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Abstract—Digital Twin (DT) is an emerging technology and
has been introduced into intelligent driving and transportation
systems to digitize and synergize connected automated vehicles.
However, existing studies focus on the design of the automated
vehicle, whereas the digitization of the human driver, who
plays an important role in driving, is largely ignored. Fur-
thermore, previous driver-related tasks are limited to specific
scenarios and have limited applicability. Thus, a novel concept
of a driver digital twin (DDT) is proposed in this study to
bridge the gap between existing automated driving systems and
fully digitized ones and aid in the development of a complete
driving human cyber-physical system (H-CPS). This concept is
essential for constructing a harmonious human-centric intelligent
driving system that considers the proactivity and sensitivity
of the human driver. The primary characteristics of the DDT
include multimodal state fusion, personalized modeling, and time
variance. Compared with the original DT, the proposed DDT
emphasizes on internal personality and capability with respect
to the external physiological-level state. This study systematically
illustrates the DDT and outlines its key enabling aspects. The
related technologies are comprehensively reviewed and discussed
with a view to improving them by leveraging the DDT. In
addition, the potential applications and unsettled challenges are
considered. This study aims to provide fundamental theoretical
support to researchers in determining the future scope of the
DDT system.

Index Terms—Driver digital twin, human-centric deisgn, in-
telligent vehicles, human-machine interactions, cyber-physical
systems.

I. INTRODUCTION

Digital Twin (DT), proposed by Grieves in 2003 [1] and
constantly improved since by several researchers [2–4], fea-
tured among Gartner’s top ten most promising technological
trends for 2018 [5]. Moreover, it is considerably popular as
a multiphysics, multiscale, ultrafidelity simulation that reflects
the state of a corresponding twin in real-time based on his-
torical data, real-time sensor data, and physical models, which
provides remarkable opportunities for many industrial applica-
tions [4, 6–10]. The important milestones in the development
of DT are shown in Fig. 1. Recently, vehicle-to-cloud commu-
nication technology facilitated the integration of DT into the
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intelligent vehicle for monitoring, simulating, and maintaining
the vehicle for its lifetime, which has been explored by several
studies [11–16]. Combined with the smart city technique,
certain researchers have also attempted to introduce the DT
technology to the intelligent transportation system, thereby
improving vehicle design, critical infrastructure maintenance,
autonomous driving testing, and traffic optimization [17–19].

The concept of DT can be considered as an application
and extension of the parallel intelligence (PI) technology
[20, 21] that can be traced back to the Mirror World [22]
and Shadow System [23] from the end of the 20th century.
PI is devoted to exploring the collaboration and interaction
between the actual and the artificial world by leveraging
advanced intelligent technologies. Another typical and popular
concept related to PI is the cyber-physical system (CPS) [24–
26], in which physical and virtual components are deeply
intertwined on various spatial and temporal levels. The CPS,
which was incubated at the turn of the century, was identified
as a key research area by the US National Science Foundation
(NSF) in 2008 [27]. Furthermore, it is considered as one of
the critical enabling technologies of Industry 4.0 [28, 29]
and has been widely adopted in several sectors of society.
Owing to the unprecedented growth and influence of CPSs
on human behavior, Wang [30] theorized that human and
social dimensions must be included in CPSs and proposed
a cyber-physical-social system (CPSS) in 2010. The CPSS
concept has been utilized in several fields [31], in combina-
tion with the Artificial Societies-Computational Experiments-
Parallel Execution (ACP) theory for the parallel driving (PD)
framework [32–35]. This approach underscores the importance
of human drivers who are active in both mental and physical
worlds. Building on this perspective, the CPSS-based approach
emphasizes the integration of human drivers, vehicles, and
information. The fundamental principle of parallel driving is
to leverage the built artificial space that includes artificial
drivers and artificial vehicles, to handle the complex process
automated driving while keeping the design of the real vehi-
cles as simple as possible. However, because CPSs have to
synchronize with humans, the interaction between them was
investigated and highlighted by the Human Cyber-Physical
System Interaction (H-CPS-I) workshop of the International
Federation of Automatic Control (IFAC) in 2014 [36]. Fol-
lowing this, the first formal international conference of the
cyber-physical and human-systems (CPHS) was organized by
the IFAC in 2016 [37]. In 2019, Zhou et al. [38] reported that
an intelligent manufacturing system must always be considered
a human cyber-physical system (H-CPS) from the perspective
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Fig. 1. History of the DT and the generalized parallel intelligence technologies.

of system constitution, i.e., it is a composite intelligent system
comprising humans, cyber systems, and physical systems for
achieving specific goals at an optimized level [39].

The development of the above-mentioned PI technologies,
as shown in Fig. 1, show a unanimous emphasis on human
involvement. A complete intelligent driving H-CPS includes
three aspects: humans, vehicles, and the environmental con-
text, as shown in Fig. 2. The current technology can better
digitize and simulate the last two objects from multiple
physical perspectives [40–45]; however, the digitization of
humans, especially the human driver, remains challenging in
view of their complexity. Existing autonomous technology
requires human involvement, i.e., the driver will probably
be irreplaceable for the foreseeable future. In addition, the
futuristic fully autonomous vehicle must carry private passen-
gers. Thus, their diverse personalities and preferences need
to be considered to improve their acceptance and trust. The
lack of a reasonable unified driver model will significantly
affect the construction of the completed intelligent driving
H-CPS, thereby reducing the reliability and predictability of
the system. Thus, this study proposes the concept of a driver
digital twin (DDT) to address the issue of driver digitization.
Technologies such as advanced sensing, embedded computing,
and intelligent algorithms are significant developments. They
have contributed to the development of a complete DDT
system that enables human-vehicle collaboration and enhances
the intelligence of the automated vehicle, thereby making
it more reliable. A comfortable driving environment that
enables a driver to accurately feel the vehicle’s response and
smoothly operate the vehicle is essential. The proposed DDT
system recommends a reasonable solution to tackle the above
challenges; the automated vehicle is given the ability to adapt
to the driver instead of forcing the driver to adapt to it. Thus,
a harmonious human-centric intelligent driving system can be
obtained.

With the development of digital human technology, human
DT has recently been studied in the context of the health
industry to reform clinical processes and hospital management.
The studies primarily focused on enhancing medical care with
digital tracking and advancing the modeling of the human

Fig. 2. A complete driving H-CPS system should include three aspects:
human, vehicle, and environmental context.

body [46, 47]. The human DT can help researchers in studying
diseases, new drugs, and medical devices. In the future, it
is expected to help physicians optimize the performance of
patient-specific treatment plans [48]. The bones and muscle
model of the digital human can be utilized to prevent injury
[49]. All collected health data (physiological data, genome,
fitness sensors, etc.) help build a better digital human to
respond to current and future medical problems in a faster
and cheaper manner. However, these studies are limited to
the physical level and treat the human body as a sophisticated
machine. Although this approach is extremely challenging and
complex, it is not sufficiently complex to faithfully model
human behavior, humans are more complex than machines
owing to their mental faculties. Thus, human driver digitization
must be capable of modeling habits, personality traits, and
decision patterns, which are crucial features defining a human
driver. Leveraging the DDT, physiological state monitoring can
help prevent potential accidents resulting from distraction or
sudden illness, as well as enhance driving safety; individuality
modeling can help build a human-centric driving system to im-
prove the acceptance, trust, and user experience for intelligent
vehicles. In addition, the collected real driver models based
on historical data can be utilized to support the construction
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of the multiagent system for the driving simulation. This,
in turn, can increase its reliability and predictive ability and
promote the development of the autonomous system. Recently,
Wang et al. [50] proposed the HDT model for human-centric
manufacturing, emphasizing the importance of the human in
HCPS. It aims to accurately track and reflect human motion,
perception, and manipulation activities, as well as capabilities,
in order to construct a human digital representation and regu-
late human-machine alignment based on human proactivity.
In comparison, the DDT focuses on the human driver for
constructing the harmonious human-centric intelligent driving
systems.

