in chapter 6 to use custom driver

beam profiles.
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Chapter 2

Background content

"What is the physics equivalent of

an exorcism?" - This author

"Fixing it."

Jack Holligan

This chapter covers several topics and techniques used throughout this thesis, includ-

ing the super-Gaussian definition and image moments. This chapter then leads in

to beam propagation using the Fresnel, Fraunhoffer, and angular spectrum method.

A discussion is then made about the effects of a pulsed laser through a lens. Finally,

the classical model of high-order harmonic generation is given which is expanded on

in chapter 6 with beam shaping applications.

2.1 Beam characterisation

A recurring topic within this thesis is spatially shaping beams into transverse super-

Gaussian profiles. The conventional definition of a super-Gaussian is given in section

2.1.1. This is used in the fitting routines of learning algorithms, and the creation of

target transverse profiles in all other simulations. The learning algorithms will aim

to optimise the shape of transverse laser profiles to match the target super-Gaussian

orders.

The method of first moments is used to calculate the beam centroid in the

shaping experiment with a single deformable mirror. The learning algorithms use

the location of the beam centroid to create a small 2D region of interest to perform

a super-Gaussian fit. The width of an arbitrary intensity profile can be calculated
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using the second moment. The second moments are used to estimate HHG beam

divergences in chapter 6.

2.1.1 Super-Gaussians

Figure 2.1: Super-Gaussian distributions for P = 1, 2, 3.

Super-Gaussians are higher order Gaussians where the region about the peak flattens

as the order is increased. The shape of a super-Gaussian is given by [48,51,52],

G(r) = G0 exp

[
−2

(
r2

w2

)P]
+ c, (2.1.1)

where G0 is the amplitude, r is the transverse position, w is the 1/e2 radius, P > 1

is the super-Gaussian order, and c is the vertical offset. For P = 1 equation 2.1.1 is

reduced to a Gaussian profile. The amplitude scaling parameter, G0, is,

G0(P,w) =
(P/2) 22/(P/2)

2πw2 Γ(2/(P/2))
, (2.1.2)

where the gamma function Γ(z) =
´∞
0
xz−1exp[−x] dx,<(z) > 0. For higher super-

Gaussian orders G0 decreases for constant w to maintain the same integrated inten-
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sity. Example profiles are shown in figure 2.1 for P = 1, 2, 3.

2.1.2 Image Moments

Given an image of pixels with intensity values, I(x, y, z), the first moment is a

measurement of the centre of gravity given by,

〈x〉 =

˜
x I(x, y, z), dxdy˜
I(x, y, z) dxdy

. (2.1.3)

This is also known as the expectation value of x or the location of the beam centroid.

Following this the beam variance is calculated by,

σ2
x(z) =

˜
(x − 〈x〉)2 I(x, y, z) dxdy˜

I(x, y, z) dxdy
. (2.1.4)

For any arbitrary beam the second moment can be used to measure the beam radius.

The second moment is given by,

Wx(z) ≡ 2σx(z). (2.1.5)

The same treatment is made for 〈y〉, σ2
y, and Wy [53–57].

2.2 Beam propagation

For the purposes of modelling light it is necessary to be able to propagate fields be-

tween different planes [48,58–60]. This section discusses multiple different methods

of propagation. We start with Fresnel and Fraunhoffer diffraction and build on these

to introduce the angular spectrum method (ASM). The ASM is used in chapter 6

to propagate between two adaptive optic elements in the near-field. The Hankel

transform is then described as it is a convenient alternative to the standard Fourier

transform given that the HHG simulations in chapter 6 use cylindrical symmetry.

11



CHAPTER 2. BACKGROUND CONTENT

The Fourier transform property of a lens is then described as a way to propagate be-

tween the back and front-focal plane. This is used in chapters 5 and 6 to propagate

between the adaptive optic element(s) and the focus of the driver beam.

Figure 2.2 shows an example geometry of propagation field U(x, y) to U(p, q)

separated by distance z. The relationship between these planes from the Huygens-

Fresnel principal is:

U(p, q) =
z

iλ

¨
U(x, y)

exp[ikr12]

r212
dxdy, (2.2.1)

where k = 2π/λ is the wave number and the optical path length is,

r12 =
√
z2 + (p− x)2 + (q − y)2. (2.2.2)

Figure 2.2: Diagram of propagation from an initial plane (x, y) at point P1 to
point P2 with plane coordinates (p, q) separated by distance z.

2.2.1 Fresnel and Fraunhoffer diffraction

The Fresnel number determines which of the Fresnel or Fraunhoffer approximations

can be suitably utilised and is defined as,

F =
D2

zλ
, (2.2.3)
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where D is the aperture radius at the initial plane. In the near field F ≥ 1 is in the

Fresnel diffraction regime and in the far field F � 1 is in the Fraunhoffer diffraction

regime.

In the Fresnel regime only small angles are considered such that z ≈ r12. This

approximation is not appropriate for r12 in the exponent as the exponent has a

wavelength dependence. By factoring out z in equation 2.2.2 a binomial expansion

can be performed such that,

r12 ≈ z

[
1 +

1

2z

(
(p− x)2 + (q − y)2

)]
. (2.2.4)

Substituting 2.2.4 into 2.2.1 obtains,

U(p, q) =
exp[ikz]

iλz
×¨

U(x, y) exp
[
ik

2z

(
(p− x)2 + (q − y)2

)]
dxdy, (2.2.5)

=
exp[ikz]

iλz
exp

[
ik

2z
(p2 + q2)

]¨ (
U(x, y) exp

[
ik

2z
(x2 + y2)

])
×

exp
[
−ik
z

(xp+ yq)

]
dxdy. (2.2.6)

From equation 2.2.6 the Fresnel diffraction pattern is calculated by multiplying some

pre-integral factors and the Fourier transform of U(x, y) multiplied by a quadratic

term. Using the definition of the Fourier transform,

G(x′′) =

ˆ
g(x′) exp[−2πif

′

x′x
′] dx, (2.2.7)

for spatial frequency f ′x′ , the Fresnel approximation takes the form,

U(p, q) =
exp[ikz]

iλz
exp

[
ik

2z
(p2 + q2)

]
F
{
U(x, y) exp

[
ik

2z
(x2 + y2)

]}
. (2.2.8)

In the Fraunhoffer regime z is sufficiently large such that,

k

2
(x2 + y2)� z, (2.2.9)
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Using 2.2.9 the quadratic factor in equation 2.2.2 is neglected. This yields the

Fraunhoffer approximation,

U(p, q) =
exp[ikz]

iλz
exp

[
ik

2z
(p2 + q2)

]
F {U(x, y)} . (2.2.10)

2.2.2 The angular spectrum method

An alternative to the Fresnel and Fraunhoffer propagation method is the angular

spectrum method (ASM) which can be used to propagate to both the near and

far field. The ASM does not make the approximations from equations 2.2.4 and

2.2.9. A convenient property of the ASM is that the resolution between two planes

are identical. However the drawback of this is aliasing due to under sampling.

For sufficient sampling intervals ∆(x, y) ≥ zλ/L(x,y), where L(x,y) are the lengths

of the 2D grid in directions x and y. Figure 2.3 displays a visualisation of this

technique where the angular spectrum (a decomposition into multiple plane waves)

is calculated at U(x, y, 0). These plane waves are then each propagated z-distance

away where the contributions from all plane waves are superimposed to find the

total propagated field, U(x, y, z).

Figure 2.3: Visualisation of the angular spectrum of plane waves between fields
U(x, y, 0) and U(x, y, z).
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The initial plane U(x, y, 0) can be written as a sum of plane waves Up of the form,

Up(x, y) = exp[ik·r], (2.2.11)

= exp[2πi(fpxx+ fpyy)], (2.2.12)

where fp(x,y) are spatial frequencies. It follows that,

U(x, y, 0) =

¨
Û(fx, fy) exp[(2πi(fxx+ fyy))] dfxdfy. (2.2.13)

The angular spectrum, Û(fx, fy) is the Fourier transform of U(x, y, 0) such that,

Û(fx, fy) =
1

2π

¨
U(x, y, 0) exp[(−2πi(fxx+ fyy))] dxdy. (2.2.14)

Propagating in three dimensions,

exp[ik·r] = exp[i (kxx+ kyy + kzz)], (2.2.15)

|k| = k =
√
k2x + k2y + k2z . (2.2.16)

For spatial frequencies, f(x,y) = k(x,y)/2π, wave vector component kz can be written

as,

kz = 2π

√
1

λ2
− f 2

x − f 2
y . (2.2.17)

For z > 0,

exp[ik·r] = exp

[
2πi

(
fxx+ fyy + z

√
1

λ2
− f 2

x − f 2
y

)]
, (2.2.18)

Substituting equations 2.2.18 into 2.2.13 the ASM yields,

U(x, y, z) =

¨
Û(fx, fy)

× exp

[
2πi

(
fxx+ fyy + z

√
1

λ2
− f 2

x − f 2
y

)]
dfxdfy, (2.2.19)
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= F−1
{
F{(U, x, y, 0)} exp

[
2πi

(
fxx+ fyy + z

√
1

λ2
− f 2

x − f 2
y

)]}
(x, y).

(2.2.20)

The ASM is also known as the double Fourier transform method due to the presence

of the two transforms in equation 2.2.20.

2.2.3 The Hankel transform

Expanding on the angular spectrum method, if the field to be propagated is cylin-

drically symmetrical then it is convenient to apply a Hankel transform (HT) instead

of a standard Fourier transform. Using a rectangular coordinate system the Fourier

transform of an arbitrary electric field ε(x, y) is given by,

E(fX , fY ) =

¨ ∞

−∞
ε(x, y) exp[−i2π(fXx+ fY y)] dx dy. (2.2.21)

To switch to a polar coordinate system the following variables are transformed such

that,

x = r cos(θ)

y = r sin(θ)

fX = ρ cos(θ)

fY = ρ sin(θ)

→

r =
√
x2 + y2

θ = arctan(y/x)

ρ =
√
f 2
X + f 2

Y

φ = arctan(fY /fX).

(2.2.22)

If the electric field is cylindrically symmetric then the electric field can be written

as a function that is only dependent on r such that,

ε(r, θ) = ε′(r). (2.2.23)

Substituting equations 2.2.22 and 2.2.23 in to 2.2.21 the Fourier transform is written

as,

E ′(ρ, φ) =

ˆ 2π

0

dθ
ˆ ∞
0

ε′(r) exp[−i2πrρ(cos(θ)cos(φ) + sin(θ)sin(φ))] r dr. (2.2.24)
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Here we can use the trigonometric identity,

cos(θ − φ) = cos(θ)cos(φ) + sin(θ)sin(φ), (2.2.25)

such that equation 2.2.24 becomes,

E ′(ρ, φ) =

ˆ 2π

0

dθ exp[−i2πrρ(cos(θ − φ)]

ˆ ∞
0

ε′(r) r dr. (2.2.26)

In this form we can use the Bessel function identity,

J0(a) =
1

2π

ˆ 2π

0

exp[−ia cos(θ − φ)] dθ, (2.2.27)

where J0 is the zeroth order Bessel function of the first kind. Further details are in

appendix A2. Substituting this into equation 2.2.24 the dependence on φ disappears.

We are then left with,

E ′(ρ, φ) = E ′(ρ) = 2π

ˆ ∞
0

ε′(r) J0(2πrρ) r dr, (2.2.28)

which is the one dimensional HT [61]. The Hankel transform as denoted by H has

analogous properties to the Fourier transform so it follows that,

gR(r) = HH−1(gR(r)) = HH(gR(r)) = H−1H(gRr). (2.2.29)

Using the same treatment as above, the inverse HT is,

ε′(r) = 2π

ˆ ∞
0

E ′(ρ) J0(2πrρ) ρ dρ. (2.2.30)

The ability to represent and propagate the electric field in one dimension is com-

putationally advantageous as it removes the necessity to calculate over an N × N

grid. The HT propagation tool was bench marked against a two dimensional angular

spectrum and figure 2.4 shows that they are in good agreement.
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Figure 2.4: a) The transverse intensity profile of a super-Gaussian (blue, p = 2)
with a random phase profile (green, φ ∝ r0.3) at z = 0. b) Propagated beam about

z = 0 using the 1D Hankel transform and the 2D angular spectrum method.

2.2.4 Propagation through a lens

The ideal thin lens

The geometry of a thin lens setup is displayed in figure 2.5. At z = 0 an initial field

is multiplied by the quadratic phase function of the lens such that,

Uinitial = U(x, y, 0) exp
[
− ik

2f
(x2 + y2)

]
. (2.2.31)

Figure 2.5: Propagation between the back and front focal plane of a lens.
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Propagating using the Fresnel regime to plane z = f ,

U(x, y, f) = exp
[
ik

2f
(x2 + y2)

]
F{U(x, y, 0)}

(
x

λf
,
y

λf

)
. (2.2.32)

Using the ASM the relationship between the z = −f and U(x, y, 0) just before the

lens is,

F{U(x, y, 0)}
(
kx
2π
,
ky
2π

)
= F{U(x, y,−f)}

(
kx
2π
,
ky
2π

)
exp

[
if
√
k2 − k2x − k2y

]
,

F{U(x, y, 0)}
(
kx
2π
,
ky
2π

)
≈ F{U(x, y,−f)}

(
kx
2π
,
ky
2π

)
exp

[
−if

(
k2x + k2y

2k

)]
.

(2.2.33)

By substituting kx = 2πx/λf = kx/f we obtain, 2.2.33,

F{U(x, y, 0)}
(
x

λf
,
y

λy

)
= F{U(x, y,−f)}

(
x

λf
,
y

λy

)
exp

[
− ik

2f
(x2 + y2)

]
.

(2.2.34)

From equations 2.2.32 and 2.2.34 the relationship between the front and back focal

planes are an exact Fourier transform given by,

F{U(x, y, f)} = F{U(x, y,−f}
(
x

λf
,
y

λf

)
. (2.2.35)

Pulsed beam through a lens

The pulsed driving beam for HHG can acquire phase front and wavefront distortions

when propagating through a lens. This section describes the effect of the propagation

time difference as a consequence of a pulsed laser propagating through a lens. In

principle, adaptive optics can be used to correct for such effects.

The pulse and phase fronts of a pulsed laser propagate at the group, vg, and

phase, vp, velocities respectively as shown in figure 2.6. These velocities are given
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by,

vg =
c

n−
(
λdn
dλ

) , (2.2.36)

vp =
c

n
, (2.2.37)

where n is the refractive index n = c/v [62].

Figure 2.6: Phase and group velocities of a propagating wave.

