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Abstract: Ammonia/water absorption chillers are driven by low-grade heat and cover wide refrigera-
tion temperatures. This paper analyses single-stage ammonia/water absorption chillers. A numerical
model was developed based on the heat exchanger performance. The model captures variational
heat exchanger performances and describes the actual cycle with varying boundary conditions. The
detrimental effects of refrigerant impurity were analysed quantitatively under different operating
conditions. The model was validated with experimental data. A basic cycle and three advanced
cycles were analysed for sub-zero refrigeration by comparing the thermodynamic performances.
A compression-assisted cycle extended the activation temperature from 80 to 60 ◦C. At the heat
source of 120 ◦C, when a counter-current desorber or bypassed rich solution was used, the COP
increased from 0.51 to 0.58 or 0.57, respectively. The operating parameters included the heat source
temperatures, heat sink temperatures, the mass flow rates and mass concentrations of rich solutions.
Higher heat source temperatures increase cooling capacity. The increase was around 20 kW for the
basic cycle of sub-zero refrigeration. There is an optimum heat source temperature maximising the
COP. Higher heat source temperatures increased the refrigerant mass flow rate and reduced the mass
concentration. The mass concentration can decrease from 0.999 to 0.960.

Keywords: ammonia/water; cycle configurations; temperature glide; heat source temperature; heat
transfer model; plate heat exchanger; absorption cooling; solar refrigeration

1. Introduction

The challenge of global warming will increasingly change future energy transfer and
conversion processes, with renewable energy being a key feature of a low/zero carbon
future. The refrigeration industry has a large potential for carbon mitigation by upgrading
to renewable and sustainable approaches. In 2016, the electricity consumption of space
cooling was 2000 TWh worldwide, which accounted for nearly 18.5% of that in buildings.
The electricity consumption of space cooling was 3% of global primary energy use [1]. This
electricity consumption was dramatically reduced by replacing it with low-grade heat.

Solar refrigeration is one of the most promising options [2,3]. Solar energy harvest
technology has been rapidly developed, and mature technology is available in low temper-
ature ranges (<240 ◦C) [4]. Evacuated tube collectors and compound parabolic collectors
provide fluid with temperatures of around 100 ◦C, which meets the heating requirement of
absorption refrigeration [4].

Absorption refrigeration utilises low-grade heat. The primary working pairs are
ammonia/water and water/lithium bromide. Water/lithium bromide systems have been
widely used because refrigerant purification is eased, leading to a high Coefficient of
Performance (COP). However, the refrigeration temperature is limited by the freezing of
water and must be kept above 0 ◦C. Water/lithium bromide systems are not suitable for
high environment temperatures because of crystallisation [5].
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An ammonia/water system meets the sub-zero refrigeration demand and is applicable
to high environment temperatures. The driving temperature is 70–120 ◦C for single-
stage [6,7]. The main drawback is the low COP due to the ammonia rectification between
the desorber and condenser. The developments of ammonia-based absorption systems are
focused on COP improvement and application extension. The optimisation approaches
have been comprehensively discussed in open literature, which mainly include adding
components to the basic cycles, rearrangement of cycle configurations, using novel working
pairs and adding surfactant to the working fluids [6–9]. The cycle configurations were
investigated to improve the thermal efficiency and compactness:

• Internal heat recovery: the heat of rectification, absorption and condensation was
reused to preheat the strong solution instead of dissipating it into the environment.
The temperature of the strong solution was lifted before entering the desorber so that
the net heating load was reduced. The generator absorber heat exchange (GAX) cycle
made use of the temperature overlap between the desorber and absorber. The over-
lapped heat was transferred from the absorber to desorber. The GAX component was
introduced in two-stage cycles and is located in either the high-pressure circuit or low-
pressure circuit. With multi-effect cycles, the condensation heat was recovered solely
or was combined with absorption heat to generate refrigerant vapour [5,10]. Solution
recirculation was used when the desorber and absorber had large temperature glides.
The desorber was divided into two parts. The rich solution was heated internally in
the first part by the vapour leaving the desorber, and was then externally heated in
the second part. Similarly, the absorber was composed of the internally cooled part
and externally cooled part. Another configuration was the stream separation. The
rich solution leaving the absorber was separated into two streams, which flowed into
the solution heat exchanger and rectifier, respectively [11]. Internal heat recovery was
restrained by the pinch point temperature difference. The optimal cycle configuration
depends on the operating conditions and needed to be investigated individually [12].

• Size reduction: small-scale ammonia/water systems were developed so that the
chillers were mobile or met the residential requirement. The heat and mass transfer
devices were microscale and are non-commercial, thus new design methods were
required [13,14]. A counter-current desorber purified the refrigerant vapour and
reduced the rectifier load, which facilitates compact units. The accurate prediction of
transport processes helped to optimise the system design [15,16].

• Compression-assisted absorption: a booster compressor was integrated in the absorp-
tion cycle, and the system operated at three pressure levels. The compressor had
two locations. A low-pressure compressor was located between the evaporator and
absorber, which increased the absorption pressure or reduced the evaporation pres-
sure. A high-pressure compressor was between the desorber and condenser, lowering
the desorption pressure or increasing the condensation pressure. The compressor
promoted the vapour generation and augmented the cooling capacity [17,18].

Ammonia/water absorption cycles have been widely investigated with experiments
and numerical models [19,20]. The experimental research has mostly measured the overall
cycle performance but has not captured operational issues in depth. For example, the
water content of ammonia refrigerant deteriorates the performance. But the refrigerant
mass concentration is seldom measured, which is important to quantify the performance
deterioration. Numerical models have the potential to investigate the operation details,
which include pinch point analysis, heat exchanger efficiency method and conductance
(UA) model. Pinch point analysis is used to design the cycle configurations, but cannot
predict the performance of heat exchangers [12,21]. When pinch point or heat exchanger
efficiency are used for analysis, the working fluids are usually assumed as saturated states
at the outlet of heat exchangers, which do not reflect the actual operation [22,23].

The UA model is close to the actual cycle [5]. In simplified models, the UA value is
assumed to be constant, which is convenient for the preliminary design but is less accurate
for off-design conditions [13]. Solar driven absorption cycles cope with a varying heat
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source. Thus, the chiller should perform favourably, not only in optimum conditions, but
also in a wide range of operating conditions. The mass flow rates and mass concentrations
of the working fluids are functions of boundary conditions, which change the UA value
during off-design operation. The resulting variation of heat exchanger performance has not
been fully investigated when integrated into a cycle. The heat transfer processes of absorp-
tion cycle include absorption, desorption, evaporation, condensation and single-phase heat
transfer. The heat exchanger performance determines the operating parameters of absorp-
tion cycles. For example, the rich solution must be subcooled at the absorber outlet. The
mass flow rates and mass concentrations of the rich solution are limited by the heat transfer
performance of the absorber. Thus, a detailed analysis of heat exchanger performance is
needed, which helps to locate the bottleneck of the thermodynamic performance.

In ammonia/water system, water is volatile and vaporises with the refrigerant. The
importance of refrigerant purification has been widely recognised, while the discussion is
mostly qualitative [5,24,25]. Fernández-Seara et al. [26] and Fernández-Seara and Sieres [27]
built a model of distillation columns and compared different configurations. Ammonia
concentration in the vapour refrigerant directly affects the operating pressures and system
COP, which was quantified with a simplified system model. Osman and Guo [25] assumed
that the rectifier has a constant efficiency. In other numerical models, the refrigerant is
assumed to be pure ammonia [23], or the rectification process is not considered [22].