Given the growth of intelligent technologies in the past
decades, researchers have studied the driver monitoring sys-
tem (DMS) [51–55] from various perspectives, and related
applications for advanced driver assistance systems (ADASs)
have been proposed [56–59]. However, these studies primar-
ily focused on a specific application or situation without
a comprehensive perspective. Furthermore, previous studies
focused on developing the autonomy and authority of the
vehicle, thereby inadvertently degrading the driver’s role
and importance. In the future, next-generation autonomous
vehicles should be more intelligent, safe, and personalized
[60–69]. Therefore, the relationship between the driver and
vehicle should be discussed further to support the research and
development (R&D) of the futuristic automated vehicle. The
proposed DDT can be considered a reasonable solution that
provides a systematic theoretical framework for integrating the
related modules. The built DDT system continuously tracks
and improves the driving system based on the driver’s style,
preference, and capability by collecting the driver’s data and
pattern in a timely manner. Furthermore, the driving process is
morphed into a data generation process. The DDT can include
a wide spectrum of information ranging from the high-level
comprehension of driving style to fine-grained details about
the driver’s behavior and attention. The generated multilevel
information can be processed into big data by utilizing the
intelligent algorithm, which can then be distilled into intelli-
gence, rules, and knowledge for specific tasks and services,
thereby realizing intelligent control and management as well
as improving driving safety, comfort, and personalization.

The purpose and contribution of this study are to elucidate
the connotation of the proposed DDT and propose its architec-
ture and implementation approach. The enabling technologies
are comprehensively surveyed and discussed, in addition to the
related applications. Meanwhile, the emergence and develop-
ment of DDT technology not only provides clear new ideas,
methods, and approaches to realize harmonious human-centric
driving but also envisage a new concept for the development of
a futuristic autonomous vehicle. This study expects to establish
a theoretical foundation for integrating individual research
conducted on this topic and present a comprehensive review
from an academically neutral standpoint.

The rest of this paper is organized as follows: Section II il-
lustrates the concept of the proposed DDT. Section III reviews
the current state of development of the enabling technologies
for the DDT. The related applications are discussed in Section
IV. Section V presents certain unsettled issues and potential

directions for future work. Finally, Section VI summarizes the
contributions of this work.

II. HIGH-LEVEL DRIVER DIGITAL TWIN ARCHITECTURE

DDT is being proposed for the first time through this study.
It can be utilized to support human-centric intelligent driving
systems and futuristic autonomous vehicles. We believe that
a complete DDT system should comprise four components:
the real driver, digital driver, multimodal interface, and related
applications, as shown in Fig. 3.

A. Human Driver in Real World

The real driver is the physical entity and the basis, who
is a data generator and an application service receptor; the
real driver includes drivers of various types of commercial,
engineering, and special equipment vehicles. The DDT can be
implemented to address the challenges of a growing shortage
of skilled drivers in specific sectors and assist aging drivers in
improving the safety, smoothness, and efficiency of operation.
Meanwhile, humans will always play an important role and
coexist with vehicles whether the vehicle is partially or fully
autonomous [70–72]. Thus, futuristic vehicles should meet
human needs and recognize individual preferences to form a
human-centric intelligent driving system that provides a safe,
efficient, and personalized user experience.

B. Digital-Twin Driver in Parallel Space

The digital driver is the core component of the DDT system.
As a virtual replica of the human driver, it should reflect
the behavior of the real driver realistically, comprehensively,
and synchronously. However, a fine-grained 3D model of the
human driver is not required, because the human is not a
machine and is more sophisticated and involved with the
mind [73]. Modeling the driver appropriately is crucial for
building a DDT system, and it depends on the types of
applications and services that must be provided. Given the
complexity of a human, the digital driver can be modeled from
a comprehensive perspective that combines various aspects
using advanced sensing techniques and intelligent algorithms.
Furthermore, the relationships between the various aspects
should be thoroughly investigated considering that they may
be mutually interdependent.

Driving safety and efficiency depends on the driving pattern
of the individual, and an advanced intelligent driving system
should be able to understand not only the human appearance
behavior and physiological state, but also the human inner
intention and preference [13, 74]. Thus, the goal of the digital
driver should be to replicate not only the external aspects of
a human driver such as biological information, physiological
condition, and attention state, but also the internal charac-
teristics such as personality, sensibilities, and capabilities.
Furthermore, modeling a real person’s individuality will enable
us to elicit more user-friendly and human-like interactions
based on the diversity that originates from the characteristics
of individuals. In contrast to the common entities with no
individuality, such personalized entities can prevent misuse
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Fig. 3. Overview of the proposed DDT, including the real driver, digital driver, multimodal interface, and applications in multilevel intelligent driving systems.

of the automated vehicle and support the development of the
human-centric driving system. In addition, the digital driver
model should synchronize with the human driver’s state in
real-time to gauge mood swings and capability degradation.
This personalized synchronicity with the human driver is
the primary distinction between the proposed DDT and the
original DT used in manufacturing.

In comparison to the current DMS system, a well-
established digital driver can provide more comprehensive
state information including external behavior state and inter-
nal personality pattern. Moreover, the aggregated multimodal
information can improve the capability of the fine-grained
analysis and recognition for the driver’s state. The digital
driver emphasizes entire-life-cycle monitoring, which enables
the system to evaluate and predict the anomalies and the
degradation of the driver’s capability based on historical data;
consequently, the system can provide optimal intervention to
assist the driver in time. In addition, simulation is an important
technique for developing autonomous driving systems [75].
The current technique can simulate the vehicle, sensors, and
environment; however, real human reactions and activity in
a variety of situations are difficult to simulate, which results
in significant disparity between the simulation and reality. The
digital driver enables a multiagent simulation supported by real
models and bridges this research gap by modeling the activity
patterns and personalities of various real human drivers.

C. Multi-modal Driver-Digital Twin Interface

The multimodal interface is an enabled approach and cor-
nerstone for building the digital driver and connecting the real
and digital spaces, which involves the driver’s information

and the driving data. Moreover, the automated vehicle is
a natural platform for deploying a variety of sensors and
actuators to acquire ubiquitous data. Thus, the DDT system
can provide a comprehensive perception of the state of the
human driver and automated vehicle and meet the requirement
of the realistic feedback of the real-time and historical state
of the physical entity in the related applications by leveraging
the built multimodal interface.

In the past, researchers have explored various types of
sensors in various applications including vision-based (RGB,
depth, IR, Lidar, etc.), physiological-based (EMG, EEG, ECG,
etc.), and driving-based sensors (steering, pedal, speed, IMU,
etc.) [51, 76]. The collected data from these sensors can
reflect the various behavioral patterns, conditions, and pref-
erences of the driver from several perspectives. The DDT
system must integrate these sensors and actuators to create a
multimodal interface that can provide comprehensive sensing
and feedback. To this end, the sensors should complement
one another to support the development of a complete digital
driver; all elements must communicate, interact, integrate,
and merge. Meanwhile, it entails data acquisition, definition,
transmission, calibration, source protection, fusion, and mining
among other processes to handle large amounts of real-
time, multidimensional data. Furthermore, multimodal fusion
is potentially a key technology, which can be implemented
at different levels, including feature-level, model-level, and
decision-level [77]. The feature-level fusion requires prior
knowledge to integrate the multimodal features that might
enhance the interpretability of the model. However, it requires
significant data calibration and synchronization. Model-level
fusion includes different structure models that are utilized to
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handle and extract the multimodal representations. Fortunately,
the advancement of neural networks (NN) provides various
types of models that can tackle varying kinds of input data,
and can be easily integrated. These types of NNs such as many
multi-branch or multi-streams networks are proposed to handle
the multimodal input [78, 79]. The NN-based methods enable
the model to learn the fusion pattern in a data-driven way,
leading to a robust and accurate fusion performance. Decision-
level fusion means that the result vector of each modality
feature is respectively obtained by their suitable model. Thus,
the rule-based approach can be utilized to allocate the different
weights for each modality result. However, this approach is
sensitive to outliers and cannot tackle complex and high-
dimension vectors. To improve the decision performance, the
machine learning(ML) classifier and regressor can be adopted
to learn the internal pattern. In addition, ensemble machine
learning can also be leveraged to increase decision efficiency.

Sensors should achieve precise recognition for driver ac-
tivities to improve the quality of the digital driver; further,
ultralow latency and ultrareliable communication technology
should be investigated [80–85]. The interaction design is also
critical because it must address the issue of seamless interac-
tion and state feedback to support the dynamic collaboration
and resource sharing between the physical world and digital
world. The interface must consider human acceptance, such
as the human’s resistance to some intrusive sensors, which
requires the unobtrusive and miniaturization of the sensors.
Thus, the researcher must thoroughly and carefully investigate
the appropriate and available configuration of the multimodal
sensors and interaction interface.

