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Upon adding division to the operations of a field we obtain a meadow. It is conventional to 
view division in a field as a partial function, which complicates considerably its algebra and 
logic. But partiality is one out of a plurality of possible design decisions regarding division. 
Upon adding a partial division function ÷ to a field Q of rational numbers we obtain a 
partial meadow Q (÷) of rational numbers that qualifies as a data type. Partial data types 
bring problems for specifying and programming that have led to complicated algebraic 
and logical theories – unlike total data types. We discuss four different ways of providing 
an algebraic specification of this important arithmetical partial data type Q (÷) via the 
algebraic specification of a closely related total data type. We argue that the specification 
method that uses a common meadow of rational numbers as the total algebra is the 
most attractive and useful among these four options. We then analyse the problem of 
equality between expressions in partial data types by examining seven notions of equality 
that arise from our methods alone. Finally, based on the laws of common meadows, we 
present an equational calculus for working with fracterms that is of general interest outside 
programming theory.

© 2022 The Author(s). Published by Elsevier Inc. This is an open access article under the 
CC BY license (http://creativecommons.org/licenses/by/4.0/).

1. Introduction

On applying a function f to an argument x a computer computation is expected to return an answer f (x) quickly. In 
particular, it is not expected to fail to return an answer and so force the computation to wait indefinitely and ultimately 
spoil the computation. Said differently, since computer computations cannot wait, the function f needs to be total and not 
partial. Computers need to have a total semantics for f in all situations, which leads to having special data to flag undefined 
values.

From the user’s point of view, the absence of a value of f has significant consequences for the theory to which f
belongs. In all cases, the algebraic and logical reasoning becomes much more complicated because of the effects of f
being undefined in expressions and programs. Problems arise with the possible meaning of equality, when two algebraic 
expressions are declared equal. In programming these problems are everywhere that partiality is encountered and lead to 
various semantical interpretations and theories. This effect is seen most easily in the algebraic specification of data types 
with partial operations, which is much more complicated than that for data types with total operations.
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In this paper, we examine the algebraic specification of division in fields and the specification of arguably the most 
important partial data type, that of the rational numbers with division Q (÷). For an arithmetical data type with division, 
the problem is to create a specification that

(i) controls the values of x/0, and
(ii) serves as an axiomatisation of all the arithmetical operators that is recognisable, informative and useful.

In the case of arithmetical data types, condition (ii) is rather important since the properties of most of the operators have 
been familiar since childhood.

We will turn to the specification theory of total data types. From the point of view of data type specification, the general 
methods we explore have this form:

1. Given a partial data type A with signature �, devise a closely related total data type B of signature �′ .
2. Create an equational specification (�′, E) of B , if possible.
3. Transform B to recover the partial data type A.

Our construction of B for A will be straightforward algebraically; however, difficulties may lie in the existence and user 
appeal of the specifications of B . Our standard technique for making algebraic specifications for B is constructing an initial 
algebra T (�′, E) for the specification (�′, E) via congruences on terms. We present four methods to specify A with different 
choices for B .

For arithmetic structures, and specifically a partial data type Q (÷) of rational numbers, we have in mind a number of 
candidates for B , all of which have interesting and non-trivial equational specifications. Practical computation has designed 
a number of total arithmetical data types in which 1/0 is defined – by using flags such as error, ∞, NaN – the last standing 
for ‘not a number’. These arithmetical data types have been studied over the years with languages and standards in mind, 
but only recently systematically using the methods of algebraic specification theory. The candidates for B are all examples 
of total data types for numerical computation that have been equationally specified and include:

Involutive meadows, where an element of A’s domain is used for totalisation, in particular 1/0 = 0, [21].
Common meadows, where a new external element ⊥ that is ‘absorbtive’ is used for totalisation 1/0 = ⊥, [17]; this data 

type models errors in common calculators.
Wheels, where an external ∞ is used, together with an additional external error element ⊥ to help control the effects of 

infinity, and 1/0 = ∞, [23]; this data type models exact numerical computation.
Transrationals, where besides the error element ⊥ two external signed infinities are added, one positive and one negative, 

so that division is totalised by setting 1/0 = ∞ and −1/0 = −∞, [22]; this data type models a semantics of floating point 
computation.

We will discuss these total data types in due course. Through our results, it will become clear that the method based on 
choosing a common meadow for B is best suited for the task. A survey of options for division by zero is [4,8].

At the technical heart of the theory of algebraic specifications of data types is the notion of equality = and the rules for 
working with equations, i.e., equational logics. But when operations are partial, equality can have a number of interpreta-
tions and, hence, the meaning of equations and the rules they obey can vary and become very complicated [3,45]. Indeed, 
it is this complexity that prompts the problem we have formulated and studied here. Our specification methods generate 
seven notions of equality. In the matter of equality, our analysis suggests that

Partiality is not a semantic problem because of the absence of values for an operation. It is a problem because of the effect it has on 
the meaning of equality between syntactic expressions.

Finally, picking up the requirement that a specification should be recognisable, informative and useful, we consider 
equational calculi for calculating with fractions that are of interest outside programming, e.g., relevant to teaching that 
addresses division by zero. Fractions, although everywhere, do not have clear rigorous mathematical definitions. So, we 
define syntactic terms called fracterms, and we propose an equational calculus of fracterms, based on the rules for common 
meadows. A property of this fracterm calculus for common meadows is simplifying a general fracterm to single fracterm 
with only one division, a process called flattening. We show that flattening is not possible without the addition of an element 
to the rational numbers. Thus, it is not possible for a calculus for fractions based on the option 1/0 = 0, discussed by Suppes 
[47,1] and first analysed by Ono [42].

To sum up, the main contributions of this paper are:

1. Methods for specifying partial data types using total data types.
2. Evaluation of the techniques based on technical criteria, especially algebraic simplicity and computability, and their 

useablity.
3. An equational specification of the rationals with division.
4. A survey of equality for partial data types.
5. A fracterm calculus for calculating with rational numbers.
6. A comparison of the fracterm calculus for common meadows with a fracterm calculus based on 1/0 = 0.

The structure of the paper is this. Section 2 sets out some basic notions and notations for the theory of algebraic 
specifications. Section 3 describes the four methods. Section 4 looks at the implications of partiality through the lens of 
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computability. Section 5 discusses the equational specification of our chosen candidates for total algebras. Section 6 is 
about the partial equalities induced from the total algebras. Section 7 uses the best method to propose a fracterm calculus. 
Section 8 recalls some of the older techniques of partial specifications.

2. Preliminaries

2.1. Basics

We assume the reader is familiar with the theory of algebraic specifications for data types [31,32,50,37].

