
Citation: Khan, A.T.; Cao, X.; Liao, B.;

Francis, A. Bio-Inspired Machine

Learning for Distributed Confidential

Multi-Portfolio Selection Problem.

Biomimetics 2022, 7, 124.

https://doi.org/10.3390/

biomimetics7030124

Academic Editors: Stanislav N. Gorb,

Giuseppe Carbone, Thomas Speck

and Andreas Taubert

Received: 31 July 2022

Accepted: 19 August 2022

Published: 29 August 2022

Publisher’s Note: MDPI stays neutral

with regard to jurisdictional claims in

published maps and institutional affil-

iations.

Copyright: © 2022 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

biomimetics

Article

Bio-Inspired Machine Learning for Distributed Confidential
Multi-Portfolio Selection Problem
Ameer Tamoor Khan 1,†, Xinwei Cao 2,*,†, Bolin Liao 3,† and Adam Francis 4,†

1 Department of Computing, The Hong Kong Polytechnic University, Hong Kong 999077, China
2 School of Business, Jiangnan University, Wuxi 213031, China
3 College of Information Science and Engineering, Jishou University, Jishou 409811, China
4 Faculty of Science and Engineering, Swansea University, Swansea SA1 8EN, UK
* Correspondence: xcao.fudan@gmail.com
† These authors contributed equally to this work.

Abstract: The recently emerging multi-portfolio selection problem lacks a proper framework to
ensure that client privacy and database secrecy remain intact. Since privacy is of major concern these
days, in this paper, we propose a variant of Beetle Antennae Search (BAS) known as Distributed
Beetle Antennae Search (DBAS) to optimize multi-portfolio selection problems without violating
the privacy of individual portfolios. DBAS is a swarm-based optimization algorithm that solely
shares the gradients of portfolios among the swarm without sharing private data or portfolio stock
information. DBAS is a hybrid framework, and it inherits the swarm-like nature of the Particle
Swarm Optimization (PSO) algorithm with the BAS updating criteria. It ensures a robust and fast
optimization of the multi-portfolio selection problem whilst keeping the privacy and secrecy of
each portfolio intact. Since multi-portfolio selection problems are a recent direction for the field, no
work has been done concerning the privacy of the database nor the privacy of stock information
of individual portfolios. To test the robustness of DBAS, simulations were conducted consisting of
f our categories of multi-portfolio problems, where in each category, three portfolios were selected.
To achieve this, 200 days worth of real-world stock data were utilized from 25 NASDAQ stock
companies. The simulation results prove that DBAS not only ensures portfolio privacy but is also
efficient and robust in selecting optimal portfolios.

Keywords: multi-portfolio; optimization; swarm algorithm; beetle antennae search; stochastic
algorithm; distributed beetle antennae search; investment; stocks

1. Introduction

Portfolio optimization is a hot research topic in academia, since it enables investors to
make an optimal decision between profit and risk. This refers to the method of making the
best investment in numerous stocks [1]. Apart from this, there are several other real-world
constraints that researchers have taken care of over time, for instance, cardinality constraint,
tax-aware constraint, lower and upper bounds, multiple portfolios, round-lot constraint,
stock size, computational and time complexities.

There are several state-of-the-art algorithms that have been proposed over time to
tackle these constraints. For instance, an unconstrained portfolio optimization problem can
be easily solved using linear or quadratic programming, but constraints make it a complex
optimization problem to solve. Ref. [2] showed that the simple addition of a cardinality
constraint makes it an NP-complete problem. Therefore, there is no straightforward
algorithm to compute the exact optimality of the problem. Techniques that use machine
learning algorithms, heuristic algorithms, and black-box optimization are good alternatives
to solve such highly complex, computationally and time-consuming problems. Ref. [3]
proposed using multiple machine learning modules, i.e., coordinate descent, the proximal
gradient, Dykstra, and alternating direction of multipliers. Their algorithm also accounts for
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several constrained portfolios, i.e., equal risk contribution, diversified, and risk budgeting
portfolios. Likewise, Ref. [4] combined several portfolio models, i.e., equal-weighted
modeling (EQ), mean-variance model, and Monte Carlo simulation modeling. Furthermore,
to improve the portfolio problem based on its time-series nature, they applied a long
short-term memory (LSTM) model. However, the major drawback of these methods is the
training of hundreds of hyper-parameters, which makes them computationally expensive
and slow to compute.

