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ABSTRACT 

The recent developments and applications of rapid measurement tools (RMT) such as 

visible near-infrared (vis-NR) spectroscopy can provide ‘fit for purpose’ and cost 

effective data for informing risk assessment and managing oil-contaminated sites. 

Infrared spectroscopy discriminates between chemical compounds by detecting the 

specific vibrational frequencies of molecular bonds, producing a unique infrared 

‘spectral signal’ thereby enhancing its identification and quantification applying 

chemometrics. The aim of the research was therefore to assess the potential of vis-NIR 

and mid-infrared (MIR) diffuse reflectance spectroscopy (DRS) techniques as RMT to 

inform risk decision support for remediation of petroleum contaminated sites. The 

objectives of the study were to: critically review chromatographic and spectroscopic 

methods for petroleum hydrocarbon analysis in soils; evaluate vis-NIR sensitivity to 

detect hydrocarbon concentration differences throughout weathering; predict TPH, PAH 

and alkanes concentrations in contaminated soils using vis-NIR and MIR DRS coupled 

with regression techniques. The study further evaluated which spectroscopy technique 

(vis-NIR or MIR); and which modelling method (RF or PLSR) performs best. In this 

study, a series of 13 soil mesocosms was set up where each soil sample collected was 

spiked with 10 ml of Alaskan crude oil and allowed to equilibrate at room temperature 

for 48 h before analysis. The mesocosms were incubated for two years at room 

temperature in the dark. Soils scanning and gas chromatography coupled to mass 

spectrometry (GC-MS) analysis were carried out at T0, 4, 12, 16, 20 and 24 months. 

Prior to scanning, soil samples were air-dried at room temperature (21
o
C) to reduce the 

effect of moisture. The soil scanning was done simultaneously using an AgroSpec 

spectrometer with a spectral range of 305 to 2200 nm (tec5 Technology for 

Spectroscopy, Germany) and Analytical Spectral Devices LabSpec2500 spectrometer 

(ASD Inc, USA) with a spectral range of 305 to 2500 nm to assess and compare the 

sensitivity and response of the two instruments to weathering and hydrocarbon 

composition change overtime against GC-MS data. Partial least squares (PLS) and 

random forest (RF) regression models showed that ASD LabSpec2500 performed better 

than tec5 which may be attributed to the shorter wavelength spectra range of the tec5 

spectrometer and therefore not detecting all significant hydrocarbon signals (e.g., 2207, 

2220, 2240 and 2460 nm). The sensitivity of the two spectral devices to weathering and 
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hydrocarbon composition change was, however, comparable; and the predicted 

concentrations were also comparable to the hydrocarbons concentrations determined by 

GC-MS. The results (coefficient of determination, R
2
=0.9; ratio of prediction deviation, 

RPD=3.79 and root mean square error of prediction, RMSEP=108.56 mg/kg) 

demonstrate that visible-near infrared diffuse reflectance spectroscopy (vis-NIR DRS) is 

a proven tool for rapid site investigation and monitoring without the need of collecting 

soil samples and lengthy hydrocarbon extraction for further analysis..To this end, 85 

soil samples collected from three crude oil spill sites in the Niger Delta, Nigeria. Prior 

to spectral measurement, soil physiochemical properties such as pH, total organic 

carbon and textural analysis were carried out. Soil samples were scanned (field-moist) 

and assessed using ASD LabSpec2500 (wavelength 350-2500 nm) and MIR data was 

acquired with Agilent 4300 handheld Fourier transform infrared (FTIR) spectrometer 

(Agilent Technologies, Santa Clara, CA, United States) with a spectral range of 4000-

650 cm
-1

. Specifically, detailed analysis of the hydrocarbon content including total 

petroleum hydrocarbons (TPH), aliphatic and aromatic hydrocarbon fractions were 

determined and quantified by GC-MS, vis-NIR and MIR DRS. MIR over-performed 

vis-NIR with RF modelling method performing better than PLSR in predicting TPH, 

PAH and alkanes. However, PLSR-vis-NIR produced slightly better results than PLSR-

MIR in predicting TPH and alkanes. 