Definition 2.1. An algebra A is �-minimal if it is generated by the constants and operations named in �. Alternately, A is 
�-minimal if each element of the domain A is the interpretation in A of a closed or ground � term.

Definition 2.2. A partial data type is an algebra A of signature � that is �-minimal. A partial abstract data type is the isomor-
phism class A of a partial data type A.

The condition of minimality is important. It means that every element of the data type can be constructed by applying 
the operations of the data type to its named constants.

As we are focussed on arithmetic, for simplicity when speaking of general principles, we only consider single-sorted data 
types with signature �; in the case of many sorts similar general observations can be made.

In this paper we examine the application of algebraic specification methods to partial abstract data types. The topic is 
not new – see Section 8.2. However, the theory of partiality is far from simple and stable.

Let T (�) be the set of all closed terms made from the operations and constants of �.
For simplicity, we will work with data types rather than abstract data types. To specify a data type, we will use equations 

with the standard initial algebra semantics for total data types. To specify a total data type B by an equational specification 
(�, E) we make an initial algebra using the concrete construction:

T (�, E) = T (�)/ ≡E ∼= B

where

t ≡E t′ ⇐⇒ E 
 t = t′.
The initial algebra semantics of (�, E) is the isomorphism class I(�, E) of T (�, E).

2.2. Transforming data types

We will need to make some transformations of algebras. Suppose � ⊂ �′ . The �-reduct A of the �′ algebra B is the 
algebra obtained from B by including only the constants and operations of B named in �. Using the standard operations 
and notations of Module Algebra [13], the reduct is denoted A = ��B .

The operation ρ(α,β) : � → � permutes the names α and β of constants or operations in a signature �.
Let T (�, X) be the set of all terms made from the operations and constants of � with variables from X .
An explicit definition of a function has the form

F (x1, . . . , xn) = t(x1, . . . , xn),

where t ∈ T (�, x1, . . . , xn). Note that adding such a definition makes the function F equationally definable over �. We will 
need to use explicit definitions involving conditional operators. We use the 4-place algebraic operator

f (u, v, x, y) = x � u = v � y

which, in a familiar programming style, means

f (u, v, x, y) = if u = v then x else y.

A data type A can be changed by adding or removing constants and operations without changing its domain; these 
internal changes we call expansions or reductions, respectively. A data type A can also be changed by adding or removing 
constants and operations that require adding or removing elements of its domain; these external changes we call extensions
or restrictions, respectively. Extensions followed by expansions we call enlargements. The latter are important in what follows, 
where we will use the following transformations to increase and reduce domains.

First, let us make a total algebra from a partial algebra. At first sight, the easiest way is to use an element from the 
partial algebra to totalise the partial operations. Let A be a partial minimal algebra of signature �. Let t ∈ T (�) be a closed 
term such that t has a value in A. Then we define the � algebra
3
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B = Tott(A)

to be the total algebra obtained by using the value of t in A to make the partial operations of A total by returning the value 
t . Typically, we can use an existing constant from �.

Alternately, we can add a new element to make the partial operations total; however, we must define all the operations 
on any such new element. An easy way to do this is to choose a new element ⊥ /∈ A that is absorbtive, i.e., if ⊥ is presented 
as an argument to an operation of A then its value is ⊥.

Let A be a partial minimal algebra of signature �. Let ⊥ be an element new to A. Then we define the

B = Enl⊥(A)

to be the total algebra obtained by using the value of ⊥ in A to make partial operations of A total by returning the value 
⊥ and ensuring that ⊥ is absorbtive.

Just as we make a total algebra from a partial algebra, we can create a partial algebra from a total algebra. Let B be a 
total minimal algebra of signature �′ . Let t ∈ T (�′) be a closed term. Then we define

A = Pdtt(B)

to be the partial algebra obtained by removing the value of t from B making operations of B partial whenever they return 
the value of t . We define multiple removals step by step, e.g.,

A = Pdtt1,t2(B) = Pdtt1(Pdtt2(B)).

Typically, we will use these operations with the constants added to make total functions.
The operators are connected, they are particularly useful in this form (cf. [24]):

Proposition 2.1. Let B be a total algebra with ⊥ as an absorptive element, and such that B has at least two elements. Then

Enl⊥(Pdt⊥(B)) = B.

Proposition 2.2. Let A be any algebra and suppose ⊥ /∈ A. Then

Pdt⊥(Enl⊥(A)) = A.

For a closed term t and a total data type B the partial algebra A = Pdtt(B) may not be minimal.

Example 2.1. Let N = ({0, 1, 2, . . .}, S(−), 0) be an algebra of natural numbers. Then PdtS(S(0))(N) has an infinite domain, but only 
two of its elements are the interpretation of a closed term.

2.3. Arithmetic data types

The basic algebra of arithmetic is the algebra of rings and fields. These axiomatise the operations of addition x + y, its 
additive inverse −x, and multiplication x.y. Let G be a field with signature �.

Although each non-zero element x ∈ G of a field has multiplicative inverse – i.e., (∃y ∈ G)[x.y = 1] – G does not have 
an inverse operator x−1. We can easily add a unary inverse operator −1, or binary division operators / or ÷, in which case 
the algebras G(−1), G(/) or G(÷) may become partial. Rings and fields so extended are generally referred to as meadows 
[21,14].

In the case of the rational numbers as a data type for computation, inverse or division are essential. The rings and fields 
of rationals have only the constants and operations 0, 1, x + y, −x, x.y and are not minimal algebras; they become minimal 
when a multiplicative inverse x−1 or a binary division x/y or x ÷ y is added.

Let �m be the signature of a field G(÷) extended with division as a partial operation; G(÷) is a partial meadow.
In what follows we will endeavour to make division total. If we do this by using an element of G such as 0 then we get 

an involutive meadow Tot0(G(÷)) = G0(÷) of signature �m .
In particular, if we add an absorbtive element ⊥ to G(÷) then we get a common meadow Enl⊥(G(÷)) = G⊥(÷) with 

the signature �cm = �m ∪ {⊥}. We notice that we are adapting and simplifying the terminology of [17] by defining as a 
common meadow what has been called a common cancellation meadow in [17]. The previous notion of a common meadow 
is now recovered as: a model of the axioms of Table 1. This adaptation is made in order to make the notion of a common 
meadow independent of any particular collection of axioms.