Through a lens of thickness L the propagation time difference (PTD) is given by,

PTD = L

(
1

vp
− 1

vg

)
, (2.2.38)

= L

(
n

c
− n

c

(
1− λ

n

dn
dλ

))
. (2.2.39)

The PTD varies with the transverse variation of the thickness of the lens. Pulse

broadening occurs due to group velocity dispersion (GVD) and is given by [62],

GVD =
λ3

2πc2
d2n

dλ2
. (2.2.40)
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From the geometry in figure 2.7,

n1

Si2
+
n1

So1
= (n2 − n1)

(
1

R1

− 1

R2

)
+

n2 d

(Si1 + d)Si1
, (2.2.41)

where n1 and n2 are refractive indices outside and inside the lens, R1,2 are the

curvatures of the lens for each surface, Si, o are the image and object distances

relative to lens surfaces 1 and 2, and d is the lens thickness. Using the thin lens

approximation, d � 1 and setting the refractive index in air, n1 = 1, Equation

2.2.41 reduces to Lensmaker’s equation [63,64],

1

f
= (n2 − 1)

(
1

R1

− 1

R2

)
, (2.2.42)

where f is the focal length. In order to calculate the propagation time ∆T (r)

Fermat’s principle is applied which is given by,

L1 + nL2 + L3 + L4 = n d0 + f, (2.2.43)

with lens thickness, d0, focal lenth, f , and the path lengths, L1:4, are from the

geometry shown in figure 2.8. The propagation time, T (r), of a plane wave from A

to F is calculated by,

T (r) =
L1 + L3 + L4

c
+
L2

c

(
n− λdn

dλ

)
. (2.2.44)

Using the paraxial approximation the expressions for d0 and L2 are,

d0 =
r20
2

(
1
R1

+ 1
R2

)
, (2.2.45)

and,

L2 =
r20−r2

2

(
1
R1

+ 1
R2

)
, (2.2.46)
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Figure 2.7: Geometry of light passing through a lens with spherical surfaces, R1

and R2, and thickness, d. Refractive indices are n1 outside and n2 inside the lens.
So, i denote object and image distances relative to surfaces R1 and R2.

Figure 2.8: Geometry to calculate the propagation time T (r) of a plane wave from
A to focal point F.
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where r and r0 are the radii of the incident light rays [65]. Using equations 2.2.43

through 2.2.46 the propagation time becomes,

T (r) =
f

c
+
d0
c

(
n− λdn

dλ

)
+
r2

2c

(
1

R1

+
1

R2

)
λ
dn
dλ
. (2.2.47)

Using 2.2.45 and 2.2.47 the propagation time for the outermost ray from figure 2.8

is,

TM ≡ T (r0) =
1

c
(f + n d0). (2.2.48)

The delay between the phase and pulse fronts can be calculated from Lensmaker’s

equation 2.2.42 and equation 2.2.47,

∆T (r) ≡ T (r)− TM =
r20 − r2

2cf(n− 1)

(
−λdn

dλ

)
. (2.2.49)

The effect of the PTD is shown in figure 2.9 for pulse fronts and wavefronts about

the focal plane at t = 0, where the pulse has been broadened by 4.81 ps. The pulse

front equations of motion are given by,

x(t) = c(t−∆T (r)) cos(α), (2.2.50)

y(t) = c(t−∆T (r)) cos(α), (2.2.51)

(2.2.52)

where, α = tan−1(r/f) [62].

PTD effects can be removed using an achromat, however adaptive optics allows

for both the removal of these effects and additional control over the pulse fronts and

wave fronts.
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Figure 2.9: a) Pulse and wave front behaviour behind a lens of radius r = 40mm,
focal length 150mm, refractive index n = 1.50799, λ(dn/dλ) = −0.1375 for

wavelength λ = 249 nm. b) Pulse and wave front behaviour about the focal plane
at x = 0. The propagation time difference, 4.81 ps, before the focus shows a loop
structure where the pulse has partially passed through x = 0 while the remainder

of the pulse lags behind [62].

In 2015 a beam shaping technique was developed by Sun et al. that allows for shaping

in both the spatial and temporal domain [66]. In their dual-adaptive optic setup a

deformable mirror (DM) is used to distort the pulse and phase fronts simultaneously.

A spatial light modulator (SLM) is then used to cancel any phase front distortions,

effectively demonstrating decoupled control of the pulse and phase fronts. This

technique allows for the generation of spatially and temporally tailored beam profiles

and the compensation of the PTD effects described in figure 2.9 on ultrafast pulses

through a lens or distortions through other optical materials.

Within this thesis only spatial shaping is considered using a single and dual

element approach for applications in high-order harmonic generation. Additionally,

the propagation of a super-Gaussian beam with a flat-phase profile will generate a

donut-shaped transverse intensity profile [60]. In this thesis all models assume that
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the targets are located at the focus and are thin enough to neglect these propagation

effects.

2.3 Three-step model of high-harmonic generation

High-harmonic generation (HHG) a highly non-linear process that generates coher-

ent extreme ultraviolet (XUV) radiation. Figure 2.10 illustrates an example of HHG

where an infrared pulsed Gaussian driver field is focused on to a thin noble gas tar-

get where the typical laser intensities are of the order of 1014 Wcm−2. Within the

gas target qth harmonics are generated with frequencies wq = qw0, where q is an odd

integer and w0 is the fundamental frequency of the driving laser. Although a quan-

tum model of HHG is given in chapter 6 this process can be understood by using

a three-step (semi-classical) model (TSM) as interpreted in 1993 by Paul Corkum

[29,30].

Figure 2.10: A Gaussian driver IR field (red) generates high-harmonics (blue) in a
thin gas target.

2.3.1 TSM introduction

The TSM as illustrated in figure 2.11 follows these distinct steps [26,48,67]:
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Figure 2.11: A laser field (blue) distorts the atomic potential (green) such that the
electron can undergo tunnel ionisation (magenta). The electron (yellow) then

propagates in the continuum (red) until it recombines with it’s parent ion (black),
releasing an XUV photon (dashed black).

1) Ionisation. An electron is in an unperturbed ground state until it is instantly

ionised at some point in the laser pulse.

2) Propagation. The electron enters the continuum at rest. As a free particle it is

accelerated by and follows a trajectory determined by the oscillating electric field of

the driving laser.

3) Recombination. The electron is accelerated back towards its parent ion where it

re-collides and a harmonic photon is released. This photon has energy equivalent to

the kinetic energy of the electron upon collision plus the ionisation energy.

The above steps are known as the birth, contiuum and recombination times respec-

tively denoted by, Tb, Tr − Tb, and Tr. The regimes of ionisation are determined by

the adiabatic Keldysh parameter which is defined as,

γ =
ω0

e|E0|
√

2Ipme, (2.3.1)

where ω0 and |E0| are the frequency and magnitude of the electric field, e and me

are the charge and mass of an electron and Ip is the ionisation potential [68, 69].

Figure 2.12 illustrates three regimes of ionisation defined by the Keldysh parameter.
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Within this thesis calculations are made for the tunnel ionisation process.

Figure 2.12: Ionisation regimes defined by the Keldysh parameter, γ. The atomic
Coulomb potential is shown in green, the electron in yellow, and Ip denotes the

ionisation potential. a) illustrates multi-photon ionisation for γ � 1, b) illustrates
tunnel ionisation for γ < 1 and c) illustrates over-the-barrier ionisation for γ � 1

[70].

For tunnel ionisation to occur the atomic potential needs lowering to the point

where the electron can pass through the potential barrier but not so low as to allow

for it to be liberated over the barrier. This means that the electron is only liberated

around the electric field extremum of the driving laser pulse. The ionisation time

windows are larger for a slowly varying driving field when ω0 � Ip, implying that

the tunnelling regime is dominant when γ < 1.

2.3.2 Electron displacement

In the TSM the electron trajectory in the continuum can be determined using clas-

sical physics. Starting with the real part of the sinusoidal driver field,

E(t) = E0 cos(ωt), (2.3.2)

where ω is the driver frequency. The force experienced by the ionised electron is,

F = eE0 cos(ωt) = me
d2x

dt2
. (2.3.3)
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Rearranging equation 2.3.3 into an expression for the velocity,

v =
dx
dt

=
eE0

me

ˆ t

t0

cos(wt)dt, (2.3.4)

=
eE0

mew
(sin(ωt)− sin(ωt0)), (2.3.5)

where t0 indicates the birth time at which the velocity is zero. By integrating once

more the expression for the electron displacement is [26, 33,69],

x(t, t0) =
eE0

meω

ˆ t

t0

(sin(ωt)− sin(ωt0)), (2.3.6)

=
eE0

mew2
[cos(ωt0)− cos(ωt)− (ωt− ωt0) sin(ωt0)]. (2.3.7)

Electron displacements starting at multiple birth times are shown in figure 2.13 for

time windows where the electron can and cannot classically return to their parent

ion. The figure also shows that some electrons that can return but ‘miss’ the initial

recombination window may recombine at later times, however this process is not

examined further within this thesis.

Figure 2.13: Classical electron trajectories for different ionisation (birth) times
within the electric field as described by equation 2.3.7. Long trajectory paths are
in blue, short trajectory paths are in green, the cutoff trajectory is in magenta,

and electrons that cannot return to their parent iron are in orange.
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2.3.3 The cutoff energy

The time averaged ponderomotive energy is defined as,

Up =
1

2
meω

2〈x2〉. (2.3.8)

For a sinusoidal displacement in x the time averaged value is the amplitude divided

by
√

2. From equation 2.3.7, 2.3.8 becomes,

Up =
1

2
meω

2

(
eE0√
2meω

)2

, (2.3.9)

=
e2E2

0

4meω2
∝ Iλ2, (2.3.10)

which states that the ponderomotive energy scales linearly with the maximum driver

beam intensity and quadratically with the driver wavelength. Only considering

electrons that return to their parent ion, the velocity and therefore the kinetic

energy can be plotted as a function of time as shown in figure 2.14. Adding the

contribution from the ground state energy Ip, the maximum energy of the photon

emitted during recombination as a function of the ponderomotive and potential

energy is, [21, 33,47,71–74],

Emax = ~ωmax = 3.17Up + Ip. (2.3.11)

This maximum energy corresponds to the cut-off energy of the HHG spectrum.
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Figure 2.14: Kinetic energy of an electron on re-collision with their parent ion
plotted against the birth and recombination times as separated by the dashed line.

The long and short trajectory components are in blue and green respectively.

2.3.4 Long and short trajectories

At the maximum energy, E = Emax, from figure 2.14 there is only one trajectory

that an electron can follow for a Gaussian driver beam. For any energy, E < Emax,

there are two trajectories that can yield the same photon energy, namely the ‘long’

and ‘short’ paths as colour labelled in figure 2.14. These names reflect the different

lengths of time that the electron spends in the continuum as shown in figure 2.15.

For some applications an undesirable characteristic is the quantum interference of

these trajectories which causes spectral modulations in the harmonic spectra [75].

One possible way to minimise these interference effects and maximise harmonic yield

is to use a driver with a flat-top or super-Gaussian transverse intensity profile where

more photons can be generated at E = Emax.
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Figure 2.15: Phase accumulated by an electron in the continuum between birth
and recombination times, Tb and Tr. [21, 33].

The quantum models of HHG are discussed further in chapter 6 with a study on the

effects of tailored beam shaping.

2.3.5 Phase matching

The HHG process in practice takes place across a macroscopic medium such as the

gas target in figure 2.10. The total harmonic field involves the propagation of both

the driver and harmonic field generated at each position throughout the medium.

Due to dispersion within this medium, the phase velocities for the fundamental and

harmonic frequencies vary throughout the medium [26]. This leads to interference

between the harmonic field contributions generated at different positions in the

generating medium. In the absence of phase matching constructive interference,

which leads to quadratic growth of the harmonic intensity with propagation distance,

can only be achieved over a distance known as the coherence length which is given

by,

Lc = π/∆k, (2.3.12)
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where ∆k is the phase mismatch between the fundamental laser field and the gener-

ated harmonic. For distances larger than Lc destructive interference occurs, reducing

the harmonic intensity. In practice phase-matching effects can be minimised by se-

lecting suitably thin gas targets such that the thickness of the gas target Lgas � Lc

[76]. In this thesis HHG models assume a thin gas target of one atom thickness such

that phase matching considerations are neglected.
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Chapter 3

Optimisation algorithms

"You should include your enemies

in your acknowledgements too, for

stoking the flames."

Siddharth Pandey

In this chapter four different optimisation algorithms will be used to find the global

maximum of a simple 1D function as displayed in figure 3.8. Namely, these algo-

rithms are: a random search algorithm (RSA), a genetic algorithm (GA), a simulated

annealing algorithm (SA), and a genetic-annealing hybrid algorithm (HA). These

algorithms are later used in chapters 4 and 5 to control adaptive optics elements to

shape laser profiles. The MATLAB ‘global optimisation toolbox’ contains a version

of both a GA and SA. These were not used by this author as these in-built codes do

not offer as much tailoring to the algorithm features, and they are not designed to

solve for iterative processes as required in the laboratory as discussed in chapter 4.

3.1 The motivation to use optimisation algorithms

Consider the problem of finding the global maximum of the function f(x) = x2 for

integer values 0 6 x 6 1000, as in figure 3.1a. Here, x represents a ‘search space’ of

all possible solutions over which the optimisation algorithms can evaluate f(x).

Starting with a simple RSA, this algorithm evaluates f(x) at a random value

of x over numerous iterations and outputs the best solution found. This type of

algorithm is computationally fast as the only operation prior to evaluating f(x) is the

generation of a random number within the search space [77, 78]. The disadvantage
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Figure 3.1: a) y = x2, a simple function. b) y = x sin(x), a function with multiple
local maxima. c) a more complicated function with a multi-dimensional search

space as generated by the Matlab ‘peaks’ function.

with the RSA is that all of the information about the search space from previous

iterations is not taken into account as x is randomly generated. This means that per

iteration, the probability of finding the global maximum is inversely proportional to

the size of the search space. An argument can be made that RSAs are the easiest to

implement, but only adequate for quickly obtaining a better solution over relatively

small search spaces. Improvements can be made by gradually constraining the search

space around ‘good’ solutions as they are found, however there are a number of

more sophisticated algorithms that can offer better reliability of finding the global

maximum [79].

Gradient ascent, sometimes referred to as ‘hill climb’ algorithms evaluate the

gradient of a function between x1 = xinitial and x2 = xinitial ±∆xinitial (where xinitial

for the first iteration is a random number within the search space), passing x2 into

the next iteration if the gradient is positive, or x1 otherwise [80]. This approach is

more robust, and converges much faster than the random search method. In the case

of figure 3.1a, the average number of iterations needed to find the global maximum

is half the size of the search space assuming ∆xinitial is ±1 index in x. However, these

algorithms are very sensitive to the initial conditions and are therefore susceptible

to getting caught in local maxima of more complicated functions such as in figure

3.1b. To mitigate these problems, more complicated gradient ascent algorithms

can iteratively optimise several random xinitial solutions and vary ∆xinitial (this is
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called the ‘search-momentum’) values per iteration to escape local maxima [80].

The limitation of this kind of algorithm is realised when the functions become very

complicated and the search spaces are very large and/or multidimensional such as

in figure 3.1c. In this case, the number of starting locations necessary to converge

on the global maximum can be computationally intensive, reducing the algorithm’s

efficiency.