Overall, vis-NIR (wavelength 350-2500 nm) laboratory-scale study yields better TPH 

prediction than the field-scale study. The minimised moisture content may have 

improved the results, as laboratory-scale samples were air-dried. Based on the results, 

MIR spectroscopy coupled with RF is recommended for the analysis of hydrocarbon 

contaminated soil. Finally, spectroscopy approach was proposed as RMT for 

contaminated soil investigation and risk prioritisation. 

Keywords: Niger Delta, soil contamination, spectroscopy, chemometrics, site 

investigation, risk-decision  
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CHAPTER 1 : Overview of the project  

1.1 Introduction 

Crude oil exploration in Nigeria started in the Niger Delta in 1956 at Oloibiri, Bayelsa 

State, by Shell D’Arcy; and commercial production started two years later (Kadafa, 

2012; Amu, 1997). Bayelsa State is located within the southern end of Nigeria and is 

within the Niger Delta Basin. It lies between longitude 006
o
and 006 ׳05

o
 East of the ׳04

prime meridian and latitudes 04
o
and 04 ׳23.3

o
 North of the equator within the ׳38.2

coastal area of the Niger Delta. Nigeria’s economy is greatly reliant on earnings from 

the oil and gas sector, which accounts for ca. 35 percent of Gross Domestic Product 

(GDP); while petroleum exports revenue represents over 90 percent of the total exports 

revenue (OPEC, 2015; Akpabio and Akpan, 2010). These records show that the oil and 

gas industry in the Niger Delta region has contributed enormously to the growth and 

development of Nigeria. However, since the beginning of the establishment of oil and 

gas industry in the region, several oil spill incidents have been reported; and, to date, it 

has been estimated that 13 million tons of hydrocarbons have been spilled in the region 

due to pipeline fatigue, well blowout (a case in which control of well is lost during 

drilling operations), pipeline vandalism, and sabotage (Ambitunni et al., 2014; Nwilo 

and Badejo, 2006). Similarly, Ite et al. (2013) reported that the number of contaminated 

sites in the Niger Delta region is in excess of 2000. Furthermore, the United Nation 

Environment Programme (UNEP) reported in 2011 that in Ogoniland alone (a small part 

of the Niger Delta), over 69 sites were heavily contaminated with crude oil 

(concentration > 139,000 mg/kg
 
affecting soil, air and water quality criteria and posing a 

serious human health threat; Figure 1-1). However, the Nigeria legislation dealing with 

soil contamination from oil operations handled by the Environmental Guidelines and 

Standards for Petroleum Industries in Nigeria (EGASPIN, 1992) set out minimum 

requirements in terms of hydrocarbon contaminations in soil (target value=50 mg/kg 

and intervention value=5000 mg/kg).  
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Figure 1-1: Oil spill incidents in the Niger Delta region of Nigeria:(a) oil spill site within 

Ogoniland; (b) soil caked into a crust of dried crude oil; (c) trench made from remediation 

by enhanced natural attenuation (RENA) site to a nearby watercourse; and (d) oil spill 

incidents between 1976 and 2001, and the number of barrels extracted per day from the 

Niger Delta, Nigeria. Source: a-c (UNEP, 2011); d: MapsoftWorld, 2014. 

Although the full cost of oil-contaminated sites clean-up in Nigeria is not yet known, 

UNEP (2010) estimated at least $1bn for the first ten years of the thirty year clean-up 

programme for oil-contaminated sites in Ogoniland (1, 000 km
2
) in the Niger Delta 

(112, 110 km
2
). While urgent attention to clean-up these sites is needed, Nigeria lacks 

the necessary funds, like most nations, to address all contaminated sites accordingly 

(Sam et al., 2016). In order to tackle this problem, decision-makers must prioritise their 

clean-up activities to maximise the benefit derived from limited funds. To facilitate this, 

there is a need for rapid measurement tools (RMT) that can be easily used by staff, even 

with little training, to help with the identification and risk prioritisation of contaminated 

sites and inform swiftly risk decision making. To date, only Okparanma et al. (2014a) 

have used visible and near-infrared (vis-NIR) diffuse reflectance spectroscopy (DRS) as 

a rapid and cost-effective technique for offset analysis of petroleum-contaminated soils 

collected from oil spill sites in the Niger Delta region of Nigeria. The authors only 

predicted PAH in genuine oil-contaminated soils. Although the authors suggested that 

the methodology may be useful for rapid assessment of the spatial variability of 

petroleum hydrocarbons in petroleum release soils to inform risk assessment and 
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remediation, their study did not involve alkanes prediction and could not cover the large 

number of petroleum hydrocarbon contaminated land sites in the region. Thus, there is 

need for alkanes prediction because they are toxic hence be considered for risk 

assessment in fresh spill sites. Similarly, mid-infrared (MIR) DRS has also been 

previously demonstrated as a rapid and cost-effective technique for the analysis of oil-

contaminated soil (Wartini et al., 2017; Webster et al., 2016; Horta et al., 2015). 