From the point of view of algebraic specifications, function names are important and the difference between say ÷ and 
/ matters. From the perspective of elementary arithmetic, the difference does not seem to matter at all. Not distinguishing 
function names and the corresponding clustering of synonyms we consider to be an instance of assimilation as proposed 
4
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in [41] which may be followed by a phase of disassimilation if one intends to be more precise about names. However, it is 
noteworthy that division has acquired at least 5 names:

x ÷ y, x/y, x : y, x/y,
x

y

These have different uses: the first three are inline notations and are poor at expressing nested divisions; the fourth is used 
only with x, y positive natural numerals; the last is best suited for nesting divisions and complex expressions in general.

Subtle differences concerning the use of familiar names for functions may be helpful. For instance, here we prefer to 
distinguish ÷ and / in order to use ÷ for a division operation for which the preferred interpretation is a partial function: 
we have a story line where the primary meaning of ÷ is a partial function that will be compared with various total versions 
of division usually denoted /. To / and ÷ we also add the bar notation of fractions �� , whereas we will not make use of 
x : y and x/y.

3. Equational specifications of partial algebras

3.1. Four methods

We formulate four methods for the specification of a partial data type A using a related total data type B . The general 
algebraic scope of the methods is open, although all apply smoothly to the case of the rationals with division. For each of 
our methods, we will sketch the technique in general and then apply them to the rationals with division. The total algebra 
B customised for partial algebra A can be made using either a data type enlargement by new data (external totalisation) or 
a data type extension by existing data (internal totalisation).

3.1.1. External: adding a unique absorbtive element ⊥
In this method, we enlarge the data type A by adding a unique new element ⊥ /∈ A that is absorbtive, i.e., if ⊥ is an 

argument to an operation of A then its value is ⊥. The partial operations are extended to return ⊥ when undefined. This 
makes the total data type B . In fact, B = Enl⊥(A).

We give an algebraic specification (�′, E) of B , if possible (we address the scope of this step in the next section cf. 
Proposition 4.1).

Then we make the restriction that removes ⊥ thus obtaining A = Pdt⊥(B). In fact, the process is invariant (Proposi-
tion 2.2): A = Pdt⊥(Enl⊥(A)). Now we apply this to the rationals.

The rationals with division. Here B = Enl⊥(Q (÷)) is a common meadow of rationals. For common meadows, see section 5.2, 
and for a new specification of Enl⊥(Q (÷)) see Proposition 5.2 below.

This option is common in pocket calculators to make operators total, where error has the algebraic properties of ⊥.

3.1.2. External: adding several special elements
The previous method of adding ⊥ can be (and usually is) more nuanced and so complicated. For example, to make 

division total in some numerical data types, flags such as ∞ (unsigned) or +∞, −∞, together with ⊥ to control the new 
elements, are added.

To sketch a general method for several special elements, suppose a set {c1, . . . , ck} of new elements have been added as 
constants to A to define a total data type B .

We give an algebraic specification (�′, E) of B , if possible.
Then we remove the constants to recover A by setting A = Pdt{c1,...,ck}(B) for the several constants {c1, . . . , ck} at the 

same time.
This option is common in computer arithmetics where various flags are added to make operators total. Now we apply 

this to the rationals in two cases.

The rationals with division. Here are two important options inspired by the need for totality in computer arithmetics.
Wheels are data types that add both ∞ (unsigned) and ⊥ to arithmetic structures [46,29].
We enrich Q (÷) to a wheel B = Wheel∞,⊥(Q (÷)) of rational numbers. A wheel of rational numbers has an equational 

specification [23]. Thus, with B a wheel of rationals, we can take: A = Pdt∞,⊥(B) = Pdt∞(Pdt⊥(B).
The transreals are data types that add +∞, −∞ together with ⊥ to arithmetic structures [2,30]. We enrich Q (÷) to 

a B = Trans+∞,−∞,⊥(Q (÷)). The transrationals have an equational specification [22]. Thus, with B a data type of transra-
tionals: A = Pdt+∞,−∞,⊥(B).

3.1.3. Internal: totalise using existing elements
We need not add new elements to totalise an operation as we can simply use elements from the domain. For a partial 

algebra A we begin by building a suitable data type B0 where the partial operations of A have been (i) renamed and then 
(ii) made total using elements from A. The renaming distinguishes the old, partial operations from the new, total operations.

Then we give an algebraic specification (�′, E) of B0, if possible.
5
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Next, we extend B0 with a 4-place conditional operator x � u = v � y. This makes an algebra B1.
We make a further expansion to B2 by adding functions with the old names to B1. These original operations are re-

covered using explicit definitions of the form: F (x1, . . . , xn) = t where t is a term involving the conditional operator to 
reintroduce partiality. Finally, we take a reduct of the original signature to remove the additions. Now we apply this to the 
rationals.

The rationals with division. To make B0, we rename ÷ to / and define x/0 = 0 (or we may choose any c ∈ A).
This B0 is an involutive meadow Q 0(/). Now we give an equational specification (�′, E) of Q 0(/) – this can be done, 

see subsection 5.1.
On extending this algebra with the conditional operator above we get B1. In B1 we can use the conditional to reintroduce 

partial ÷ by the explicit definition:

x ÷ y =df ↑ � y = 0 � x/y

where ↑ is a constant symbol that has no value, i.e., is undefined. (Strictly speaking, this formula should use Kleene equality 
rather than = to define partial ÷; we will discuss this later.)

This makes a new algebra B2.
We may now take a reduct of the specified algebra to forget / and the conditional operator.

3.1.4. Internal: graph surgery on total operations
To define a partial function f by graph surgery we take a total function g , change its graph by taking out some output 

values, and then re-name the changed function g′ as f .

The rationals with division. To make ÷ we do surgery on a total division operator /. For this we use Q 0(/) as we know Q 0(/)

has an equational specification (see above).
Now, we cannot simply remove 0 from Q 0(/) as this is needed for computation using the other operations. However, we 

can remove certain values of x/y.
Let the algebra Q /0 ↑ Q 0 be derived from Q 0 by taking x/0 to be undefined for each x ∈ Q . We find

Q (÷) = Pdt0(ρ(/,÷)(Q /0 ↑ Q 0)).

3.2. Commentary

Let us consider the methods in the case of the partial data type of rationals A = Q (÷).
The first two external methods used established semantical ideas about numerical calculation, namely adding flags.
In 3.1.1 we had to remove only ⊥ from a common meadow – a data type that models the semantics of calculators.
In 3.1.2 we had to remove ∞ and ⊥ from a wheel of rationals – a data type that models a semantics of exact numerical 

computation inspired by the projective line and Riemann sphere.
In 3.1.2, we also had to remove +∞, −∞ and ⊥ from a data type of transrationals – a data type that models totality in 

floating point computation.
The internal methods, in 3.1.3 and 3.1.4, relied on what are called involutive meadows Q 0(/) in which division is written 

/ and 1/0 = 0. Involutive meadows of rationals have equational specifications (for instance, the specification given in [21] or 
the simplification of that specification as given in [15]). In [15], too, several notations are proposed for turning an involutive 
cancellation meadow Q 0(/) into a structure where division or inverse is partial.