The water content in the ammonia refrigerant has a detrimental effect on cycle per-
formance, bringing about a temperature glide during the phase change process at the
condenser and evaporator [5]. The saturation temperature of ammonia/water is higher
than pure ammonia. For condensation, the temperature difference between the refrigerant
and secondary fluid is increased, which promotes the heat transfer. But the temperature dif-
ference during evaporation is reduced. Moreover, water content in the ammonia refrigerant
produces mass transfer resistance, which decreases the Heat Transfer Coefficients (HTCs)
of condensation [28]. Although the overall performances of ammonia/water absorption
chillers have been widely reported, the influence of refrigerant impurity has not been
evaluated quantitatively. In this paper, the variation of refrigerant impurity is quantified
as a function of operating conditions, which explains the COP deterioration because of
temperature glide and HTCs reduction.

In this study, a numerical model was developed for single-stage ammonia/water
absorption chillers. The system was composed of Plate Heat Exchangers (PHEs), making
the overall structure compact [3,7]. The off-design cycle model integrated detailed heat
exchanger models. The variational heat exchanger performances were analysed with
changing boundary conditions. The model was validated with experimental results. In
the case studies of sub-zero refrigeration temperature, different cycle configurations were
compared. The advantages of advanced cycles relative to a basic cycle depend on heat
source temperatures. The mass flow rates and mass concentrations of the rich solution
had major influences on the cooling capacity and COP, which were limited by the heat
transfer performance of the absorber. The above-zero refrigeration temperature was also
discussed. The heat sink temperature is the secondary fluid temperature of the absorber
and condenser. A lower heat sink temperature improves the temperature driving force of
the absorber so that the ammonia mass concentration can be increased.

2. Methodology

Figure 1 is the flow diagram of the basic cycle. The rich solution was heated by the heat
source fluid at the desorber, where vapour of high ammonia concentration was generated.
The vapour and poor solution flowed co-currently and left the desorber at the outlet
(4 and 7). The vapour was partly condensed and was purified at the rectifier, where the heat
was recovered by the rich solution. The reflux from the rectifier was mixed with the poor
solution at the inlet of the Solution Heat Exchanger (SHE) (4 and 8). The vapour refrigerant
was cooled by the heat sink fluid of the condenser. At the Refrigerant Heat Exchanger
(RHE), the refrigerant was subcooled by the cold stream exiting the evaporator. Since the
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refrigerant was not pure ammonia, the evaporation was restrained by the temperature
glide. The refrigerant left the evaporator as a two-phase fluid or superheated vapour, which
was dependent on the refrigerant mass concentration. The remaining cooling capacity was
recovered at the RHE. The refrigerant and poor solution were mixed when entering the
absorber (14 and 6). At the absorber outlet, the rich solution was subcooled (1). The rich
solution recovered heat from the refrigerant at the rectifier and from the poor solution at
the SHE.

Figure 1. Flow diagram of the basic single-stage ammonia/water absorption cycle with internally
cooled rectifier and refrigerant heat exchanger.

It was possible to improve the thermodynamic efficiency of the basic cycle by inte-
grating a compressor, optimising refrigerant purification and augmenting internal heat
recovery. In this paper, advanced cycles are discussed, and different configurations are
compared, including a compression-assisted cycle, a cycle with counter-current desorber
and a cycle with bypassed rich solution.

Figure 2 shows the flow diagram of the compression-assisted cycle. The refrigerant
leaving the RHE flows into a compressor, and the pressure is raised. The system operates
at three pressure levels. The evaporator and cold side of the RHE have low pressure. The
absorber is middle pressure. The other heat exchangers are on the high pressure side.
Consequently, the mass concentration of the rich solution can be increased at the absorber.

In Figure 3, the solution and refrigerant vapour flow counter-currently at the desorber.
The vapour leaving the desorber is in direct contact with the rich solution (4 and 7), and
the vapour mass concentration is increased. The reflux from the rectifier flows back to the
desorber inlet and is mixed with the rich solution (8 and 3).
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Figure 2. Flow diagram of compression-assisted ammonia/water absorption cycle.

Figure 3. Flow diagram of ammonia/water absorption cycle with counter-current desorber.

At the SHE of the basic cycle, the rich solution had a larger mass flow rate than the
poor solution. The pinch point temperature difference was at the cold end. In Figure 4, a
part of the rich solution is bypassed into the rectifier after the solution pump. The rest of
the rich solution enters the SHE. The two parts of the rich solution are fully preheated and
are mixed before flowing into the desorber (3 and 16).
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Figure 4. Flow diagram of ammonia/water absorption cycle with bypassed rich solution.

2.1. Integrated Cycle and Heat Exchanger Models

The cycle was modelled by solving thermodynamic energy and mass balance equations
and heat transfer equations. Figure 5 is the schematic of the model structure. The input
parameters are the mass flow rate and mass concentration of the rich solution, as well as
the boundary conditions of the secondary fluids.

Figure 5. Simulation platform of the integrated cycle model and heat exchanger models.
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The operating pressures were dependent on the heat source and heat sink temperatures.
The desorber had the same pressures as the condenser, which were both on the high-
pressure side. The absorber and evaporator had the same pressure and were on the low-
pressure side. For given boundary temperatures, the condensation pressure determines the
temperature driving force of the desorber and condenser. Higher condensation pressure
reduced the temperature driving force of the desorber but raised the temperature driving
force of the condenser. Thus, a small amount of refrigerant was generated at the desorber,
which was likely to be subcooled at the condenser. On the other hand, lower condensation
pressure promotes the generation of the refrigerant at the desorber. But the temperature
driving force of the condenser was small, and the refrigerant could not be fully condensed.
According to experimental work, the condensation pressure is a function of heat source and
heat sink temperatures [13,19]. Higher heat source or heat sink temperatures increase the
condensation pressure. More refrigerant is generated at higher heat source temperatures,
which increases the heat load of the condenser. The condensation pressure increases to
transfer the heat load. When the heat sink temperature increases, the condensation pressure
is increased to maintain the temperature driving force. In this study, the condensation
pressure was determined so that the refrigerant was completely condensed at the condenser.

Similarly, the temperature driving forces of the evaporator and absorber are functions
of the evaporation pressure. The evaporation pressure is restrained by the absorber. At
low evaporation pressure, the absorber has a small temperature driving force, and the
rich solution cannot be subcooled. Vapour accumulates at the outlet, which increases the
evaporation pressure. When the evaporation pressure is high, the temperature driving
force of the evaporator is small. The cooling capacity is reduced. In accordance with
experimental work, the evaporation pressure increases with higher heat source and heat
sink temperatures [13,20]. Higher heat source temperatures contribute to more refrigerant
and increase the heat load of the absorber. Higher heat sink temperatures reduce the
temperature driving force of the absorber. Consequently, the evaporation pressure is
increased. In this study, the evaporation pressure was determined so that the rich solution
was subcooled at the absorber outlet. In practice, liquid tanks should be installed at the
outlets of the condenser and absorber to stabilise the operation, which do not affect the
energy balance and are not shown in Figures 1–4.

Detailed heat exchanger models were integrated with the cycle model. PHEs were
used as the desorber, condenser, evaporator, SHE and absorber. The HTCs were calculated
with the geometric parameters of the PHEs. Referring to Figures 1–4, the enthalpies of the
states 1, 3 and 13 (h1, h3 and h13) were initialised by the cycle model and then iterated.
The states of the downstream points were calculated as functions of the heat exchanger
performance. For example, the outlet conditions of the desorber were calculated with state 3,
the heat transfer area of the desorber and secondary fluid. Enthalpy instead of temperature
was used as the iteration parameter. Enthalpy changes smoothly from superheated vapour
to subcooled liquid. The calculated values of h1, h3 and h13 using the heat exchanger
models were compared with the estimated values that resulted from the cycle model. The
iteration is finished when the values agree. Otherwise, h1, h3 and h13 are updated. The
iteration was implemented using the Matlab fsolve algorithm [29]. The output parameters
were the cycle COP, the heat loads of all the heat exchangers, the mass flow rate and
mass concentration of the refrigerant, as well as the HTCs. The pressure drops in the heat
exchangers were small and were neglected during the iteration. When the iteration was
finished, the pressure drops were estimated separately.