In this paper, we are focused on the multi-portfolio selection problem while consid-
ering the investors’ privacy. Since the multi-portfolio problem has only recently gained
attention from academia and financial practitioners, no work has been conducted regarding
the confidentiality and the secrecy of private databases and individual portfolios. The
multi-portfolio selection problem enables the optimization of tens of hundreds of portfolios
simultaneously, making it computationally economical and time efficient. There are several
proposed methods for multi-portfolio optimization in the literature [5–17]. The authors
of [18,19] were the pioneers of the multi-portfolio optimization domain. The objective was
to maximize social welfare, which was the sum of the utility of the individual accounts. For
instance, ref. [20] proposed a hybrid model that includes a heuristic and combinatorial
framework and solved the multi-portfolio problem under a risk–budget constraint. Ref. [21]
proposed a Cournot–Nash equilibrium framework to solve the multi-portfolio problem.
The major drawback being that each portfolio was treated individually, assuming that the
others gave the best response. Ref. [22] overcame this issue by proposing a joint optimiza-
tion problem, where the model was able to optimize the portfolio as well as cost splitting
among the portfolios. Ref. [23] employed an information pooling game mechanism for the
multi-portfolio optimization. Ref. [24] added a risk measurement constraint along with the
selection of multi-portfolios. Ref. [25] proposed fairness-aware multi-participant satisfying
(FMS) criterion to model a target-oriented strategy which optimized client portfolios by
maximizing the returns. The major drawback of these techniques is the lack of privacy for
the investors. They also solve the multi-portfolio problem, collectively making asset data
exposed, meaning data are not secure or confidential. In order to provide privacy to each
investor, i.e., portfolios regarding their investment and portfolio selection, it is necessary
to design a distributed framework that optimizes each portfolio locally and optimizes all
portfolios collectively. The three types of optimizing models are shown in Figure 1. It shows
that in local learning, all portfolios are optimized individually, which is computationally
and time-wise inefficient. Likewise, typical swarm learning models do not account for
the confidentiality of the data and portfolio, and the particles share critical information
about the portfolios to reach the optimal solution. However, in the distributed system, each
particle deals with a single portfolio locally, and the particles share the objective function
value, i.e., gradients alone to each other. Thus, they efficiently optimize the multi-portfolio
selection problem without violating privacy.
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Figure 1. (a) shows the local learning where each BAS algorithm is assigned to one portfolio, and the
objective is to optimize the respective portfolio. (b) shows the swarm architecture, where the swarm
has access to a public database, where particles coordinate to obtain an optimal solution without
considering the privacy of the database. (c) shows the distributed architecture, where particles only
share the parameters, i.e., gradients, instead of the private information of the portfolios, i.e., private
database, stock information, and client information.
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In this paper, we propose a swarm variant of a known meta-heuristic algorithm
known as Beetle Antennae Search (BAS). It mimics the food-collecting nature of the
beetle in order to search for the optimal solution to a problem. BAS is a single parti-
cle searching algorithm, where the particle optimizes an objective function by search-
ing the search space iteratively. The utility of BAS has expanded to several real-world
problems [26–49], including the portfolio optimization. Ref. [50] employed BAS for the
selection of the optimal portfolio under a non-convex cardinality constraint. Ref. [51] pro-
posed a QBAS (Quantum Beetle Antennae Search) variant of BAS and solved the portfolio
selection problem under cardinality constraint. Ref. [52] solved the time-varying portfolio
selection problem under the transaction cost. Ref. [53] used the mean-variance model of
portfolio optimization under two constraints: cardinality and transaction cost constraints.
Ref. [54] proposed a hybrid framework of BAS-PSO and used it for portfolio optimization.
From these research works, we can see the utility of BAS in portfolio optimization under
real-world constraints. However, BAS has never been employed for the multi-portfolio
optimization problem because of computational limitations. As mentioned earlier, BAS is
a single particle searching algorithm, meaning it would be computationally challenging
for BAS to optimize even a single portfolio with over 100 stock companies. Therefore, the
efficiency of BAS will drop further if applied to the multi-portfolio selection problem.

We have proposed a swarm or distributed variant of BAS known as DBAS (Distributed
Beetle Antennae Search). It is a hybrid variant with the swarm-like nature of Particle Swarm
Optimization (PSO) and the BAS updating criteria. Each particle in DBAS will optimize
a single portfolio, and collectively, the swarm will optimize all the portfolios without
violating portfolio privacy. The DBAS will optimize the multi-portfolio in two stages by
optimizing each portfolio locally and then optimizing all the portfolios globally without
sharing any private data among portfolios. To the best of our knowledge, no researcher
has considered the privacy issue while solving the multi-portfolio problem, since it is a
newly emerging portfolio selection challenge. Through our proposed framework, we will
optimize the multi-portfolio problem efficiently with low computation and time cost whilst
ensuring the privacy of clients and their portfolios.

The rest of the paper is structured as follows: In Section 2, we will formulate the
portfolio optimization problem. In Section 3, we will elaborate on the nature of BAS and
will drive the DBAS variant. In Section 4, we will discuss the simulation results on a
multi-portfolio selection problem with real-world stock data. In Section 5, we will conclude
the paper with final remarks.

2. Problem Formulation

In this section, we will discuss the building blocks of the portfolio optimization
problem. Later, we will elaborate on different portfolio models and select one for the DBAS
algorithm. All the hyper-parameters are mentioned in Table 1.

Table 1. Hyper-Parameters.