Although surgery on the graph of a function / on Q 0(/) is clear from a semantical point of view, we consider the 
technique to be unattractive from the perspective of algebraic specifications.

All of these data types have equational specifications, though they are not related by homomorphisms. However, from 
the point of view of the simplicity of the semantical constructions and equational specifications, the technique based on the 
common meadow will be shown to be the best way of using total data types to specify Q (÷). The order of steps is simple 
to state and remember: starting with partial A, (i) ⊥-enlargement to B , (ii) algebraic specification of B , (iii) ⊥-restriction of 
B .

4. Computability perspectives

The theory of equational and conditional equational specifications of data types is intimately connected with the theory 
of computable data types. Indeed, it is not possible to understand the scope and limits of specification methods without 
turning to computability theory. Fortunately, there are mature theories of computable data types and especially computable 
rings and fields [48,49].

In the total case, there are many theorems that comprehensively classify the algebraic specification methods. In particular, 
computable data types have small finite equational specifications under initial algebra semantics if auxiliary operations are 
allowed (in the single sorted case, 4 equations using 6 auxiliary functions [19]); furthermore, computable data types can be 
6
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equationally specified with good term rewriting properties [20]. In the case of partial algebras, the situation is technically 
more complicated, but computability is no less relevant to our understanding.

Making partial functions total is one thing in algebra but quite another in computability theory, where partiality is a 
focus of study and affects everything: making a partial computable function total can make it uncomputable. However, it is 
easy to prove:

Proposition 4.1. Let A be a partial computable algebra. Then B = Enl⊥(A) is a computable total algebra if, and only if, each partial 
operation of A has a computable domain of definition.

Fortunately, the rational numbers with division are a partial algebra whose only partial operation has a computable 
domain of definition, namely Q − {0}.

4.1. Some basic observations

Consider the two external methods where the specification of a data type involved enlargement by new elements, spec-
ification and restriction. Suppose the total data type has a finite (conditional) equational initial algebra specification (�′, E), 
which may use auxiliary constants and functions. From the point of view of computability, this method is not excessively 
powerful as the following proposition limits the computational complexity of the resulting total structure.

Definition 4.1. Given A with signature �, let T�(A) be the set of terms which are defined in A. A subset H of T�(A) ×T�(A)

is approximately computably enumerable if H = (T�(A) × T�(A)) ∩ J with J a computably enumerable subset of T� × T� .

Recall that a set is co-computably enumerable if its complement is computably enumerable.

Proposition 4.2. For closed terms t1, . . . , tn, if A = ��(Pdtt1,...,tn (I(�′, E))) is a reduct then T�(A) is co-computably enumerable 
and =A is an approximately computably enumerable relation on T�(A).

Proof. A term t ∈ T (�) is in T�(A) if it is not the case that either t equals one of the terms t1, . . . , tn or t has a subterm 
which equals one of t1, . . . , tn . Now equality in A is computably enumerable, from which it follows with the description just 
given that T�(A) is co-computably enumerable.

Further, it is immediate that equality on T�(A) is the intersection of T�(A) × T�(A) with a computably enumerable set 
of pairs (i.e., the pairs t, r for which t = r can be shown from E). �

Now consider the simpler case where the one absorbtive element ⊥ is added. With the case of the rationals and arith-
metic data types in mind, the following observation further limits the complexity of the resulting data type. Now it is 
assumed that a constant ⊥ is in �′ .

Proposition 4.3. Suppose the reduct A = ��(Pdt⊥(T (�′, E))) is such that
(i) ⊥ denotes an absorptive element in T (�′, E) and
(ii) A |= 0 · x = 0 for some constant 0 and function · of �.

Then T�(A) is computable and =A is a computably enumerable relation on T�(A).

Proof. Let B ∼= T (�′, E) so that A is a ⊥-restriction of B . We have that t ∈ T�(A) if, and only if, E 
 0 · t = 0. To see this 
note that if t ∈ T�(A), according to Proposition 4.2, t is not equal to ⊥ in B and it has also no subterm which is equal to ⊥
in B . This is because, by assumption (i), ⊥ is absorptive in B so if a subterm of t equals ⊥ in B then so does t itself. Thus 
t ∈ T�(A) ⇐⇒ B �|= t = ⊥ ⇐⇒ E 
 0 · t = 0. It follows that T�(A) is computably enumerable and, in combination with the 
observation of Proposition 4.2 that T�(A) is co-computably enumerable, it follows that it is computable.

Again using Proposition 4.2, it follows that =A is an approximately computably enumerable relation on T�(A), and 
T�(A) being computable, =A is a computably enumerable relation. �
4.2. The complexity of data types obtained via totalisation, specification and expansion

Now consider the case that B = I(�′, E) and an expansion B ′ where B is given by means of a finite number of conditional 
definitions.

Proposition 4.4. Let A = � � B ′ . Assume moreover that A |= 0 · x = 0 and that there is another closed term (say 1), defined in A such 
that A |= 1 �= 0. Now:

(i) it is possible that T�(A) is not computably enumerable, and not co-computably enumerable.
(ii) it is possible that =A is not computably enumerable and that it is not co-computably enumerable.
7
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Proof. To see this, let C be a minimal, total semi-computable and non-computable data type. Then C is expanded to A
by f1(x, y) =↑�(x = y) � 0, f2(x, y) = 0 � (x = y)� ↑ and g(x, y) = 1 � (x = y) � 0. We find that for closed t and r in 
T� , f1(t, r) ∈ T�(A) if, and only if, A |= t �= r. It follows immediately that T�(A) is not computable, and also not semi-
computable, because its complement is semi-computable.

Moreover, f2(t, r) ∈ T�(A) if, and only if, A |= t = r from which it follows that T�(A) is not co-semicomputable, as 
otherwise A must be computable which is not the case by assumption.

The same holds for =A , which cannot be co-semicomputable because then it would be computable. Given that 0 =A

g(t, r) if, and only, if A |= t �= r, =A is not semi-computable. �
The ⊥-enlargement specification method, if it works, yields an outcome very close to what an initial algebra specification 

will provide.