2.2. Modelling Method

The model integrates thermodynamic mass and energy balance calculations and heat
transfer prediction. It is based on the following assumptions:

• The operation of the cycle is steady state.
• The pressure drops of the working fluids in the heat exchangers do not affect the heat

transfer performance. The absorber and evaporator have the same operating pressures
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except for the compression-assisted cycle. The desorber, rectifier, condenser and SHE
have identical operating pressures. The pressure drops are determined after the heat
transfer calculation is converged.

• Higher heat source and heat sink temperatures increase the operating pressures, so
that the refrigerant is completely condensed at the condenser and the rich solution is
subcooled at the absorber outlet.

• Referring to Figures 1, 2 and 4, at the desorber and rectifier, states 4 and 8 are saturated
liquid. States 7 and 9 are saturated vapour. State 7 is in equilibrium with state 4
(T7 = T4). T7 and T8 have a temperature difference of 10 K because of the mass transfer
resistance (T7 = T8 + 10). This value is based on the investigation of small scale
rectifiers [16,30]. Similarly, in the cycle of Figure 3, states 17 and 8 are saturated
liquid. States 7 and 9 are saturated vapour. State 7 has the same temperature as state 4
(T7 = T4). T7 and T8 have a temperature difference of 10 K (T7 = T8 + 10).

• The working fluids and secondary fluids are uniformly distributed in the channels of
the PHEs. The heat leakage to the environment is neglected.

• The expansion valves do not restrain the mass flow rate of working fluid. The expan-
sion processes are isenthalpic.

• At the evaporator outlet, unevaporated liquid droplets are entrained by the vapour
flow. No water is accumulated. In the following analysis, the ammonia refrigerant
has more water content under larger mass flow rate, and the entrainment effects
are stronger.

The thermodynamic model was derived from the mass, mass concentration and energy
balances of the components. Equations (1)–(3) are the control equations. Equation (4)
calculates the cycle COP. It is the ratio of the cooling capacity to the heating capacity and
consumed power. For the compression-assisted cycle, the power consumption included
the pump power and compressor power. For the other cycles, only the pump power was
involved. The pump power was much smaller than the heating capacity. The efficiency of
the solution pump was assumed to be 50% [31]. Since the pump power was less than 2% of
the heating capacity, the pump efficiency had a little effect on the cycle COP.

∑ min = ∑ mout (1)

∑ minMCin = ∑ moutMCout (2)

Q = ∑ mouthout − ∑ minhin (3)

COP =
QEva

QDes + WSP + WCom
(4)

The counter current heat exchanger models used the log mean temperature difference
(LMTD) method. In Equation (5), the actual heat transfer areas of PHEs consider the area
enlargement of corrugated plates [32]. The HTCs of the working fluids and secondary
fluids are functions of the operating conditions. The working fluids have temperature
glides, which is quantified by the LMTD in Equation (6).

Q = U · A · LMTD

= A
1/αWF+dp/λ+1/αSF

LMTD
(5)

LMTD =
(Thot,in − Tcold,out)− (Thot,out − Tcold,in)

ln Thot,in−Tcold,out
Thot,out−Tcold,in

(6)

The solution circulation ratio is the mass flow rate ratio of rich solution to refrigerant,
which is calculated in Equation (7). It measures the amount of refrigerant generated per
unit rich solution. The solution circulation ratio also indicates the imbalance between the
rich and poor solutions at the SHE.

f =
m1

m9
(7)
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In absorption cycles, the heat transfer processes include the desorption and absorption
of solutions, the condensation and evaporation of refrigerant, as well as single-phase heat
transfer. Applicable correlations were selected for PHEs and were implemented in the
model. The details of the correlations were provided in the Appendix A.

The desorption heat transfer of ammonia/water was estimated by the correlation of
Taboas et al. [33,34]. The desorption process had large mass flow rates and low vapour
qualities. The nucleate boiling process was degraded by the mass transfer resistance.
Convective boiling enhanced the heat transfer. Cerezo et al. [35] proposed a heat transfer
correlation for water-cooled bubble absorbers. The liquid and vapour flowed upward. The
heat transfer was enhanced by lower solution mass concentration, lower cooling water
temperature and higher operating pressure. The correlation of two-phase inlet was used in
the present model.

Ammonia has a high thermal conductivity and a large two-phase density ratio, whose
heat transfer of evaporation and condensation shows distinct characteristics from other
refrigerants [36]. Khan et al. [37] developed a heat transfer correlation for ammonia
evaporation. The heat transfer is dominated by convective boiling in the narrow channels.
Tao and Infante Ferreira [36] proposed a heat transfer correlation of ammonia condensation
based on flow patterns. Convective condensation prevails for large liquid mass fluxes,
while gravity-controlled condensation becomes noticeable for small liquid mass fluxes.
The ammonia refrigerant contained a small amount of water. The temperature glide of
evaporation reduced the temperature driving force and the heat transfer deteriorated.
Although the temperature glide of condensation enlarged the temperature driving force,
the HTC was degraded because of mass transfer resistance. The mixture degradation of
condensation was quantified using the Silver [38] and Bell and Ghaly [39] method.

At SHE, the heat transfer took place between single-phase working fluids. At the
desorber, condenser, evaporator and absorber, the secondary fluids are single-phase flows.
Single-phase heat transfer was predicted using the correlation of Martin [40].

The rectifier has a large temperature driving force. The UA value is small. In this paper,
the rectifier was assumed to have a constant UA value. At the RHE, the cold fluid was
the refrigerant from the evaporator and contained water, which has a sharp temperature
change. The heat transfer of the RHE was calculated with a pinch point temperature
difference of 5 K.

The pressure drops of the working fluids and secondary fluids in the heat exchangers
were calculated after the cycle iteration was converged. The working fluid is in two-phase
flow at the desorber, condenser, evaporator and absorber, which shows separated flow
characteristics [34,37,41]. The two-phase pressure drop was calculated with a separated flow
correlation [36]. Both pure ammonia and ammonia/water have a large two-phase density
ratio. The mass transfer resistance of the mixture had a minor influence on pressure drops.
The pressure drop correlation of pure ammonia is applicable for ammonia/water [28].
The working fluid was single-phase flow at the SHE. The secondary fluids also flowed in
single-phase. The pressure drop was predicted using the correlation of Martin [40].

The thermodynamic properties of ammonia/water were calculated using Refprop,
such as enthalpy, temperature, pressure, density and mass concentration [42]. The trans-
port properties of the mixture used Conde including thermal conductivity and dynamic
viscosity [43]. The fluid properties of aqueous solutions were determined by Melinder [44].

3. Model Validation

The numerical model was validated with two sets of experimental data, whose refrig-
eration temperatures were above-zero and sub-zero, respectively. The experimental setup
performed well in design conditions, and the corresponding data were chosen for valida-
tion. In off-design conditions, the performance of the absorption system deteriorated as the
expansion valve had limited flow passage capability [19,20,45]. The experimental setup
had a slightly different configuration from that in Figure 1. For example, the experimental
setup had no RHE. The numerical model was adjusted to reflect the actual configuration.
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3.1. Above-Zero Refrigeration

Le Lostec et al. [19] experimentally studied a single-stage absorption chiller. An
adiabatic rectifier was installed between the desorber and condenser. The rich solution
flowed into the top of the rectifier. The chiller had a high COP at design conditions
when the refrigeration temperature at the evaporator inlet was close to 10 ◦C. When the
refrigeration temperature decreased, the refrigerant was not completely evaporated, and
the COP was degraded. The refrigerant mass flow rate could not be effectively reduced
by the expansion valve. In this section, the model was compared with six cases with
refrigeration temperatures close to 10 ◦C. Table 1 lists the operating parameters.