D. Key Applications of the DDT

The applications are the ultimate goal of the DDT system.
They must be capable of leveraging the various enabling
functions to assist the driver intelligently and securely. Further-
more, as the applications are a vital link between the virtual
and real worlds, enabling the DDT system to operate in a
closed-loop mode. Several related applications such as ADAS,
shared control, and driver safety monitoring have already been
studied for decades. Implementing the DDT system can further
improve the user experiences of these applications and lead to
new possibilities.

The applications can be classified into three paradigms:
physical-to-digital, digital-to-digital, and digital-to-physical,
which are applicable to different levels of autonomous driving
systems. The physical-to-digital paradigm focuses on lever-
aging human intelligence to optimize the intelligent driving
system by learning the real driver’s behavioral pattern. The
DDT system provides a possible implementation solution by
digitizing the driver’s behavior and decision-making pattern in
a variety of situations. The digital-to-digital paradigm focuses
on the ability to develop group intelligence and leverage expert
models to improve the individual ones, which overcomes
the physical limitations. Moreover, the mutual interactions
between the various functions lead to an improvement in
each function. Finally, the digital-to-physical paradigm focuses
on using the assistance of the digital system to improve the

real driver’s control and state. If a life-long DDT system is
constructed, the real driver’s capability can be enhanced by
a past driving model of themselves in the event of degraded
driving capability.

Based on the DDT system, the applications can exploit the
real-time and historical data of drivers and vehicles, thereby
shifting the system’s operation from the prior knowledge-
driven approach to a data-driven one. Moreover, the develop-
ment of related applications can be changed from passively
demand-driven to positively DDT-mined innovation. Thus,
data-driven DDT can reinforce the related applications that
adapt to the driver’s preferences, styles, skills, and patterns,
which makes the driver-vehicle coexistence and collaboration
safer, more efficient, and user friendly. Furthermore, more
virtual-reality-fusion applications can be explored to improve
interactivity by leveraging the built-in digital drivers.

III. KEY FUNCTIONS OF DRIVER DIGITAL TWIN
TECHNOLOGY

Fig. 4. Taxonomy of the existing studies for the human driver monitoring
system.

To build a complete digital human driver, a variety of
driver states should be obtained, modeled, and incorporated.
The current research for driver modeling revolves around
the DMS that has been widely used in intelligent vehicles
[86]. Researchers have investigated it from various perspec-
tives to monitor various driver states as shown in Fig. 4.
These monitored conditions can be classified into external
and internal conditions. The external state primarily comprises
the state that exists consequent to external behavior such
as distraction activity and drowsiness. The internal state is
related to the inner consciousness and personality of the
driver, including components such as intentions, emotions,
and trust. The states are monitored by the multimodal intru-
sive and nonintrusive sensors that can be summarized into
three categories: appearance-based, physiological-based, and
driving-based. Appearance-based sensors include the RGB
camera, depth sensor, infrared sensor, etc. They are utilized to
obtain facial and bodily movements. The physiological-based
sensors monitor the various physiological factors, including
the heart rate, brain waves, and blood pressure. The driving-
based sensors collect vehicle-related data during the operating
process, such as the steering data, braking information, speed,
etc.
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Existing studies focus on a specific task and ignore the col-
laboration between various functions, thereby limiting recog-
nition performance. Therefore, a unified digital model of the
driver involving external and internal conditions is indispens-
able to endow the system with robust, precise, and time-
variant sensing capabilities to assist the human driver. The
data structure shown in Fig. 4 can also be utilized to model
the DDT but from a unified perspective.

A. Driver Distraction Detection

 

Fig. 5. General framework of driver distraction detection.

Driver distraction is a primary cause of road accidents and
has attracted considerable research attention [76, 87]; it has
consequently become one of the typical tasks of the DMS.
A variety of nonintrusive and intrusive sensors are utilized to
detect the driver’s distractions at different levels of granularity
by leveraging ML algorithms [88, 89]. The nonintrusive sen-
sors, including the vision-based and vehicle-related sensors,
can be used to tackle high-level behavior-related distractions
such as abnormal activity [90–93], distracted pose [94–97],
false operation [98, 99], and inappropriate focus area[100–
103]. In contrast, intrusive sensors can precisely assist in
evaluating the driver’s inner consciousness and cognitive state
[53, 104–106]. However, some intrusive sensors can be cause
significant discomfort and affect the driver’s movements and
pose. Consequently, the obtained distraction detection results
are biased and affect the final interpretation. Furthermore, this
limits the potential application of some of these sensors to
research-related endeavors.

Currently, the definition of distraction is ambiguous, and
previous studies have approached it with varying degrees of
granularity. One typical approach is recognizing distractions
based on the driver’s activity. [107] designed a typical driver

activities recognition system based on a vision-based sensor
leveraging deep convolutional neural networks (CNN). The
sensor could identify seven common driving activities by
detecting the driver’s body posture; similar work can also
be found in [108–111]. This approach typically achieves
almost 99% accuracy in detecting the limited driver activity.
It performs the classification task by leveraging the powerful
representation capability of the deep learning (DL) based
models. However, this method has several limitations. Firstly,
actual human activities are diverse, which may adversely affect
the performance and robustness of the trained models. Thus,
technology capable of grasping context, such as the video-
text approach [112], can be utilized to tackle this challenge.
Second, these CNN-based methods typically rely on large la-
belled datasets to improve recognition performance, which ne-
cessitates further investigation into advanced semi-supervised
and self-supervised approaches, such as the contrastive learn-
ing method [113]. Moreover, the computational efficiency is
an inevitable barrier for practical applications. Thus, further
model compression and optimization technologies are required
[114, 115]. In addition to the activity of the body, the driver’s
head and gaze is also indicative of distractions; accordingly,
several studies focused on detecting the driver’s gaze on
the corrected area or road [100–103]. These methods adopt
a similar approach to those focusing on bodily movements
and tackle distraction recognition as a classification task by
leveraging the various CNN-based models, which achieve
more than 90% accuracy. The primary difference is that the
model input is a facial image or features rather than a full-body
image.

The driver’s distraction is also related to the mental state
in addition to the appearance-based distraction. Therefore, the
electroencephalographic (EEG) signal is utilized to measure
the brain activity for the early detection of driver distractions
[105, 106]. Furthermore, measurements of the reaction time
in addition to other physiological signals can be leveraged to
evaluate the driver’s concentration [116]. [117] combined the
various physiological data including palm electrodermal activ-
ity, heart rate, and breathing rate with facial-related features
to detect the four types of distractions, and a spectro-temporal
ResNet (STRNet) was proposed to handle the multimodal
features. In addition, this study also analyzed the different
modality features for the final detection performance. Con-
sequently, it demonstrated that the most informative modality
depends on the type of distraction, with visual features provid-
ing the most information overall. Similar work can be found in
[118], which adopted physiological (electrocardiogram (ECG),
galvanic skin response), behavioral (accelerometer and gyro-
scope), and vehicular (CAN-Bus) signals with various ML-
based recognition models.

In addition to the state of the driver, manual information
can also be utilized to evaluate the level of driver distraction.
[98] as well as the [99] leveraged the eye-steering correlation
structure to indicate the driver’s state. These studies demon-
strate that the correlation is useful, but not more robust than the
previously discussed features. [119] utilized the broad learn-
ing and incremental learning system (BLILS) to recognize
vehicle misbehavior using the vehicle steering information,
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Fig. 6. Overview of the driver intention prediction.

such as vehicle speed & acceleration, direction of travel,
vehicle position, transmission delay. The experimental results
show that the proposed BLILS can recognize distractions
faster and more accurately than the conventional ML and DL
methods, while possessing excellent robustness and scalability
for practical applications. [120] presented a driver workload
detection approach based on the driver’s physiological, and
vehicle signals as well as traffic contexts such as congestion
level and traffic events, and evaluated the proposed method
on the real driving scenarios data. In addition, smartphones
have been utilized in several studies to monitor the driver’s
behavior by leveraging the mounted multimodal sensor of the
phone [91, 121–124]. However, the mobile-based approach,
with approximately 80% accuracy, cannot compete with the
methods using the driver states, unless combing of the driver
face image is performed to detect distractions.