Name Notation Values (Default)

Antennae Length d 0.9
Step Size τ 0.9
Personal Antennae Length d1 0.9
Global Antennae Length d2 0.9
Step Multiplier η 0.99

2.1. Building Blocks of Portfolio Selection

Here, we will discuss the building blocks of portfolio selection, i.e., expected return
(profit), risk, total investment, total transaction cost, and cardinality constraint.
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2.1.1. Expected Return

The primary factor in portfolio optimization is the maximization of expected return:
in other words, the profit that investors are expecting from their investment in stocks. Let
us say there are K total stocks and the normalized investment in all K stocks is given as
E = [E1, E2, E3, . . . , Ei, . . . EK] ∈ RK, where i is the i-th stock and Ei is the the normalized
investment in the i-th stock. Now, let us say that the mean return of K stocks based on
their past data is given as, ε = [ε1, ε2, ε3, . . . , εi, . . . , εK]

T ∈ RK. The objective is to find the
optimal E such that it maximizes the expected return, which is given as

max
E

ξ(E) = EεT . (1)

To further consolidate (1) and to ensure that the expected return is above a certain
threshold k, the modification to (1) is given as,

max
E

ξ(E) = EεT − k ≥ 0. (2)

here, k is a scalar quantity and EεT − k = 0 means the break-even point (no profit-loss).

2.1.2. Risk

The maximization of profit (expected return) does not avoid the risk factor. The second
objective is to minimize the risk. The risk minimization is given as,

min
E

υ(E) = EQET , (3)

where Q is a covariance matrix, and it is given as,

Q =


Q11 Q12 Q13 . . . Q1j
Q21 Q22 Q23 . . . Q2j
Q31 Q32 Q33 . . . Q3j

...
...

...
... . . .

...
Qi1 Qi2 Qi3 . . . Qij

, (4)

where Qij is the variance of the i-th stock with j-th stock in the portfolio.

2.1.3. Total Investment

Now, we will discuss one of the primary constraints: total investment. It ensures the
allocation of the total asset in the stocks, and it is given as,

1ET = 1, (5)

where 1 is a unit vector. As mentioned above, ET is a normalized investment, so the sum of
the amount invested in the portfolio should be 1 as shown in (5). To ensure this, we need
an additional constraint which is given as,

0 ≤ E ≤ 1. (6)

It will ensure that E remains positive and within [0, 1].

2.1.4. Total Transaction Cost

The total transaction cost is another essential constraint in portfolio selection. The
transaction cost is positive if the investor buys stock and is negative if the investor sells
stock. Let us say that Φ(E) represents the transaction cost of the portfolio; it is given as,

Φ(E) = [Φ1(E1), Φ2(E2), Φ3(E3), . . . , Φi(Ei)], (7)
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where i ∈ {1, 2, 3, . . . , K} and Φi(Ei) represent the transaction cost of the i-th stock. The
total transaction cost refers to the sum of all the individual stocks, which is given as

Φt(E) =
K

∑
i=1

Φi(Ei). (8)

If Φt(E) > 0, it means more stock is bought than sold. Likewise, if Φt(E) < 0, it
means that more stock is sold than bought. Generally, the transaction cost includes some
additional charges, which we can formulate using a linear transaction model [55], which
includes a linear function α = [α1, α2, α3, . . . , αi], where i ∈ {1, 2, 3, . . . , K}. The transaction
cost of the i-th stock in the portfolio is given as,

Φi(Ei) = αiEi. (9)

We can rewrite (7) using (9) as,

Φ(E) = αET . (10)

We can combine (5) and (10) into a single constraint, which is given as,

χ(E) = (1 + α)ET = 1. (11)

2.1.5. Cardinality Constraint

Another real-world constraint in portfolio selection is known as the cardinality con-
straint. So far, we have assumed that investment is made in all of the K stocks. However, in
a real case scenario, it is observed that the investor may want to exclude some stocks n (<K)
from the final portfolio selection, which is known as a cardinality constraint. We can make
such a decision by introducing a binary decision vector, i.e., b = [b1, b2, b3, . . . , bi, . . . , bn],
where bi ∈ {0, 1}. According to the cardinality constraint,

K

∑
i=1

bi = n. (12)

We also need to reformulate (6) according to (12), which is given as,

0 ≤ E ≤ b. (13)

2.2. Portfolio Selection Models

Here, we will discuss the three known models for portfolio selection: mean variance
model, efficient frontier model, and Sharpe ratio model.

2.2.1. Mean-Variance Model

The primary objective of the mean variance model is to minimize the risk involved
in portfolio selection, and it treats the expected return (profit) as a constraint. We can
formulate the mean variance model using (2), (3), and (11)–(13), which is given as,
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Minimize:

min
E

υ(E) (14)

Subject to:

ξ(E) = EεT − k ≥ 0 (15)

χ(E) = (1 + α)ET = 1 (16)
K

∑
i=1

bi = n (17)

0 ≤ E ≤ b. (18)

The mean variance model is not very flexible, since it restrains the growth in profits.
To overcome it, we can make use of an efficient frontier model.