Table 1. Operating parameters of the experimental data [19].

Parameter COP Phigh Plow

Des Eva Con Abs

TSF mSF TSF mSF TSF mSF TSF mSF

Unit - kPa kPa ◦C kg s−1 ◦C kg s−1 ◦C kg s−1 ◦C kg s−1

Case1 0.60 1300 530 86 0.52 19 0.82 22 0.33 22 0.56
Case2 0.54 1400 630 85 0.24 19 0.42 22 0.21 22 0.36
Case3 0.47 1400 660 85 0.51 20 0.83 22 0.33 22 0.56
Case4 0.60 1250 560 76 0.51 19 0.82 22 0.32 22 0.56
Case5 0.61 1260 610 75 0.23 19 0.42 22 0.21 22 0.37
Case6 0.58 1250 620 76 0.50 19 0.83 22 0.33 22 0.56

In Figure 6, the predicted values are compared with the experimental data for the
six cases with different heat source temperatures, operating pressures and mass flow rates.
The input parameters were the high and low operating pressures, the inlet temperatures
and the mass flow rates of the secondary fluids. The output parameters were the heat loads
of the heat exchangers.

Generally, the experimental heat loads of the heat exchangers were accurately pre-
dicted by the numerical model. The deviations of the desorber and evaporator were smaller
than 4% and 6%, respectively. The predicted heat loads of the condenser were about
30% larger than the experimental values. During the experiments, to promote cooling, the
condenser and absorber were not insulated [19]. The condenser had a high temperature,
and the heat loss to the environment was significant. The temperature of the absorber
was close to the environment, and the heat loss was minor. The experimental data of SHE
was not measured. The predicted values are presented, which are comparable to that of
the desorber.

As shown in Table 1, the heat sink temperatures of the condenser and absorber were
constant. The heat source temperatures of Cases 1–3 were 85–86 ◦C. In Figure 6a, Case 1
has lower operating pressures than Cases 2–3, which increases the temperature driving
force at the desorber and evaporator. Large cooling capacity was achieved. The predicted
COP was 0.62. In Case 2 of Figure 6b, the mass flow rates of the secondary fluids are the
smallest, which restricts the heat loads. The cooling capacity was small. The COP was
predicted to be 0.54. Case 3 had high operating pressures and large mass flow rates of the
secondary fluids. Low COP was achieved and was 0.49. Cases 4–6 had lower heat source
temperatures that are 75–76 ◦C. The corresponding heat loads of the heat exchangers were
smaller than those of Cases 1–3. The mass flow rates of the secondary fluids were almost
the same for Cases 1 and 4. The desorber heat load of Case 4 was about 25% smaller than
that of Case 1. The predicted COP of Cases 4–6 was 0.61, 0.58 and 0.60, respectively.

3.2. Sub-Zero Refrigeration

Jiménez-García and Rivera [20] built a single-stage absorption chiller with PHEs. The
rectifier was externally cooled, and the heat was not recovered. The heat exchangers were
oversized, and the pinch point temperature difference was close to zero. It was possible to
upgrade the cooling capacity by increasing the mass flow rates. The refrigeration tempera-
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ture at the evaporator inlet was below −10 ◦C, whereas the corresponding secondary fluid
had a higher temperature.

 
(a) Case 1 (b) Case 2 

  
(c) Case 3 (d) Case 4 

  
(e) Case 5 (f) Case 6 

Figure 6. Comparison of the predicted heat loads through this study with the experimental data of
Le Lostec et al. [19] for (a) Case 1, (b) Case 2, (c) Case 3, (d) Case 4, (e) Case 5, (f) Case 6.

The driving temperature was the inlet temperature of the secondary fluid at the
desorber, while the heat sink temperatures were the inlet temperatures of the secondary
fluids at the absorber and condenser. In this section, the model results are compared with
the experimental data [20]. As shown in Table 2, six cases were compared. The mass flow
rates and inlet temperatures of the secondary fluids are presented. In Cases 1–3, the heat
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sink temperature of the condenser was 24 ◦C. The heat source temperature increased from
95 ◦C to 105 ◦C. Cases 4–6 had a condenser heat sink temperature of 28 ◦C. The mass flow
rates of the secondary fluids were constant, which are shown in the notes of Table 2. The
operating pressures were determined by the heat source temperature.

Table 2. Comparison of the numerical model results with the experimental data of Jiménez-García
and Rivera [20].

Parameter TSF,Des TSF,Con TSF,Eva TSF,Abs Phigh Plow

QEva mR COP

Exp. Pre. Exp. Pre. Exp. Pre.

Unit ◦C ◦C ◦C ◦C kPa kPa kW kW kg/s kg/s - -

Case 1 95 24 20 22 1340 270 1.41 1.35 0.00105 0.00113 0.568 0.556
Case 2 100 24 20 22 1360 280 2.30 1.94 0.00170 0.00163 0.603 0.586
Case 3 105 24 20 22 1400 290 2.36 2.40 0.00177 0.00199 0.614 0.591
Case 4 95 28 20 22 1400 270 0.48 0.48 0.00038 0.00040 0.436 0.417
Case 5 100 28 20 22 1420 280 1.02 0.94 0.00076 0.00079 0.515 0.509
Case 6 105 28 20 22 1450 290 2.31 2.17 0.00173 0.00182 0.585 0.577

mSF,Des = 0.267 kg s−1 mSF,Eva = 0.167 kg s−1 mSF,Abs = 0.2 kg s−1 mSF,Con = 0.2 kg s−1

In Table 2, the experimental values of cooling capacity, refrigerant mass flow rate
and COP are compared with the prediction. The predicted cooling capacity coincides to
a large extent with the experimental value. During the experiments, the flow passage
capability of the expansion valve was limited [20]. The experimental mass flow rate of the
refrigerant was restrained, which was slightly over-predicted by the numerical model. The
heat exchangers had large areas, which resulted in the upper limit of COP. In the tested
ranges, the experimental results were accurately predicted by the numerical model. The
relative error of COP was smaller than 5%.

4. Results and Discussion

Two scenarios were analysed with the numerical model. One scenario was a freezer
with sub-zero refrigeration temperatures. The other was above-zero refrigeration. Two types
of PHEs were used in the absorption cycles. The geometrical parameters are listed in Table 3.
Type 1 had long plates, whose length was twice that of type 2.

Table 3. Geometrical parameters of the PHE.

Type Lp Wp Aper dh β φ dg dp Λwave

mm mm m2 mm - mm mm mm

1 668 95 0.0730 2.99 63◦ 1.15 1.72 0.58 6.67
2 334 95 0.0365 2.99 63◦ 1.15 1.72 0.58 6.67

4.1. Sub-Zero Refrigeration

In this scenario, the refrigeration temperature was sub-zero. Four cycle configurations
are discussed. Table 4 presents the input parameters of the secondary fluids. The hot
water temperature generally increased from 80 ◦C to 120 ◦C, which is liquid under the
high operating pressure. For the other secondary fluids, the inlet temperatures were kept
constant. The evaporator used aqueous solution of ethanol with a mass concentration of
30%, which was antifreeze [44].

Table 4 also presents the types and channels of the heat exchangers. The desorber, SHE
and absorber have PHEs of long plates (type 1). The working fluids were rich and poor
solutions, which had large mass flow rates. The heat loads and heat transfer areas were
large. The condenser and evaporator had PHEs of short plates (type 2). The rectifier had a
small heat transfer rate, whose overall conductance (UA) was considered to be constant
and was 0.1 kW K−1.
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Table 4. Input parameters of the heat exchangers and secondary fluids for sub-zero refrigeration.