Existing studies can be summarized as shown in Fig. 5. The
detection of multigranular distractions can be implemented by
various types of features by leveraging the multimodal sensors.
Previous studies have reported impressive performances in
recognizing specific distractions with more than 95% accuracy.
One study [117] demonstrated the varying importance of a va-
riety of modalities for monitoring different types of distraction.
In contrast, the literature highlights the absence of a unified
solution that can handle all types of distractions for various
scenarios. Furthermore, the existing methods, despite their
excellent performance, largely ignored individual diversity.
The proposed DDT concept can be utilized to overcome these
challenges by providing a unified approach with multimodal
sensors to extract various types of features. It can achieve
this by leveraging the representation learning approaches and
the DL-based recognition models. Moreover, studies have
demonstrated that utilizing multiple sensors can improve the
overall performance [98, 99, 111, 117, 118]. In the future, an
approach with multiple sensors must be explored to enhance
the reliability and intelligence of the distraction detection
system.

B. Driver Attention Estimation

Driver attention estimation aims to determine the driver’s
focus area to support the conditional driving system and pro-
vide intervention or assistance in critical scenarios [125, 126].
Attention estimation is related to distraction detection; how-
ever, it goes a step further in understanding the driver’s state
and not only detects whether the driver is distracted but also
estimates whether the driver’s attention is on the right area
such as the road, traffic light, and crossing pedestrians.

A typical approach is to build a mapping model between
the context of the external scenario and the driver’s field
of attention. The visual field of the driver is divided into
several sub-fields or targets. In [103], a naturalistic driver
behavior dataset with six predefined attention zones was cre-
ated for various driving scenarios. A random forest classifier
was utilized to generate a set of probabilities for each gaze
zone based on the features of the head and face, and a
recognition accuracy greater than 90% was achieved. A driver
focus corpus was built for a parked vehicle in [127] that
divided the driver’s attention into 18 zones based on RGB
and depth sensors. A pre-trained VGG16 model was fine-
tuned to classify the gaze zone with an 84% accuracy. In this
study, an end-to-end approach was adopted using the color
driver image without extracting the facial features. A similar
CNN-based approach was utilized in [128], where a driver
gaze in the wild (DGW) dataset was collected with 9 labeled
zones. However, compared with other datasets, the DGW
employs more subjects to improve the diversity of the dataset,
thereby resulting in a lower accuracy of approximately 60%.
AutoPose [129] collects driver attention data from an infrared
camera and an RGB-D camera using a driving simulator;
these data include six gaze zones, as well as head poses
and driver activities. A multimodal driver monitoring dataset
with 21 gaze targets and driver head poses was presented in
[130]. A head-mounted inertial sensor was used in [131] to
determine the ten focus spots of a driver in a vehicle cabin, in
which several ML classifiers were utilized to predict the gaze
attention. Furthermore, the experimental results demonstrated
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TABLE I
EXISTING DATASETS FOR DRIVER ATTENTION ESTIMATION

Dataset Scenario Sensors Gaze Annotation Subjects

MIT [103] (2016) Highway RGB-driver 6 Gaze zones 50

DG-Unicamp[127](2019) Parking
RGB-driver
Depth-driver

Infrared-driver
18 Gaze zones 45

DGW[128] (2020) Parking RGB-driver 9 Gaze zones 338

Autopose [129] (2020) Simulator

RGB-driver
Depth-driver

Infrared-driver
Mo-Cap

6 Gaze zones
Head pose

Driver activity
21

MDM [130] (2021) Parking
Driving

RGB-driver,back,mirror,road
Depth-driver,Infrared-driver

Fi-Cap,Microphone,CAN-BUS

21 Gaze zones
Head pose

Driving data,Audio
59

DR(eye)VE [132] (2018)
Highway

Countryside
Downtown

RGB-road
Eye tracking(collecting) Gaze attention map 8

BDD-A[133] (2018) Critical driving situations RGB-road
Eye tracking(collecting) Gaze attention map 45

DADA-2000[134] (2019) Accidental driving scenarios RGB-road
Eye tracking(collecting) Gaze attention map 20

the efficiency of the head-mounted inertial sensor that can
achieve an accuracy greater than 96%.

Another focal point of driver attention estimation is pre-
dicting the driving gaze map of the scenario, which indicates
the area that might attract the driver’s attention rather than
that the driver actually focuses on. A representative study
of this type is the DR(eye)VE project [132] that assembled
the driver’s gaze map with the use of gaze tracking glasses
worn by the driver while driving in various scenarios with
varying conditions leveraging. Furthermore, several datasets,
such as the BDDA dataset [133] that focuses on critical driving
situations, and the DADA-2000 dataset [134] that focuses on
accidental driving scenarios, were developed. To predict the
driver’s gaze map, U-Net [135] type of models were adopted
to learn the attention pattern. In addition, the optical flow and
semantic information were also utilized to improve predictive
performance. According to the existing experimental results,
predicting driver attention remains challenging because of the
complexity of the scenario and the human driver’s individual-
ity.

The typical datasets for driver attention estimation are
listed in Tab. I. Existing appearance-based approaches of
gaze zone estimation can perform well and achieve outstand-
ing accuracy by leveraging deep-learning-based technology.
Leveraging complementary information, such as head pose,
can further improve the estimation performance compared with
the end-to-end model. However, these methods only consider
the external appearance information of the driver. Thus, in
scenarios where the focus of the gaze and mind do not
coincide, estimation accuracy declines drastically. Thus, the
DDT model combined with cognitive state information can
help improve the robustness and accuracy of driver attention
estimation.

C. Driver Intention Inference and Prediction

In addition to the external driver state information, the
vehicle needs to understand the driver’s intention to generate
appropriate assistance and collaborative control strategies.
Current studies focus on specific tasks or scenarios such as
lane change intention [136–138], braking intention [139–141],
and acceleration intention [142], and they can be summarized
as shown in Fig. 6.

When predicting driver intention, lane change is the most
commonly encountered intention. Here, the target includes
the ego-vehicle [136, 143] and surrounding vehicles [144].
The prediction of surrounding vehicles utilizes trajectory in-
formation, obtained based on the GPS and Internet of Ve-
hicles(IoV) technology, as the input to infer the intention.
Such methodologies found in studies on ego-vehicle [144–
149] and several deep learning-based models, particularly the
recurrent neural network (RNN), are proposed for handling
the traffic information of the ego-vehicle and surrounding
vehicles. Vehicle maneuvering patterns are also investigated to
predict and estimate the vehicle lane-changing state [150]. In
addition to the driving data, the driver’s states and posture are
frequently utilized to improve the prediction accuracy. Head
pose is a common indicator of driver intent, and measuring
the head pose is less time-consuming and more reliable in
unfavorable driving conditions [94]; therefore, it is often used
to infer driver intent [151–153]. Furthermore, gaze can accu-
rately reflect driver attention, and is commonly adopted to act
as a classifier that predicts driving intention, as demonstrated
in [138, 154–156]. In [137], a vision-based driver lane-change
intention inference system was introduced; this system utilized
multiple driver-related signals and the vehicle data acquisition
system to handle time-series driving sequences and temporal
behavioral patterns. According to the survey in [136], lane
change intention can be predicted with an accuracy greater
than 90% in the driving simulator. In contrast the on-road



JOURNAL OF LATEX CLASS FILES, VOL. 14, NO. 8, AUGUST 2021 9

accuracy is generally 70%-90%, where the CAN bus data
is essential for the on-road inference. Moreover, the driver’s
facial information can also be captured by leveraging the
RNN-based model to achieve an accuracy greater than 90%.

Longitudinal maneuvers such as braking and acceleration
can cause the automobile to lurch and can result in potential
safety issues. The reliable prediction of the intention to brake
or accelerate can enhance safety of driving through preven-
tative actions. [142] proposed an intention-oriented model
for longitudinal dynamics based on the commonly available
signals on the CAN bus of modern vehicles. [139] presented
a novel braking intention identification model based on the
LSTM network to recognize three levels of braking: slight,
normal, and hard, in which braking-related data obtained from
the speed sensor, gyroscope, and pedal force sensor, were
utilized to achieve a predictive accuracy greater than 95%.
Further, the driver’s cognitive signal was investigated to detect
the intention to perform emergency braking [140, 141], with
an experimental accuracy greater than 90%. [157] investigated
the mechanism of intentional behavior and proposed a psy-
chological perception–action (P–A) model that enables the
intentions of drivers to be characterized at each level of the
P–A hierarchy in terms of a variety of driver signals.