However, this technique has not been applied to analyse contaminated soils from the 

Niger Delta, Nigeria to date. Because of the advantages of vis-NIR and MIR techniques 

such as portability, ease to use, and rapid assessment of hydrocarbon contaminations in 

soil, over the slow and expensive analytical chemistry methods [e.g., gas 

chromatography-mass spectrometry (GC-MS)], DRS spectroscopy is a candidate rapid 

measurement tool (RMT) for contaminated sites with hydrocarbons. 

Infrared spectroscopy is a non-destructive technique that has been and could be further 

used for the analysis of petroleum-contaminated sites. This involves a first step where 

reflectance spectra from the soil sample are acquired; the second step consists of 

modelling this spectral data against same samples with reference hydrocarbon (e.g., 

total petroleum hydrocarbon [TPH], polycyclic aromatic hydrocarbon [PAH]) 

concentrations (Wartini et al., 2017; Chakraborty et al., 2015; Okparanma et al., 2014a, 

2014b; Okparanma and Mouazen, 2013, 2012; Schewartz et al., 2012; Chakraborty et 

al., 2010; Forrester et al., 2010; Bray et al., 2009; Malley et al. 1999). Similarly, the 

potential applications of MIR for the detection of total petroleum hydrocarbon in soils 

have been reported (Wartini et al., 2017; Horta et al., 2015; Forrester et al., 2013, 2010). 

Currently, only a United States Patent (Janik et al., 2015) reported on the successful use 

of MIR-PLS for the determination of PAH concentration in soil. Thus, more work on 

the use of MIR for PAH prediction in soil is needed to support the findings of Janik et 

al. (2015). 

However, there are some aspects that have not been addressed by the above studies: (a) 

the evaluation of vis-NIR spectroscopy sensitivity to changes in TPH due to weathering; 

(b) the prediction of alkanes in petroleum-contaminated soils by vis-NIR; and (c) the 

detection of alkanes in petroleum-contaminated soils by MIR spectroscopy. These gaps 

of research necessitate the current project aim and objectives detailed below. This 
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chapter presents a schematic on how the formulated objectives guided to achieve the 

research aim (Figure 1-2). 

1.2 Research aim and objectives 

1.2.1 Aim of study 

The aim of this research is to assess the potential of the vis-NIR and MIR diffuse 

reflectance spectroscopy (DRS) techniques as rapid measurement tool (RMT) to inform 

decision support for remediation of petroleum contaminated sites. 

1.2.2 Objectives of study 

In order to achieve the aim of the study the following objectives were formulated: 

1. To critically review chromatographic and spectroscopic methods for petroleum 

hydrocarbon analysis in soils. 

2. To evaluate vis-NIR sensitivity to detect hydrocarbon concentration differences 

throughout weathering. 

3. To predict TPH, PAH and alkanes concentrations in contaminated soils using vis-NIR 

DRS coupled with regression techniques. 

4. To predict TPH, PAH and alkanes concentrations in contaminated soils using MIR 

DRS coupled with regression techniques. 

Within the study objectives the following sub-objectives were evaluated: evaluate which 

spectroscopy technique (vis-NIR or MIR); and which modelling method (RF or PLSR) 

performs best. 
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Figure 1-2: Schematic showing how the objectives were used to achieve the aim. Where 

TPH: total petroleum hydrocarbons; PAH: polycyclic aromatic hydrocarbon, MIR: mid-

infrared spectroscopy, vis-NIR: visible near-infrared spectroscopy, DRS: diffuse 

reflectance spectroscopy. 