Heat Exchangers N a A
Secondary Fluid

Fluid Tin Pin m

- m2 ◦C kPa kg s−1

Des (Type 1) 13/12 1.751 Water 80–120 300 0.8
Con (Type 2) 11/10 0.730 Water 18 200 0.5
Eva (Type 2) 13/12 0.876 Aqueous solution of ethanol (30% MC) 0 200 0.8
SHE (Type 1) 9/8 1.168 - - - -
Abs (Type 1) 13/12 1.751 Water 18 200 0.5

a Channel number, the secondary fluid/rich solution has one more channel than the working fluid/poor solution.

4.1.1. Basic Cycle

The performance of basic cycle was analysed, as shown in Figure 1. The influence of
heat source temperature was investigated for different mass flow rates and mass concentra-
tions of the rich solution. The results are shown in Figure 7. According to the experiments,
higher heat source temperatures increase both the high and low pressures [19,20]. The
influence of the operating pressures is discussed in Section 2.1. In this analysis, the high
and low pressures were determined by trial calculation. To ensure that the refrigerant
was completely condensed at the condenser, the high pressures increased with the heat
source temperature and were 860–1200 kPa. With increasing heat source temperatures, the
low pressures increased from 160 to 240 kPa so that the rich solution was subcooled at the
absorber outlet. The corresponding refrigerant temperature at the evaporator inlet was
−24 ◦C to −13 ◦C.

In Figure 7a,b, the trends of the cooling capacity and refrigerant mass flow rate are
similar. The cooling capacity increases with higher heat source temperatures by generating
more refrigerant. The activation temperature of the heat source was 80 ◦C. When the
heat source temperature was lower than 80 ◦C, no refrigerant vapour was generated at
the desorber. The rich solution of higher mass concentration promoted the generation of
refrigerant and improved the cooling capacity. When the mass concentration increased
from 0.387 to 0.406 at the mass flow rate of 0.1 kg s−1, the cooling capacity was more
than 10% larger. Larger mass flow rates of the rich solution increased the cooling capacity
and refrigerant mass flow rates. With the mass flow rate increasing from 0.1 kg s−1 to
0.12 kg s−1, the cooling capacity improved by about 10%.

Figure 7c presents the vapour mass concentrations at the outlet of the desorber and
rectifier. The latter is the refrigerant mass concentration. Higher heat source temperatures
reduced the mass concentrations. Water is the non-volatile content of ammonia/water
mixture. At the desorber outlet, more water evaporated for higher heat source temperature.
When the rich solution was 0.1 kg s−1 and 0.387, the rectifier improved the mass concentra-
tion from 0.931 to 0.998 for the heat source temperature of 100 ◦C. The reflux ratio at the
hot end of the rectifier was 0.11. At the temperature of 120 ◦C, the mass concentration at
the rectifier changed from 0.875 to 0.974. The reflux ratio was 0.17. The vapour quality at
the evaporator outlet was dependent on the refrigerant mass concentration. For high mass
concentration, the refrigerant was completely evaporated and was superheated vapour. The
outlet vapour quality was decreased to about 0.8 when the refrigerant mass concentration
was low at the heat source of 120 ◦C.

Figure 7d depicts the variation of COP. COP increases with heat source temperature
at small values and then decreases. The maximum COP was achieved at 110 ◦C. For low
heat source temperatures, the refrigerant mass concentration was high. Most refrigerant
was evaporated to produce cooling capacity. It is beneficial to increase the heat source
temperatures and to generate more refrigerant. However, at high heat source temperatures,
the refrigerant mass concentration decreases because the generation of water vapour. It was
not possible for the refrigerant to evaporate fully, which reduced the COP. Additionally,
the SHE efficiency decreased for high heat source temperatures since the poor solution had
a much smaller mass flow rate than the rich solution. The mass concentration and mass
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flow rate of the rich solution directly affected the COP. The rich solution of higher mass
concentration (0.406) had a higher COP. Larger mass flow rates of the rich solution reduced
the COP as the heat exchanger effectiveness decreased.

  
(a) (b) 

  
(c) (d) 

−

− −

−

Figure 7. Performances of basic cycle as a function of heat source temperature, the mass flow rate and
mass concentration of the rich solution. Cycle performances are (a) Cooling capacity, (b) Refrigerant
mass flow rate, (c) Vapour mass concentration at the outlet of the desorber and rectifier, (d) COP.

When the rich solution has high mass concentrations, more refrigerant is generated
at the desorber, achieving larger cooling capacity and higher COP. The rich solution with
large mass flow rates has a larger cooling capacity and lower COP. The rich solution must
be subcooled at the absorber outlet before flowing into the solution pump. The mass flow
rates and mass concentrations are restrained by the heat transfer capacity of the absorber.
In Figure 7, the rich solution is subcooled by 2–12 K.

The heat source fluid was provided by solar collectors. Higher fluid temperatures
reduced the thermal efficiency of the collectors due to increased heat loss [4]. In Figure 7,
the absorption cycle had an optimal heat source temperature that maximises the COP. For
single-stage absorption cycles, high heat source temperatures increased the cooling capacity
at the cost of the overall cycle efficiency.

Figure 8 gives the heat loads of all of the heat exchangers with varying heat source
temperatures. The desorber heat loads increased sharply with heat source temperatures,
and more refrigerant was generated. The condenser had a similar trend to the desorber.
When the heat source temperature was low, such as 100 ◦C, the heat load of the evaporator
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was almost the same as that of the condenser. Most of the condensed refrigerant evaporated.
When the heat source temperature was high, the evaporator had a smaller heat load than
the condenser. The refrigerant had a lower mass concentration. During evaporation, the
water content increased the saturation temperature at high vapour qualities, and thus the
refrigerant left the evaporator with considerable amounts of liquid. The cooling capacity
was lost at the evaporator and recovered at the RHE. The RHE heat loads increased
noticeably with heat source temperatures. About 12% of the cooling capacity was recovered
for the heat source of 120 ◦C. When the evaporator and condenser have equal heat loads,
the heat loads of absorber are equivalent to those of the desorber. Otherwise, the non-
evaporated water content flows into the absorber, and the absorber has smaller heat loads
than the desorber. The SHE had steady heat loads. SHE transferred large amount of heat
and reduced the heat input at the desorber. The rectifier had internal heat transfer, and the
heat was recovered to preheat the rich solution. The heat loads of the rectifier accounted
for 5%–18% of the heating capacity at the desorber.

 

−

−

−

Figure 8. Heat exchanger loads as functions of heat source temperature for the rich solution of
0.1 kg s−1 and 0.387.

Figure 9 gives the HTCs of the heat exchangers for the rich solutions of 0.1 kg s−1 and
mass concentration 0.387. Figure 9a shows the overall HTCs. The condenser has the largest
HTCs, while the SHE has the smallest HTCs. The overall HTCs are the combination of the
HTCs on both sides, which are further presented in Figure 9b. At the SHE, the heat transfer
of both sides was single-phase, and the HTCs were relatively small. For the other heat
exchangers, phase change took place at the working fluid side. All the secondary fluids had
large mass flow rates to enhance the heat transfer. When the secondary fluid was water,
the HTCs were relatively large. The secondary fluid of the evaporator was an aqueous
solution of ethanol, which was antifreeze and was appropriate for sub-zero refrigeration.
Because of its large viscosity, the ethanol solution had small HTCs. The evaporator was
required to have a large heat transfer area. The refrigerant had tiny amounts of water,
which caused the deterioration of the heat transfer of condensation. The HTCs of high
concentration ammonia/water were slightly smaller than the HTCs of pure ammonia and
were larger than the HTCs at the desorber and absorber. With low mass concentration, the
working fluid of desorption and absorption had a large mass transfer resistance. The HTCs
of absorption were the lowest. In this analysis, the absorber had a pinch point temperature
difference of 2.1–7.5 K.
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−

−

  
(a) (b) 

−
Figure 9. Overall HTCs (a) and two sides HTCs (b) of the heat exchangers for the rich solutions of
0.1 kg s−1 and mass concentration 0.387. For Des, Con, Eva and Abs, the two sides are working fluid
(WF) and secondary fluid (SF). For SHE, the two sides are poor solution (PS) and rich solution (RS).

