
Abstract
A classification technique which distinguishes between man-
made and natural textural features visible on high resolution
satellite images is introduced. The proposed work aims to
evaluate non-linear classification techniques by the unifica-
tion of appropriate texture analysis methods and a learning
Bayesian classifier which is more robust against data uncer-
tainty than the other types of linear classifiers. The classifica-
tion technique introduced within this work will also provide
an opportunity for fully automated thematic and land-use
map generation.

Introduction
In the last few decades the use of satellite images in place of
aerial photography has reduced the cost of map production by
nearly a factor of six. One of the major issues in map produc-
tion is the huge amount of visual data that has to be inter-
preted manually. For example a 5-meter-resolution satellite
image approximately corresponds to a 1:25,000-scale map. For
developing countries which have large land coverage (e.g.,
Sudan, Yemen, etc.), very large sets of maps at this scale need
to be interpreted. This sort of manual interpretation should be
done by highly qualified staff whereas these countries suffer
from the lack of a sufficiently trained workforce and appropri-
ate mapping equipment. The map revision procedure also re-
quires visual interpretation and should be repeated regularly
to include the latest available data due to expansion of urban
areas, natural land changes, etc. Sometimes it may be difficult
to distinguish between natural textural features and poorly
structured residential areas, especially in city suburbs. In
such cases the classifier proposed in this work will operate
as a decision support system (DSS) for map generation which
distinguishes between very similar terrestrial features. The
proposed method may also contribute to fully or semiauto-
mated mapping procedures, especially for developing coun-
tries where manual inspection is much more difficult.

Machine learning (ML) and data mining (DM) techniques
have been used effectively in the last decade for aerial image
interpretation and geographic feature classification. Sung and
Pachowiez (2002) developed an adaptive object recognition
technique which uses texture-based image analysis for detec-
tion and tracking of geographical features on images. The
method is used for segmentation of textural features on the
image by integration of Gabor filters, Laws’ energy filters, and
modified radial basis function classifiers. It may be concluded
from the experiments that the method may only be used to
classify very distinguishable textural features. Pesaresi and
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Benediktsson (2000) investigated feature extraction by
classification of panchromatic high-resolution satellite image
data from urban areas using neural networks. As is well
known, neural networks, unlike Bayesian networks, cannot
build relationships between all variables in the network.
Geman and Jedynak (1996) introduced an active testing model
for tracking roads on satellite images. The method is based on
a statistical model, including joint distribution and an on-line
decision tree. Nilubol et al. (2002) used synthetic aperture
radar (SAR) images to classify the targets using Hidden Markov
Models. The method was developed as an alternative to tem-
plate matching, and ten different target classes were used. In
Rellier et al. (2002), a Bayesian approach was used to specify
local registration and deformation of a road cartographic net-
work on a satellite image to avoid differences between the
map data and ground truth.The method does not work with
textural features.

Even though there are some similarities between these
methods and our proposed method, our method differs in
terms of a specific unification of Bayesian classifiers and a
textural analysis technique which is described in the next sec-
tion. The method also shows similarity with one which was
previously presented by Orun and Alkis (2003) on the identi-
fication of different materials.

The main objective of the proposed method is to gain the
highest accuracy of textural feature classification on the satel-
lite images by using an automatic operation and a single
image band to reduce the data and labor cost. Multispectral
data would increase the labor and computational cost but
would not make too much contribution to the textural analy-
sis result. This is based on the assumption that textural con-
tent remains almost the same in different bands. The final
classification results obtained fall into two categories: (1) clas-
sification of two textural classes (man-made and natural) and
(2) classification of six textural classes (four man-made and
two natural).

Techniques Used
Data Acquisition and Specification
Image samples of the texture classes used in the experiments
were extracted from a large digital satellite image of the Izmir
area in Turkey acquired by an environmental satellite from an
approximate altitude of 817 km. The satellite sensor (IRS-1)
provides a 5-meter resolution panchromatic (photographic)
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image with about a 75- by 75-km ground coverage. The image
data contains 256 grey levels (8-bits per pixel). The imagery at
this scale was selected because of its compatibility with the
1:25,000-scale thematic mapping experiments.