Proposition 4.5. Under the conditions of Proposition 4.3: for closed terms t and r:

t ∈ T�(A) if, and only if, E 
 0 · t = 0

and

A |= t = r if, and only if, E 
 t = r and E 
 0 · t = 0 = 0 · r.

In the case of the partial data type Q (÷) and any initial algebra specification (�, E) of Enl⊥(Q (÷)) we have that 
Q (÷) = � � Enl⊥(Q (÷)), and that Proposition 4.6 applies in this case:

Proposition 4.6. Under the above conditions, for closed terms t and r in T�(Q (÷)):

Q (÷) |= t �= r if, and only if, E 
 (t − r) ÷ (t − r) = 1.

These computability observations further suggest that the ⊥-enlargement, specification and restriction method is the 
most straightforward specification method, at least in the case where the target structure is a field of rational numbers 
equipped with a partial division operator.

If more than one, but finitely many, peripheral elements are used to obtain an enlargement of an algebra of rationals – 
in order to prepare for an algebraic specification – then similar results concerning computability can be formulated, though 
no profitable simplification of the specification methods is to be expected. Reasons for enlargement with more than one 
peripheral element can vary: not only is division made total, but other features of current or conceivable practice can be 
captured (e.g., as in the case of the arithmetical datatype of transrational numbers).

5. Equational specifications of the total algebras assigned to Q (÷)

For the rationals with division, we consider some natural candidates for the total algebra B associated with partial 
algebra A by the methods of Section 3.1. In each case we are interested in their equational specification.

5.1. Common meadows, wheels, transrationals, and involutive meadows

As we have mentioned in Section 4, all total computable data types have equational specifications with decent algebraic 
and term rewriting properties.1 The domain, equality and operations of the partial algebra Q (÷) of rational numbers are 
computable; the division operator ÷ is computable and undefined only on 0. This means that if a total algebra constructed 
by any of the four methods is computable then it has an equational specification. Whilst this has implications for the scope of the 
general methods, the rationals are too important to make do with equational specifications generated by general theory: the 
data types of rational numbers need to have carefully designed equational specifications that are customised, understandable 
and useful for various purposes.

The first method used Enl⊥(Q (÷)) in which 1/0 = ⊥. These have been defined and equationally specified in [17,18]. 
Since this is our best method we study these data types in the next subsection.

The second method used two important data types.
The wheels used 1/0 = ∞, where ∞ is unsigned and ⊥ controls the effects of infinity, see [46,29]. We gave an initial 

algebra specification (�w , E) of an abstract data type of wheels of rationals in [23].
The transrationals used 1/0 = +∞, where +∞, −∞ are added and ⊥ controls the effects of infinities, see [2,30]. We 

gave an initial algebra specification (�tr , E) of an abstract data type of transrationals in [22].

1 This is also true of partial data types using certain semantic interpretations [12].
8
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Table 1
Ecm: Equations for common meadows in division notation.

(x + y) + z = x + (y + z) (1)

x + y = y + x (2)

x + 0 = x (3)

x + (−x) = 0 · x (4)

x · (y · z) = (x · y) · z (5)

x · y = y · x (6)

1 · x = x (7)

x · (y + z) = x · y + x · z (8)

−(−x) = x (9)

x ÷ y = x · (1 ÷ y) (10)

x ÷ x = 1 + 0 ÷ x (11)

1 ÷ (x · y) = (1 ÷ x) · (1 ÷ y) (12)

1 ÷ (1 + 0 · x) = 1 + 0 · x (13)

1 ÷ 0 = ⊥ (14)

x + ⊥ = ⊥ (15)

The last two methods used involutive meadows Q 0(÷) in which 1/0 = 0, an option studied in [47,1,42]. We have 
given an initial algebra specification (�m, E) of the abstract data type of involutive meadows of rationals in [21], and a 
simplification of that specification in [15].

Now we turn to the common meadows.

5.2. Equational specifications of common meadows

Our favoured method is summarised as follows. Let A be a partial algebra. Let ⊥ /∈ A and add it to A. Make ⊥ absorbtive 
and the new value of all undefined values of the operations. This makes the total algebra Enl⊥(A). Create an equational 
specification (�, E) for Enl⊥(A) so that

T (�, E) ∼= Enl⊥(A).

Finally, recover A by

A ∼= Pdt⊥(T (�, E)).

For this method to establish itself in the case of arithmetic data types we need to understand the theory of common 
meadows.

5.2.1. Commentary on equations for common meadows
The equational axiomatisation (�cm, Ecm) of the class of common meadows is displayed in Table 1 with some alterations 

from their first appearance in [17] and in [18].
We have made the following adaptations: (i) instead of a we write ⊥, (ii) writing x ÷ y for division instead of x

y , and 
moreover (iii) instead of inversive notation (1 ÷ x as a unary function) we use the notation (x ÷ y as a binary function).

The ‘upgrade’ of the equations from inverse notation to division notation does not deviate from the pattern given in [15].
We can strengthen equation (11) to a new form x · (y ÷ x) = y + 0 ÷ x; and strengthen the equation (12) to a new form 

x ÷ (y · z) = (x ÷ y) · (1 ÷ z) from which we may infer equation (10), i.e., the conventional connection between division and 
inversive notation: x ÷ y = x · (1 ÷ y).

5.2.2. Specification of the rationals
The characteristic χ of a ring is the least n such that the n-fold sum 1 + 1 + . . . + 1 = 0; if no such n exists then the 

characteristic χ = 0.

Definition 5.1. Denoting the numerals n = 1 + 1 + . . . + 1 (n-times), we define equations for characteristic χ = 0 by Eχ=0 =
{n ÷ n = 1 | n ∈N}.

The following completeness result is shown in [17].
9
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Proposition 5.1. An equation t = r over the signature of (partial) meadows is valid in all structures of the form Enl⊥(G(÷)) with G a 
field of characteristic 0 if, and only if, Ecm + Eχ=0 
 t = r.

Now we have a new equational specification of the common meadow of rationals:

Proposition 5.2. (�cm, Ecm + Eχ=0) constitutes an initial algebra specification of Enl⊥(Q (÷)).

Proof. The soundness of the equations follows by inspection; completeness works as follows. Suppose t = r is a closed 
identity true in Q (÷). By using fracterm flattening (see [17] and Section 7.1) there are flat (i.e., ÷ free) closed expressions 
t1, t2, r1, r2 such that

Ecm 
 t = t1 ÷ t2 and Ecm 
 r = r1 ÷ r2.

The terms t1, t2, r1, r2 can be shown equal to numerals, where either
(i) both t2 and r2 are 0, in which case t = ⊥ = r, or
(ii) both are not equal to 0.