The pressure drops at the heat exchangers were neglected during the cycle calculation
and were checked separately. Figure 7 covers several operating conditions. The pressure
drops are functions of the mass flow rates and fluid properties. For the working fluids,
the pressure drops of the desorber and absorber were smaller than 4 kPa and 26 kPa,
respectively. The pressure drops of the condenser and evaporator were smaller than 1.2 kPa.
The desorber and absorber had larger mass flow rates than the condenser and evaporator.
These pressure drops were significantly smaller than the operating pressures. It was
reasonable to neglect the pressure drop when predicting the heat exchanger performance.
The pressure drop of all of the secondary fluids was smaller than 38 kPa. Since the secondary
fluid was single-phase flow, it was acceptable to neglect the pressure drop during heat
transfer calculation.

4.1.2. Compression-Assisted Cycle

Compression-assisted cycle is shown in Figure 2, and the performance is presented in
Figure 10. When the pressure ratio is 1, the cycle is the same as the basic cycle. With the
pressure ratio of 2, the mass concentration of the rich solution is increased to 0.486. The
pressure ratio of 3 further increases the mass concentration to 0.536. With the increase of
heat source temperature, the refrigerant leaving the evaporator changed from superheated
vapour to two-phase fluids. The lowest vapour quality is 0.9. A screw compressor was
chosen to cope with wet compression. The compressor isentropic efficiency was considered
to be 70% [46]. The subcooling at the absorber outlet was 2–9 K.

As shown in Figure 10a,b, large pressure ratio and high mass concentration reduce the
activation temperature of the heat source. Refrigerant vapour is generated at a lower heat
source temperature. With the pressure ratio of 2 and 3, the activation temperature decreases
to 65 ◦C and 60 ◦C, respectively. Large pressure ratio increases the cooling capacity and
the refrigerant mass flow rate. When the heat source temperature is higher than 80 ◦C, the
pressure ratio of 3 increases the cooling capacity by around 12 kW.

In Figure 10c, the large pressure ratio increased the vapour mass concentration at the
desorber outlet. But the mass concentration improvement at the rectifier was smaller than
that of the basic cycle. This was because the reflux ratio was small for a large pressure ratio
and large refrigerant mass flow rate.

In Figure 10d, large pressure ratio increases COP, especially at low heat source tem-
peratures. With the pressure ratio of 2 and 3, the maximum COP is achieved at 80 ◦C
and 70 ◦C, respectively. Large pressure ratio results in a large refrigerant mass flow rate
and low refrigerant mass concentration, so the maximum COP took place at lower heat
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source temperature, where the SHE imbalance and refrigerant impurity caused smaller
thermodynamic losses.

  

(a) (b) 

  
(c) (d) 

Figure 10. Performances of compression-assisted cycle as a function of heat source temperature and
pressure ratio. Cycle performances are (a) Cooling capacity, (b) Refrigerant mass flow rate, (c) Vapour
mass concentration at the outlet of the desorber and rectifier, (d) COP.

Figure 11 presents the heat loads of all the heat exchangers and the power consumption
of the solution pump and compressor. Compared with the basic cycle in Figure 8, more
heat was transferred between the working fluids and secondary fluids at the desorber,
condenser, evaporator and absorber. This was attributed to the larger refrigerant mass
flow rate. The SHE had smaller heat loads since the imbalance between the rich and poor
solutions was more severe. The compressor power consumption increased noticeably with
the heat source temperature, while the power consumption of the solution pump was
negligible. At low heat source temperatures, compression-assisted cycle achieved major
performance improvement with small compressor power consumption.

4.1.3. Cycle with Counter-Current Desorber

The flow diagram and performances of counter-current desorber are shown in
Figures 3 and 12, respectively. The advanced cycle increased the vapour mass concen-
tration at the desorber outlet, while the vapour mass flow rate stayed almost the same as
the basic cycle. The cooling capacities of the advanced cycle only increased slightly. With
counter-current desorber, the outlet vapour was in direct contact with the rich solution.
Compared with co-current desorber, this vapour had a lower temperature and higher mass
concentration, which is shown in Figure 12a. There was a great improvement of mass con-
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centration at high heat source temperatures. According to Figure 12b, the counter-current
desorber reduces the heat input. This was attributed to the fact that vapour of a higher
ammonia mass concentration has smaller enthalpy. Less heat is required to generate the
vapour. The heat input was reduced by 4.4 kW at 120 ◦C. As shown in Figure 12c, the
advanced cycle had smaller heat loads for the rectifier, resulting from smaller temperature
driving force. Small heat loads reduced the reflux ratio, and the purification effect was
affected, which can be seen from Figure 12a. In Figure 12d, the counter-current desorber
improved the COP, especially at high heat source temperatures. The COP was improved
from 0.51 to 0.58 at 120 ◦C. The maximum COP took place at 115 ◦C. The evaporation
of the water content was restrained, and the heat input was effectively used to generate
ammonia vapour.

Figure 11. Heat exchanger loads and power consumption as functions of heat source temperature for
the pressure ratio of 3.

4.1.4. Cycle with Bypassed Rich Solution

At the SHE of the basic cycle, the rich solution had a larger mass flow rate than the
poor solution. Restrained by the pinch point temperature difference at the cold end, it
was not possible to use the high temperature heat carried by the poor solution fully. To
improve the internal heat recovery, an advanced cycle is shown in Figure 4. After the
solution pump, the rich solution was divided into two streams. The main stream flowed
into the SHE, while the other stream was bypassed and was heated at the rectifier. The
main stream was controlled so as to have the same mass flow rate as the poor solution, so
that the temperature difference between the two fluids was almost constant within the SHE
and the rich solution was fully preheated.

In Figure 13, the performances of the cycle with bypassed rich solution are compared
with those of basic cycle. The advanced cycle improves the COP noticeably at high heat
source temperatures, while the improvement is minor at low heat source temperatures. The
COP increased from 0.51 to 0.57 at 120 ◦C. As shown in Figure 13b, bypassed rich solution
played an important role for a small solution circulation ratio, where the SHE showed a
serious imbalance between the rich and poor solutions. The refrigerant mass flow rate of
the advanced cycle was almost the same as that of the basic cycle.
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(a) (b) 

  
(c) (d) 

Figure 12. Performances of cycle with counter-current desorber and basic cycle as a function of
heat source temperature. Cycle performances are (a) Vapour mass concentration at the outlet of the
desorber and rectifier, (b) Heating capacity, (c) Heat loads of the rectifier, (d) COP.

  
(a) (b) 

Figure 13. Performances of cycle with bypassed rich solution and basic cycle as a function of heat
source temperature. Cycle performances are (a) COP, (b) Solution circulation ratio.
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The influence of bypassed rich solution is further analysed in Figure 14. When the
heat source temperature is 120 ◦C, the advanced cycle has a larger heat load for the SHE
compared with the basic cycle, and the heat input at the desorber is reduced. Moreover, the
poor solution was fully precooled at the SHE, and the heat load of the absorber decreased.
The change of the cooling capacity was minor. At the heat source temperature of 80 ◦C, the
bypassed rich solution had negligible effects. The SHE had a larger heat load than other
heat exchangers. The heat input at the desorber was mostly used to increase the sensible
heat of the solution, while only a small part was converted as the latent heat of the vapour.