2.2.2. Efficient Frontier Model

In this model, we include expected return (profit) in the objective function. We can
formulate the frontier model using (2), (3), and (11)–(13), which is given as,

Minimize:

min
E

λυ(E)− (1− λ)ξ(E) (19)

Subject to:

χ(E) = (1 + α)ET = 1 (20)
K

∑
i=1

bi = n (21)

0 ≤ E ≤ b. (22)

here, λ ∈ [0, 1]. If λ = 0, then the model will maximize the expected-return (profit).
However, if λ = 1, then the model will minimize the risk. The value of λ between [0, 1]
will be a trade-off between profit and the risk. The only drawback of the model is that it
involves the use of a hyper-parameter λ. To avoid this, we will look into a Sharpe model,
which we will optimize using DBAS.

2.2.3. Sharpe Ratio Model

The Sharpe ratio model is another portfolio selection model which includes the ratio
of profit ξ(E) and risk υ(E). The objective is to maximize the ratio, which is given as,

SR =
ξ(E)
υ(E)

. (23)

We will inverse the formulation (23) to form a minimization problem. The Sharpe
ratio model will help to avoid the additional hyper-parameter λ. Now, the objective is to
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minimize υ(E)
ξ(E) , which will in turn maximize the profit and minimize the risk. Again, we

can formulate the model using (2), (3), and (11)–(13), which is given as,

Minimization:

min
E

υ(E)
ξ(E)

(24)

Subject to:

χ(E) = (1 + α)ET = 1 (25)
K

∑
i=1

bi = n (26)

0 ≤ E ≤ b. (27)

This model will be used for the portfolio optimization. In the next section, we will
formulate the Distributed Beetle Antennae Search (DBAS), which we will be used to solve
the portfolio problem given in (24)–(27).

3. Distributed Beetle Antennae Search (DBAS)

In this section, we will elaborate on the nature of BAS, its formulation, and the
algorithm. Later, we will develop DBAS and will discuss its underlying algorithm.

3.1. BAS Formulation and Algorithm

BAS has a biologically inspired meta-heuristic algorithm, which is inspired by the
food-searching behavior of the beetle. It has two antennas, i.e., left Xl and right Xr. It
registers the smell of the food on both antennae, and based on the intensity of the smell, it
either moves in the left direction or right. The beetle repeats this procedure iteratively until
it finally reaches the food source. Details on the behavior of beetles and BAS are presented
in [56]. Here, we will look into updating the equations of the BAS algorithm, which are
responsible for converging the searching particle toward the optimal solution.

Imagine a non-linear objective function F(X), where X is a vector of optimizing
variables. We can represent an objective function as,

min
X

F(X). (28)

Here, we are solely considering an objective function, while the real-world problem
would include additional constraints, as shown in (24)–(27). The objective of the BAS is to
find the optimal solution of (28) by tweaking the values of X such that the maximum value
of (28) is achieved. Here, it is worth mentioning that we can assume the maximization
problem as well. The formulation will be a little different, which will be shown later during
the derivation.

From this point forward, we will refer to the beetle as a particle. Let us say that the
current position of the particle is X ∈ R1×K. To compute the new position of the particle,
we will move it slightly to the right Xr and slightly to the left Xl , which is given as

Xr = X + db (29)

Xl = X − db, (30)

where b ∈ R1×K is similar to X. Here, d is an antenna length, which determines how big or
small a step should be taken in each iteration. In the beginning, d will have a larger value
allowing the particle to explore more of the search space, and over time when the particle
approaches the optimal solution, the value of d becomes small.
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The next step is to compute the objective function value at Xr and Xr, so that BAS can
decide its course, i.e., either in the Xr direction or Xl direction. The computation of F(X) is
given as,

Fr = F(Xr) (31)

Fl = F(Xl), (32)

where Fr and Fl are scalar values of the objective function at Xr and Xl respectively. Now,
BAS will compute the next step based on the difference of the values of Fr and Fl , which is
given as,

∆F = Fr − Fl (33)

X = X − τsgn(∆F)b, (34)

where sgn is an activation function to translate the value of ∆F between [−1, 1]. Likewise,
τ is another hyper-parameter, which is used to decide the step length of the BAS particle.
This concludes the general framework of BAS. The algorithm is shown in Algorithm 1.

Algorithm 1 BAS Algorithm.

Objective Function:
F(X, O)
DBAS Initialization:
η = 0.99
d = 0.9
τ = 0.9
Portfolio Initialization:
T = iter
D = dim
X = randn(1, D)
O = [Mn, Cn] Mn : Mean Cn : Covariance
Fbest = F(X, P)
Xbest = X

For i = 1 : T
b = randn(1, D)
Compute Xr and Xl using (29) and (30)
Compute Fr and Fl suing (31) and (32)
Compute X using (34)
F = F(X, O)

If Fmin < Fbest :
Fbest = Fmax
Xbest = X

Else:
X = Xbest

End If

d = ηd + 0.01
τ = ητ

End For

This algorithm is designed for the portfolio selection problem. The objective function
includes F(X, O), where O includes all the parameters necessary for the portfolio problem,
i.e., M means of the stocks, C covariance matrix of the stocks, and other constraints. The
single-particle BAS algorithm is limited to single portfolio optimization because of its
computational limitations. In order to optimize multiple portfolios at once, we need to
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introduce a more robust nature in the already existing framework, which we will introduce
in DBAS formulation.