1.3 Rationale and significance of the study  

The challenges of oil spillage, such as soil, surface and groundwater contamination 

(Davies and Abolude, 2016; Dyck et al., 2013; Hua et al., 2012; UNEP, 2011), and its 

negative impacts on human beings and other species. These impacts cannot be 

adequately addressed without the application of rapid, portable, and cost-effective 

techniques; as traditional laboratory methods can be slow, labour-intensive, expensive, 

use toxic extraction solvents, and require both skilled operators and prior soil 

preparation. This research hopes to position reflectance spectroscopy as a RMT for cost-

effective in situ technique to facilitate on-site risk assessment pertaining soil PHC 

contamination. 

1.4 Thesis structure  

The thesis is organised into six chapters, demonstrating how vis-NIR spectroscopy was 

used for field- and laboratory-scale analysis of oil-contaminated soils (Figure 1-3). 
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Figure 1-3: Representation of the thesis structure. Where TPH: total petroleum 

hydrocarbons; PAH: polycyclic aromatic hydrocarbon, MIR: mid-infrared spectroscopy, 

vis-NIR: visible near-infrared spectroscopy.  

The contents of each chapter are summarised as follows: 

Chapter 1: This chapter presents a general introduction, which also contains the 

research gaps, aim and objectives, and brief description of the thesis structure. 

Chapter 2: This chapter provides a review of chromatographic and spectroscopic 

techniques for the measurement of petroleum hydrocarbons in soil and sediment 

samples. A comprehensive analytical framework based on spectroscopic techniques 

integration and data fusion for the rapid measurement of PHC is presented. This chapter 

has been published in Critical Reviews in Environmental Science and Technology 

(Douglas et al., 2017).  

Chapter 3: In this chapter, the potential of vis-NIR to quantify and discriminate 

different weathering groups of soils was assessed at lab-scale. Principal component 

analysis (PCA) on soil spectra followed by partial least squares regression (PLSR) and 

random forest (RF) analyses using the spectra and gas chromatography profiles of the 
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samples with leave-one-out cross-validation (LOOCV) were carried out. Results show 

that vis-NIR reflectance spectroscopy is sensitive to changes in hydrocarbon due to 

weathering; however, the sensitivity decreases over time. Chapter 3 has been published 

in Science of the Total Environment (Douglas et al., 2018b). 

Chapter 4: In this chapter, PLSR and RF prediction performance was compared when 

developing vis-NIR calibration models for the estimation of TPH, PAH and alkanes in 

fresh (wet non-processed) soils. Results showed that RF modelling technique 

outperformed PLSR with excellent and good prediction accuracies, respectively. It was 

concluded that vis-NIR spectroscopy coupled with RF modelling approach can be a 

promising method for rapid, cost-effective and in situ quantification of TPH, PAH and 

alkanes in soils. Chapter 4 has been published in Science of the Total Environment 

(Douglas et al., 2018a). In Chapter 4, the potential of vis-NIR spectroscopy for the 

prediction of alkanes and PAH concentrations in contaminated soils has also been 

investigated. Again, RF outperformed PLSR for the prediction of both soil properties. 

The result of this work was published in European Journal of Soil Sciences (Douglas et 

al., 2018c). 

Chapter 5: This chapter implements the use of MIR spectroscopy for the prediction of 

TPH, PAH and alkanes in fresh (wet non-processed) soil samples, with the aim to 

compare it with vis-NIR spectroscopy results presented in Chapter 4. Furthermore, 

PLSR and RF modelling methods were compared. The results showed a much better 

prediction performance of RF-MIR models when predicting TPH, PAH and alkanes 

than RF-vis-NIR models. Thus, the use of MIR spectroscopy coupled with RF is 

recommended as the best optical method for the measurement of PHCs in soils. This 

chapter was written as a research paper, which has been submitted to Journal of 

Environmental Management. 

Chapter 6: This chapter presents the general conclusions drawn from all chapters, and 

highlights the research implications. This chapter also demonstrates how reflectance 

spectroscopy can be implemented for rapid and cost-effective investigation and risk 

prioritization of oil-contaminated sites. Furthermore, this chapter concludes with 

providing recommendations for future work.  
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1.5 Publications 

In the course of writing the thesis, four articles were published in peer-review journals, 

and one was submitted. 

1. Almost 25 years of chromatographic and spectroscopic analytical method 

development for petroleum hydrocarbons analysis in soil and sediment: start-of-

the-art, progress and trends. Crit. Rev Environ Sci Technol., 47(16), 1497–1527. 