Texture Analysis
Texture analysis algorithms have been comprehensively
studied by several authors (Greenspan, 1994; Rushing et al.,
2001; Ayala, 2001). They are also frequently used to identify
textural features visible on aerial or satellite images (Ionescu,
1989). It is widely accepted that textures can be classified into
two main categories: structured and unstructured (stochastic)
forms. The textures visible on high-resolution satellite im-
agery or aerial photography may often fall into the second
category where no specific rule may be applied to specify the
characteristics of the texture primitives. There exist a few
methods to extract textural features such as structural, statisti-
cal, or spectral properties. The techniques based on grey-level
co-occurrence statistics (Haralick, 1979), grey-level run-length
statistics (Chu et al., 1990), texton gradiens (Julesz, 1986),
Gabor filters (Jain and Karu, 1996), and random field models
(Wu and Doerschuk, 1994) are the best known. In this work,
five statistical measures were used (derived from Phillips
(1995)) in order to specify each texture’s statistical character-
istics. Two different sizes of operation windows (3 by 3 and
5 by 5) were used for Equations 1 through 4 and a 3 by 3 win-
dow size for Equation 5. Large window sizes produce large
edge effects at the class edges but provide more stable texture
measures than do small windows. In return, a small window
size is less stable but has a smaller edge effect (Christopher
and Warner, 2002).

VarianceRuss � ��(ce�nterpi�xel ��neigh�bor)2� (Russ) (1)

VarianceLevine � �ar
1
ea� �(centerpixel � mean)2 (Levine) (2)

� � �Varian�ceLevin�e� (Sigm) (3)

Skewness � �
�
1

3� �ar
1
ea� �(centerpixel � mean)3 (Skew) (4)

Std. Deviation � �� (Stdev) (5)

In Equation 1, “centerpixel” denotes the intensity of a
pixel in the middle of a window and “neighbor” denotes an
intensity value for each pixel in the window. In Equation 2,
“area” corresponds to the size of the window (9 for a 3 by 3
window size). The average pixel intensity value in a window
is denoted as “mean” and also shown as x� in Equation 5.

Because the variance of the Russ method is independent
from the size of the sample area (Figure 1), it allows for free
sampling of the classes in an image. However, the other meth-
ods require sampling always at the same area size. Equations 1
through 5 denote the pixel-based statistical feature extraction
from the sample images which are shown in Figure 1. Here,
selected samples represent man-made features (rows between
“a” and “d”) and natural features (rows between “na” and
“nb”) on high-resolution satellite images.

Bayesian Networks
Bayesian Networks (BN) are known as “directed acyclic
graphs” (DAG) which perform knowledge representation and
reasoning even under uncertainty. They are also called di-
rected Markov fields, belief networks, or causal probabilistic
networks (Jensen, 1998). Bayesian networks are the proba-
bilistic models which graphically encode and represent the
conditional independence (CI) relationships among a set of
data. In Bayesian networks each node represents a database
attribute and is called a variable. The connections (arcs) be-
tween the nodes represent dependency relationships of vari-
ables. Bayesian networks are very efficient tools for modeling
the joint probability distributions of variables. For example, if
A � {X1, . . . , Xn} is a random variable which denotes patterns
spanning the n � N by M dimensional vector space, the joint

�(x � x�)2

��n
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Figure 1. Selected samples representing man-made textural features (rows: a-d) and natural
textural features (rows: na-nb) on high resolution satellite images.
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probability distribution P � (X1, . . . , Xn) is then a product of
all conditional probabilities and may be represented as

P(X) � �
i

P(Xipa(Xi)). (6)

In Equation 6 pa(Xi) is the parent set of Xi. Structural
learning is one of the major specifications of Bayesian net-
works. This is based on constructing relationships between
the variables and is similar to the data mining principle. One
of the major problems in the network is the automatic configu-
ration of a correct causal structure of network variables. Struc-
tural learning algorithms are divided into two categories:
(1) search and scoring based and (2) dependency analysis. In
this work the second one is used to construct the network.