Remark 1. The above formulation of BAS is for the minimziation problem. For the maximization
problem, we need to modify the (34), as shown below,

X = X + τsgn(∆F)b, (35)

where the − sign is replaced with the + sign. It will help BAS to move up the valley in the
search space.

In the next section, we will formulate the DBAS algorithm. Unlike BAS, the DBAS for-
mulation will be better focused on the portfolio problem. However, it is worth mentioning
that the algorithm is not problem-specific, as an objective function must be defined for any
real-world problem. The schematic of the proposed algorithm is shown in Figure 2.
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Figure 2. The schematic of the DBAS algorithm for the multi-portfolio selection problem. It consists
of 3 portfolios and clearly shows that each particle [X1, X2, X3] optimizes portfolio PF1, PF2, and PF3,
respectively. It can be seen that particles do not share any portfolio database or stock information
among the swarm, which ensures privacy.

3.2. DBAS Formulation and Algorithm

DBAS is a hybrid variant of BAS and PSO (Particle Swarm Optimization) algorithms.
It mimics the swarm-like nature of PSO, where each step of the particles is based on the
particle’s best position Pbest and the swarm’s best position Sbest . However, it uses the BAS
updating strategy given in (34).

3.2.1. DBAS Updating Criteria

We will modify the updating criteria for Xr and Xl given in (29) and (30). The updating
criteria depend on three factors: the particle’s best position Pbest , the swarm’s best solution
Sbest, and the random direction db. The modified updating criteria is given as,

V = b1V + d1b2(Pbest − X) + d2b3(Sbest − X) (36)

Xr = X + db + V (37)

Xl = X − db− V , (38)
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where b ∈ RD×K and [b1, b2, b3] ∈ R. Here, X ∈ RD×K represents the particles positions,
Pbest ∈ RD×K shows the particles best positions, and Sbest ∈ RD×K is the swarm’s best
position, which are stacked in a row to meet the dimensionality requirement. Likewise,
[d, d1, d2] are scalars. Typical swarm algorithms are used to compute a single objective
function, but our objective is to optimize multiple objective functions since each portfolio
comprises different stocks. Therefore, it is worth mentioning that X ∈ RD×K, where
D and K represent the number of portfolios and portfolio size, respectively. Likewise,
{b1, b2} ∈ RD×K are two random vectors and d represents the antenna size. Each particle
in DBAS corresponds to a single portfolio. The objective is that each particle will optimize
its corresponding portfolio locally, i.e., Pj

best ∈ R1×K, where j ∈ {1, 2, 3, . . . , D}, and the
swarm will optimize all portfolios, i.e., Sbest, collectively.

After computing Xr and Xl ,, the next step is to compute the objective function value
for each portfolio, i.e., each particle. It is given as,

Fr = F(Xr, O) (39)

Fl = F(Xl , O), (40)

where O includes all the parameters necessary for portfolio optimization as mentioned in
the problem formulation section. Here, {Fr, Fl} ∈ RD×1 and F(.) is a vector of dimension
D; it includes the objective functions of all portfolios. Next, each position of particle X is
updated using,

∆F = Fr − Fl (41)

X = X − τsgn(∆F)b. (42)

Then, the objective function value of each portfolio is computed, i.e., the particle at X,
which is given as,

F = F(X, O), (43)

where F has similar dimensions as Fr and Fl . If the objective function value Fj(.) of a

j-th particle at Xj ∈ R1×K is less than its personal best Pj
best, then update Pj

best with Xj,.
Otherwise, retain the old best values. This updating rule for all the particles X is given as,

Pbest = Ω(X) =

{
X, if F(X) < Pbest

Pbest, otherwise.
(44)

Now, the next step is to obtain the swarm’s best position. This can be done by simply
looking for the minimum value of the objective function in F(.), which is given as,

[F, j] = min(F(X, O)). (45)

If the value of F is less than the swarm’s best solution Gbest, then update Sbest; other-
wise, retain the old best, which is given as,

Sbest = ψ(F) =

{
Xj, if F < Gbest

Sbest, otherwise.
(46)

To further randomize the process, we have included another condition to the update
d and τ. We have included a random variable r = rand ∈ [0, 1]; if r < 0.5, then we will
update the values of d and τ. The pseudocode is shown in Algorithm 2.
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Algorithm 2 DBAS Algorithm.