The steering intention exhibited by the driver was studied
in [158] to enhance human–vehicle understanding. A novel
deep learning-based time-series model was proposed to model
the relationship between the neuromuscular dynamics and the
steering torque by leveraging the electromyography (EMG)
signals of the upper limb muscles; this model can be utilized
to predict both the continuous as well as discrete steering
intentions. [159] demonstrated a personalized driver intention
prediction system at T intersections devoid of traffic signals
by learning in-depth driving behaviors; various classifiers
were evaluated to link low-level vehicle states to high-level
driving behaviors. An ensemble learning-based driver steering
intent recognition strategy was developed in [160], and a
nonlinear model predictive control algorithm was designed and
implemented to generate haptic feedback for lateral vehicle
guidance, assisting the drivers in accomplishing their intended
action.

Figure 6 shows that the utilized input data for driver
intention includes traffic context information, driver states, and
vehicle dynamic data, in addition to their various combinations
to predict the various maneuvering intentions. Existing studies
demonstrate that driver intention prediction is a context-aware
and multimodal representational task. Thus, current models
suffer several limitations. In conclusion, a unified model inte-
grated with multiple indicators is indispensable for improving
the robustness, generalizability, and accuracy of the prediction
to tackle various scenarios rather than a specific situation.

D. Driver Drowsiness Detection

Driver drowsiness is another important factor that causes
traffic accidents with a high fatality rate. Therefore, it has
attracted considerable attention among researchers [51, 52];
however, despite its similarity to driver distraction, they are
not identical. The drowsiness alert function is becoming

Fig. 7. Commonly used features for driver drowsiness detection.

increasingly common in intelligent vehicles [161]. From a
methodology perspective, a driver’s drowsiness can be detected
in a manner similar to that used to detect driver distraction, as
shown in Fig. 7, where three types of features are commonly
used: physiological [162–164], maneuver [165–167], and be-
havioral [168–170].

Drowsiness is more concentrated in the facial [169, 170]
and cognitive-related features [171]. For example, [162] estab-
lished a technique for detecting driver fatigue by analyzing two
distinct features: eye movement and bio-signals. A wireless,
wearable brain–machine interface (BMI) system was proposed
in [104] for signal sensing and processing the detection of
driver drowsiness. In addition, the correlation of the EEG
power spectrum and the driver’s behavior was demonstrated
in [172]; they found that the EEG pattern of the drowsiness
varies with the individual. Therefore, subject-dependent and
generalized cross-subject detection models for driver drowsi-
ness were investigated. [173] combined the electrooculogram
(EOG) with the EEG to monitor the driver’s vigilance to
improve model performance, and a novel LSTM-based model
with a capsule attention mechanism was proposed to learn the
multimodal representation. The respiratory signal was utilized
in [174] to detect drowsiness using an inductive plethysmogra-
phy belt, which analyzed the respiratory rate variability (RRV)
to determine the driver’s state.

Like driver distraction, current research on driver drowsiness
focuses on specific types of drowsiness by leveraging specific
types of features. The advancement of DL networks has
also contributed to impressive predictive performance in such
systems. Certain studies [173] attempted to fuse multimodal
sensors in a simulator that enable systems to detect the fatigue
more robustly and accurately but lack real driving evaluation.
Furthermore, [172] found that system performance may de-
crease rapidly when the non-personalized drowsiness detection
models are applied to different drivers. These studies indicate
that a personalized and multimodal integrated representation in
a real driving scenario is required to enhance the performance
of the drowsiness monitoring system.
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E. Driver Emotional State Monitoring

The emotional state of the driver is critical for driving
safety, particularly in cases of road rage, which has been
investigated in several studies [175–178]. These studies indi-
cate that the driver’s emotional state critically impacts driving
performance, and that the negative state is associated with
aggressive driving that leads to numerous traffic accidents.
Emotion recognition has attracted considerable attention in
the past decades [179, 180] because emotions influences
human decision-making during driving [181]. Consequently,
the emotional state of humans is investigated in a range
of research areas of psychology and cognitive science. Two
types of approaches have been adopted to analyze human
emotional states: discrete [182] and continuous [183, 184]. The
discrete approach categorizes emotional states into specific
states such as happiness, surprise, sadness, and anger. The
continuous approach uses a continuous space to indicate the
emotional state. In view of its importance to automated driving
systems, emotion recognition has been studied from various
perspectives with a variety of sensors using machine learning
technology [185].

Emotional conditions are associated with discernible phys-
iological responses [179], which include ECG [186], EEG
[187], EDA [188, 189], and BVP [190]. Several studies utilize
wearable physiological sensors to detect the emotional state of
the human driver. For example, [187] presented a multimodal
database that comprises EEG and ECG signals recorded during
affect elicitation via audio-visual stimuli, and an SVM-based
method was proposed to recognize the emotions of individual
participants. [191] leveraged the nonlinear complexity of heart
rate variability (HRV) to assess an individual’s emotional
state. Similarly, [192] suggested that increased HRV can be
an indicator of the ability to recognize human emotions.

The vision-based approach was investigated by several
researchers owing to the fact that emotions are readable from
facial expressions. For instance, [193] proposed a probabil-
ity and integrated learning algorithm for high-level human
emotion recognition in music videos. This algorithm adapted
emotion classification fuzziness based on the mechanism of
uncertainty artificial intelligence. [194] presented an integrated
network approach for recognizing facial expressions using
facial landmarks. [195] combined head poses and gaze with
facial expressions for continuous emotion recognition; an
attention mechanism was used to guide the model to extract
highly relevant information. The asymmetric bilinear factor-
ization model was used by [196] to decouple linguistic and
affective information from the face. [197] proposed a facial
dynamics map combined with optical flow to characterize the
movements of microexpressions at various granularities.

Other studies combined the physiological information with
the appearances feature to improve recognition performance.
[198] proposed a DL-based framework for recognizing the
driver’s emotions using visual images of facial features and
heart rate data over time. A novel convolution bidirectional
LSTM model was developed to extract the features and
classify them into five general categories. [199] used the
heart rate and animation units to aid in the detection of

facial expressions in videos. [200] presented a multimodal
sensor fusion framework for studying both basic and complex
emotions, including eye tracking, biometrics, and EEG signals.
Acoustic features were also leveraged in certain studies. For
instance, [201] demonstrated an acoustic features-based speech
emotion recognition approach, and [202] used an SVM model
to classify five emotional states for automatic speech emotion
recognition.

According to existing research, emotion recognition relies
on multiple features or sensors because emotions are related to
the physiological condition, cognition state, and facial features.
An accuracy greater than 80% can be achieved using classic
ML models and over 90% with DL models [179]. However,
considerable research and development is required before
vehicles can recognize the full spectrum of the emotional states
of drivers. Therefore, an interdisciplinary approach including
psychological investigations must be considered. The fusion of
multimodal data can certainly provide additional information
to improve accuracy. Ubiquitous, flexible, and pervasive wear-
able technology should also be further investigated. Existing
wearable devices equipped with physiological sensors, such as
smartwatches, are a good starting point and can be integrated
into the driver monitoring system. Furthermore, emotions
are specific to individuals. For example, the reasons behind
the driver’s negative emotions typically depend on traffic
conditions to which the driver is subjected over a certain
period. In addition to external influences, certain internal
personal factors can also frustrate the driver, such as the
personality reaction to stimulation and the cognitive state,
which includes pressure, stress, and anxiety. Different drivers
exhibit various cognitive and emotional patterns. Thus, DDT
with comprehensive modeling can achieve robust recognition
by focusing on modeling the individual emotional pattern.

F. Monitoring of Driver Trust on Vehicle Automation

In addition to the aforementioned factors, the driver’s atti-
tude toward the assistance provided by the automated vehicle
(AV) in uncertain scenarios can be reflected in their level of
trust [203]. Accidents can occur when drivers mistrust the AVs,
especially in complicated and unanticipated scenarios. In such
scenarios, ensuring that the driver completely understands the
automated decisions can be impractical [204]. Thus, building
an appropriate level of trust becomes a crucial issue for safe
operation, which has attracted considerable attention [205–
207].