In this work a learning Bayesian Network software utility
(PowerConstructor©) is used (Cheng et al., 2002). The utility
accepts continuous variables and uses the Markov condition
to obtain a collection of conditional independence statements
from the network (Pearl, 1988). All valid conditional indepen-
dence relations can also be extracted from the topology of the
network. The algorithm examines information regarding two
related variables from a data set and decides if two variables
are dependent. It also examines how close the relationship is
between those variables. This information is called condi-
tional mutual information of two variables Xi and Xj, which
may be denoted as

I(Xi, XjC) � �
xi,xj,c

P(xi, xj, c) log . (7)

In Equation 7, C is a set of nodes and c is a vector (one
instantiation of variables in C). If I(Xi, XjC) is smaller than
a certain threshold t, then we can say that Xi and Xj are condi-
tionally independent. Selection of a threshold value in the
software package is optional and may be between 0.1 and 50.
The values P(xi, xjc) may be extracted from the conditional
probability tables. 

Conditional Independence
If there is a causal network with serial or diverging connections
between the nodes A, B, and C (A→B→C or A←B→C), then

P(xi, xjc)
��
P(xic)P(xjc)

A and C are conditionally independent if evidence is inserted
into node B. In this case, C does not effect A due to independence.

The variables A and C are independent, given the variable
B, if:

P(aibj) � P(aibj, ck) for all i, j, k (8)

(note that ai, bj, ck are the states of A, B, C).
If we redefine Equation 8 by the conditioned Bayes Rule,

then

P(AB, C) � � � P(AB).

(9)

In Equation 9, the proof requires that P(CB) � 0 (Jensen,
1998).

Numerical Results
Selection of Data Sets
For the classification experiments, six classes were specified
from residential, mountainous, and sea coast areas. For each
class, ten sample regions were selected (Figure 1). All samples
for a given texture classes were extracted from a large digital
satellite image. Each sample had a size of 35 by 35 pixels,
each with 256 grey-level values. The textural features of each
sample were extracted using five different texture analysis
measures (Equations 1 through 5). The analyses were carried
out by scanning with 3 by 3 and 5 by 5 operational windows
over the sample image. The first half of the results (first 30
cases) was used as the set for network training and the second
half (second 30 cases) was used as the test set. This ideal ratio
of 1:1 between training/test sets had been decided by the ex-
periments. The numerical values of statistical textural mea-
sures (extracted from the sample images) are shown in Table 1
(for urban1 and urban2) and in Table 2 (for natural features).
They were both included in the training set.

P(CB)P(AB)
��

P(CB)
P(CA, B)P(AB)
���

P(CB)

P H OTO G R A M M E T R I C  E N G I N E E R I N G  &  R E M OT E  S E N S I N G February  2004 2 1 3

TABLE 1. THE RESULTS OF TEXTURE ANALYSES FOR TWO SAMPLE CLASSES FROM URBAN AREAS

Image Russ1 Levine1 Sigm1 Skew1 Russ2 Levine2 Sigm2 Skew2 Stdev Class

a1 322 589 24.3 1.9 154 583 24 0.6 40 urban1
a2 550 642 25 2 200 714 27 �0.2 47 urban1
a3 426 744 27.3 1.6 197 818 29 0.3 42 urban1
a4 441 762 27.6 1.4 364 861 29 0.2 42 urban1
a5 172 622 25 1 95 1045 32 0.7 45 urban1
b1 139 336 18.3 1.2 79 356 19 0.4 23 urban2
b2 204 443 21 1.2 179 576 24 1.1 29 urban2
b3 175 275 16.6 1 79 280 17 0.4 19 urban2
b4 354 315 17.7 1.9 110 278 17 0.7 22 urban2
b5 259 289 17 1.1 78 324 18 0.6 21 urban2