Objective Function:
F(X, O)
DBAS Initialization:
η = 0.99
d = 0.9
d1 = 0.9
d2 = 0.9
τ = 0.9
Portfolio Initialization:
T = iter %Iterations
D = pop %Total Portfolios
K = dim %No. of Stocks In Each Portfolio
X = randn(D, K)
Xbest = X
O = [O1, O2, O3, . . . , OK ]
% OK Includes Parameters For k-th Portfolio
% OK = [MK, CK] MK : Mean CK : Covariance
Pmin = F(X, P)
[Gbest, ind] = min(F(X, P)
Sbest = Xind
For i = 1 : T

b = randn(D, K)
b1 = randn(1, 1)
b2 = randn(1, 1)
b3 = randn(1, 1)
Compute V using (36)
Compute Xr and Xl using (37) and (38)
Compute Fr and Fl suing (39) and (40)
Compute X using (42)
For j = 1 : D

F = Fj(Xj, Oj)

If F < Pj
min :

Pj
min = F

Pj
best = Xj

End If

End For

[F, ind] = min(F(X, O))

If F < Gbest :
Gbest = F
sbest = Xind
Sbest = repmat(sbest, D, 1)

End If
r = rand
If r < 0.5 :

d = ηd + 0.01
d1 = ηd1 + 0.01
d2 = ηd2 + 0.01
τ = ητ

End If

End For
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3.2.2. DBAS Privacy Policy

Each particle in DBAS deals with a single portfolio. A particle alone has access to
the private data of the assigned portfolio, including: stock names, investment amount,
mean of the portfolio, and variance of the portfolio. The portfolio is like a black box. The
particle Xj will enter the black box Fj(Xj, O), will compute the objective function of the
portfolio and will give out the objective function value Fj while keeping the privacy of the
private database and portfolio information. The objective function value, i.e., gradient,
will be available to all the other particles and based on all the gradients, i.e., objective
function values of all particles, the DBAS algorithm will compute the swarm’s best solution
to decide the next step. It helps the DBAS to efficiently find the optimal selection of all
portfolios without violating the confidentiality and privacy of portfolios. The concept of
DBAS privacy is shown in Figure 3.

Optimal Solution: F(.)

Antenna Length: db
2

Swarm Best: db
1
S
best

Partcile Best: P
best

DBAS

Portfolio 1 Portfolio 2

Portfolio 3

F
1

F
2

F
3

Private
Database

Private
Database

Private
Database

Figure 3. Each particle in DBAS is assigned to a single portfolio, and the particle alone has access
to the private database of the portfolio. In DBAS, the particle in swarm only shares the objective
function values F, i.e., gradients.

4. Simulation Results

In this section, we will discuss the stock data used for the multiple portfolio selection
problem. Furthermore, the DBAS algorithm will be employed to solve the optimization
problem formulated in the problem formulation selection.

4.1. Stock Data

For the simulation, we collected real-world stock data from the NASDAQ stock
market in 2017. The data comprise several hundred stock companies. A total of 25 known
companies were selected for the simulation. Then, 200 days worth of stock closing prices
were collected for each company to understand the data trend in more detail and to provide
more robust portfolios. All the 25 companies are shown in Table 2. The volatility of the
stock market is shown in Figure 4. It can be seen how abruptly the stock prices (return rate)
change over time.
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Table 2. NASDAQ Symbols of The Stock Companies In Portfolio Selection.

Companies 1–5 GOOGL MSFT AMZN FB IBM

Companies 6–10 A AA AAU AABA AAC
Companies 11–15 AADR AAL AAMC AAME AAN
Companies 16–20 NCA NCI QAT QD CODI
Companies 20–25 EMR EMXC FET FC ABBV
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Figure 4. The return rate for all the 25 companies for 200 days of NASDAQ stock data in 2017. (a–e)
represents the data of companies 1–5, companies 6–10, companies 11–16, companies 16–20, and
companies 20–25, respectively.

In our simulation, there are four multi-portfolio optimization problems, i.e., 5 stock
companies, 10 stock companies, 15 stock companies, and 20 stock companies. In each
multi-portfolio selection problem, we will be optimizing three portfolios. For instance,
in the f ive stock companies multi-portfolio selection problem, DBAS will optimize three
portfolios, each looking for an optimal selection of stock companies. Considering the
stochastic nature of the DBAS algorithm and how results can vary with each experiment,
we performed simulation on each portfolio for 10 times, and the average or mean result is
obtained. The computational resources used in the simulations are given below:

• Software: MATLAB;
• System: MacBook Pro;
• Processor: 2.2 GHz;
• Cores: 6–Core Intel Core i7;
• Memory: 6 GB 2400 MHz DDR4;
• Graphics: Radeon Pro 555X 4 GB.

4.2. Three Portfolios of Five Stock Companies

For the first simulation category, three portfolios were selected, each consisting of
f ive companies. The objective is to optimize the three objective functions (24)–(27), i.e.,
portfolios, such that the raw data of each portfolio remain private and without sharing the
private databases that DBAS optimizes. There are a few hyper-parameters in DBAS, i.e.,
antenna length d and particle step-size τ. We selected the values of these hyper-parameters
through trial and error, e.g., τ = 0.900, d = 0.999, and η = 0.900, which are shown in
Table 3. In addition, a few other parameters were selected for the simulation, i.e., total
iterations T = 500, swarm population D = 3, dimension of each portfolio K = 5.
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Table 3. DBAS Convergence Profile for Different Portfolios.