In this latter case, multiplication with (−1) ÷ (−1) suffices to make both denominators positive. Now we find

Q (÷) |= (t1 · r2) ÷ (t2 · r2) = t = r = (r1 · t2) ÷ (t2 · r2)

from which it follows that Q (÷) |= t1 · r2 = r1 · t2. As a valid identity between integers this is provable from Ecm so that 
also t = r is provable from Ecm . �

Eχ=0 is the logically weakest set of equations which one may add to Ecm in order to obtain an initial algebra specification 
of Enl⊥(Q (÷)). The specification of Proposition 5.2 is most general in the sense of [7]. In [7] a specification of an abstract 
data type of common meadows of rationals is called most general precisely if all common meadows of characteristic 0 are 
models of the specification, where a model of a specification making use of auxiliary functions is supposed to be the reduct 
of a model of the underlying specification involving those auxiliary functions.

A similar observation concerning specifications of involutive meadows of rationals is made in [9]. In [7] it is noticed that 
a most general initial algebra specification of the involutive meadows of rational numbers must be infinite, while if auxiliary 
functions are admitted then a finite most general specification can be found. For common meadows of rationals we have:

Proposition 5.3. If (�cm, E) is a most general specification of Enl⊥(Q (÷)) then it is infinite.

Proof. Each equation true of all common meadows is derivable from Ecm + Eχ=0 (by Proposition 5.1). Suppose for a contra-
diction that E is finite. Now each e ∈ E is a consequence of a finite subset of Ee of Ecm + Eχ=0. Let E f be the finite union 
of these Ee for all e ∈ E . The finite specification E would be a consequence of the finite set E f of Ecm + Eχ=0. Choose k ∈N
such that

E f ⊆ Ecm + {n ÷ n = 1 | n ∈N,0 < n < k}.
Now let p > k be a prime and consider the prime field of characteristic p equipped with division: F p(÷) satisfies E f . Since 
Enl⊥(Q (÷)) is the initial algebra of (�cm, E), F p(÷) must be a homomorphic image of Enl⊥(Q (÷)). This latter state of 
affairs is impossible as

Enl⊥(Q (÷)) |= p ÷ p = 1 whereas F p(÷) |= p ÷ p = ⊥.

Here is a contradiction so that the assumption regarding the existence of a finite specification can be rejected. �
We do not know if, with the help of auxiliary functions, a finite most general specification of Enl⊥(Q (÷)) can be found.

6. Equalities

The study of partial equality is technically very involved [3,45]. Since algebraic specifications are built from equations 
t = r, equality = is dominant but it need not mean something simple. Here we look at 7 equalities that are relevant for 
working with partial arithmetical data types.
10
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6.1. Equalities derived from total algebras

In the absence of a standard or even a ‘most plausible’ notion of equality for partial algebras, it is practical to take G(÷), 
with G a field, as a platform for surveying various notions of partial equality for fields equipped with a partial division 
operation; G(÷) is a partial meadow.

On total algebras, standard equality presents no problems for identifying elements or syntactic expressions. The con-
structions of Section 3.1 offer various total semantic models B of partiality in A from which we can simply define a ‘partial’ 
equality on A using the standard equality on B . This gives us 4 equalities. In what follows we restrict to arithmetical 
algebras and let σ be a valuation of variables.

First, we use standard equality = in the common meadow, wheel and transfield:

Definition 6.1. For a common meadow,

G(÷),σ |= t =cm r if, and only if, Enl⊥(G(÷)),σ |= t = r.

Definition 6.2. For a wheel,

G(÷),σ |= t =w r if, and only if, Wheel∞,⊥(G(÷)),σ |= t = r.

Definition 6.3. For a transfield,

G(÷),σ |= t =tr r if, and only if, Trans+∞,−∞,⊥(G(÷)),σ |= t = r.

Further, we can use equality in an involutive meadow and other internal options.

Definition 6.4. For an involutive meadow,

G(÷),σ |= t =im r if, and only if, Tot0(G(÷)),σ |= t = r.

Moreover, more generally, for an arbitrary g ∈ G: the equality relation =g is defined by:

G(÷),σ |= t =g r if, and only if, Totg(G(÷)),σ |= t = r.

We notice that =im is a synonym for =0. When =im is adopted – such as in a division by zero calculus (e.g., [38,43]) 
and in the theory of involutive meadows (e.g., [42,16]) – for simplicity = is written instead of =im or =0 (or any other ad 
hoc notation for an equality relation).

6.2. Kleene equality for G(÷)

Kleene equality logic works over an arbitrary partial algebra [36]. The idea of Kleene equality � is that it works on closed 
� expressions as in Enl⊥(A) while for open equations universal quantification ranges over non-⊥ elements of A only.

Proposition 6.1. Let G be an arbitrary field with signature � and extend to the meadow signature �m = � ∪ {÷}. Let t, r ∈ T (�m) be 
such that the free variables of t, r are contained in x1, . . . , xk, then:

G(÷) |= t � r ⇐⇒ Enl⊥(G(÷)) |= (
∧

i=1,...,k

0 · xi = 0) → t = r.

Proof. Immediate from the definition of �. �
Proposition 6.2. For terms t, r over the signature of meadows �m with variables among x1, . . . , xk the following are equivalent:

1. t � r is valid in all partial meadows G(÷) of characteristic 0 (i.e., all G(÷) with G a field of characteristic 0);
2. Ecm + Eχ=0 
 (

∧
i=1,...,k 0 · xi = 0) → t = r.

Proof. The ‘if’ part is immediate from the soundness of the axioms and the proof system 
. The ‘only’ if part works as 
follows: If t = r is true in all partial meadows with characteristic 0 then with Proposition 6.1 (

∧
i=1,...,k 0 · xi = 0) → t = r

holds in all common meadows with characteristic 0. From this it follows that

(

n∑
0 · xi) + t = (

n∑
0 · xi) + r
i=1 i=1

11
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holds in all these structures. Then Proposition 5.1 yields

Ecm + Eχ=0 
 (

n∑

i=1

0 · xi) + t = (

n∑

i=1

0 · xi) + r

from which one obtains

Ecm + Eχ=0 
 (
∧

i=1,...,k

0 · xi = 0) → t = r

by means of equational logic. �
6.3. NaN-equality for G(÷)

In computer arithmetic it is not unusual (but also not universally accepted) to refer to an entity outside the conventional 
number system as a NaN, denoting ‘not a number’. In addition, it is often assumed that an NaN cannot be equal to any 
other entity, not even to itself. In the context of choosing an arbitrary field G and adding division, G(÷), this idea leads to 
a different notion of equality which we refer to as NaN equality:

Definition 6.5. G(÷), σ |= t �f r ⇐⇒ G(÷), σ |= t � r and G(÷), σ |= 0 · t � 0.