TABLE 2. THE RESULTS OF TEXTURE ANALYSES FOR TWO SAMPLE CLASSES FROM NATURAL AREAS

Image Russ1 Levine1 Sigm1 Skew1 Russ2 Levine2 Sigm2 Skew2 Stdev Class

na1 201 106 10.3 1.6 89 109 10 0.3 17 nature1
na2 210 131 11.4 1.7 77 122 11 0.4 16 nature1
na3 154 116 10.8 1 77 155 12 0.4 17 nature1
na4 117 92 9.6 1.9 50 76 8.7 �0.1 14 nature1
na5 112 71 8.4 1.6 38 72 8.5 0.1 12 nature1
nb1 356 556 24 2 206 529 23 �0.1 34 nature2
nb2 320 410 20 2 68 394 20 0.2 34 nature2
nb3 338 568 24 1.5 226 707 27 0.1 40 nature2
nb4 346 306 17.5 2.6 75 208 14 0.2 24 nature2
nb5 334 497 22 1.8 125 536 23 �0.3 36 nature2
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Classification
Suitable system parameters such as the discretization interval
value (�) which is used for slicing the continuous variables,
the discretization method, the threshold value (t) to specify
the conditional independence between variables, etc. should
be selected during the network training and classification
process. After experiments, � was selected to be as high as
possible (30) for maximum accuracy, the “Equal frequency”
method was used for the discretization of continuous vari-
ables, and t was selected to be as small as possible (0.1) in
order to improve the training accuracy. We have to note that,
if t is selected smaller than that, then the model becomes
more complex and the test accuracy decreases. There are no
certain rules for selecting the system parameters (e.g., t, �).
They can only be optimized by experimentation, depending
on the field of application.

The training of the network was the first step in the clas-
sification process. After the training stage, conditionally de-
pendent nodes (variables) were connected to each other by the
conditional independence (CI) rules as described earlier in
the section on Bayesian Networks. Two kinds of classification
tests were performed (Figure 2). First, two classes (man-made
and natural textures) were specified, and second, six classes
(four residential and two natural areas) were specified. The
graphical displays of the results are shown in Figure 2. The
class node (class) is connected to some of the variables which
contain different textural analysis measures. Here the class
node represents the “identification” of textural features. Other
nodes which have no connection are not necessarily unimpor-
tant but their connection would not make any additional
contribution to the results. Because no connection was estab-
lished between the nodes of Russ, Levine, etc., a conclusion
could be made that there is no cause-effect relationship be-
tween two nodes or that such a connection between the nodes
might be ignored by the system (as between the Sigm and
Levine nodes in Figure 2) in order to optimize the network
so that it gains maximum classification accuracy. This is be-
cause the first priority in the network construction is given to
classification accuracy rather than showing the dependencies
between the nodes.

Because the Bayesian classifier has a probabilistic nature of
calculation, an increase in the number of system variables, will
cause the number of calculations to increase exponentially. Too

many variables may also cause an overfitting problem. To avoid
such shortcomings in this work, only five texture analysis
measures were used. The whole classification procedure is
described in Figure 3, and the results of accuracy and class-
confusion matrices are summarized in Tables 3, 4, and 5.

Automatic Mapping Procedure
The classification techniques described earlier were applied
to one image layer for the mapping experiment. To achieve
this, five test sites were selected manually (from one natural
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Figure 2. Automatically selected nodes of the networks are shown in a graphical form displayed by the Bayesian
classifier (Powerconstructor®) after the training process. The figures show two different tests. (a) Using six classes.
(b) Using two classes.

Figure 3. Flow chart of the classification process. 

(a) (b)
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cult to achieve in natural areas where the texture primitives
are quite large and unstructured.

• Test frame size, on the other hand must be small enough to
avoid edge effects (as indicated by Christopher and Warner
(2002)). Especially for fractured areas or at class boundaries, a
large frame size will cause multiple class selection. We have to
note that we cannot select different sizes of frames to suit differ-
ent ground features. Due to the high correlation between the size
and texture measures of a frame, all frames must be at the same
size for an exact comparison of the textural numerical results.

The statistical features which were extracted from these
sites by the texture measures (described in the section on
Texture Analysis) were used as a test set for Bayesian classi-
fiers. On the satellite image, two areas of different classes
were separated by a boundary which was delineated by an ex-
pert (shown in Figure 4). According to the results presented in
Table 6, the overall accuracy of textural feature identification
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TABLE 3. CLASS CONFUSION MATRIX OF CLASSIFICATION RESULTS FOR
DIFFERENT TEXTURAL FEATURES

Class-confusion matrix-I

Values (%) Urban 1 Urban 2 Urban 3 Urban 4 Natural1 Natural2

Urban 1 60 0 0 20 0 20
Urban 2 0 80 0 20 0 0
Urban 3 0 20 80 0 0 0
Urban 4 0 0 0 80 0 20
Natural1 0 0 0 0 100 0
Natural2 40 0 0 20 0 40

TABLE 4. CLASS CONFUSION MATRIX OF CLASSIFICATION RESULTS FOR MAN-MADE
AND NATURAL TEXTURAL FEATURES

Class-confusion matrix-II

Urban (man-made) 
Values (%) Texture Natural Texture

Urban (man-made) texture 100 0
Natural texture 40 60

TABLE 5. CLASSIFICATION ACCURACY RESULTS FOR TWO DIFFERENT CATEGORIES
(FOR TWO AND SIX TEXTURAL CLASSES WITH DIFFERENT DISCRETIZATION METHODS)