Machine learning (ML) or learning algorithms (LAs) are terms used to describe

a range of computational algorithms that can be used to optimise a solution based

on the search space information gained from previous iterations. Generally, these

methods are both faster and more reliable than random searches. At present, LAs

are a vast field of research in computer science and mathematics. Some popular

methods include: particle swarm optimisation - a model based on the movement

of bird flocks and fish schools, ant colony optimisation - a routine based on the

social behaviour of ants, genetic algorithms and simulated annealing [77, 81–84].

The latter two are discussed in detail in section 3.2. Another subtype of LAs rising

in popularity are artificial neural networks (ANNs) and deep learning (DL) which

are models inspired on biological networks in the brain. These techniques excel

in processing large datasets, often outperforming many of the other LAs described

above. However, ANNs and DL require sufficiently large training/mock datasets to

robustly and reliably extract the optimum output. They are also programmably

more complicated and difficult to implement compared to other LAs [85].

3.2 The genetic algorithm

3.2.1 Introduction

Genetic algorithms (GAs) are a subclass of evolutionary algorithms designed to op-

timise complex functions. Popularised by John Holland in 1960, GAs are inspired

by Darwin’s theory of evolution. For this reason, many of the terms used in com-
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Table 3.1: Genetic algorithm terminology.

GA terms Description
Locus A fixed position on a binary string
Chromosome A binary string
Individual The amalgamation of one or more binary strings
Fitness A numerical value of a solution from an individual
Population The number of solutions / individuals
Generation An iteration of the algorithm

Binary string = [1010111100], with 10 loci.
Chromosome = a binary string with real value 700.

x1 = an individual made from a single chromosome, green line.
f(x1) = the fitness of individual x1, black circle.

Figure 3.2: Genetic algorithm terminology example for a 1D function.

puter science are replaced with their biological counterparts. Table 3.1 displays a

description of some of these terms and figure 3.2 displays an example of how these

translate to a 1D problem. Variations of the algorithm have been applied in ar-

eas such as image processing, spacecraft trajectory planning, architecture design,

artificial intelligence, and laser technology [86,87].

Following figure 3.3, a typical GA will start with multiple random binary strings

that make up the individuals of the first generation. In GAs the binary string length

is arbitrary, however it is noteworthy that the string length is related to the precision

of which the search space can be evaluated. Over many generations the algorithm

will manipulate and evolve these strings by a set of rules to try and converge on the

global maximum. The GA rules are shown in green in figure 3.3 and are described

in subsections 3.2.2 through 3.2.6 [86–90].
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Generate an
initial population

New Generation
Get first individual

Evaluate fitness
of individual

All of popu-
lation sent?

Get next
individual

Final
generation?

End search

no

Perform elitism
and selection

Shuffle and
pair parents

Perform crossover

Generate childrenPerform mutation

yes

yes

no

Figure 3.3: Genetic algorithm flow chart. Yellow boxes indicate the start and end
of the algorithm. Green boxes indicate GA processes. Blue boxes indicate all other

processes. White boxes indicate decisions.

3.2.2 Fitness

Fitness values are assigned for each individual to determine how ‘good’ the solutions

are. The calculation(s) of these can vary widely depending on the problem, and can

take into account one or more parameters. Biologically the ‘survival of the fittest’

ensures that fitter individuals are more likely to survive and pass their genetics onto

future generations, while the unfit are removed from the gene pool. In parallel to this,

in the GA fit individuals with good solutions aim to evolve over many generations

to converge on the global maximum whilst the individuals with poor solutions are

gradually discarded. To avoid confusion when comparing different algorithms this

author will refer to evaluated cost functions as fitness values.
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3.2.3 Selection

The selection process decides which individuals survive and go on to reproduce.

There are many different selection methods, but all are dependent on the fitness

calculated for each individual. In the simplest case, the top 50% of the population

- as determined by their fitness - survive, removing the remaining 50%. The disad-

vantage with this method is that it decreases the genetic diversity of the population.

This means that there is a chance that an individual with a poor overall fitness is

removed even though they carried some key loci necessary for the optimum solution.

A popular selection process is called the roulette wheel method. This method

mitigates the genetic diversity problem by distinguishing between ‘poor’, ‘good’,

and ‘great’ individuals. In this regime all individuals are given a probability of

survival proportional to their fitness values. For example, consider eight individuals,

N = 1, ... 8, with fitness values fN (f0 = 0). Interval regions are calculated from the

fitness values of each individual such that:

N−1∑
j=0

fj ≤ F int
N ≤ Ftot − V, (3.2.1)

where,

V =
8∑

i=N+1

fi, Ftot =
8∑

k=0

fk, (3.2.2)

and V (N = 8) = 0. A number is randomly chosen between 0 and Ftot, and the indi-

vidual corresponding to the interval F int
N is selected to survive. A visual representa-

tion is shown in figure 3.4 where a series of intervals are determined proportionally

to each individual’s fitness and one is randomly selected. In the simple case, individ-

uals are selected until 50% of the population is chosen this way. Each individual can

only be selected once to continue to the next generation to avoid identical parents,

this prevents the algorithm from converging too quickly and allows for more efficient

coverage of the search space.

The drawback to this method is that the fittest individuals only acquire a higher
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Figure 3.4: Visual representation of the roulette wheel selection method. A
random number is chosen between 0 and the total sum of every individual’s fitness,∑

fN . The individual corresponding to the interval of the random number is
chosen to survive.

selection probability instead of a guaranteed chance of survival. This problem is

avoided by employing elitism as described in subsection 3.2.6. After the selection

process is complete, individuals are paired up randomly to become parents for re-

production and genetic crossover.

3.2.4 Crossover

The crossover process serves as a way for the genetic algorithm to search through the

search space. This is done by mixing the binary strings of two parents to create new

individuals. This is analogous to parents passing their genetic information onto their

children. In the simple case where 50% of the population are eliminated during the

selection process, the crossover process will produce enough new children to conserve

the population number.

Conventionally, crossover has an associated probability that determines whether

the process occurs, or whether the children become exact clones of their parents.

This probability of occurrence is commonly of the order of > 70%. Clones are

susceptible to mutation as described in subsection 3.2.5, where their chromosomes

may be altered slightly to avoid early convergences. However, there is an advantage

to cloning in the latest generations to hasten the algorithm’s convergence around

the best solutions found. If crossover does occur, there are several variations of how

the chromosomes of the children are made.
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1 1 0 1 1 0 0 1 1 1 0 1 1 1 0 0

1 0 0 0 0 1 0 0 1 0 0 0 0 0 0 1
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1
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Parents Childrenb)
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1 0 0 0 0 1 0 0 1 0 0 0 1 0 0 1

1
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Figure 3.5: Illustration of crossover schemes, represented by 8-bit chromosomes for:
a) single-point crossover, b) double-point crossover, and c) uniform crossover.

Three crossover methods are illustrated in figure 3.5 for chromosomes represented

by 8-bit binary strings. Case a) describes single-point crossover. A random chromo-

some position is selected (here, the 5th locus), and the tail ends are swapped. Case b)

describes double-point crossover. Two loci are selected at random and both the front

and tail ends are swapped. Finally, in case c) a random and equal number of bits

are selected to swap, this is known as uniform crossover. The advantage of uniform

crossover is that the random binary changes allow the algorithm to rapidly search

through the search space. However in binary the rightmost tail ends represent the

smallest incremental changes. Convergence on the optimum solution would there-

fore require the fine tuning of these tails. Single-point and double-point crossover

therefore allow the algorithm to converge faster, with single-point converging the

fastest. For applications in this thesis, the single-point method was used.

3.2.5 Mutation and evolutionary pressure

During mutation the chromosomes are replicated with a small number of ‘mistakes’

as shown in figure 3.6. These mistakes are changes that can create individuals
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either with a characteristic edge that gives them a greater chance of survival, or a

characteristic flaw that worsens their chance of survival. After the crossover process,

the loci from all individuals have a probability to randomly change from zero to one,

or vice versa. This probability is problem dependent, however it is common to use

a probability in the order of 1/L where L represents the length of the chromosome

string.

Mutations allow the algorithm to progress by escaping local maxima, and re-

duce stagnation. If a GA does stagnate, evolutionary pressure can be introduced

to increase the probability of mutations in a similar way to increasing the search

momentum in gradient ascent. Mutations are beneficial to produce slightly better

individuals to find the optimum solution. They also increase genetic diversity, and

can slow down the speed of convergence, allowing the algorithm to search more of

the search space. The drawback to mutating the entire population is that the best

individual(s) can be given genetic flaws. This problem is removed by employing

elitism as described in subsection 3.2.6.

1 1 0 1 1 0 0 1 1 1 0 0 1 1 0 0

Individual Mutant

Figure 3.6: 8-bit single loci mutation example.

3.2.6 Elitism

During the crossover process there is a probability that the genetic information of

individuals with the highest fitness is lost, reducing the effectiveness of the algorithm.

To overcome this the elitism process ensures that the best individual(s) are preserved

by automatically selecting them as parents, skipping the selection process. These

elite parent(s) breed normally with the other individuals, but they are immune to

any other changes such as mutation. Elite individual(s) are only forced to give up

their immunity when fitter individuals are created. Typically, a genetic algorithm

will have at least one elite individual.
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3.3 The simulated annealing algorithm

3.3.1 Introduction

Simulated annealing (SA) algorithms have been in development since the 1980’s.

Just like GAs they are a good numerical method for difficult optimisation problems,

and have been shown to out perform traditional hill-climb, and Kernighan-and-Lin

algorithms [91,92].

SA is named after the physical process of annealing in chemistry and metal-

lurgy in which a crystalline solid is heated and then slowly cooled. Over time this

treatment changes the crystalline lattice configuration to become more regular, and

removes impurities. The final result is a structurally superior material [93].

The basic routine of a SA algorithm is to navigate the search space and accept

all changes that are better, but to also periodically accept changes that are less ideal

with a probability, PSA, which is related to a temperature, T . The algorithm routine

is outlined in figure 4.7 [91,94,95].

3.3.2 Acceptance probability

Considering again the maximisation problem of a function, f(x), over search space,

x, each SA iteration starts with an initial, xinitial and a proposed change, xnew about

xinitial. If f(xnew) improves the solution then it is automatically accepted as the

next iteration’s xinitial. This is exactly the same as gradient ascent, however in SA

if f(xnew) < f(xinitial), a transition probability, PSA, is calculated to accept xnew

regardless. In SAs this probability is analogous to the Boltzmann distribution,

PB = exp
[
−∆E

kBT

]
, (3.3.1)

where kB is the Boltzmann constant, T is the temperature, and ∆E represents a

change in energy. Instead let us define ∆E as the change in evaluated fitness of
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Set temperature

Evaluate
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Figure 3.7: Simulated annealing flow chart. Yellow boxes indicate the start and
end of the algorithm. Green boxes indicate SA processes. Blue box indicates

non-SA process. White boxes indicate decisions.

the two solutions such that ∆E = ∆f = f(xinitial) − f(xnew), kB = 1, and the

temperature, T to be a problem-dependent parameter such that,

PSA = exp
[
−∆f

T

]
. (3.3.2)

If this transition PSA is larger than a randomly generated number, PSA > rand{0, 1},

then the new change is accepted. In SAs the most important parameter to tune is

the temperature. If the temperature is very large, (T →∞), then PSA → 1, meaning

all changes good or poor are accepted and the algorithm will erratically search and

disregard the information from ∆f . If the temperature is very small, (T → 0),

then any poorer change will be rejected, limiting the ability of the algorithm to

explore the search space. At T = 0, the algorithm reduces down to a gradient

ascent algorithm by only accepting better solutions. The gradient or geometry of

the temperature cooling over all iterations is free to define, however it’s profile is

often linear or exponentially decaying over the set number of iterations [81,91,93].
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3.4 The hybrid algorithm

Within the literature there are several examples where algorithms are iterated be-

tween in order to find a solution. Such routines can use the GA or SA until a defined

fitness criteria is met, at which point the other algorithm takes over with a seeded

set of parameters in the search space from the best results found [96,97].

Within this thesis the hybrid algorithm (HA) used does not follow this same

blueprint described above. Instead the algorithm operates identically to the SA

flowchart in figure 4.7, but the search space is binary encoded as used in the GA.

These details are expanded upon in section 3.5.1. This subtle difference allows this

algorithm to use the same genetic mutation described in section 3.2.5 as its primary

way to navigate the search space, combining the searching capability of the GA with

the simplicity of the SA.

3.5 Test problem

To test the RSA, GA, SA and HA, a 1D function was created with a search space

equivalent to a 12-bit binary number in index, this is displayed in figure 3.8. Two

notable features include: the existence of many local maxima to ‘trap’ the algo-

rithms, and that the global and second maxima are very close in amplitude value to

increase the difficulty in finding the optimal solution.

3.5.1 Algorithm implementation

The test function from figure 3.8 has a search space with decimal solutions in x. The

binary encoded solutions using the GA and HA were therefore converted to decimal

numbers before evaluating f(x). The d = 12-bit binary numbers (d12 ... d2, d1) were
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Figure 3.8: 1D test function with many local maxima. The search space index is
over a 12-bit binary range. The zoomed in portion of the function between the

global maxima and 2nd maxima have been highlighted in the green box.

converted to an index value, D, using,

D =
12∑
i=1

di(2
i−1). (3.5.1)

This was converted to the corresponding decimal search space value within x using,

x =

(
D −Dmin

Dmax −Dmin

)
(xmax − xmin) + xmin, (3.5.2)

where Dmin, Dmax represent the binary index range and xmin, xmax represent the

search space range of solutions. This type conversion was not necessary for the SA

or RSA as each new proposed solution was chosen at a random point within x.

The parameters used by the GA, SA, and HA are displayed in table 3.2. The

two search space values for the first iteration of the RSA and SA were chosen at

random x positions, and the GA and HA began with multiple randomly scrambled

12-bit strings.
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Table 3.2: Parameters of the genetic algorithm (GA), simulated annealing algorithm
(SA) and hybrid algorithm (HA) for solving the 1D test function.

Parameter Value Algorithm
Population 8 GA
Crossover probability 100% GA
Selection type Roulette wheel GA
Generation survival rate 50% GA
Elitism on/off On GA
Number of elite individuals 1 GA
Mutation rate 30% GA, HA
Maximum temperature 0.1 SA, HA
Minimum temperature 0 SA, HA
Temperature geometry Linear SA, HA
Generations / iterations 1500 GA, SA, HA

3.6 Results and discussion

Successful runs of the algorithms were when the global maximum of the 1D function

in figure 3.8 was found. Statistics were also recorded for ‘good’ runs that instead

converged on the 2nd maxima. Any other result was considered a ‘bad’ run. Figure

3.9 depicts the percentage of successful and ‘good’ solutions found from 10 000 runs

of each algorithm. Figure 3.10 shows the convergence characteristics of a single run

from each algorithm.