  
(a) (b) 

Figure 14. Heat exchanger loads of cycle with bypassed rich solution and basic cycle for different
heat source temperature. (a) 120 ◦C, (b) 80 ◦C.

The performance of different cycles is compared in Figure 15. Both the cooling capacity
and heating capacity of the compression-assisted cycle are increased. More refrigerant
is generated. This enhancement had large effects at low heat source temperatures. The
cycles with counter-current desorber or bypassed rich solution reduced the heating capacity,
while the change of cooling capacity was small. Both cycles had similar effects and were
advantageous at high heat source temperatures. The performance improvement of the
advanced cycles was dependent on the heat source temperatures.

 
(a) (b) 

−

Figure 15. Performance comparison of different cycles. (a) Cooling capacity, (b) Heating capacity.
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4.2. Above-Zero Refrigeration

This scenario setted the refrigeration temperature to above zero, and analysed the
basic cycle. Table 5 shows the boundary conditions. The hot water temperature increases
from 100 ◦C to 130 ◦C. The heat sink temperature of the condenser and absorber increases
from 25 ◦C to 35 ◦C.

Table 5. Input parameters of the heat exchangers and secondary fluids for above-zero refrigeration.

Heat Exchangers N a A
Secondary Fluid

Fluid Tin Pin m

- m2 ◦C kPa kg s−1

Des (Type 1) 13/12 1.751 Water 100–130 300 0.8
Con (Type 2) 13/12 0.876 Water 25–35 200 1
Eva (Type 2) 17/16 1.168 Water 20 b 200 1
SHE (Type 1) 5/4 0.584 - - - -
Abs (Type 1) 13/12 1.751 Water 25–35 200 0.5

a Channel number, the secondary fluid/rich solution has one more channel than the working fluid/poor solution.
b This temperature should be lower if dehumidification is required for the application of air-conditioning.

Compared with sub-zero refrigeration, the rich solution had a higher mass concentra-
tion for above-zero refrigeration. Consequently, more refrigerants were generated at the des-
orber. As shown in Table 5, the condenser and evaporator have larger heat transfer areas.

The heat sink temperature had a major influence on the cycle performance. The
mass concentrations of the rich solution were limited by the capacity of the absorber. For
higher heat sink temperatures, the mass concentrations were reduced to maintain the
temperature driving force. In Figure 16, the influences of heat source temperature and
heat sink temperature are analysed. The high and low pressures were determined by trial
calculation. The low pressure increased with the heat source temperature for 460–520 kPa
so that the working fluid was subcooled at the absorber outlet. The subcooling was 1–29 K.
Consequently, the evaporation temperature at the evaporator inlet increased from 3 ◦C to
6 ◦C. At the condenser, higher heat sink temperature increased the operating pressures [13].
The temperature driving force was maintained so that the refrigerant was fully condensed.
In this analysis, the high pressures were 1250–1550 kPa, 1350–1650 kPa and 1450–1750 kPa
for the heat sink temperatures of 25 ◦C, 30 ◦C and 35 ◦C, respectively.

In Figure 16a,b, the cooling capacity and refrigerant mass flow rate decrease with
higher heat sink temperature. The rich solution has a lower mass concentration for a
higher heat sink temperature, which restrains the generation of refrigerant vapour at the
desorber. Additionally, the operating pressure of the desorber is higher for high heat sink
temperature. The temperature driving force between the heat source and working fluid is
reduced. Higher heat source temperatures increase the cooling capacity and refrigerant
mass flow rate. The increase of the refrigerant mass flow rate is almost linear, while the
increase of the cooling capacity becomes flat at high heat source temperatures. The reason
was that the refrigerant contained more water, which is presented in Figure 16c. The
refrigerant mass concentrations decrease with the heat source temperature. The refrigerant
leaving the evaporator has a vapour quality of about 0.9 at the heat source of 130 ◦C. When
the heat sink temperature is low, the refrigerant has higher mass concentration.

In Figure 16d, the COP decreases with higher heat sink temperature. Higher heat sink
temperature causes the heat transfer of the absorber and condenser to deteriorate. The
mass concentrations of the rich solution decrease at the absorber. The operating pressure of
the condenser rises. Since the desorber has the same operating pressure as the condenser,
less refrigerant is generated. There is a maximum COP. When the heat sink temperature is
35 ◦C, the maximum COP occurs at a heat source temperature of 115–120 ◦C. For the heat
sink temperature of 25 ◦C and 30 ◦C, 110 ◦C is the optimal heat source temperature.
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(a) (b) 

  
(c) (d) 

Figure 16. Cycle performances as a function of heat source temperature and heat sink tempera-
ture. Cycle performances are (a) Cooling capacity, (b) Refrigerant mass flow rate, (c) Vapour mass
concentration at the outlet of the desorber and rectifier, (d) COP.

Figure 17 shows the heat loads of the heat exchangers with different heat sink tem-
peratures. The heat source temperature is 110 ◦C, achieving a high COP. Higher heat sink
temperatures generally reduce the heat loads of the heat exchangers since the refrigerant
mass flow rate decreases. The heat loads of the desorber, condenser, evaporator and ab-
sorber are mostly latent heat, and are proportional to the refrigerant mass flow rate. The
SHE shows different characteristics. When the refrigerant mass flow rate is small, the
mass flow rates of the rich solution and poor solution are close, resulting in higher heat
exchanger effectiveness. The rectifier has a large heat load so that the vapour is sufficiently
purified. The heat loads of the rectifier account for more than 16% of the heating capacity
at the desorber. Because of the high refrigerant mass concentration, the evaporator has an
equivalent heat load to the condenser. The condensed refrigerant is fully evaporated. The
RHE recovers a small amount of cooling capacity.
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 

Figure 17. Heat exchanger loads as a function of heat sink temperature.

5. Conclusions

A single-stage ammonia/water absorption chiller was modelled and was validated
with experimental data. Sub-zero refrigeration was investigated for the basic cycle and
three advanced cycles. Above-zero refrigeration was also analysed for the basic cycle. For
all the scenarios, COP initially increased with heat source temperatures but then decreased
because of lower refrigerant mass concentrations. The main conclusions are below:

• The COP for the basic cycle of sub-zero refrigeration is 0.23–0.54. The activation
temperature of the heat source is 80 ◦C. The maximum COP is achieved when the
heat source temperature is 110 ◦C. When the heat source temperature is too high, the
water content generated at the desorber increases the thermodynamic losses. Higher
heat source temperature increases the refrigerant mass flow rate and cooling capacity.
The cooling capacity is 2.1–22.4 kW. The rich solution with large mass flow rates and
high mass concentration achieves a larger cooling capacity since more refrigerant is
generated. The mass flow rates and mass concentrations are restrained by the heat
transfer performance of the absorber.

• The compression-assisted cycle reduces the activation temperature of the heat source.
Compared with the basic cycle, this cycle produces more refrigerant and cooling
capacity, especially at low heat source temperatures. The cooling capacity is increased
by around 12 kW at the pressure ratio of 3. The COP increases to 0.47–0.65 at the cost
of more compressor power consumption.

• The cycle with counter-current desorber increases the mass concentration of outlet
vapour and reduces the heating capacity. The COP is 0.31–0.58, and is improved by
about 7% relative to the basic cycle. The cycle with bypassed rich solution optimises
the internal heat recovery of the SHE. The COP is 0.31–0.59. The counter-current
desorber and bypassed rich solution improve their performance significantly at high
heat source temperatures.