Classification accuracy results
(at 95% confidence level)

Number of classes Classification results Classification 
included into the after discretization results after 
classification by maximum discretization by 
procedure entropy equal frequency 

Man-made and Natural 83.3% � 13.34% 86.7% � 12%
textures (2 classes)

Man-made (4) and Natural 73.3% � 15.82% 66.7% � 16.9%
textures (2) (6 classes)

Figure 4. The test sites where the proposed automatic map generation technique was applied. The boundary be-
tween two different textural classes (man-made and natural) was delineated by a mapping expert. 

and four urban areas), each one consisting of test frames. Each
test frame in the sites was subjected to statistical texture
analysis and classification.

When choosing the size of the test frames, we needed to
consider the contradictory requirements of the two following
conditions: 

• Each test frame should be large enough to cover a sufficient
amount of texture primitives. This will provide a stable tex-
ture measure for texture analysis. This condition is more diffi-
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at the selected test sites was 90 percent. This was especially
higher for the natural region.

We have to note that the automatic map generation results
presented in this section give an approximate idea of mapping
accuracy. For a complete mapping procedure, the size of test
frames (ai, . . . , ei) would be optimized further, as was men-
tioned earlier. At the class boundaries, where the test frame
contains more than one class, some additional techniques
(such as sub-pixel definition) would be used to separate the
sub-classes.

Conclusion
In the geographic mapping industry, thematic maps play a
vital role in urban planning and land-use strategy definition.
In extreme cases, when quick decisions are to be made on
urban and land-use planning by the use of appropriate map
layers, difficulties can be faced to complete a thematic map
series of large areas in a short time. The algorithms proposed
within this work aim to overcome these kinds of difficulties
and may lead to fully automatic mapping by the use of Ma-
chine learning techniques and learning classifiers. Bayesian
learning classifiers are especially useful for overcoming uncer-
tainties contained in satellite image data, which may cause
differences between the map and ground truth. 

Only five textural measures were used within the pro-
posed work which were previously tested on unstructured
textures (e.g., garment, wood, etc.) and yielded good results.
However, some other texture analysis measures (such as en-
ergy, entropy, etc.) should also be included and tested for a
trade-off.

The objective of the work in terms of accuracy has been
achieved for the first category of results, which included only
two single classes (man-made and natural) yielding 86.7 per-
cent classification accuracy, whereas the second category
(containing six classes) provided a much lower accuracy
(73.3 percent).
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TABLE 6. THE RESULTS OF TEXTURAL FEATURE IDENTIFICATION ON THE TEST AREAS
IN FIGURE 4 (M � MAN-MADE, N � NATURAL)

Area Output Prob. Man-Made Prob. Natural Results

a1 M 0.65 0.35 TRUE
a2 M 0.65 0.35 TRUE
a3 N 0.07 0.93 FALSE
a4 M 0.93 0.07 TRUE
a5 M 0.93 0.07 TRUE
a6 M 0.93 0.07 TRUE
b1 M 0.93 0.07 TRUE
b2 M 0.93 0.07 TRUE
b3 M 0.93 0.07 TRUE
b4 M 0.93 0.07 TRUE
b5 N 0.07 0.93 FALSE
c1 M 0.65 0.35 TRUE
c2 M 0.93 0.07 TRUE
c3 M 0.65 0.35 TRUE
c4 M 0.93 0.07 TRUE
c5 M 0.65 0.35 TRUE
c6 M 0.65 0.35 TRUE
c7 M 0.93 0.07 TRUE
d1 N 0.07 0.93 TRUE
d2 N 0.07 0.93 TRUE
d3 N 0.07 0.93 TRUE
d4 N 0.07 0.93 TRUE
d5 N 0.07 0.93 TRUE
d6 N 0.07 0.93 TRUE
e1 M 0.93 0.07 TRUE
e2 M 0.93 0.07 TRUE
e3 M 0.65 0.35 TRUE
e4 M 0.65 0.35 TRUE
e5 N 0.07 0.93 FALSE
e6 M 0.65 0.35 TRUE
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