The RSA had the highest rate of failed runs and spent most iterations searching

around the space outside of the central region of the test function and away from

the global maxima. A better result was found by the final iteration however there

was no discernible convergence. Other than the ease of implementation the RSA

was outperformed by all other algorithms.

The GA was the most reliable algorithm with the highest success rate. Within

the 10 000 iterations < 100 failed to find the global or 2nd maxima. From figure 3.10

the increase in the average fitness of the population shows a clear, steady convergence

before plateauing after the global maximum was found. The main disadvantage with

the GA was the complexity of implementation compared to the other three. Table
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Figure 3.9: Global (blue) and global or 2nd maxima (green) found by the random
search, genetic, simulated-annealing and hybrid algorithms after 10 000 runs at

1500 iterations per run.

Table 3.3: Summary of performance and complexity for the random search algorithm
(RSA), genetic algorithm (GA), simulated annealing algorithm (SA) and hybrid
algorithm (HA).

RSA GA SA HA
Performance Poorest Best Second poorest Second best
Complexity Easiest Hardest Second easiest Second hardest
Run time Fastest Slowest Second fastest Second slowest

3.3 displays a summary of algorithm performance, complexity and run time.

Although outperformed by the GA and HA, the SA exhibited a success rate over

twice that of the RSA. Throughout most of the iterations the SA rapidly searched

over the central region of the test function, however within figure 3.10 the fitness

values are erratic. This type of algorithm may benefit from additional constraints on

the choice of xnew to slow the convergence rate but more thoroughly search through

the search space.

The HA offers a middle ground between the GA and SA in terms of complexity

and reliability. Most of the early iterations are spent rapidly searching not unlike

the SA, however the final ' 250 iterations show a far more controlled convergence.

All four algorithms have been shown to offer an improvement on the initial

solutions. The performances from figure 3.10 show that the reliability and robustness
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Figure 3.10: Fitness values over 1500 iterations of the random search, genetic,
simulated annealing and hybrid algorithms.

scale with algorithm complexity. In chapter 4 the SA, GA and HA will be used in the

application of beam shaping using adaptive optics. Within this thesis an additional

Gerchberg-Saxton (GS) algorithm is utilised in section 5.7.4. This type of algorithm

is tailored for retrieving the phase profiles between planes of two fixed intensity

profiles.
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Chapter 4

Beam shaping with a

deformable mirror

"Positronium is intrinsically

unstable and prone to

self-annihilation, much like myself."

Robert Clayton

In this chapter experiments performed using a DM to shape the transverse spatial

distribution of a CW laser beam at the focus are described. Using a wavefront sensor-

less approach, a set of learning algorithms developed by the author to stochastically

optimise the Gaussian profile from a low powered He-Ne laser into super-Gaussian

profiles of user-defined orders.

4.1 The deformable mirror

The first deformable mirror was conceptualised by Horace Babcock in 1953, with

the intent to compensate for the effects of atmospheric turbulence on astronomical

observations [98]. The correction element was made from a reflecting mirror covered

by a thin layer of oil. A rastered electric charge was deposited on surface of the oil by

conventional cathode-ray techniques, and through electrostatic forces the oil film is

distorted according to the charge spatial pattern. Limitations of this device included

slow corrections, high chromatic dispersion, and high environmental sensitivity [99].

Since this first demonstration, DM technology has evolved considerably. At

present there are several different DM architectures commercially available. Two

49



CHAPTER 4. BEAM SHAPING WITH A DEFORMABLE MIRROR

Figure 4.1: Cross-section illustrated examples of two deformable mirror
architectures. a) a flexible membrane deformable mirror, b) a segmented

deformable mirror. Actuators (black) are moved by their coupled coils (yellow) to
manipulate the mirror surface (magenta).

popular types are the flexible-membrane and segmented mirrors, as illustrated in

figure 4.1a and 4.1b respectively.

Flexible-membrane mirrors comprise of a continuous surface which can be ma-

nipulated by a series of actuators. The positions of the individual actuators can be

controlled by applying a small current to their coupled coils. In segmented models,

these actuators instead control the positions of a series of independent flat mirrors,

with little to zero cross-talk of neighbouring actuators on the mirror surface. The

disadvantage of segmented models is the presence of gaps and sharp edges between

the individual mirrors, which can lead to scattering of the impinging light. In com-

parison, the flexible-membrane models do not have additional sources of scattering,

and are therefore able to maintain higher optical power [100]. For this project, the

flexible membrane ALPAO DM69 model was used. The DM specifications can be

found in table 4.1 and the actuator layout in figure 4.2.
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Figure 4.2: ALPAO DM69 square-actuator layout. Aperture diameter,
D = 10.5mm. DM specification is stated in table 4.1.

Table 4.1: ALPAO DM69 Specifications.

Specification Value
Mirror type Flexible membrane
Total actuator number 69
Pupil diameter 10.5mm
Number of actuators across diameter centre 9
Approximate settling time 0.2ms
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4.2 Applications of deformable mirrors with opti-

misation algorithms

Due to their programmable nature DMs are frequently used together with optimi-

sation routines to improve the quality of laser profiles [40, 101]. DMs have many

desirable features for such applications, including their high reflectivity, a broad

spectral range, high damage thresholds, the ability to correct high-order aberra-

tions, and fast response times [102]. The many features of these devices has lead

to their widespread adoption in fields such as astronomy, optical communications,

microscopy, and quantum engineering [46,103].

Experiments with DMs often use learning algorithms to optimise laser profiles.

Stochastic optical reconstruction microscopy (STORM) is a super-resolution tech-

nique used commonly for the imaging of molecules [104, 105]. However, due to

refractive and scattering characteristics of organic matter, a beam passing through

larger biological samples can acquire optical aberrations. These aberrations degrade

the point spread function (PSF), reducing both the localisation accuracy and the

number of localisations needed to maintain STORM’s high resolution. Experiments

performed in 2017 used a DM with a particle-swarm optimisation (PSO) algorithm

to compensate for the aberrations [106]. This technique was applied to imaging bou-

tons located 100µm deep within drosophila melanogaster larvae, enabling a 146 nm

resolution to be achieved.

Pulse compression is a fundamental technique for nonlinear spectroscopy, opti-

cal communication, and ultrafast lasers [107]. Typically, combined passive elements

such as gratings, static mirrors and prisms have been used to achieve pulse com-

pression [108, 109]. One drawback of these is the inability to compensate for any

arbitrary phase. An experiment in 1999 aimed to perform active pulse compression

of a laser using a micro-machined DM. The DM surface was manipulated by a GA

to introduce delays between different frequency components by adjusting the optical
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path, before being reassembled. The results show a pulse compressed from 92 to

15 fs [110]. In 2018, the same technique was demonstrated using a more sophisti-

cated neural-network algorithm. It was shown that convergence rates were on the

order of 40× faster - in terms of run-time - compared to a standard evolutionary

algorithm [111].

DMs are regularly used in high power laser systems with peak intensities on

the order of 1014Wcm−2 [45, 112]. Experiments performed by Bonora et. al. used

a DM controlled by a GA to optimise the signal of XUV harmonics created by a

mid-infrared driving pulse. It was observed that the signal of the 5th harmonic

was enhanced by a factor of two within ≈ 40 GA iterations [46]. Using a DM and

a similar evolutionary algorithm, Bartels et. al. show high-order harmonic signal

improvements by up to an order of magnitude [113].

Typical HHG experiments use a laser with a Gaussian profile to generate har-

monics. During this extremely non-linear process harmonics are only made at the

centremost area of the driver laser. For increased efficiency HHG can be driven with

super-Gaussian profiles where more energy is concentrated within the centremost re-

gion. At present, the literature contains few examples of DMs being used to create

super-Gaussian profiles at the far field. Several attempts to create super-Gaussian

profiles using a DM controlled by a GA were hindered by a combination of the DM

search range and algorithm efficacy [40, 114]. In 2007 Yang et. al. showed that

this setup can be used for the generation of second-order super-Gaussian transverse

profiles using a 19-actuator DM [43]. Similar results have also been show using a

37-actuator DM controlled instead by a SA algorithm [44].

This chapter will show that a DM can achieve super-Gaussian transverse profiles

of finely-tuned orders from the Gaussian profile of a low-powered He-Ne laser. A

non-stochastic approach to beam shaping with a DM would require pre-calculating

the search space by calculating the influence function of all actuators using a ‘poke-

matrix’ [40,115]. This process is time consuming and the DM would require regular

calibration. Learning algorithms offer a convenient way to manipulate the mir-
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ror starting from an initial non-calibrated surface. In order to determine the best

approach for generating tailored profiles using the available DM, a variety of optimi-

sation routines where developed and implemented, including: GA, SA and a GA-SA

hybrid. To expand on the work found in the literature the results will express the

orders of achieved super-Gaussians, the power maintained within the beam centre,

and the convergence and reliability of the algorithms used.

4.3 Experimental setup

Beam shaping experiments were made with a REO R-30991 continuous wave laser

with wavelength, 633 nm. Since the beam diameter of the laser was approximately

1.5mm, the beam needed to be expanded to fill the aperture of the DM. A Galilean

telescope provided a ×4 magnification. Collimation of the beam after the tele-

scope was ensured by minimising the beam’s defocus using a Thorlabs WFS150-7AR

Shack-Hartmann wavefront sensor (WFS). After the telescope, the power transmis-

sion through an iris was measured for several iris diameters. The diameter of the iris

was reduced in 0.5mm increments from 11mm (which exceeded the DM aperture),

to fully closed. Images were taken with a iDS UI-388xCP-M CCD camera with

3088×2076 pixels and 2.4µm individual pixel size. The integrated power transmis-

sion is,

power transmission = 1− exp

[
−2
( a
w

)2]
, (4.3.1)

where a and w represent the iris aperture and 1/e2 beam radius respectively [27].

These measurements, as well as a fit to the data using equation 4.3.1, are shown in

figure 4.4. A value for the 1/e2 beam diameter of (6.12± 0.12)mm was determined

from the fit to the data. The beam after the DM was focused with a f = 250mm lens.

The focal spot was magnified using an Olympus PLN10X ×10 objective, and imaged

with a CCD camera mounted on a Newport MFA-CC series motorised translation
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Figure 4.3: Schematic of shaping beamline, including the He-Ne laser,
neutral-density filters (ND), a telescope-lens pair (TLP), deformable mirror (DM),
×10 objective, and a CCD camera mounted to a computer-controlled translation

stage. The angle of incidence of the beam onto the DM was ≈ 3◦.

Figure 4.4: Power transmission through an iris as a function of iris diameter. The
integrated signal at each iris position was the average taken over 50 camera

exposures. The resulting signal errors were small and not visible within this figure.
The beam diameter extracted from the fit was (6.12± 0.12)mm.

stage. The purpose of the objective was to ensure that a sufficient number of CCD

pixels were illuminated for fitting routines. The setup for this is illustrated in figure

4.3. Neutral density (ND) filters were placed after the He-Ne to prevent the camera

from saturating.
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Figure 4.5: Contour plots of the 2D fitting process. a) the large static ROI. The
location of the first moment is shown in magenta. b) the small ROI centred on the
first moment. c) a 2D Gaussian fit. d) the 2D Gaussian fit from c) overlapping the

data from b).

4.4 Genetic algorithm implementation

The vertical position of each actuator on the ALPAO DM were assigned by a 12-bit

unsigned binary number that correspond to a normalised voltage V = ±1. These

binary numbers are treated as the chromosomes that make up an individual. Each

individual is therefore an amalgamation of the 69 actuator positions - creating a

828-bit binary number, which represents one surface of the DM. The GA and ex-

perimental parameters can be found in table 4.2. The experimental setup was as

described in section 4.3.

The diameter of the initial He-Ne beam on the CCD camera was ≈ 100 pixels,

a value much smaller than the 3088×2076 CCD pixel grid. Image capture from the
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CCD was therefore limited to a static region of interest (ROI) of 900×900 pixels

about the approximate beam centre. The computation time to fit a 2D N×N gird is

∝ N2. For fitting-time efficiency, a first moment calculation was made on the large

ROI using equation 2.1.3 to create a smaller 200×200 pixel ROI about the beam

centre. All 2D fitting routines were performed on this smaller ROI. This process is

demonstrated in figure 4.5 for a Gaussian beam.

To start the GA minimisation routine, an initial population was made of an

individual, ind(1), with all voltages corresponding to V = 0 such that,

ind(1) = [011111111111, 011111111111, ..., 011111111111], (4.4.1)

and 15 other other individuals, mutated about ind(1). Each surface was sent to the

mirror, followed by a time delay of 0.2 s to allow the DM to settle. For each image

a background subtraction was performed by recording the average integrated signal

in a 30 × 30 pixel window, located ≈ 400 pixels away from the beam centre and

subtracting it from the recorded image.

A 2D fit of the measured intensity distribution was performed using MATLAB’s

least-squares routine, fitting a super-Gaussian,

Fit = αamp exp

[
−2

(
((x− αx)2 + (y − αy)2)

α2
w

)αorder]
+ αz. (4.4.2)

with free parameters for the amplitude, αamp, width, αw, positional offsets, αx, αy, αz,

and super-Gaussian order, αorder.

The fitting outputs were the residual of the fit (res), and the fitted order (Pfitted).

In order to optimise the energy within the 1/e2 beam diameter a masking function

was applied. A disc was created about the beam centre approximately the size of

the initial He-Ne beam diameter. The Rmask ratio of the intensity inside and the

outside the disk area was,

Rmask =

∑
IOutside∑
IInside

. (4.4.3)
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Table 4.2: Parameters used in genetic algorithm.

Parameter Value
Population 8
Generations 1500
Mutation probability children 1/200
Mutation probability parents 1/150
Crossover probability 70%
Selection type Roulette
Generation survival rate 50%
Elitism on/off On
Number of elite individuals 1
DM voltage range ±3.5%
Masking radius 40 pixels

Minimising this mask function optimises the light into the beam centre, reducing

the widening of the beam. The fitness allocated to each individual was calculated

by,

Fitness = Wres × res +
Rmask

WR

+Wp × Pd, (4.4.4)

where weighting factors Wres, WR, Wp, were 10, 10 and 250 respectively, chosen

such that each of the three fitness components start at approximately the same

value. The fitness parameter, Pd, is the difference between the fitted and target

super-Gaussian order as given by,

The power difference, Pd, was calculated by,

Pd = |Pfitted − Ptarget|. (4.4.5)

where Ptarget is the user-defined target order of the super-Gaussian.

Selection and elitism were applied to select the best 50% of the population as

parents. The parents are randomly shuffled, paired up, and bred to conserve the

population number. Mutation was then performed on all but the single elite in-

dividual, creating the next generation. To hasten the convergence rates, non-elite

parents underwent a lower mutation rate than the children.
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Figure 4.6: Flow chart of the genetic algorithm used to perform spatial shaping of
a laser. Yellow boxes indicate the start and end of the algorithm. Green boxes

indicate algorithm processes. Blue boxes indicates non-algorithm processes. White
boxes indicate decisions.