2. Rapid prediction of total petroleum hydrocarbons concentration in contaminated 

soil using vis-NIR spectroscopy and regression techniques. Sci. Total Environ. 616 

(2018) 147-155. 

3. Evaluation of vis-NIR reflectance spectroscopy sensitivity to weathering for 

enhanced assessment of oil contaminated soils. Sci. Total Environ. 626, 1108-1120. 

4. Rapid detection of alkanes and polycyclic aromatic hydrocarbon in oil-

contaminated soils using visible near-infrared spectroscopy. European. J. Soi. Sci: 

doi:10.1111/ejss.12567. 

5. Rapid prediction of total petroleum hydrocarbon, polycyclic aromatic hydrocarbon 

and alkanes contamination in soils by a handheld mid-infrared spectroscopy. J. 

Envron. Manage. (Submitted). 
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CHAPTER 2 : Almost 25 years of chromatographic and 

spectroscopic analytical method development for petroleum 

hydrocarbons analysis in soil and sediment: state-of-the-art, 

progress and trends 

Douglas, R. K
a
., Nawar, S

a,b
., Alamar, M. C

a
., Coulon, F

a
., Mouazen, A.M.

a,b*
 

aSchool of Water, Energy and Environment, Cranfield University, Cranfield, MK43 

0AL, UK. 

b
Department of Soil Management, Ghent University, Coupure 653, 9000 Gent, Belgium 

Abstract: This review provides a critical insight into the selection of chromatographic 

and spectroscopic techniques for semi-quantitative and quantitative detection of 

petroleum hydrocarbons in soil and sediment matrices. Advantages and limitations of 

both field screening and laboratory-based techniques are discussed and recent advances 

in chemometrics to extract maximum information from a sample by using the optimal 

pre-processing and data mining techniques are presented. An integrated analytical 

framework based on spectroscopic techniques integration and data fusion for the rapid 

measurement and detection of on-site petroleum hydrocarbons is proposed. 

Furthermore, factors influencing petroleum hydrocarbons analysis in contaminated 

samples are discussed and recommendations on how to reduce their influence provided. 

Key words: Analytical techniques, multi-sensor and data fusion, contaminated soil, 

petroleum hydrocarbons 
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2.1 Introduction 

Land contamination from either poor historical industrial practices or incidents is a 

widespread and well-recognised environmental issue. In the EU alone, ca. 342,000 sites 

are affected by industrial activity leading to soil contamination (Van Liedekerke et al., 

2014). Petroleum hydrocarbons (PHC) are common contaminants found in the 

environment. PHC encompass hundreds of various aromatic and aliphatic compounds as 

well as traces of heterocyclic compounds (containing sulphur, nitrogen, oxygen), which 

are well-known environmental contaminants (Cozzolino, 2015; Coulon et al., 2010). 

When the focus is about PHC, the difference between the terms PHC and total 

petroleum hydrocarbons (TPH) should be noted. PHC typically refer to the hydrogen 

and carbon containing compounds that originate from crude oil, whereas TPH refer to 

the measurable amount of petroleum-based hydrocarbons in an environmental matrix 

and, therefore, to the actual results obtained by sampling and chemical analysis (Coulon 

and Wu, 2017). Thus, TPH is a method-defined term and therefore the estimates of TPH 

concentrations will vary depending on the analytical method used to measure it. 

Historically this has been a significant source of inconsistency, as laboratories have 

different interpretations of the term TPH. 

Over the last two decades, numerous field and laboratory techniques have been 

developed for the identification and quantification of TPH and polycyclic aromatic 

hydrocarbons (PAHs), as well as for the fractionation and quantification of aliphatic and 

aromatic hydrocarbons (Coulon and Wu, 2017; Li et al., 2015; Forester et al., 2013; 

Schwartz et al., 2012; Brassington et al., 2010). Field-based spectroscopic techniques 

offer rapid, non-destructive and cost-effective means of defining levels and distribution 

of PHC on-site before undertaking more costly and lengthy laboratory-based chemical 

analysis. In addition, they can provide real-time monitoring data and, therefore, be 

useful for initial site assessment and inform future sampling campaign for detailed risk 

assessment of the contaminated sites. However, one drawback of these field-based 

techniques is that they often fail to determine and quantify the entire range of PHC in 

soil or sediment. Therefore, choosing which technique to use is an important process to 

enable effective site investigation (Gałuszka et al., 2015); equally important it is to 

understand the type and quality of data generated (i.e., qualitative, semi-quantitative and 
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quantitative). Moreover, their interpretation needs to be carefully evaluated before 

conclusions on a best technique to adopt can be drawn. 