• The COP for above-zero refrigeration is 0.48–0.65. The optimal heat source temperature
for COP depends on the heat sink temperatures. A higher heat source temperature
is needed with a high heat sink temperature. A higher heat source temperature and
a lower heat sink temperature increase the cooling capacity. The maximum cooling
capacity is 33.3 kW.
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Nomenclature

Symbols
A Actual heat transfer area [m2]
Bo Boiling number [-]
Co Convection number [-]
COP Coefficient of performance [-]
cp Specific heat [Jkg−1K−1]
dg Channel gap [mm]
dh Hydraulic diameter [m]
dp Plate thickness [mm]
f Solution circulation ratio [-]
fD Darcy friction factor [-]
Fr Froude number [-]
g Gravitational constant [ms−2]
h Enthalpy [kJkg−1]
LMTD Log mean temperature difference [K]
Lp Effective plate length [mm]
m Mass flow rate [kgs−1]
MC Mass concentration [-]
P Pressure [kPa]
Pr Prandtl number [-]
Q Heat transfer rate [kW]
Re Reynolds number [-]
T Temperature [◦C]
U Overall heat transfer coefficient [Wm−2K−1]
u Superficial velocity [ms−1]
W Power [kW]
We Weber number [-]
Wp Effective plate width [mm]
x Vapour quality [-]
Greek symbols
α Heat transfer coefficient [Wm−2K−1]
β Chevron angle to flow direction [◦]
∆ Difference [-]
Φ Surface enlargement factor [-]
φChisholm Two-phase friction multiplier [-]
λ Thermal conductivity [Wm−1K−1]
Λwave Corrugation wavelength [mm]
µ Dynamic viscosity [Pas]
ρ Density [kgm−3]
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Subscripts
C Cooling water
Cold Cold fluid
Cri At critical conditions
eq Equivalent
high High pressure side
hot Hot fluid
in Inlet
L Liquid
LO Liquid only
low Low pressure side
LTi Limits in Equations (A2)-(A3)
LV Latent liquid to vapor
out Outlet
PS Poor solution
R Refrigerant
RS Rich solution
sat At saturation conditions
sink Heat sink
source Heat source
SF Secondary fluid
TP Two-phase
V Vapour
wall At wall conditions
WF Working fluid
Abbreviations
Abs Absorber or absorption process
Com Compressor
Con Condenser or condensation process
Des Desorber or desorption process
Eva Evaporator or evaporation process
Exp Experimental data
HTC Heat transfer coefficient
Per For each heat exchanger plate
PHE Plate heat exchanger
PR Pressure ratio
Pre Predicted data
Rec Rectifier
RHE Refrigerant heat exchanger
SHE Solution heat exchanger
SP Solution pump

Appendix A

PHEs are used as the desorber, condenser, evaporator, absorber and SHEs. The
heat transfer and pressure drop correlations are described below. The definitions of non-
dimensional numbers are listed in Tao and Infante Ferreira [47].

The liquid heat transfer coefficient is given in Equation (A1), which is used to predict
the working fluid of solution heat exchanger and the secondary fluids of other heat ex-
changers [40]. It is a function of Darcy friction factor, fD, and the chevron angle of plate
heat exchanger, β. fD is calculated using Equations (A2)–(A4). Equation (A1) is also used
to predict the liquid-only heat transfer coefficient included in the two-phase heat transfer,
which is shown in Equations (A5) and (A8). The pressure drops of the secondary fluids are
calculated with Equations (A2)–(A4).

αL = 0.122( fD sin 2β)0.374Re0.748
L Pr0.333

L

(

µ

µwall

)0.167 λL

dh
(A1)
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fD ,LT1 =

{

64Re−1, Re < 2000
(

1.8 log10(Re)− 1.5
)−2, Re ≥ 2000

(A2)

fD ,LT2 =







3.8
(

597Re−1 + 3.85
)

, Re < 2000

3.8
(

39Re−0.289
)

, Re ≥ 2000
(A3)

fD =

(

cos β
√

0.18 tan β + 0.36 sin β + fD ,LT1/ cos β
+

1 − cos β
√

fD ,LT2

)−2

(A4)

The desorption correlation of Taboas et al. [33] is shown in Equation (A5). uV and
uL are the superficial velocities of vapour and liquid, respectively. Bo is boiling number.
αLO is liquid-only heat transfer coefficient. φChisholm is two-phase friction multiplier. This
correlation combines nucleate boiling and convective boiling. The dominant boiling mecha-
nism depends on the superficial velocities of vapour and liquid. This correlation is derived
from experimental data and is applicable for the mass fluxes of 50–150 kg m−2 s−1 and
the vapour qualities of 0–0.2 [34]. The mass concentrations are 0.42–0.62. The operating
pressures are 700–1500 kPa. The heat fluxes are 20–50 kW m−2.

{

αDes = 5Bo0.15αLO, uV < −111.88uL + 11.848
αDes = max

{

5Bo0.15αLO,
(

φ2
Chisholm

)0.2
αLO

}

, uV > −111.88uL + 11.848
(A5)

Equation (A6) is the correlation of absorption in bubble mode [35]. ReL, ReC and ReV

are the liquid Reynolds number, cooling water Reynolds number and vapor Reynolds
number, respectively. ∆P is the pressure drop.

αAbs = 691.60Re0.36
L Re−0.80

C Re0.10
V Pr−0.41

L ∆P−0.19 λL
dh

ReL = 213 − 572, ReC = 280 − 590, ReV = 759 − 1994
(A6)

The evaporation of ammonia is predicted using Equation (A7) [37]. Reeq and Boeq are
equivalent Reynolds number and equivalent Boiling number, respectively. This correlation
is applicable for the operating conditions that the inlet is subcooled liquid and the outlet is
two-phase with the vapour qualities of 0.5–0.9. The saturation temperature is −25 ◦C to
−2 ◦C. The heat fluxes are 21–44 kW m−2.

αEva = 82.5
(

ReeqBoeq

)−0.085
(

Psat
Pcri

)0.21
λL
dh

Reeq = 1387 − 2200
(A7)

Ammonia condensation is calculated with Equation (A8) [36]. WeL is the liquid
Weber number. Co and FrL are the convection number and liquid Froude number. This
correlation applies to the vapor qualities of 0–0.8 and the mass fluxes of 20–80 kgm−2s−1.
This correlation was originally developed for the saturation pressure below 1000 kPa and
can be extended to higher pressure since the fluid properties of ammonia change slightly
with operating pressure.























αCon = αLO

(

0.17Co−1.12Fr−0.2
L + (1 − x)0.748

)

, WeL ≥ 0.12

αCon = αLO

(

0.17Co−1.12Fr−0.2
L + (1 − x)0.748

)

WeL
0.12 +

0.36Co−0.28
(

gρL(ρL−ρV)∆hLV λ3
L

µL∆Tdh

)0.25
Pr0.333

L
0.12−WeL

0.12 , WeL < 0.12

(A8)

The condensation heat transfer of high concentration ammonia/water degrades com-
pared with pure ammonia. The reduction of HTCs is calculated with the Silver [38] and
Bell and Ghaly [39] method, which is given in Equation (A9). The mass transfer resis-
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tance is proportional to the heat transfer resistance of the vapor, αV
−1, and derivative of

temperature with enthalpy, dT/dh.

αammonia/water =

(

αammonia
−1 + xcp,V

dT

dh
αV

−1
)−1

(A9)

The working fluid is two-phase flow during desorption, condensation, evaporation
and absorption. The relevant pressure drops are calculated using Equation (A10) [36].
This correlation was originally developed for pure ammonia, and applies to the vapor
qualities of 0–1 and the mass fluxes of 20–80 kgm−2s−1. It is also applicable for ammo-
nia/water [28]. The two-phase pressure drop is the sum of liquid pressure drop, vapor
pressure drop and interface pressure drop. The single-phase pressure drop is predicted
with Equations (A2)–(A4).

∆PTP = ∆PL + 2
√

∆PL∆PV + x∆PV (A10)
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