59



CHAPTER 4. BEAM SHAPING WITH A DEFORMABLE MIRROR

4.5 Simulated annealing algorithm implementation

To compare the two algorithms directly, all mutual parameters and calculations have

been kept the same such as iteration number, fitness calculations and DM actuator

range. The other parameters for SA are displayed in table 4.3, with the flow chart

in figure 4.7. The SA as displayed in this figure compares two surfaces per iteration,

whereas the GA compares 8. For this reason, it was taken that four iterations at the

same temperature of the SA algorithm would be the equivalent of one GA iteration.

The standard SA algorithm does not use binary encoded actuator positions.

Instead, the first perturbed surface is generated using random actuator positions

between the maximum and minimum voltages, Vmax and Vmin. After the first it-

eration all actuators are subjected to random perturbations within the range of

PertSA = 0 :
|Vmax|+ |Vmin|

16
. (4.5.1)

This range is based on values used by Fayyaz et al [116].

4.5.1 Genetic simulated annealing hybrid implementation

The genetic-simulated-annealing hybrid algorithm (HA) follows the SA routine found

in flow chart in figure 4.7. However, the surfaces are binary encoded in the same way

as the GA. In this version of annealing the HA utilises the GA mutation method

described in section 4.4 to perturb the surface of the DM. To ensure the search space

was more thoroughly explored the mutation rate was chosen to be the same as the

children in table 4.2.

Table 4.3: Beam shaping simulated annealing parameters.

Parameter Value
Maximum temperature 0.1
Minimum temperature 0
Temperature geometry Linear
Weighting constants kB = γ = 1
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Figure 4.7: Flow chart of the simulated annealing algorithm used to perform
spatial shaping of a laser. Yellow boxes indicate the start and end of the
algorithm. Green boxes indicate algorithm processes. Blue boxes indicates

non-algorithm processes. White boxes indicate decisions.
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4.6 Pre-optimised beam profile

The GA, SA, and HA were all initialised with a surface that corresponded to 0V

across all DM actuators. This initial surface does not correspond to a flat mirror

surface. The pre-optimised transverse profile of the He-Ne laser at the focus is

shown in figure 4.8 where for clarity the achieved beam profiles are also shown on a

log10 scale. Aberrations are clearly present on the beam. Post-optimisation, fewer

discernible structures should be found away from the beam centre.

Figure 4.8: Pre-optimised transverse beam profiles from a He-Ne, on 200×200
pixel grids. a) beam profile. b) log10 scale beam profile.

4.7 Algorithm results

4.7.1 Transverse beam profiles

Using the setup previously described in section 4.3 the GA, SA, and HA were used to

generate a range of super-Gaussian transverse intensity profiles at the focal plane.

These profiles are displayed in figure 4.10. The SA profiles show more scattered

light outside of the beam centre for all target orders. For the GA and HA the

target orders P < 1.4 there is visibly less scattered light outside the beam centre

up until P ≥ 1.4. This implies that there are still some aberrations present on
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Figure 4.9: Amplitudes of Zernike modes at the back focal plane of a focusing lens
before optimisation (blue), then after a genetic (green), simulated annealing

(magenta) and hybrid algorithm (yellow), as well as a static flat mirror (red), for a
target P = 1 Gaussian profile. Piston, tip, and tilt modes are not displayed.

the beam. The wavefront of the beam was characterised after each algorithm using

a WFS. Zernike polynomial amplitudes (see Appendix:A1) at the back-focal plane

of the focusing lens were recorded for target order P = 1. These amplitudes are

shown in figure 4.9 for the beam profile pre-optimisation, the GA, SA and HA, and

for a flat static mirror. From this figure the algorithm post optimisation with the

fewest aberrations is the GA. The optimised profile with the SA and HA show that

significant aberrations for the lowest modes are still present on the beam.
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Figure 4.10: Super-Gaussian transverse profiles achieved with a genetic (GA),
simulated annealing (SA), and a hyrbid algorithm (HA), using a deformable

mirror. P denotes the target order. Image size of 200×200 pixels. Columns a, c,
and f show the normalised CCD images, with data lineouts along the X and Y first

moments in red and lineouts along the same location from the 2D fitted
super-Gaussian profiles in white. Columns b, d and e show the CCD images on a

log scale to highlight the scattered light outside the beam centre.
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4.7.2 Achieved orders and algorithm robustness

To assess reliability the GA, SA, and HA measurements were repeated three times.

Figure 4.11 a, c, e, shows that all algorithms were able to maintain over 70% of the

beam intensity within the 1/e2 diameter. However, in contrast to the SA, the GA

and HA were able to consistently achieve the target super-Gaussian order.

To further assess the consistency of the three algorithms, amplitudes and widths

after optimisation were compared. These results are shown in figure 4.11 b, d,

f, where the theoretical optimum amplitudes calculated are also displayed. These

optimum values were calculated from the measured beam widths and target super-

Gaussian order relative to the beam profile achieved for order, P = 1, using equation

2.1.2. From figure 4.11 b, d, f, the SA was able to achieve profiles with near-optimum

amplitudes. However the GA and HA show a greater level of consistency, particularly

for target orders P > 1.4.
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Figure 4.11: Super-Gaussian orders, intensity maintained within beam centre, and
widths and amplitudes measured from three runs of the GA, HA and SA.
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4.7.3 Algorithm convergence and run-time

To view the convergence of each algorithm fitness values were recorded after each

iteration from equation 4.4.4. The convergence is shown in figure 4.12 for super-

Gaussian orders, P = 1.1, P = 1.5, and P = 1.9. Within this figure the SA

shows convergence on higher fitness values with increasing super-Gaussian order

and converges later than the GA and HA.

A key parameter to calculate in optimisation routines is the runtime. The run-

times of each algorithm were measured for 100 iterations. Figure 4.13 shows the

average time per iteration for all three algorithms, as well as a variant of the hy-

brid algorithm (HAT=3 discussed in section 4.7.4), and the CCD image capture, 2D

fitting and mirror settling time. From this figure it can be observed that all three

algorithms have approximately the same runtime.
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Figure 4.12: Convergence rates of the best result found over 1000 iterations for the
GA, SA and HA, for super-Gaussian orders P = 1.1, 1.5, 1.9.
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Figure 4.13: Runtime of the GA, SA, and HA, averaged over 100 iterations,
sending identical initial surfaces to the deformable mirror per iteration. The HA

performance for T = 3 and T = 4 per iteration are shown. The CCD capture time,
2D least-squares fitting time, and deformable mirror settling time are also included.

Figure 4.14: Super-Gaussian order, signal maintained within beam centre, and
widths and amplitudes measured from three runs of the T = 1, 2, 3, 4 temperatures

per iteration hybrid algorithm, for target order P = 1.5.

4.7.4 Hybrid algorithm runtime improvement

Comparing the results in figures, 4.9 through 4.13, the HA has proven to be a

middle-ground option between the GA and SA in terms of performance, consistency,

convergence and speed. To numerically test the limits of the HA, it was ran for

values of T = 1, 2, 3 temperature repeats per iteration. From figure 4.13 it can

be seen that each reduction in the number of temperatures improves the algorithm

runtime by ≈ 25% as expected. For target order P = 1.5, figure 4.14 shows the

achieved super-Gaussian order, intensity within the beam centre, and the calculated
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beam amplitudes and widths. These results show that the HA is only consistent for

T > 3, and that T ≤ 2 sacrifices performance significantly.

4.8 Discussion

The GA was the most reliable algorithm, with results from figure 4.11 showing

convergence on consistent beam widths, amplitudes, and orders. One disadvantage

of the GA is the increased number of core-steps - such as selection and crossover -

within the algorithm, making it the most complex and difficult to implement out of

the three.

The SA was the least consistent routine, it often missed super-Gaussian target

orders, and introduced more Zernike aberrations for order P = 1. Although there

were marginal improvements in the SA runtime, figure 4.12 shows that average

convergences occurred later than the GA and HA.

The HA inherited the beneficial traits of both algorithms, exhibiting similar

consistent results as the GA in figure 4.11 for achieved orders, amplitudes, widths

and central beam intensity maintained. The T = 3 HA offers a runtime improvement

over the SA and GA for similar performances.

Finally this wavefront sensor-less approach to beam shaping showed that al-

though the GA and HA improved the Zernike aberrations for order, P = 1, some

aberrations were still present on the beam. Higher super-Gaussian orders have also

been achieved consistently with these two routines. A noteable advantage to us-

ing these routines is the ability to bypass the calibration process of the deformable

mirror, as well as the potential to search for other arbitrary beam shapes.
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Chapter 5

Beam shaping with a spatial light mod-

ulator

"The world is not ready for my

words of wisdom."

Sam Offler

In this chapter a spatial light modulator (SLM) will be used to shape the transverse

spatial profile of a CW laser beam. A known π-shift method for realising tunable

super-Gaussian profiles is investigated and compared to an approach using a learning

algorithm. This will be followed by a discussion on beam shaping with dual adaptive

optic (AO) techniques.

5.1 The spatial light modulator

Spatial light modulators (SLMs) are adaptive optic elements consisting of an array

of programmable pixels arranged in 1D or 2D. Light is manipulated locally about

different pixels by changing the optical paths [117,118]. Based on the birefringence of

liquid crystals (LCs), a LC-SLM modulates light. The optically-transparent LCs are

confined in a cavity between these pixels and a window. LCs with a positive dielectric

anisotropy change their orientation by aligning themselves in the direction of the

electric field which in turn changes the refractive index [119, 120]. SLMs operate

either in reflection or transmission. Transmissive SLMs have an LC layer between

two windows instead of one; a well-known example of this is the liquid crystal display

(LCD). Reflection SLMs have a single window and a reflective layer of pixels. These
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Figure 5.1: Schematic illustration of the operating principle of a phase-only
LC-SLM. The reflective pixels are coloured magenta, the liquid crystals are
represented by black ovals, the transparent window is in light blue, and the
incoming and outgoing beams are coloured green and dark blue respectively.

typically have a larger dynamic range as light propagates twice through the LC

modulation layer. LCoS (liquid crystal on silicon) are the most popular SLM of

this class and mostly use either phase-only or amplitude-only modulation [121]. An

example of a phase-only SLM is displayed in figure 5.1.

For decades high-in-demand applications such as the LCDs, image projection,

digital holography, micro-processing, telecommunications, and optical vortex gener-

ation have attracted a lot of funding into the development of SLMs [117, 120, 122].

In the context of adaptive optics, SLMs offer similar beam control and shaping ca-

pabilities to deformable mirrors. The following two sections will discuss examples

of SLMs for shaping experiments, and then the use of SLMs in HHG experiments.

5.2 Beam steering and shaping with a single SLM

SLMs have been used in laser systems as control devices with the ability to remove

aberrations [122, 123]. Changing the refractive index across the SLM changes the

phase of light propagating through the material. This introduces a phase shift

across the SLM that allows these devices to steer the direction of the beam [120].
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Figure 5.2: Illustration of a linear phase shift producing a tilt in the wave front
equal to θ. The optical period, pixel width and path difference is given by L, p and

d respectively.

For example, a 1D linear phase shift across an SLM creates a shift equal to,

φ(r) =
r

L
2π, (5.2.1)

where L is the optical period. This shift produces a tilt on the optical wave front

by an angle θ, such that,

tan θ =
d

pL
, (5.2.2)

where d is the path difference and p is the pixel width. This is illustrated in figure

5.2. At the far field this changes the transverse position of the beam [124].

The ability to shape and steer simultaneously are ideal for applications such

as ‘optical tweezing’, which was the shared subject of the Nobel Prize in 2018 with

CPA. Optical tweezers (OTs) are particle or molecule trapping mechanism which has

found applications in microbiology [37–39]. A realised use for OTs is as a precise drug

delivery method to small optically transparent biological structures such as neurons

[125]. Another proposed application is to combine OTs with laser zona drilling for

fertilisation. In this process a micrometre hole is drilled directly into an egg cell to

breach the zona pellucida via laser, then the potentially movement-inhibited sperm

cell can be guided through using an OT [126].
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Several tweezing experiments were performed in the 2000s by researchers such

as Eriksen, Bowman and Wulff. They showed that a single SLM can both correct

the wavefront which is important for imaging biological samples where tissues don’t

have a uniform refractive index, and at the same time manipulate the positions of

single or multiple micron-scale particles [127–129].

Dark hollow (or ‘doughnut’) transverse laser profiles are desirable in applications

such as atom trapping and atom guiding to limit the motion along the optical axis

[130–132]. Numerous experiments have shown that transverse hollow-Gaussian and

Bessel-like profiles can be achieved by use of a single phase-only SLM [133,134].

5.3 Spatial light modulators for HHG

The reflectivity of an SLM is typically ≈ 90 % compared to a deformable mirror

(> 97 %) [135]. The additional loss of light is due to the diffraction into higher

orders by the grating-like structure of the pixel grid, the light absorption between

the pixel gaps, and the loss of light between the multiple layers of the SLM structure.

SLMs are therefore more susceptible to damage by mechanisms such as the heating

of the LC layer and laser ablation of the LC confining substrates [117]. Despite their

lower damage threshold SLMs have been used on HHG beam lines for applications

such as pulse shaping and holography [136,137].

In 2012 Eyring used a Ti:Sapphire laser with a central wavelength of 800 nm,

pulse duration 30 fs, and peak intensity 3 × 1015 Wcm−2, in combination with a

phase-only SLM to improve the harmonic yield. The phase mask of the SLM was

manipulated by a genetic algorithm where the fitness values were calculated from

the intensities of the harmonics using a spectrometer. Post optimisation a six-fold

increase in harmonic intensity was observed from the 21st to the 35th harmonic order

[138]. The optimised driver beam profile was observed to have a lower maximum

peak intensity and a larger diameter, indicating that correcting the wavefront is

fundamental for the efficiency of HHG. Walter et al. used a similar laser, SLM,
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and optimisation algorithm to demonstrate spatial control to concentrate as much

intensity into the generating region of a hollow-core waveguide. They demonstrated

an increase in harmonic intensity from the 17th to the 23rd harmonic order of up

to a factor of five [139].

5.4 SLM simulation setup

For the remainder of this chapter simulations will be made of beam shaping using

a phase-only SLM. As an alternative to using static elements, deformable mirrors,

or two-optical-path mirrors, an SLM will be used to spatially shape the transverse

Gaussian profile from a He-Ne CW laser into super-Gaussian profiles of various

orders, with the intended application of driving HHG [49].

The simulation setup is based on the setup as shown in figure 4.3 where the SLM

replaces the deformable mirror. The SLM surface and the CCD detection plane are

positioned in an f − f arrangement at the front and back focal plane of a thin lens,

respectively to take advantage of the Fourier transform relationship between these

planes as described in chapter 2 [60,140].

Sections 5.4.1 and 5.4.2 will outline and compare two methods of super-Gaussian

generation. The first method applies a top-hat phase shift with an amplitude of π.

The width of this shift is proportional to the super-Gaussian order achieved within

the beam centre. The second method will use the SA and HA algorithms applied

previously to the deformable mirror in chapter 4 to achieve profiles of multiple target

orders.