6.4. 3-Valued equality

A seventh notion of equality plays an important role in understanding partiality [26]. Here satisfaction relation G(÷), σ |=
t �d r yields a result in a three-valued logic with truth values t, f and d.

Definition 6.6. There are three cases:
(G(÷), σ |= t �d r) = t if, and only if, G(÷), σ |= t �f r,
(G(÷), σ |= t �d r) = d if either G(÷), σ |= t = 1 ÷ 0 or (G(÷), σ |= r = 1 ÷ 0) (or both),
(G(÷), σ |= t �d r) = f if G(÷), σ |= t �= 1 ÷ 0 and G(÷), σ |= r �= 1 ÷ 0 and G(÷), σ |= t �= r.

Thus, in other words: t �d r yields t if both t � r and t �f r are true, and yields f if either t � r or t �f r is false, while 
yielding d otherwise.

6.5. The equality sign in arithmetical practice

The equality sign = is ubiquitous in arithmetical practice. For instance, in teaching = must be understood as a key 
component of an informal language governed by a collection of informal conventions. It is not plausible to expect that the 
informal conventions at work in some practical arithmetical context will coincide precisely with the formal prescriptions of 
an equality relation chosen from

=cm,=w ,=tr,=im,�,�f,�d .

Actually, the equality sign = as used in daily practice in arithmetic is some mix of these 7 options (and others), where the 
particularities of the mix may differ depending on the context at hand. Thus, it is a good example of an assimilation in the 
terminology of [41]. However, we expect that a thorough analysis of = as used in practice will involve specialised syntactic 
and semantic studies creating the study of legal/illegal arithmetical texts.

To the best of our knowledge there is no generally agreed notion of equality which stands out as the most plausible 
choice for an interpretation of the equality sign on G(÷). Here we take into account that in practice: (i) the equality sign is 
used as a relation between expressions rather than between mere values, and (ii) the idea that the semantics of the equality 
sign can be determined independently of the presence of ⊥ and without taking expressions into account is unwarranted.

For Enl⊥(G(÷)) the situation is different, and in fact straightforward, and = as used in its first order logic stands out as 
the most plausible interpretation of the equality sign in that setting.

We notice that the conventional practice of arithmetic considers the occurrence of certain expressions, notably 1
0 , as 

undesirable. We propose to introduce a notion of legality to label assertions or texts concerning elementary arithmetic 
which are not rejected in conventional practice, while qualifying an assertion non-legal if it is plausibly rejected. Providing 
an unambiguous definition of legality may not be possible, as opinions regarding acceptance and rejection of texts may 
diverge, in which case a spectrum of notions of legality may come about. We will, however, indicate examples of non-
legal assertions which we consider to be undisputed. For a term t we define t to be not legal if for each valuation σ , 
Enl⊥(Q (÷)), σ |= t = ⊥. Thus a legal expression must allow taking a non-⊥ value. We then propose that an assertion 
involving a non-legal expression is itself non-legal.
12
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Table 2
Ecfc: Equations of common fracterm calculus in conventional notation.

(x + y) + z = x + (y + z)

x + y = y + x

x + 0= x

x + (−x)= 0 · x

x · (y · z)= (x · y) · z

x · y = y · x

1 · x= x

x · (y + z)= x · y + x · z

−(−x)= x
x

y
= x · 1

y
x

x
= 1 + 0

x
1

x · y
= 1

x
· 1

y
1

1 + 0 · x
= 1 + 0 · x

1

0
= ⊥

x + ⊥= ⊥

For instance φ ≡ false → 1
0 = 1

0 is true in Enl⊥(Q (÷)) and which may be considered true in Q (÷) for that reason. 
Nevertheless φ may be considered non-legal because it contains a non-legal subterm. Similarly φ ≡ false → 1

x−x = 1 is true 
in Enl⊥(Q (÷)), as well as in Q (÷), while not legal.

Then consider (x �= 0 ∧ x �= ⊥) → x
x = 1 which is satisfied and unproblematic in Enl⊥(Q (÷)) so that x �= 0 → x

x = 1 can 
be considered valid in Q (÷). Upon substituting x = 0, however, the situation changes and 0 �= 0 → 0

0 = 1 may be considered 
non-legal because it contains a non-legal subterm.

7. Fracterm calculi

The use of a common meadow Enl⊥(G(÷)) to provide a stable workable notion of = for the special case of elementary 
arithmetic with division may have wider scope and significance than being a mere example of the application of the theory 
of abstract data types. Instead of thinking about equational specifications of abstract data types, consider thinking about a 
useable set of laws for manipulating the standard arithmetical forms of fractions. The arithmetical fractions in elementary 
teaching can be faithfully modelled by syntax, and their algebra by structures corresponding with G(÷). To reproduce 
fractions, the notation x ÷ y is replaced by x

y and these syntactic expressions, as well as substitution instances thereof, we 
call fracterms.

7.1. A fracterm calculus for common meadows

The axioms for common meadows in Table 2 lay down equational laws for division using the horizontal bar notation 
for fracterms. The change of notation makes explicit a change of representation through syntax: the ill-defined notion of 
fraction becomes clear in the definition of fracterm.

With the change of notation, and the introduction of formal syntax of fracterms, these axioms may alternatively be 
restyled as the fracterm calculus of common meadows.

What we will refer to as common fracterm calculus is a calculus specific for common meadows. Common fracterm 
calculus is merely another name for the specification of common meadows in division notation. We propose that the default 
interpretation of ‘fracterm calculus’ is common fracterm calculus, thereby expressing our belief that the common fracterm 
calculus is the most convincing instance of a fracterm calculus.

A central first property of any calculus formalising fractions is the possibility of flattening fracterms:

Definition 7.1. A fracterm t is flat if it is of the form t = p
q where the terms p and q do not contain division.

Theorem 7.1. Any fracterm t can be reduced by the laws of Table 2 to a flat fracterm p
q .

Remarkably the fracterm flattening property cannot be obtained without extending the domain of rational numbers.
13
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Theorem 7.2. If a total enlargement A of Q (÷) has no peripheral numbers, i.e., no elements outside the rationals occur in the domain, 
so that A is of the form Tott(Q (÷)) with t a closed term of the form n

m with m > 0, then the corresponding fracterm calculus does not 
enjoy the flattening property.