Human trust is a sophisticated implicit variable that in-
volves several factors such as the psychological, sociological,
and neurological status [208]. According to existing studies,
human trust relies on the driving performance of the AVs
[209–211]. Moreover, high levels of initial trust generally
stem from an excellent illustration of the system capability
[212, 213]. In addition to increasing the capability, comfort,
predictability, and transparency of the AV to gain human trust,
we can also investigate human factors to avoid inducing over-
trust or distrust. This is typically time-variant, and it can be
influenced by the stress, workload, cognition, scenario, and
personality of the driver [214, 215]; even the educational
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background and usage experiences can be associated with
trust [216, 217]. Li et al. [218], for example, investigated
the relationship between driver personality and driver trust
in the AV and discovered a significant correlation between
Openness and driver trust. Xing et al. [74] summarized all
influential factors into three categories: prior, short-term, and
long-term factors. Prior factors include the personal traits
and background that can affect the human’s acceptance of
the AV prior to usage. Short-term factors include driver-
related states and driving performance, whereas long-term
factors include user experience and familiarity after a certain
period. Several studies have proposed different approaches to
measure the level of trust and optimize the AV to determine
the driver’s trust status. The different approaches include
questionnaires, workload & anxiety estimations, detection of
trusting behaviors, and preference studies [219–223]. Other
studies have attempted to evaluate trust using external driver
behavior features and response time, and their results indicate
that the level of trust varies with the reaction times of control
recovery [224, 225].

Trust is a crucial factor that should be considered in the
design of the AVs; otherwise, it will tend to treat the driver
as a by-product of the AV and easily cause automation
misuse. Dynamic trust monitoring is indispensable for pro-
viding timely intervention to ensure that the human driver
trusts the system to an appropriate level. Furthermore, trust
evaluation remains a challenging problem because it involves
multidisciplinary knowledge and information. DDT provides
a reasonable solution to this problem based on comprehensive
modeling and time-variable characteristics.

G. Personalized Driver Behaviour Recognition

Drivers can have various types of driving behaviors, and
they prefer automated vehicles with a driving style that is
similar to theirs [226]. Ensuring such parallelism can enhance
the acceptance and comfort the human driver experiences.
However, a human is more flexible when tackling different
scenarios. Therefore, a personalized driving system is nec-
essary and important, and it can be built by observing and
learning the driver’s behavior and decision-making patterns.

The acceptance of different driving styles by different
drivers and their influence on the drivers have been discussed
in [227] and [228]; the designed experiments demonstrated
that younger drivers exhibited a greater preference for their
own style compared with older drivers. Furthermore, it was
demonstrated that different drivers have diverse requirements
and preferences. A similar study was conducted by [229]. They
investigated the preferences of the human drivers including
assertive and defensive styles, under three autonomous vehicle
driving styles (defensive, assertive, and light rail transit). The
results showed that the defensive driving style was preferred
and that variations exist between participants related to their
own driving style. Furthermore, the study indicated that future
autonomous vehicles should indicate and adjust the driving
style to the preferences of the human driver to maximize
comfort in the travelling experience. [230] also found that
drivers prefer a driving style significantly more defensive

than their own, and that they tend to think it is their own.
Furthermore, the preference was found to depend on specific
scenarios.

Based on the above assumptions, [231] proposed a human
demonstration learning approach to teach the vehicle to learn
the desired driving style instead of using manual settings.
This approach modeled the driving style of each individual
by leveraging the inverse reinforcement learning approach to
obtain suitable driving parameters. [232] presented a human-
like decision-making system for autonomous vehicles that
formulated different driving styles and social interaction char-
acteristics based on game theory to enhance driving safety,
ride comfort, and travel efficiency. [233] proposed a new
predictive control method based on the models of human
behaviors and vehicle dynamics to improve the performance
of the longitudinal brain-control driving; this method was
developed with the intention of maintaining vehicle rear-end
safety and driver ride comfort while ensuring drivers have
maximum control authority.

Furthermore, personality is a diverse and sophisticated char-
acteristic and involves various indicators that are difficult to
obtain unless it is observed from a comprehensive perspective.
The driving data and reaction information for a variety of
situations can be collected to reflect the driver’s personality
by leveraging the DDT system. Personality modeling is one
of the most critical enabling functions of the DDT that can
lead to the development of a personalized intelligent driving
system.

The above subsections reviewed studies focused on driver
modeling; these studies investigated the different functions
from various perspectives. Certain studies showed that the
combination of multiple sensors can improve system perfor-
mance. For example, [121] utilized a smartphone’s multimodal
sensors to identify the states of the driver that signaled dan-
ger, including drowsiness, distraction, aggressive driving, and
high pulse rate. Furthermore, they proposed a cloud system
architecture to collect statistics from vehicle drivers, analyze
them, and finally personalize the driver’s smartphone applica-
tion. [234] proposed a novel danger-level analysis framework
for dealing with high variety and high volume problems of
multisource driving data including driver-, vehicle-, and road-
related information. Therefore, the integration of multimodal
sensors into the DDT can further enhance the capability of
driver modeling. Furthermore, the existing methods rely on
the data-driven approach, and the utilized data are collected
from various human drivers. However, humans are diverse,
and it is impractical to utilize the same criteria to evaluate
the state of different people. This is demonstrated in [235],
which established a framework for analyzing the driving
behavior of professional drivers and evaluating the impact of
novel safe driving concepts on different driver profiles. The
results revealed that drivers with varying levels of experience
exhibited varying levels of performance when applying safe
and anticipative driving behaviors. Consequently, the DDT
system can be utilized to build a personalized model to
achieve precise detection. Furthermore, the different states of
the driver are interdependent and can be supplemented with
others to improve the performance of the recognition model,



12

Fig. 8. A general framework of the ADAS leveraging the DDT system.

as demonstrated in [236]. They developed a driver intention
recognition model that involves the driver’s emotions; various
resources including visual features, auditory information, and
olfactory data were used to induce the driver’s emotions.

The literature survey reveals that existing studies tend to fall
into a kind of stagnation. Although several models have been
developed to tackle a specific task for certain scenarios, hardly
any have performed ideally in practice owing to the complexity
of the actual scenarios and human driver. In contrast, the
DDT system could provide a comprehensive, personalized, and
time-variant representation of the driver’s state that enables the
AV to thoroughly understand the driver’s state and improve its
performance. In addition, existing studies focus on recognizing
the explicit activities or states of the driver to achieve a specific
function; however, implicit driving patterns and styles also
need to be investigated further to ensure support for down-
stream applications. This remains challenging owing to the
non-deterministic nature of the implicit patterns and the high
degree of inter- and intra-driver variability. Therefore, the DDT
is expected to provide a novel avenue of research for future
studies, and consequently lead to significant development in
this field.

IV. REPRESENTATIVE APPLICATIONS OF DDT IN
INTELLIGENT VEHICLES

This section aims to summarize the DDT-enabled key
applications and discusses how the DDT can be utilized to
further improve the intelligence, personality, and adaptivity of
driving automation systems at multiple levels.

A. DDT in Advanced Driver Assistance System

The partially autonomous vehicle is expected to play a
dominant role in the future based on the current pace of
development of automated driving technology. ADAS would
be a standard configuration for intelligent vehicles, and it can

be enhanced with more assistance functions and utilized in a
broader range of applications. The ADAS system can mimic
or predict the driver’s behavior and intention by leveraging the
driver’s pattern and style information provided by the DDT,
such as [237] proposed an LSTM-based model which utilizes
data on the driver’s gaze and head position as well as vehicle
dynamics data to predict the driver maneuver. Thus, it can
provide personalized and adaptive assistance to improve the
driving safety or experiences, as shown in Fig. 8.

1) DDT for Adaptive Cruise Control: Adaptive cruise con-
trol (ACC) is a typical assistance function for longitudinal
control of vehicles. It simultaneously maintains a constant
speed set by the driver and a desired time gap to the leading
vehicle. Conventional ACCs pre-define a set of time gaps from
which to select. Certain studies have attempted to involve
the personality factor to improve the self-adaptation of ACCs
[59, 238–240]. In [241], a human-like car-following nonlinear
model predictive control controller is developed based on
a calibrated human-like Wiedemann model. [242] collected
the driving data of multiple drivers and built several driving
style profiles. Subsequently, the driver was assigned to one
of these profiles for determining the ACC control strategy;
this strategy included the engage and disengage ACC [242],
and the stop and go strategy [243]. [244] and [245] adopted
another approach. The individual driving style was observed
and a personalized strategy was developed to improve user
experience. In this study, different learning algorithms were
proposed to acquire the individual driver’s driving style [246–
249]. Other studies developed two distinct modes to achieve
personalization: learning and running [250]. The driver could
manually activate the learning mode to observe the driving
parameters, while the running mode was utilized to deploy
the learned control model. Meanwhile, other researchers rec-
ognized the significance of online learning and proposed the
personalized ACC system, which can adapt to driver control
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strategies in a dynamic traffic environment [246].
2) DDT for Forward Collision Warning: A forward col-

lision warning (FCW) system can alert the driver to avoid
an impending collision with the leading vehicle or object.
[251] and [252] proposed a statistical approach to model
driver behavior, which can be used to adaptively determine the
warning activation threshold and reduce the false warning rate;
this is similar to [253]. [254] utilized facial information and
EEG signals to estimate the brake reaction time of individual
drivers to optimize the timing of the warning. Moreover,
different drivers behave differently in a given scenario. Thus,
personalized FCW systems can reduce the false alert rate and
adaptively adjust the warning time to provide drivers with a
reaction time appropriate to their driving capabilities.