Companies: 5 Companies: 10

Portfolio 1 Portfolio 2 Portfolio 3 Portfolio 1 Portfolio 2 Portfolio 3

n 5 5 5 7 8 9
Gbest 10−7 10−7 10−7 10−6 10−6 10−6

Pbest 10−6 10−7 10−6 10−6 10−6 10−4

SR 72.348 24.804 39.582 9.108 5.319 3.151
(1 + α)E = 1 1.116 1.179 1.065 1.153 1.140 0.964

DBAS:
η 0.900 0.900
d = d1 = d2 0.999 0.900
τ 0.900 0.900
sgn [−1, 1] [−1, 1]

Some Additional Parameters:
T 500 500
D 3 3
K 5 5
H(E, σ) Eval. 4500 4500

Companies: 15 Companies: 20

Portfolio 1 Portfolio 2 Portfolio 3 Portfolio 1 Portfolio 2 Portfolio 3

n 15 12 10 15 20 18
Gbest 10−4 10−4 10−4 10−7 10−7 10−7

Pbest 10−4 0.020 0.001 10−7 10−7 10−6

SR 7.088 3.667 4.667 58.71 21.56 191.6
(1 + α)E = 1 0.930 1.088 1.103 0.9893 1.136 1.021

DBAS:
η 0.850 0.950
d = d1 = d2 0.900 0.900
τ 0.850 0.850
sgn [−1, 1] [−1, 1]

Some Additional Parameters:
T 500 500
D 3 3
K 5 5
H(E, σ) Eval. 4500 4500

After setting all of the parameters. DBAS is ready to optimize the portfolio problem
mentioned in (24)–(27). The simulation results are evaluated based on three parameters:
swarm convergence Gbest, particles convergence Pbest, Sharpe ratio SR, and the total in-
vestment constraint (1 + α)E = 1. The results are shown in Table 3 and the convergence
profiles of Gbest, Pbest , SR and (1 + α)E = 1 are shown in Figures 5–8a. For three portfolios
of f ive stock companies, the swarm best solution turns out to be 10−7, and the conver-
gence profile in Figure 5a shows how efficiently and quick DBAS converges to the optimal
solution. Likewise, the convergence of each particle, i.e., each portfolio, is also robust,
as shown in Figure 6a. However, the convergence rates do not give us the relationship
between the profit and risk. For that, the Sharpe ratio curve was computed. It can be seen
in Figure 7a that each portfolio has achieved substantial profit with minimal risk involved.
Finally, it is essential that the investment in stocks remains around ≈ 1. We have shown
the convergence profile of (1 + α)E = 1 in Figure 8a, and it can be seen that all three
investments converge to around 1, which is required. The detailed results are also shown
in Table 3.
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Figure 5. The sharp and fast convergence of DBAS swarm’s Gbest toward the minima while selecting
optimal configuration of all 3 portfolios. It also shows the comparison with PSO and GA algorithms,
and it can be seen that the convergence profile of DBAS is fast compared to others. (a) shows the
global convergence profile of all algorithms. Likewise, (b) shows the convergence of BAS, PSO, and
GA. And finally, (c,d) shows the convergence of 15 and 20 stocks of all three algorithms respectively.

Figure 5. The sharp and fast convergence of DBAS swarm’s Gbest toward the minima while selecting
optimal configuration of all 3 portfolios. It also shows the comparison with PSO and GA algorithms,
and it can be seen that the convergence profile of DBAS is fast compared to others. (a) shows the
global convergence profile of all algorithms. Likewise, (b) shows the convergence of BAS, PSO, and
GA. And finally, (c,d) shows the convergence of 15 and 20 stocks of all three algorithms respectively.
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Figure 6. The sharp and fast convergence of DBAS particles Pbest toward their respective minimas
while selecting an optimal configuration of their portfolios. Since we are dealing with three portfolios,
we can see the three convergence profiles. (a) shows the global convergence profile of all algorithms.
Likewise, (b) shows the convergence of BAS, PSO, and GA. And finally, (c,d) shows the convergence
of 15 and 20 stocks of all three algorithms respectively.
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Figure 7. The rising trend of Sharpe ratio SR as the DBAS moves towar the optimal solution of
portfolio selection problem. The higher value of SR indicates that each portfolio has a higher profit
ξ(E) and lower risk υ(E), as shown in (23). (a) shows the convergence profile of sharpe-ratio of 5
stocks. Likewise, (b) shows the convergence of sharpe-ratio of 10 stocks. And finally, (c,d) shows the
convergence of sharpe-ratio of 15 and 20 stocks respectively.

Figure 7. The rising trend of Sharpe ratio SR as the DBAS moves towar the optimal solution of
portfolio selection problem. The higher value of SR indicates that each portfolio has a higher profit
ξ(E) and lower risk υ(E), as shown in (23). (a) shows the convergence profile of sharpe-ratio of 5
stocks. Likewise, (b) shows the convergence of sharpe-ratio of 10 stocks. And finally, (c,d) shows the
convergence of sharpe-ratio of 15 and 20 stocks respectively.

The main takeaway from the results is that DBAS can converge multi-portfolios and
ensures the clients’ secrecy and privacy. In the simulated results, it can be seen that
each particle in DBAS only shares the objective function value Pj

best, i.e., gradient with
other particles, whereas the private information of the portfolio remains inaccessible to
other portfolios.