5.4.1 π-shift shaping method

Treacher et al (2020) demonstrated that an SLM can be used to create super-

Gaussian spatial profiles to drive and improve the brightness of single harmonics

[50]. The technique used imprinted a π-phase shift transversely onto a collimated
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Gaussian beam. This technique was based on the two-optical-path mirror [49],

where a single phase step caused the centre and periphery of the beam to interfere

at the focus, changing the transverse intensity profile. Further details on the π-shift

shaping method for HHG can be found in references [48, 50].

π-phase shifts of multiple widths were imprinted onto a Gaussian profile of 1/e2

width wG, at the SLM and propagated by the Fourier transform method to a detector

plane, where the SLM and detector are in the back and front focal plane of a lens,

respectively. Figure 5.3 displays intensity profiles at the detector plane after π-

shifts of widths 0.800wG, 0.925wG, and 1.400wG, with the super-Gaussian fits to

these profiles which have fitted orders P = 2.62, 1.77, and 1.16 respectively. For

π-shift widths greater than wG the shaped profiles at the focus become increasingly

Gaussian-like. At a width equal to 1.5wG the fitted order P ≈ 1. Figure 5.3d

displays an intensity profile near this limit at 1.4wG.

Figure 5.4a displays the super-Gaussian order generated as a function of the

π-shift width. It can be observed here that the fitted errors increase with super-

Gaussian order.This means that there is a compromise between super-Gaussian order

and quality. Figure 5.4b displays the intensity maintained within the beam centre

at the detector plane relative to the 1.5/e2 width of a Gaussian at the detector plane

without any phase shift from the SLM. This shows that more intensity is lost within

the beam centre for higher orders of super-Gaussians.

5.4.2 Algorithm shaping method

In this section the π-shift method will once again be used to generate super-Gaussian

profiles of multiple orders. The fitted super-Gaussian profiles and orders will be the

target inputs into the feedback loop of learning algorithms to investigate if any

improvements can be made on the quality of the profile. The quality of the super-

Gaussian will be calculated from the error in the fitted order, P .

A numerical study of optimisation algorithms for wavefront shaping using an

SLM was carried out by Fayyaz et al. in 2019. They outlined six algorithms in-
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Figure 5.3: Super-Gaussian generation from π-phase shifts. a) initial Gaussian in
black, example phase shift shown in magenta. Intensity profiles at the detector
plane for imprinted phase shift widths of 0.800wG, 0.925wG and 1.400wG where
wG is the initial Gaussian width are shown in b), c) and d) respectively in green,

with fitted super-Gaussian profiles in blue.

cluding simulated annealing that can be implemented on a SLM [116]. Within

this section the SA has been utilised by this author in a simulation to generate

super-Gaussian profiles of user-specified orders. These results will be compared to

the profiles obtained by the hybrid algorithm as used in chapters 3 and 4 and the

π-shift method.

Assuming cylindrical symmetry the simulations were made in 1D. A collimated

Gaussian of radius wG from the He-Ne is incident onto a phase-only SLM surface

with pixel width pw = 0.05wG. The farthest pixel from the beam centre is 2.5wG,

which is sufficiently larger than the 1.5wG limit discussed in 5.4.1 for returning a

profile with super-Gaussian order P ≈ 1, at the focus.

The two learning algorithms used are a standard simulated annealing algorithm

based on the version used by Fayyaz et al. and an adapted hybrid algorithm (HA)
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Figure 5.4: a) Fitted super-Gaussian orders with fitting errors. b) Beam intensity
maintained within the beam centre.

Table 5.1: SLM simulated annealing (SA) and hybrid algorithm (HA) parameters.
Some SA parameters as used by Fayyaz et al. [116].

Parameter Value Algorithm
Iterations 10 000 Both
Mutation probability 1/16 HA
Pixels perturbed Random 50% Both
SA Perturbation +(1/28)π SA
HA Perturbation range +0 : 2π HA
Maximum temperature 1 Both
Minimum temperature 0 Both
Temperature geometry linear Both

from chapter 4 [116]. Both algorithms follow the flow chart from figure 4.7 with

parameter values from table 5.1. The acceptance probability was calculated from

equation 3.3.2 and the fitness of the initial and new proposed solution were calcu-

lated from the sum of the square of the differences between the intensity profile of

the beams and the target super-Gaussians. The perturbation method for both al-

gorithms randomly selected 50% of the SLM pixels per iteration. The perturbation

amount, Pφ, used by Fayyaz et al. was [116],

Pφ =
π

2n
, (5.4.1)
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with n = 4, such that in the SA each pixel of the SLM could hold one of 32 values

between 0 and 2π. For beam shaping experiments this value may not be sensitive

enough, however the benefits are that the learning algorithm evaluate over a rel-

atively small search space and are likely to converge on a good solution quickly.

For applications in this chapter, Pφ(n) was optimised in the SA by using a target

P = 1.77 for n = 4 through to n = 10. The achieved orders for multiple n-values

are shown in figure 5.5a along with the comparison to the result from the π-shift

method. Figure 5.5a show that n = 8 was the optimum value, narrowly achieving

the target order within the fitting error. Figure 5.5b then shows that < 10 000

iterations was sufficient for fitness convergence for n = 8.

In the HA the pixel perturbation was set to a range 0 : Bd, where Bd was the

decimal value from an 8-bit binary number with a maximum value of 2π.

For both the SA and HA, any SLM pixel perturbation that would have a phase

shift value greater than 2π was wrapped back around to 0.

Figure 5.5: a) Super-Gaussian target order from π-shift method in blue, SA
achieved order in green, for multiple n-values. b) Fitness values for SA iterations

for multiple n-values.
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Figure 5.6: a) Gaussian profile in black, SA imprinted phase solution in magenta
for a target super-Gaussian P = 2.62. b) Intensity profile at the detector plane in
green with the fitted super-Gaussian in blue with fitted order P = 2.26± 0.09, and
phase profile in magenta. c) Super-Gaussian orders achieved by the SA, HA and

π-shift method, plotted relative to the order from π-shift method.

5.5 SLM shaping results

Figure 5.6a and b show a result from the SA algorithm for super-Gaussian target

order P = 2.62. Figure 5.6c then shows the results of the super-Gaussians achieved

using both the SA and HA algorithms compared with super-Gaussians generated

by the π-shift method. It was observed that the SA algorithm outperformed the

HA algorithm in terms of super-Gaussian order achieved. However for target order

P = 4.14 although the HA did not reach the target order, it did achieve an order

higher than the P = 2.62 target but with a smaller fitting error than the π-shift

method.
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5.6 Other SLM shaping considerations

Figure 5.7: a) Target intensity profile at the focus, P = 2, with a flat transverse
phase. b) Back propagated field from the target to the SLM plane. Intensity
profile in blue, phase profile in red. The magenta, cyan, green and black lines

("limits") outline the four regions where the beam will be truncated and
propagated forwards to the focal plane. c) Fitted super-Gaussian orders and

percentage of beam intensity within the focus ROI about the beam centre for each
of the four truncated fields. d) Intensity profile at the focus for fields propagated

between truncated limits 1 (magenta) and 4 (black).

The target super-Gaussian of order P = 2 with a flat phase front at the focal plane

of a lens, and the field at the back focal plane such that the planes are in an f − f

arrangement, are shown in figure 5.7a and b respectively. It is observed that the

field required at the back focal plane is a Bessel-like structure in intensity and a

repeated π-step in phase for intensity lobes outside the beam centre. Practically

there is a limit to the size of the SLM that can be used in a shaping experiment.
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Figure 5.7c shows that there is little benefit for an SLM that is large enough to

include more than 2 lobes, where the loss of integrated intensity is < 1%. To obtain

the Bessel-like intensity profile required at the SLM a second adaptive optic may be

introduced.

5.7 Dual element adaptive optics

This section will discuss shaping with two adaptive optics elements. Due to COVID

restrictions experimental work on dual AO shaping at Swansea University was not

possible. Simulation work has taken place of what would have been performed

experimentally. A discussion on dual-element adaptive optics for applications in

high-order harmonic generation is included in chapter 6.

5.7.1 Dual deformable mirrors

Dual DMs are commonly arranged in ‘Woofer-Tweeter’ configurations where the first

and second DM compensate respectively for low and high order aberrations [99,141].

These systems have been used to remove wavefront aberrations in applications such

as STORM microscopy and in-vivo biomedical imaging [106,142]. Lei et al. used a

Woofer-Tweeter system controlled by a gradient descent algorithm which used the

Strehl ratio, Sr, as a cost function [143]. Sr has a value between 0 and 1 where 1

is given for a beam with no aberrations [144]. Lei et al. evaluated Sr = 0.74 with

a single DM and Sr = 0.95 using dual DMs. They also recorded an energy loss

between the initial beam and the beam at the far field to be 16%.

5.7.2 One deformable mirror and one spatial light modulator

Beam shaping with ultrafast pulsed lasers requires a degree of control over the phase

front and the pulse front. Although dual DM systems offer good control over the

pulse front, there is always concomitant phase front distortions which may not be
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desirable in some applications. Section 2.2.4 details how pulse fronts and phase

fronts slip when passing through any material. Sun et al. demonstrated that a

dual AO system with a DM and an SLM offered decoupled control over both the

pulse fronts and phase fronts to compensate for phase front distortions and generate

tailored beam profiles [66]. Controlled by phase-retreval algorithms, Nei et al. have

shown that this type of AO system can be used to generate flattop beam profiles

from an input Gaussian [145].

5.7.3 Dual spatial light modulators

In 1998 Kelly et al. showed that a greater phase aberration correction could be

achieved using a dual SLM system as opposed to a single SLM [146]. Multiple studies

have since been made into the use of dual SLM systems for beam shaping and other

applications such as vortex beam generation [147, 148]. Ma et al. showed examples

of dual SLM systems that have been used for converting transverse Gaussian beams

into flattop profiles. This research includes demonstrations of dual SLMs controlled

by gradient decent or SA algorithms [149, 150]. One of the disadvantages of dual

SLMs is the increased loss of light from diffraction as discussed in section 5.3. Ma

et al. (2010) highlight that the power lost between an initial quasi-Gaussian beam

and the shaped top-hat profile is on the order of 29% [151,152].

5.7.4 Dual element shaping with a Gerchberg Saxton algo-

rithm

This section aims to investigate the feasibility of shaping using two adaptive optics

elements for HHG based on the schematic in figure 6.3. At the gas target an ideal

super-Gaussian of P = 2, width w0 = 90µm and a flat phase profile is propagated

back to the SLM via a Fourier transform as described in section 2.2.4. This gives the

ideal target field at the back-focal plane of the lens. Between the two AO elements

the ASM propagation method is used to propagate a distance z = 500mm. It is

assumed that the input driver beam incident on the first AO element is a collimated
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Gaussian with a flat phase, and the aperture diameter of both AO elements is 13 cm.

The Gerchberg-Saxton (GS) is an iterative algorithm that is used to retrieve

the phase needed between planes of known intensity profiles as represented by the

flowchart in figure 5.8. In figure 5.8 the first AO element is at plane 1 and the second

AO element is at plane 2. On the first iteration the field of a known intensity profile

(here it is a collimated Gaussian) is propagated from the first to the second plane

with a guessed phase profile. At the second plane the intensity profile is replaced

with the target profile and propagated back to the first plane. Here, the intensity

profile is again replaced with the Gaussian intensity profile. This continues until the

algorithm either converges or the maximum number of iterations is reached.

The GS algorithm was used to retrieve the phase required at the first AO element

to create the intensity profile at the second element [153–156]. At the second AO

element the ideal phase to generate super-Gaussian profile P = 2 at the focal plane

is transversely imprinted on the beam and propagated to the front focal plane of the

lens. The results from the GS are shown in figure 5.9. For the beam profile created

by the GS at the gas target the intensity maintained within the 1/e2 width is 79.6%.

Figure 5.8: Flowchart describing the Gerchberg-Saxton algorithm between two
planes. The angular spectrum method (ASM) is used to propagate between these
planes separated by z = 500mm. Constraints are made by replacing the acquired
with the target intensity profiles at each plane. The algorithm finishes after n

iterations.
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Figure 5.9: Dual element shaping results from a Gerchberg-Saxton (GS) algorithm.
a) The input Gaussian and phase required at the first shaping element. b) The
target and GS intensity profile at the second shaping element. c) The target

intensity and phase at the focus. The GS field (green and blue) is propagated from
the second shaping element with the GS intensity and the ideal phase.
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Chapter 6

Driving HHG with tailored fields

"Onwards and upwards."

Oliver Heath

In this chapter the simple dipole model (SDM) and Lewenstein model are compared

and used to simulate high-order harmonic generation (HHG) with shaped driver

beam profiles. These models offer a more accurate description than Corkum’s three

step model as described in chapter 2. To investigate the effect of shaping the trans-

verse intensity profile of the driving laser on the generated harmonic beam, sim-

ulations have been performed for an adaptive optics system. The fringe visibility

has been calculated as a measure of coherence of the harmonic fields for multiple

super-Gaussian drivers. For convenience, atomic units are used in throughout this

chapter such that: the reduced Planck’s constant, ~ = 1, electron charge, e = 1,

electron mass me = 1, Bohr radius, a0 = 1, energy, 27.21 [eV] = 1, time, 1 [fs] = 41,

and the angular frequency for a 800nm wavelength is w = 0.057 [157,158].

6.1 The Lewenstein model of HHG

Although the three-step model is intuitive it cannot adequately describe the HHG

process which is quantum in nature. The interaction between an atom and a lin-

early polarised laser field, E(t), can be described by the time-dependent Schrödinger

equation (TDSE),

i
∂

∂t
ψ(r, t) =

[
−1

2
p2 + V (r)− E(t).r

]
ψ(r, t), (6.1.1)
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with wavefuntion ψ(r, t), momentum p, and the atomic potential V (r). The TDSE

can be solved numerically however it can be difficult to physically interpret the

results with this treatment [26,69]. The Lewenstein model [159] offers an alternative

semi-classical approach which is based on the strong field approximation (SFA)

[67,73,160–166]. Within this model the three assumptions are:

• The contribution from all of the excited states (above the ground state |ψ0〉)

are neglected.

• The motion of the electron in the continuum is independent of the atomic

potential due to the strong field. This is the strong field approximation.

• The depletion of the ground state is negligible.

The latter can only remain true if the driving laser has intensity less than the

saturation intensity such that most electrons remain in their bound state. The first

two assumptions are generally true providing that the Keldysh parameter,

γ =

√
Ip

2Up
< 1. (6.1.2)

This is the tunnelling-ionization regime as described in section 2.3.1 [68, 159, 164].