3) DDT for Lane-keeping and Lane Change: Lane-
retention and lane change are typical functions of the ADAS
system. They aim to assist the driver to stay in or change the
lane by estimating their intention based on the personalized
driving model. [255] proposed a learning approach to model
driver behavior and improve the lane departure alarm system.
[256] developed a personalized vehicle steering system that
can adaptively assist the driver to follow a given path based
on the driving style. [257] built a personalized vehicle steering
pattern to predict the driver’s behavior and avoid vehicle
collision. [258] proposed an efficiency desired path generation
system by modeling the driver’s personalized steering mode.
[259] proposed a sinusoidal lane change kinematic model
based on the driving style. It could adaptively adjust the
related parameters according to individual driver behavior, to
enhance the safety and comfort of the lane change assistance
system. [260] presented a lane change decision model that
could detect implicit maneuvers using a data-driven approach
while satisfying the comfort and safety constraints.

4) DDT for Human-centric Shared Control: Highly auto-
mated driving will play an important until fully autonomous
vehicles are developed. These systems will retain a human
driver in the control loop. A shared-control system enables
a human driver and an automation system to share control
authority and cooperatively operate a vehicle [261–263]. How-
ever, one critical issue is identifying how to appropriately
transfer and allocate the control authority [263–269]. [270]
proposed a data-driven approach for estimating the driver’s
take-over readiness based purely on observable cues from in-
vehicle vision sensors. [271] highlighted the importance of
the personalized ADAS. It proposed a method to identify
the competence and capacity of the driver and the ADAS
that could be used to enhance the reliability, acceptance,
and even the attractiveness of the system. [272] showed a
personalized cooperative control system which could auto-
matically adjust the related parameters based on the indi-
vidual driving pattern, to make the assistance system easier
to accept. [273, 274] proposed a collision probability-aware
human–machine cooperative planning and tracking method by
evaluating the risk level of the human driver’s behavior; the
system could be adaptively activated to incorporate the driver’s
intention and improve the automated vehicle’s safety. [275]
presented a human–machine adaptive shared control method
to tackle automation performance degradation, wherein the

control authority can be adaptively allocated by monitoring
the driver state and automated vehicle performance. [276]
created a shared control driver assistance system to avoid
obstacles based on driving intention identification and situation
assessment. Another method is that of inductive classification.
It adopts an unlabeled data approach to recognize a human
driver’s driving intention and determine the desired maneuver
based on the lateral offset and lateral velocity relative to the
road center line. Three fuzzy controllers in different condi-
tions determine the cooperative coefficient, which denotes the
percentage of control authority resting with the controller and
the human driver. To build the cooperative control framework
for the human driver and the active rear steering system, the
human driver model is established in [277] while taking into
account different driving characteristics.

The goal of ADAS is to assist the driver in achieving a
more intelligent, safe, and efficient driving experience. A wide
range of personalities, sensitivities, and preferences have to be
considered to ensure that all types of drivers are represented.
A single driver can also have dynamically varying emotional
states and abilities over time. Thus, the system should be per-
sonalized and adaptively cooperate with the driver to enhance
user experience and make the ADAS easier to accept. Thus,
ADAS-related studies need to not only focus on the specific
modules and functions from a vehicular perspective but also
consider the driver’s personality, preferences, capabilities, etc.
The proposed DDT provides a reasonable solution to address
this requirement. The DDT system achieves this by leveraging
the built unified model to optimize the ADAS module in
terms of adaptability, predictability, and time-variable ability.
Several studies reviewed in the previous section attempted
to incorporate the driver’s personality into the ADAS and,
consequently, demonstrated its benefits. This encourages us
to further investigate intelligent and personalized ADAS by
leveraging the DDT system.

B. DDT in Personalized Human-Machine Interface

A human–machine interface (HMI) not only determines how
good the user experience is, but also contributes to the trust-
building process for drivers. A well-designed HMI requires
the vehicle to adaptively recognize the driver’s behavior and
command, assess the driver’s emotional state, and provide
timely feedback [278]. Consequently, DDT effectively serves
to improve the HMI for enhancing interaction efficiency and
driver trust in the vehicle.

A typical area of interest in HMI is command recogni-
tion, which involves two widely studied tasks: activity and
speech recognition. Hand gesture recognition is a commonly
used activity recognition technique and has been implemented
in several commercial vehicles [279–281]. In-vehicle hand
gesture recognition enables the user to interact with the
vehicle through static or dynamic gestures. The advancement
of pattern recognition technology and intelligent hardware has
popularized online hand gesture recognition. Significant break-
throughs in several aspects such as recognition accuracy, re-
sponse time, computational memory consumption, user avail-
ability have contributed to this. According to one report [282],
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Fig. 9. DDT is utilized in the autonomous vehicle development.

speech control is expected to become the second most popular
interface, and 80% of automobile man–machine interfaces will
adopt speech control in the near future. Speech recognition has
played a role in several applications such as automatic navi-
gation, speech search, command input, and speech assistant.
The use of the deep-learning capability of spoken dialogue
system has been improved and has helped achieve impressive
performances in audio processing applications. In addition,
other modality interfaces, such as the brain control [283]
and the haptic interface [284], have also been investigated.
However, these approaches are currently limited to laboratory
demonstrations and far from the practical deployment stage.
Further investigation is required to integrate these approaches
with other interfaces to achieve robust interaction.

Currently, most HMIs are designed using average modeling,
wherein most functions are fixed for every driver. This means
that unless users adapt to specific interaction gestures and
pronunciations, the recognition accuracy will degrade. For
instance, several real use-cases have demonstrated that speech
recognition systems fail to handle diverse dialects, which
hinders user experience. Thus, the HMI system should be able
to adaptively tackle the diverse behavioral patterns and speech
accents to improve the experience of end-users and make them
feel like the system is customized. To accomplish this, the
DDT can be utilized to fine-tune recognition models.

C. DDT in Automated Vehicle Development

Apart from enhancing the ADAS for a low-level au-
tonomous driving system, the DDT can also be leveraged for
high-level systems as shown in Fig. 9. These autonomous
cars from the same factory or vehicle type were installed
with the same decision algorithm and default configuration.
The DDT system aids the autonomous vehicle in providing
enhanced personalization and enables it to drive like a hu-
man, thereby enhancing passenger comfort and confidence.
Furthermore, surrounding drivers can naturally interact with it
and better understand its behavior and purpose. In addition, it
can be used provide more reliable simulation systems for the
development of autonomous vehicles. Validating the safety of
autonomous vehicles in the real world is costly, dangerous,
and time consuming [285]. Thus, performing this validation

in simulated environments can help address these problems.
However, the simulation of real and complex traffic scenarios
is a challenging task owing to the highly dynamic nature of
human behavior that results in diverse driving patterns. The
DDT overcomes these challenges by providing diverse realistic
driving models.

Several studies have introduced the human factor to au-
tonomous driving systems [286]. For instance, [287] presented
a proof-of-concept investigation to demonstrate that the au-
tonomous driving design can be benefited from the cogni-
tive work analysis. [288] presented an autonomous vehicle
model based on dynamic human behavior. The model enabled
vehicles to drive appropriately by mimicking the behavioral
features of the driver. It achieved this by analyzing the drivers’
characteristics such as gender, age, driving experience, per-
sonality, and emotion, thereby enabling personalization. [289]
proposed a human-like autonomous car-following planning
framework based on deep reinforcement learning. Human
driving data were fed into a simulation environment to train
the autonomous vehicle system to acquire human-like charac-
teristics, thereby increasing the naturalism of its interactions
with passengers and surrounding vehicles. [290] integrated
social psychology tools into controller design for autonomous
vehicles by predicting driver behavior and quantifying the driv-
ing style. The interactions between human and autonomous
agents were modeled using game theory and the principle of
best response. By studying certain common-yet-difficult traffic
scenarios, they determined that autonomous performance can
be significantly improved by incorporating the driver’s be-
havior into the model. Owing to the intelligent transportation
system comprising the human-vehicle-infrastructure-roadside
units, [291, 292] introduced the parallel internet of vehicles
concept, where the human factor is highlighted and modelled
in the framework to flexibly adjust and allocate the available
resources according to social acceptance.