4.3. Three Portfolios of 10 Stock Companies

For the second simulation scenario, we again selected three portfolios, each consisting
of 10 companies. The values of hyper-parameters were once again chosen through trial and
error, which are also shown in Table 3. In addition, the other parameters for the simulation
include total Iterations T = 500, swarm population D = 3, dimension of each portfolio
K = 10.

The simulation results are shown in Table 3, and the convergence profiles
of Gbest, Pbest, SR and (1 + α)E = 1 are shown in Figures 5–8b. For the three portfo-
lios of 10 stock companies, the swarm best solution turns out to be 10−6. Its convergence
profile is shown in Figure 5b. Likewise, the convergence of each particle, i.e., each portfolio,
is also robust and shown in Figure 6b. Their convergence values turn out to be optimal, i.e.,
Pbest = [10−6, 10−6, 10−4]. The Sharpe ratio curve is shown in Figure 7b, and it can be seen
that each portfolio has achieved substantial profit with minimal risk. We have also shown
the convergence profile of (1 + α)E = 1 in Figure 8b, where it can be seen that all three
investments converge to around 1, which is again required. The detailed results are also
shown in Table 3.
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Figure 8. It shows that as the portfolio selection problem converges toward the optimal solution,
the sum of normalized investment (1 + α)E ≈ 1. There are some spikes in the beginning; however,
all the particles of the respective portfolio converge to 1. (a) shows the convergence of normalized
investment (1 + α)E ≈ 1 of 5 stocks. Likewise, (b) shows the convergence of normalized investment
of 10 stocks. And finally, (c,d) shows the convergence of normalized investment of 15 and 20 stocks
respectively.

4.4. Three Portfolios of 15 Stock Companies

For the third simulation scenario, we again selected three portfolios, each consisting of
15 companies. Once again, the values of the hyper-parameters were chosen through trial
and error, which are also shown in Table 3.

The simulation results are shown in Table 3 and the convergence profiles
of Gbest, Pbest, SR and (1 + α)E = 1 are shown in Figures 5–8c. For the three portfolios of
15 stock companies, the swarm’s best solution turns out to be 10−4. Its convergence profile
is shown in Figure 5c. Likewise, the convergence of each particle, i.e., each portfolio, is
also robust and shown in Figure 6c. Their convergence values turn out to be again optimal,
i.e., Pbest = [10−4, 0.020, 0.001]. The Sharpe ratio curve is shown in Figure 7b, and it can be
seen that each portfolio has again achieved substantial profit with minimal risk. We have
also shown the convergence profile of (1 + α)E = 1 in Figure 8c, and it can be seen that all
three investments converge to around 1, which is required. The detailed results are also
shown in Table 3.

4.5. Three Portfolios of 20 Stock Companies

For the fourth and the last simulation scenario, we selected three portfolios, each
consisting of 20 stock companies. Hyper-parameters are also shown in Table 3.

The simulation results are shown in Table 3 and the convergence profiles
of Gbest, Pbest, SR and (1 + α)E = 1 are shown in Figures 5–8d. For three portfolios of
15 stock companies, the swarm’s best solution turns out to be 10−7. Its convergence profile
is shown in Figure 5d. Likewise, the convergence of each particle, i.e., each portfolio, is
also robust and shown in Figure 6d. Their convergence values turns out to be optimal, i.e.,
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Pbest = [10−7, 10−7, 10−6]. The Sharpe ratio curve is shown in Figure 7b, and it can be seen
that the ratio is again substantially high. We have also shown the convergence profile of
(1 + α)E = 1 in Figure 8d, and it can be seen that all three investments converge to around
1, which is required. The detailed results are also shown in Table 3.

The primary limitation of DBAS is the “Virtual particle,” which means that for each
iteration, we have to compute the objective function value for three times for Fr, Fl , and
F. It could make it computationally expensive and consume time. In the future, we will
work on eliminating the “virtual particle” limitation, and we will also include some other
meta-heuristic algorithms such as GSK [57] to compare with. Likewise, we will work
on some additional statistical analysis including non-parametric statistical tests such as
Wilcoxon Signed Rank Test and Friedman.

5. Conclusions

In this paper, a framework to ensure the privacy of stock portfolios in the multi-
portfolio selection problem was proposed. This involved the design of a distributed
variant of the BAS algorithm known as Distributed Beetle Antennae Search (DBAS). DBAS
combines the swarm-like behavior of PSO with BAS’s updating rule. Each particle in the
swarm is assigned to optimize a single portfolio, and the particles only share the gradient
of their respective portfolio with the swarm, avoiding the exposure of the private database
and stock information of portfolios. The algorithm was then simulated on real-world stock
data extracted from the NASDAQ stock market for 25 stock companies. The simulation is
divided into f our categories, and in each category, three portfolio models were optimized.
The simulation results show that DBAS not only ensures the privacy of portfolios but is
also robust, computationally economical, and time efficient.
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14. Stanimirović, P.S.; Ćirić, M.; Katsikis, V.N.; Li, C.; Ma, H. Outer and (b, c) inverses of tensors. Linear Multilinear Algebra 2020,
68, 940–971. [CrossRef]
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