Using the assumptions and conditions above an analytical expression for the time

dependent dipole moment of a single atom will be shown. The first step is to consider

a driving laser pulse which is linearly polarised such that,

E(t) = Ex(t) and d(p) = dx(p), (6.1.3)

and the intensity duration, tFW, is determined by its full-width at half-maximum

(FWHM). The electric field is given by,

E(t) = E0 exp
(
−2 ln2

t2FW
t2
)
cos (ωt). (6.1.4)
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To remain consistent with Lewenstein et al. [159] let the birth (ionization), recom-

bination and continuum times be referred to as t′, t and t′′ respectively and let τ be

such that τ = t− t′. The time-dependent dipole moment in the x-direction is,

〈x(t)〉 = i

ˆ ∞
0

dτ

ˆ ∞
0

d3pE(t− τ) d(p− A(t− τ))

× exp (−iS(p, t, τ)) d∗(p− A(t)) + c.c.

(6.1.5)

The integrand can be written as the product of three distinct functions such that,

〈x(t)〉 ≈
ˆ ∞
0

aion(t, τ)× aprop(t, τ, ps)× arecom(t, ps)d τ + c.c. (6.1.6)

In this intuitive form aion(t, τ), aprop(t, τ, ps) and arecom(t, ps) represent the semi-

classical ionization, propagation and recombination probability amplitudes which are

described in Corkum’s three step model. Within equation 6.1.5 the vector potential

of the driving laser field, A(t), is given such that,

E(t) = −∂A(t)

∂t
, (6.1.7)

for any time, t. The canonical momentum is represented by p, d(k) is the atomic

dipole matrix element between the bound state and continuum state with momen-

tum k = p−A(t), and S is the quasi-classical action of the ionized electron where the

phase accumulated by the electron in the continuum is equal to exp (−iS(p, t, t′′)).

The path integral over all p is replaced by applying a saddle-point approximation

(Appendix: A2) [26].

The following three subsections will now outline the details to calculate each

probability amplitude as shown in equation 6.1.6.
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6.1.1 Ionization

Amplitude aion represents the transition of the electron from the bound state into

the continuum. This occurs at time t− τ and with momentum, p, such that,

aion(t, τ) = E(t− τ)d(p− A(t− τ)). (6.1.8)

Within the tunnelling-ionization regime with γ < 1, the Ammosov-Delone-Krainov

(ADK) model for ionization can be utilised [73, 167]. The rate of ionization is

described by,

ωADK(t) = Ip |Cn∗|2
(

2 (2Ip)
1
2

E(t)

)2n∗−1

exp

(
−2 (2Ip)

3
2

3E(t)

)
, (6.1.9)

where the principal quantum number is given by, n∗ = Z/
√

(2Ip), and Z is the degree

of ionization. Cn∗ ≈ 2 accounts for the atomic species and initial electronic configu-

ration. Given an initial gas-density, n0, equation 6.1.9 can be used to calculate the

free-electron density, n(t), which is defined as,

n(t) = n0

(
1− exp

[
−
ˆ t

−∞
dt′ωADK(t′)

])
. (6.1.10)

With a known free electron density the amplitude, aion, is given by,

aion(t, τ) =

√
dn(t− τ)

dt
. (6.1.11)

6.1.2 Propagation

Under the influence of the strong laser field the quasi-classical action, S, describes

the path of the free electron with constant momentum, p, as described by,

p = v + A(t′′), (6.1.12)
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recalling that this definition of p applies only to the momentum in the continuum.

The action is therefore described by,

S(p, t, τ) =

ˆ t

t−τ
dt′′
[

(p− A(t′′))2

2
+ Ip

]
. (6.1.13)

The integral over all p is carried out by using a saddle-point approximation which

is an extension of Laplace’s method. This means that the main contribution to the

propagation amplitude is from about the points of least action, i.e. for the stationary

momentum values. These points are given by,

∇pS(p, t, τ) =

ˆ t

t−τ

dt′′

dp

[
(p− A(t′′))2

2
+ Ip

]
, (6.1.14)

=

ˆ t

t−τ
dt′′[(p− A(t′′))], (6.1.15)

which from equation 6.1.12 becomes,

∇pS(p, t, τ) =

ˆ t

t−τ
dt′′v(t′′),

= x(t)− x(t− τ),

= 0. (6.1.16)

The dominant electron paths therefore come from the electrons that return to their

parent ions. The stationary momentum values can then be obtained by using equa-

tions 6.1.15 and 6.1.16,

ˆ t

t−τ
dt′′[(ps − A(t′′))] = 0, (6.1.17)

ˆ t

t−τ
dt′′ps =

ˆ t

t−τ
dt′′A(t′′), (6.1.18)

which yields the saddle points,

ps(t, τ) =
1

τ

ˆ t

t−τ
dt′′A(t′′). (6.1.19)
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The phase that the electron accumulates is given by exp(−S(ps, t, τ). With a pre-

factor to compensate for the quantum spread of the electron-wavepacket, the prop-

agation amplitude is then given by,

aprop(t, τ, ps) =

(
2π

iτ

) 3
2

exp(−S(ps, t, τ)). (6.1.20)

6.1.3 Recombination

The amplitude for the recombination of the electron-ion pair at time t is given by,

arecom(t, ps) = d∗(ps − A(t)). (6.1.21)

Here there is a contribution from the ground state and the returning electron wave-

function. The interaction between these states is the only contributors to HHG. The

returning wave-function is treated as a plane wave such that,

arecom(t, p) ∝
ˆ
ψ0 x exp (ipx) dx, (6.1.22)

where ψ0 represents the ground state. For hydrogen-like atoms, the free dipole

matrix element is approximately,

arecom(t, ps) = i
2

7
2 (2 Ip)

5
4

π

ps
(p2s + (2 Ip))3

. (6.1.23)

6.1.4 HHG spectra

The spectra of HHG across odd harmonics where wq = qw0, has a distinctive decline

for low-order harmonics, followed by a plateau region where the intensity variation

is minimal, followed by a second decline as defined by the cutoff region described

in the three step model from equation 2.3.11. The scaling of the cutoff region in

the three step model is also observed in the SFA. The intensity spectrum of HHG
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is given by [26],

I(w) ∝
∣∣∣∣ˆ 〈x(t)〉 exp (iωt) dt

∣∣∣∣2 . (6.1.24)

Using the SFA the single-atom HHG spectra is shown in figure 6.1 where Ecutoff ∝

Imax can be observed.

Figure 6.1: Single atom HHG spectra calculated using the SFA for argon for
multiple peak driver intensities, Imax. The dotted lines show the cutoff energies

calculated from the three step model and each spectrum has been vertically offset
for clarity. The driver wavelength is 800 nm with a pulse duration of 40 fs FWHM.

6.1.5 SFA benchmarking

The spectra from the single-atom SFA were benchmarked against examples in lit-

erature and found to give good agreement by visibly comparing the location of the

harmonic peaks and the cutoff harmonic between figures from [26,72,74,168,169], us-

ing the like-for-like parameters: maximum driver beam intensity, driver beam width,

driver wavelength pulse duration, gas ionisation energy, and propagation distance

from the source.

The SFA was then used to calculate the HHG field at the focus of the driving

laser for multiple atoms along a thin transverse plane. The HHG field was then

propagated using the Hankel transform to the far field. Using like-for-like SFA
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parameters the far field displayed in figure 6.2a gives good agreement with the

spatially resolved HHG spectra from Catoire et al. as displayed in figure 6.2b [75].

Figure 6.2: a) Intensity-normalised far-field harmonic spectra calculated using the
SFA. The peak intensity is Imax = 2× 1014 Wcm−2, the Gaussian pulse width is
40 [fs] FWHM, the transverse IR driver is a Gaussian of waist size 120µm, the

driver wavelength is 800 nm, and the source-detector distance is 3m. b) Results of
the SFA from Catoire et al. for the same parameters [75].

6.2 The simple dipole model

An alternative method to describe HHG is the simple dipole model (SDM). The SDM

is a simplified model that is more easily interpreted than the SFA, whilst containing

most of the same features as the SFA.Within this section the key features of the SDM

will be discussed showing how the behaviour of the harmonic field divergence changes

with the driver beam intensity profile, particularly the dependence on harmonic

beam width wq at the generation plane, with super-Gaussian order P . According to

the SDM the harmonic dipole is described by,

dq (r) = I
qeff
2

IR (r) exp [ i (q φIR(r) + φatom (r))], (6.2.1)
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where IIR(r) is the tansverse intensity profile of the laser, qeff is the effective non-

linearity, q is the harmonic order, φIR(r) is the phase from the fundamental beam,

and φatom(r) is the atomic dipole phase [48,50,75,170,171]. The atomic dipole phase

is given by,

φatom(r) ≈ Upτ ≈ −αjq IIR(r), (6.2.2)

where αjq depends on the electron transit time and is different for the long (j = l)

and short (j = s) trajectories [172]. For long trajectories, t − t′ ≈ 2π/w, and the

estimate for αlq is given by π/2w which is 24×10−14 cm2 W−1. For short trajectories

the estimate for αsq is about four times smaller at 6× 10−14 cm2 W−1 [75]. Rewriting

equation 6.2.1, the SDM in the form of the sum between the two trajectories is,

dq (r) =
∑
j=l,s

Aj I
qeff
2

IR (r) exp [−i αjq IIR(r)] exp [qφIR(r) + ∆φj], (6.2.3)

where Aj are the amplitudes from the long and short trajectory components, and

∆φj is the difference phase difference between the long and short trajectories [75].

At the harmonic generation plane the driver laser imprints a phase on the harmonic

field equal to,

φIR(r) =
πr2

λR(z)
, (6.2.4)

where R(z) is the radius of curvature. The SDM yields the following expression

which shows that the harmonic source size scales with qeff,

Iq (r) ∝ exp

[
−2 qeff

(
r2

w2
0

)P]
, (6.2.5)

where P is the super-Gaussian order and w0 is the 1/e2 radius of the driving beam.

From equations 6.2.5 and 2.1.1 the P -dependent width of the harmonic source is

given by [50,170],

wPq =
w0

2P
√
qeff

. (6.2.6)
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6.3 HHG model beamline

In this section HHG is simulated using laser and beamline parameters typically

available in research laboratories in order to mimic practical experiments. A typical

HHG beamline consisting of a dual-element AO system is illustrated in figure 6.3

[48, 139]. Here a driving laser is spatially shaped by the AO system before being

focused onto a gas target. Harmonics generated in the gas target are detected

downstream by an x-ray CCD or spectrometer. In order to simulate the HHG beam

at the detector it is necessary to consider both the propagation of the IR driving

beam and the generated XUV beam. The following three distinct sections must be

considered:

1. The propagation of the IR field between the two AO elements, where the ASM

will be utilised.

2. The propagation of the IR field between the second element and the gas cell,

where the Fourier transform properties of a lens as discussed in section 2.2.4

can be employed if the second AO element and gas cell are one focal length

away from the lens. At the plane of the gas cell the SFA is then used to

calculate the harmonic field.

3. The propagation of the harmonic field between gas cell and the detector, where

assuming cylindrical symmetry the Hankel transform will be utilised.

Within this chapter only spatial shaping effects are considered. The SFA and SDM

are used to create the harmonic field at the gas cell where the single atom response is

calculated across the transverse plane. The harmonic field is generated by calculating

〈x(r)〉 over the entire Gaussian pulse and for each radial position as illustrated in

figure 6.4. For the remainder of this chapter the values in table 6.1 are used for

HHG simulations. From equation 2.1.2 different orders of super-Gaussians of the

same width have different peak intensities. To practically maintain the same Imax a

wave plate and a polariser may be placed before the gas target.
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Table 6.1: HHG simulation parameters [165,173].

Parameter Value
Driver wavelength, λ 800 nm
Driver radius, w0 90µm
Driver maximum intensity, Imax 2× 1014Wcm−2
Pulse duration, τ 40 fs
Gas (Ar) ionization energy, Ip 15.759 eV

Figure 6.3: Schematic of a typical harmonic beamline including an AO system. An
IR driving pulse is shaped by an adaptive optics system and focused to a gas
target where harmonics are generated. An aluminium foil only allows the XUV
beam through to a grating. A detector such as a CCD then measures these

harmonics further along the beamline.

Figure 6.4: An illustration of harmonic generation at the gas target for a single
infinitesimal plane. The harmonic spectrum is simulated at the generation plane
by calculating the dipole over the Gaussian pulse (green) in time, the transverse

profile as a function of radial distance in space. The field is then propagated in the
z-direction down the beamline.

96



CHAPTER 6. DRIVING HHG WITH TAILORED FIELDS

6.4 Beam shaping for HHG

Simulations have been performed using the SDM and SFA to investigate the effects

of using a driver laser with transverse intensity profiles of increasing super-Gaussian

order. The practical benefit of super-Gaussian shaping using adaptive optics to

lower divergence is the ability to irradiate smaller volumes of interest, and increase

brightness [50]. Super-Gaussians drivers are also more efficient for HHG as there

is more energy in the central region of the beam where the intensity is above the

threshold for generating high harmonics. The two areas of investigation presented

are the HHG beam divergence and coherence that are of interest for applications

such as coherent diffractive imaging. The divergence of a beam,

d ∝ zλ

w0

, (6.4.1)

where z is the propagation distance, λ is wavelength and w0 is the source size [174].

From equation 6.2.6 the source size of HHG increases with super-Gaussian order, P .

The divergence is therefore expected to decrease with increased P . Equation 6.2.6

describes the harmonic source width dependence on P and is displayed in figure 6.5.

This figure shows that increasing P yields diminishing returns for reducing beam

divergence. The differential of the P -dependence also shows that experimentally

the size of the harmonic source would be the most sensitive to changes in super-

Gaussian order about P ≈ 1.8. The divergence of the HHG beam was investigated by

calculating the far-field spatial intensity distribution for a range of super-Gaussian

transverse laser intensities. An example intensity distribution about harmonic q =

23 is given figure 6.6 for driver orders P = 1 through P = 2. The width of the

generated harmonics at the detector plane was determined using the second moment

method as described in section 2.1.2.
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Figure 6.5: Variation of the harmonic size with super-Gaussian order using the
denominator in equation 6.2.6 from the simple dipole model. q ′ = 2P

√
qeff,

q ′′ = d
d (2P )

2P
√
qeff (with a peak at P = 1.835), and qeff = 6.99.

Figure 6.6: Intensity distribution at the far field for multiple driver beam
super-Gaussian orders about q = 23 calculated from the SFA.

6.4.1 Calculating divergence using the SFA and SDM

The HHG fields calculated using the SFA and SDM were propagated 3m to the

far-field using a Hankel transform.

The SDM was seeded with the far-field second moments of q = 25 that was

calculated from the SFA. MATLAB’s least-squares fit was used to numerically obtain
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Table 6.2: Simple dipole estimated parameters.

Parameter Value
Along 0.4005
Ashort 0.5995
φj 0.98 [rad]
qeff 6.99

Figure 6.7: The second moments calculated from the simple dipole model (SDM)
and the strong field approximation (SFA) at propagation distance z = 3m from
the source, for q = 25. The SDM fitting parameters can be found in table 6.2 and

the driver beam parameters are given in table 6.1.

estimate values for the parameters Along, Ashort, φj and qeff, as required for equation

6.2.3. These values are displayed in table 6.2.

For orders P = 1 through P = 3 figure 6.7 shows good agreement between the

SFA and SDM models for q = 25. Using the SDM parameters from table 6.2 the

second moments were calculated for a range of harmonics about the cutoff q = 37.