Owing to the lack of real-world connected and autonomous
vehicle (CAV) exposure data, evaluating the safety impacts
of CAV has been a major challenge. Studies that attempt
to simulate CAVs using a single simulation platform or by
integrating multiple simulation platforms have limitations; in
most cases, they consider only a small portion of a network
and do not perform safety evaluations because of its inherent
complexity [293]. [294] addressed this issue by constructing
multiple solid human driver models based on real-world
driving data. [295] utilized generative adversarial imitation
learning to help representative human driver models learn and
increase the realistic nature of the simulation. [296] proposed
a driving training data rendering approach leveraging actual
human-collected trajectories, which enhanced the ability of
virtual agents within the previously unseen scenarios and
situations. [297] presented a human-in-the-loop agent-based
simulation that incorporated human crowd characteristics and
behaviors to enhance the efficiency of crowd control for
unmanned vehicles. They developed the individual path model
by leveraging the social-force-based model to predict the near-
future location of individuals for improving the path planning
performance of the UV. To facilitate the visual intelligence
testing of intelligent vehicles, [298] created a realistic artificial
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scenario simulator to generate synthetic images, and a virtual
driving scenario dataset was developed, called ParallelEye-
CS. Leveraging this simulator, [34] proposed a novel the-
oretical framework to address the long-tail problem using
parallel technology. Here, a novel parallel vision actualization
system (PVAS) capable of leveraging the constructed virtual
parallel simulator was presented. It was used to search for
challenging scenarios for improving the perception capability
of autonomous vehicles. A similar concept was utilized in
[299], which presented a virtual-real interactive point cloud
generation framework for autonomous driving, called parallel
point clouds (PPCs). To accelerate the evaluation and develop-
ment of autonomous vehicles, [33] designed a human-in-the-
loop parallel testing system to implement more challenging
tests via virtual-real interaction. In these tests a human expert
vaguely defined the tasks and performed qualitative judgments,
following which the simulation system defined the tasks more
precisely, generated further testing scenarios, and collected
feedback from humans to validate the test results.

The DDT model can be utilized throughout the whole
R&D process of autonomous vehicles in a data-driven manner
from the custom analysis to the functional development and
validation, and finally during on-road operation. Thus, the
customization and personalization of the autonomous vehicles
can be progressively achieved.

V. OBSERVATIONS AND RECOMMENDATIONS

Existing driver modeling studies and DDT-related applica-
tions for multilevel autonomous vehicles were comprehen-
sively reviewed. The various technologies and models pro-
posed by these studies have been crucial in establishing DDT
technology in the automotive industry; however, DDT has a
considerable amount of untapped potential. However, numer-
ous obstacles need to be overcome before DDT can become
commercially viable. This section presents the opportunities
and challenges that will govern the future research objectives
in this domain.

A. Unified Modeling Framework

Driver modeling is the foundation of the successful oper-
ation of DDT systems. Existing driver models are based on
isolated perspectives or individual parameters instead of being
generalized. However, the driver’s performance is multimodal
and can have different physical or psychological reactions to
different driving scenarios. Therefore, the first critical task in
the implementation of DDT is to construct a practically viable
unified digital model. However, the complexity of humans
makes modeling and massive data fusion analysis challenging;
in addition, the diversity of data sources, data variability, and
heterogeneity present further obstacles [300]. A consensus
should be reached on the framework of the DDT model
and how to construct it based on the aggregated multimodal
data trove. The corresponding algorithms and tools should be
thoroughly investigated. Thus, the unified model of the DDT
remains insufficiently defined and needs to be further explored
and discussed.

B. Unsupervised Data Analysis

Data analysis relies on an intelligent method to recognize or
detect specific states. Deep learning techniques are known for
their powerful learning capability, and are currently the most
popular approach in many applications [301–304]. However,
deep learning-based methods require large datasets, which
presents a challenge for the DDT system. In particular, a
large multimodal corpus dataset of driver performance is yet
to be developed. In addition to the effort of collecting data,
unsupervised learning models are required for investigating
approaches to tackle this challenge [305–308]. In addition,
human driver performance is complex, diverse, and personal-
ized. Therefore, building a dataset applicable to all scenarios is
difficult. Thus, advanced unsupervised approaches should be
further explored to overcome the lack of labeled data [309–
313].

C. Multi-modal Sensor Fusion

A well-established DDT system is expected to involve mul-
timodal fusion of massive volumes of data on various drivers,
in addition to real-time, historical, virtual, and physical data.
This requires multiple techniques including data cleaning, con-
version, calibration, and mining, among others [314–318]. The
related intelligent algorithm and method should be improved to
handle the iteration and optimization of the massive data [319].
The corresponding connection and communication protocol is
also crucial for the successful operation of the DDT system
and needs to be standardized. Thus, multimodal data fusion
should be carefully studied to support the efficient interaction
between modules.

D. Regulation

In addition to new technologies, DDT comprises various
regulatory aspects. To ensure wide applicability and feasibility
of our research results, a wide variety of technical areas
need to be considered. Furthermore, non-technical aspects
including ethical issues, personal privacy, and the reliability
of simulation outcomes, need to scrutinized when considering
the utilization of DDT [320, 321]. Moreover, DDTs operate
on heterogeneous data sources that must be protected by
strong digital security and data governance policies to secure
highly sensitive data; in addition, they must meet evolving
legal/compliance requirements. To achieve this, we will need
the cooperation of experts in various fields of research and
technology, including social sciences, natural sciences, human-
ities, and other interdisciplinary fields.

E. Other Recommendations

The comprehensive digitization of the driver means that the
DDT can be effectively merged and exchanged in cyberspace.
This automatically enables the driver to temporarily acquire
the driving skills of an expert and the ability to maintain con-
trol in risky scenarios. Furthermore, the DDT can be utilized
to continuously mine potential requirements to generate novel,
unique, and valuable product concepts, which can then be
transformed into detailed customized products to cooperate
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with smart manufacturing. In addition, the vehicle design
scheme continuously reduces the inconsistency between the
vehicle’s actual behavior and the design’s expected behavior.

VI. CONCLUSION

Digitization is of utmost significance in the future in view of
the development of advanced sensing and intelligent systems.
Consequently, DT is potentially one of the most promising
enabling technologies; it has already been introduced to several
fields including intelligent vehicle and transportation systems.
The driver, who remains indispensable to the system, must
be incorporated with the other elements to form a complete
driving H-CPS. However, systematic research into the digital
human driver is rare. Therefore, this study proposes the
concept of a DDT to introduce a more comprehensive model
of the human driver. Compared with the original DT used
in manufacturing, the DDT emphasizes the personality and
capability of the driver instead of the external physiological-
level state. Thus, it is expected to provide a theoretical basis
for a human-centric intelligent driving system.

The DDT has significant potential for development con-
sidering the rapid growth of computing capacity, low-cost
intelligent devices, data storage, convenient data acquisition,
and AI. This study systematically illustrates the concept of
the DDT and outlines its key enabling aspects. Current related
technologies and applications have also been comprehensively
reviewed. Furthermore, we have discussed how the DDT can
be leveraged to further improve these technologies and appli-
cations. Unsettled technical issues and potential applications
have also been presented. The proposed DDT is a work
in progress that must be refined and allowed to evolve. In
addition, several urgent issues must be addressed to increase
its practical viability. For instance, a unified DDT modeling
method based on multi-modal data is urgently required; the
intelligent algorithms and data fusion approaches should be
further investigated; and the corresponding regulations need to
be established and followed. The DDT is expected to become a
central research topic in the future as our ability to manipulate
DT-enabled technology and our understanding of the human
aspects in driving grows. In conclusion, this study aims to
serve as a guide to peer researchers seeking to determine the
future direction of DDT research and its possible applications.
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