Proof. Suppose that the total enlargement A of Q ( ) without peripheral numbers, allows fracterm flattening. We consider 
the following expression:

h(x, y, u, v) ≡ x

y
+ u

v
.

Let p and q be flat (i.e., division free) expressions such that A |= h(x, y, u, v) = p

q
. We notice that p and q are polynomials 

with integer coefficients. We first show that y is a factor of q, and with a similar proof that v is a factor of q so that 
q = y · v · q′ , for some polynomial q′ with integer coefficients. To see that y is a factor of q we write q = q1 · y + q2 where 
y does not occur in q2. Suppose that q2(x, u, v) is nonzero then for some a, b, c ∈ Q , q2(a, b, c) �= 0. Thus 

p

q
is a continuous 

function of x sufficiently close to (x = a, y = 0, u = b, v = c) which cannot be the case given the definition of h.
Next we notice that p(x, y, z, u) = (x · v + y · u) · q′(x, y, z, u) for all x, y, z, u where h is continuous. It follows that 

p(x, y, z, u) = (x · v + y · u) · q′(x, y, z, u) everywhere. Now choosing y = u = v = 0 one finds

A |= x

0
+ 0

0
= (x · 0 + 0 · 0) · q′(x,0,0,0)

0 · 0 · q′(x,0,0,0)
= 0

0
.

Because there are no peripherals 
x

0
∈ Q for all x ∈ Q (including 0). It follows that for all x, 

x

0
= 0, i.e., A is an involutive 

common meadow for which it is known from [16] that it does not allow flattening. �
Theorem 7.2 complements the classification results on flattening with peripheral numbers in [25]. Some technical high-

lights of fracterm calculus are:

• terminology for and classification of fracterms [6];
• transformation of arbitrary fracterms into flat fracterms [17];
• logical complexity for fracterm calculi without flattening [5]; and
• analysis of the informal conventions of practical arithmetic about the legality of texts with division by zero.

7.2. Suppes-Ono fracterm calculus

Just as we can propose a fracterm calculus based on common meadows, we can formulate one for each other ‘competing’ 
equational specification. Thus, besides common fracterm calculus we propose Suppes-Ono fracterm calculus as a name for the 
specification in Table 3. Esofc of Table 3 is just the specification of involutive meadows in division notation as given in [15]. 
The name Suppes-Ono fracterm calculus for the calculus of Table 3 (which occurs in [15] already) is chosen for the following 
reasons:

(i) Suppes in [47] clearly expressed for the first time (to the best of our knowledge) that 1
0 = 0 constitutes a possible and 

satisfactory solution of a meaningful problem (what is the result of division by zero) which admits a plurality of solutions 
each of which come with advantages and with disadvantages (see also [1]), and

(ii) Ono in [42] pioneered what happens to the equational logic of fields upon adopting the equation x
0 = 0.

Regarding flattening for Suppes-Ono fracterm calculus, it is shown in [11] that each fracterm can be written as a sum of 
flat fracterms. We refer to this property of the Suppes-Ono fracterm calculus as the quasi-flattening property for fracterms.

Moreover, in [16], it is shown that arbitrarily long sums are needed for that objective, and consequently Suppes-Ono 
fracterm calculus does not allow fracterm flattening proper. In the case of expressions having a single free variable only it 
is shown in [10] that all such expressions can be written in mixed fracterm form, being the sum of a polynomial and a flat 
fracterm.

For �, �f and �d we are unaware of relevant existing literature, and corresponding equational specifications have yet to 
be developed. For proof systems for Kleene equality in general we refer to [45,3].

8. Concluding remarks

8.1. Reflection

Of the four methods for specifying partial data type A, the method of enlarging by a single absorbtive element ⊥ is most 
appealing. Semantically, the total algebra B is the simplest to explain and remember and has good computability properties 
that give some indication of the scope of the general method (e.g., Proposition 4.1).
14
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Table 3
Esofc : A fracterm calculus for Suppes-Ono.

(x + y) + z = x + (y + z)

x + y = y + x

x + 0 = x

x + (−x)= 0

x · (y · z)= (x · y) · z

x · y = y · x

1 · x= x

x · (y + z)= x · y + x · z

−(−x)= x
x

y
= x · 1

y
1

( 1
x )

= x

x · x

x
= x

In the case of arithmetical structures like the rationals, the method using common meadows that have equational spec-
ifications that are recognisable, informative and useful. Thus, from the perspective of abstract data type specifications and 
reasoning, when contemplating Q (÷) as a partial abstract data type, this paper establishes that the corresponding abstract 
data type of common meadows of rationals Enl⊥(Q (÷)) will play a central role. This role is enhanced by the extent that 
we use the partial equality =cm in connection with Q (÷), based on the native equality in Enl⊥(Q (÷)).

8.2. Partial algebraic specifications

For reference let us recall some partial specification methods for partial data types. In programming, partial operations 
arise easily and the problem of specifying them have stimulated many technical ideas, such as guards against applying 
operations on data outside their domains – definedness predicates in conditional axioms [27], subsorting [33], guarded 
algebras [34]. Partiality is an issue in both specification and verification [35]. There are comprehensive surveys [39] and 
substantial mathematical monographs [28,44] to chart the research programme. A measure of the state of the art is to be 
found in the design decisions of the specification language CASL [40]. In CASL, basic specifications define a class of many-
sorted partial first order structures. One method for totalisation that can be tried is designating the domain of a partial 
operation as a subsort. Indeed, a specification of the rationals using subsorts is to be found in Maude. Of course, the theory 
of partial specifications aims at being generally applicable. But such advanced methods have a cost and it is a high one 
when specifying data types such as the rational numbers with division Q (÷).

Let us consider the early basic method offered by Broy and Wirsing in [27]. To specify a partial data type A of signature 
�, they add a predicate D(−) to denote the definedness of a term t . Then assertions D(t) can be placed in assumptions 
and conclusions of conditional axioms in which the predicates occur positively. Under these circumstances they show that 
initial algebras exist and can be used to specify A up to isomorphism. In fact, the notion of equality they use is what we 
call Kleene equality.

Using the method of definedness predicates, one can provide an initial partial algebra specification of Q (÷). However, 
the specification is logically complicated as it makes use of predicates, conditional formulae, and Kleene equality – this 
makes it quite far removed from the elegant and efficient theories of equational specifications such as Table 1 and its 
sibling Table 2.

Thus, we focus on specification methods which use algebraic specifications for the specification of a total abstract data 
type as an intermediate stage, followed by a second stage which leads to the required partial abstract data type. The 
resulting algebras are structures which come without a particular (favoured) equality relation, and in fact several plausible 
equalities can then be introduced for various purposes.
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