Figure 6.8 shows that in both models the divergence decreased with super-Gaussian

order with an expected greater rate of change between P = 1 → 2. There is

however a disagreement in the second moments which is particularly noticeable for

23 ≤ q ≤ 33. This may be a consequence of using second moments to calculate

widths when the peaks of the transverse profile overlap in the SFA, or due to tuning

to only a single harmonic, q = 25, in the SDM, or due to other more complex details
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in the SFA model.

To probe the behaviour of the long and short trajectories, the SDM was chosen to

isolate their contributions to the far-field intensity profile about q = 23 as shown in

figure 6.9. Here the second moments for both trajectories are seen to decrease with

P , with a more rapid decrease for the long trajectories. For long trajectories with

low intensities, figure 6.9 c) shows a subtly diverging region which is also present

in the SFA shown in figure 6.10, where the outer rings become fainter with P . The

dashed lines in figure 6.10 indicate the second moment values from the SDM. This

shows that the central ring is mostly from the short trajectory component, and has

approximately the same divergence as a Gaussian beam of size equivalent to the size

of the HHG source.

Figure 6.8: Second moments against harmonic order for super-Gaussian order
P = 1, 2, 3, for a) the strong field approximation, and b) the simple dipole model.
The driver beam parameters are given in table 6.1 and the propagation distance is

3m. The cutoff harmonic is at q = 33.
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Figure 6.9: Log scale radial transverse intensity profile for harmonic q = 23 against
super-Gaussian order, P , calculated from the simple dipole model (SDM). SDM
parameters are given in table 6.2. a) long and short trajectory contributions, b)
short trajectory only, c) long trajectory only. The intensity profiles have been

normalised for each super-Gaussian order. The driver beam parameters are given
in table 6.1 and the propagation distance is 3m.

Figure 6.10: Radial transverse intensity profile for harmonic q = 23 against
super-Gaussian order, P , calculated from the strong field approximation. The red

dashed lines are the second moments from the long and short trajectory
contributions from the simple dipole model (SDM), the black dashed lines are the
Gaussian-equivalent beam size using equation 6.2.6, the magenta dashed lines are
the second moments from the short-only trajectory contributions using the SDM.
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6.4.2 Dual adaptive optics for HHG

This section uses the shaping results from the dual element system in section 5.7 to

drive HHG.

Figure 6.11: Second moments for harmonics 21 through 43 using the ideal
super-Gaussian, P = 2, and the field field generated by a Gerchberg-Saxton

algorithm. Propagation distance from the generation plane is z = 3m.

The SFA was used to calculate the HHG field using the driver field generated by

the GS in figure 5.9c to give a realistic expectation of experimental results. At the

far field the second moments were calculated and compared to the ideal P = 2 super-

Gaussian. From figure 6.11, although the ideal field has higher second moments for

harmonics up until the cutoff q = 37, the second moment values are still in a close

agreement. A practical benefit of a dual-element shaper with either phase retrieval or

other learning algorithms could be the ability to create such super-Gaussian profile

with increased control over beam aberrations.

6.4.3 Spatial coherence and fringe visibility

Lastly the effect of beam shaping on spatial coherence will be considered. Perfect

spatial coherence implies a fixed phase relationship across the beam profile, and is

an ideal property in applications such as coherent diffractive imaging. Considering a
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one dimensional electric field, E(x, t), the aim is to calculate the degree of correlation

between two spatially separated points, x1 and x2. To do this we use the mutual

coherence function (MCF). With zero time delay between x1 and x2 the MCF is

defined by [155,175],

M(x1, x2, τ = 0) = 〈E(x1, t+ τ)E(x2, t)
∗〉. (6.4.2)

The intensity integrated over time is,

I(x) = 〈|E(x, t)|2〉. (6.4.3)

For τ = 0 the intensity from the MCF is,

M(x1, x1, 0) = I(x1), (6.4.4)

M(x2, x2, 0) = I(x2), (6.4.5)

and when evaluated is referred to as the mutual intensity and denoted by J12. The

normalisation of the mutual intensity is given by,

µ =
J12√

I(x1)I(x2)
. (6.4.6)

x1 and x2 can be thought of as the transverse locations of two pinholes. At the

detection plane with spatial co-ordinates of X,

E(X, t) = αE(x1, t) + βE(x2, t), (6.4.7)
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where α and β account for the propagation of the fields from both pinholes. From

equation 6.4.3, at the far-field diffraction pattern is given by,

I(X) =
〈
|E(X, t)E(X, t)∗|2

〉
, (6.4.8)

= |α|2I(x1) + |β|2I(x2) + 2<(αβM(x1, x2)), (6.4.9)

= I1 + I2 + 2<(αβ J12). (6.4.10)

The maximum and minimum values of I(X) are,

Imax = I1 + I2 + 2
√
I1 + I2 |µ|, (6.4.11)

Imin = I1 + I2 − 2
√
I1 + I2 |µ|. (6.4.12)

A convenient way to measure coherence is by the fringe visibility, V , of an interfer-

ence pattern. The relationship between V and µ is given by [155,175,176],

V =
2
√
I1I2

I1 + I2
|µ|, (6.4.13)

=
Imax − Imin

Imax + Imin
. (6.4.14)

For different values of fringe visibility:

1. V = 1, implies perfect coherence,

2. V = 0, implies completely incoherent light, and

3. 0 < V < 1, implies partially coherent light.

To determine if super-Gaussian drivers were more robust to intensity fluctuations

the fringe visibility was calculated using different super-Gaussian orders, P = 1, 2, 3,

for both a single and a 10-shot-averaged HHG field at the detector plane at z =

1000mm, with a one percent noise value in the maximum driver intensity at the

generation plane. At z = 500 two pinholes of diameter 0.32mm were placed such

that one was at the centre of the beam and the other was free to move transversely.

The fringe visibility was calculated within the first lobe of the diffraction envelope.
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Increasing the driver beam’s super-Gaussian order increases the size of the har-

monic source. From [177,178] increasing the source size can be thought of as adding

additional point sources. The fringe pattern at the detection plane is made of the

contribution of the wavefronts of all these point sources. moving the position of a

point source shifts the location of the fringes. The light and dark fringes are localised

about the regions on the detector plane where the optical path difference between

two interfering wavefronts is small. Increasing the source size, and therefore the

number of point sources, leads to these sources become more out of phase with one

another and reduces the visibility of the fringes [177, 178]. The decrease in fringe

visibility with super-Gaussian order can be observed in figure 6.12a. It can also be

observed that there was negligible difference in V between the single and 10-shot

averaged fields for different super-Gaussian driver orders.

6.5 Discussion

The SFA and SDM have both shown that the divergence of the HHG beam decreased

for increased driver order P . It has also been shown that the harmonic source size

is most sensitive about P ≈ 1.8. It was also observed that the super-Gaussian

drivers had almost no effect on the fringe visibility calculations for single and 10-shot

averaged fields. A dual AO system was modelled to show what could be achievable

with such a system experimentally. The benefit of such a system could be increased

shaping control to remove beam aberrations.
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Figure 6.12: Fringe visibility against slit-slit distance for different super-Gaussian
orders, P . a) and b) show the results for a single-shot exposure for q = 23 and
q = 27 respectfully. c) and d) show the results for an exposure averaged over 10

laser shots at the detector plane for q = 23 and q = 27 respectfully.
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Chapter 7

Conclusion

"That was a really good talk, you

made it look like you’ve done a lot

of work."

Phil John

7.1 Summary of thesis

This thesis has investigated beam shaping techniques to create super-Gaussian trans-

verse intensity profiles. This has been performed experimentally using a deformable

mirror, and through simulations of a phase-only spatial light modulator. The beam

manipulation by these devices has been determined numerically by learning algo-

rithms. Simulations were made of super-Gaussian driver beams for high-order har-

monic generation (HHG), and the effects on HHG beam divergence and coherence

have been investigated. The key results of each chapter are outlined below.

7.2 Results

In chapter 3 the performance of a random search algorithm (RSA), genetic algorithm

(GA), simulated annealing algorithm (SA), and hybrid genetic-simulated annealing

algorithm (HA), was compared for a simple 1D global maximisation problem. It

was found that the reliability and success rate of each algorithm scaled with the

algorithm complexity. In complexity order these were as follows: RSA, SA, HA,
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GA.

In chapter 4 the SA, HA and GA were used to shape the Gaussian profile of a low-

powered laser experimentally with a deformable mirror. All three algorithms were

shown to be able to create super-Gaussians profiles of finely tuned orders P = 1 to

P = 2 in P = 0.1 increments. The HA was found to offer a middle-ground between

the SA and GA in terms of algorithm performance and difficulty of implementation.

In chapter 5 simulations were made of a phase-only spatial light modulator for

super-Gaussian shaping using a known π-shift method as performed by Treacher et

al. [50], a phase-step optimised SA as used by Fayyaz et al. [116], and the HA

as created by this author. Here the SA outperformed the HA in terms of achieved

super-Gaussian order. At higher orders, P ≈ 2.6, the fitting error from the SA

solutions showed that higher quality super-Gaussians may be achievable compared

to the profiles using the π-shift method.

In chapter 6 the HHG process has been modelled using the strong field approx-

imation and the simple dipole model and driven with super-Gaussians of orders

P = 1 to P = 3. The HHG beam divergence was calculated using a second moment

method. This was found to decrease with super-Gaussian order. The fringe visibil-

ity was calculated as a measure of HHG beam coherence. No discernible differences

were found for the fringe visibilities of HHG beams generated by super-Gaussian

drivers between single-shot and multi-shot pulses.

7.3 Future work

1. Further investigation into more complex algorithms such as neural networks

may provide a significant improvement in the performance or runtime for

beam-shaping experiments.

2. The dual AO system as demonstrated by [41] et al. has shown decoupled con-

trol of a laser beam’s phase-front and wavefront. The deformable mirror and
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spatial light modulator combination can be assembled and tested by adding

aberrations from one element and removing these with the second element.

These elements could both be driven by learning algorithms.

3. The dual AO system can be used to aim for target super-Gaussian orders up

to P = 2 to compare with results in this thesis for a single-element (DM)

shaper. Then the dual AO can be used to aim for target super-Gaussians of

orders P > 2.

4. The dual AO system can be used on a HHG beamline such as Artemis at the

Central Laser Facility to either optimise the complex profile of the driver beam,

or to optimise from a different feedback method e.g. HHG beam divergence,

brightness, or a single harmonic intensity at a detector plane.

5. The SFA code can be adapted to calculate the contributions from the long or

short trajectories separately. This can then be compared with the results from

the SDM.

6. The SFA and propagation codes can be adapted to calculate the harmonic field

in a medium many atoms thick. This will lead to a model that will require

phase-matching considerations.

7. The SFA and propagation codes can be made open source via Github.
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Appendices

"Don’t get sciencey on me."

Nina Mills

A1: Zernike polynomials

Even and odd Zernike polynomials of the respective forms,

Zm
n even(r, θ) = Rm

n (r) cosmθ, (7.3.1)

Zm
n odd(r, θ) = Rm

n (r) sinmθ, (7.3.2)

with radial polynomial,

Rm
n (r) =

n−m
2∑
k

(−1)k (n− k)!

k! (n+m
2
− k)! (n−m

2
− k)!

(rn−2k), (7.3.3)

are displayed up to Z4
4 in figure 7.1. Table 7.1 displays the (m,n) values and common

polynomial names [179].
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Table 7.1: Common names for Zernike modes.

Noll index m n Name
1 0 0 Piston
2 -1 1 Y-tilt
3 1 1 X-tilt
4 -2 2 Oblique astigmatism
5 0 2 Defocus
6 2 2 Vertical astigmatism
7 -3 3 Vertical trefoil
8 -1 3 Vertical coma
9 1 3 Horizontal coma
10 3 3 Oblique trefoil
11 -4 4 Oblique quadrafoil
12 -2 4 Oblique secondary astigmatism
13 0 4 Primary spherical
14 2 4 Vertical secondary astigmatism
15 4 4 Vertical quadrafoil

Figure 7.1: Zm
n Zernike polynomials up to the 5th order. From [179].
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A2: Stationary phase approximation

We start with an integral of the form,

I(λ) =

ˆ b

a

f(t) exp [iλg(t)] dt, (7.3.4)

where functions f and g can be approximated by a Taylor expansion about point

[a, b], and λ� 1. At some point c within [a, b], g′(c) = 0 and g′(c) 6= 0 elsewhere in

[a, b]. We assume g′′(c) 6= 0 and f(c) 6= 0, and we define the sign of g′′(c) to be µ.

Equation 7.3.4 can be rewritten such that,

I(λ) = exp [iλg(c)]

ˆ b

a

f(t) exp [iλ(g(t)− g(c))] dt. (7.3.5)

exp [iλ(g(t)− g(c))] oscillates rapidly for t 6= c. This leads of cancellation everywhere

except in small regions c± δc. Therefore,

I(λ) ≈ exp [iλg(c)]

ˆ c+δc

c−δc
f(t) exp [iλ(g(t)− g(c))] dt, (7.3.6)

≈ f(c) exp [iλg(c)]

ˆ ∞
−∞

f(t) exp

[
iλ

2
g′′(c)(t− c)2

]
dt. (7.3.7)

This is the form of a known integral. After some algebraic steps the leading order

of this integral becomes,

I(λ) ≈ f(c) exp [iλg(c)]

√
2π

λ|g′′(c)|
exp

(
iπµ

4

)
. (7.3.8)

The reason why this method is called the stationary phase apprxoimation is because

the main contribution to this integral is from a region about c at which g(t) is

stationary. Further details on the stationary phase approximation can be found in

[58, 180–183]. Figure 7.2 shows an example of a slow oscillating function g(x) and

fast oscillating function f(x) about a stationary point.
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The Bessel function of the first type has the form,

Jn(λ) =

ˆ 1

0

cos(nπt− λ sin(πt)) dt, (7.3.9)

= <
[ˆ 1

0

exp(nπit) exp(−iλ sin(πt)) dt

]
. (7.3.10)

Within interval [0, 1], g(t) = − sin(πt) is stationary at c = 1/2, with g(c) = −1,

g′′(c) = π2, µ = 1. We set f(t) = exp(nπit) and f(c) = exp(nπi/2). Now the

leading order becomes,

Jn(λ� 1) ≈ <

[
exp

(
nπi

2

)
exp(−iλ) exp

(
iπ

4

)√
2

πλ

]
, (7.3.11)

=

√
2

πλ
cos
(
λ− nπ

2
− π

4

)
. (7.3.12)

Figure 7.2: Stationary phase approximation example for very slowly oscillating
g(x) and quickly oscillating f(x). d(f(x)g(x) ) / d(x) ≈ 0 about x = 0.

f(x) = Re{ exp[2πix2] }, g(x) = cos(x/5).
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