In contrast, laboratory techniques provide accurate analytical measurement and 

determination of hydrocarbons. They are, however, comparatively more expensive and 

require extra time for sample extraction and analysis (Forrester et al., 2013). 

Laboratory-based techniques include gas chromatography with flame ionization detector 

(GC-FID), GC coupled with mass spectrometry (GC-MS) or two-dimensional gas 

chromatography with FID (GC×GC-FID), GC×GC coupled with time-of-flight mass 

spectrometry (GC×GC/TOFMS), GC interfaced with quadrupole time-of-flight (GC-

QTOF) tandem mass spectrometry. Raman spectroscopy (RS), infrared spectroscopy 

(IRS) and high performance liquid chromatography (HPLC) coupled with either 

fluorescence or ultraviolet visible detection. Among these techniques, GC-FID and GC-

MS are the most common choices for PHC fingerprinting analysis of environmental 

matrices. The particular advantage of GC-FID is that the quantitative response of the 

FID is approximately the same for equal weights of any hydrocarbon, so that in a first 

approximation, relative peak areas can be used directly for the determination of weight 

percentage values (Malley et al. 1999). Similarly, GC-MS is used for more 

comprehensive analysis due to its ability to resolve and specify a broad range of 

hydrocarbon compounds, including hydrocarbon biomarkers (Coulon and Wu, 2017; 

Brassington et al., 2010; Barnes, 2009; Wang and Fingas, 1995). While GC-MS and 

GC-FID are mature techniques with excellent performance, there are still fascinating 

new developments such as GC×GC, Time-of-flight mass spectrometry (TOF-MS), and 

GC-QTOF amongst others.  

Given the relative difficulty (and expense) of the GC techniques described above, there 

has recently been considerable efforts in finding satisfactory rapid measurement 

techniques to be used in the field. Optical methods such as visible and near-infrared 

spectroscopy (vis-NIRS), mid-infrared (MIR) and X-ray fluorescence (XRF) 

spectroscopy have been identified as suitable techniques for implementation in the 

laboratory and/or the field (Okparanma and Mouazen, 2012; Chakraborty et al., 2010). 

Portable vis-NIR spectrophotometers have been one of the most popular instruments 

used for on-site determination of a wide range of analytes since the 1990s (McMahon, 
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2007). They offer quick, cost-effective measurement and do not require sample 

preparation (He et al., 2007; Viscarra Rossel et al., 2006; McCarty et al., 2002). 

Likewise, MIR spectroscopy has been used for the detection of PHC (Horta et al., 

2015). Although this technology is field-deployable, soil type and moisture can affect 

the measurement accuracy. Field portable X-ray fluorescence (PXRF) spectrometers 

also offer many advantages over traditional techniques including speed, portability, 

wide dynamic range of elemental quantification, little/no need for sample preparation 

and simplicity (Weindorf et al., 2014).  

Research into multi-sensor and data fusion for the determination of soil properties has 

made significant advances (O’Rourke et al., 2016; Wang et al., 2015) during the last 

decade, yet it is still young for PHCs in environmental samples. Research needs to 

embrace combination of techniques for PHCs that are portable, rapid, and requires no 

consumables, making it attractive and economic. A multi-sensor and data fusion 

approach is the next step that may open new windows for new applications, where the 

performance of the current spectroscopic methods can be maximised (Mouazen et al., 

2016). To the best of our knowledge, there is no study yet reviewing and/or 

demonstrating the potential of field-portable multi-sensor and data fusion for the 

analysis of PHC in contaminated soil and sediment.  

This chapter provides (i) a critical review of the main laboratory and field 

chromatographic and spectroscopic techniques used in the determination of PHCs and 

fractions; (ii) insights into the advantages and limitations of both techniques; and (iii) 

discussion on the potential of optical, field-portable integrated framework of 

XRF+MIR, vis-NIR+MIR or XFR+vis-NIRS+MIR for timely, cost-effective and more 

accurate analysis of PHCs in soil and sediment. 

2.2 Overview of analytical techniques for petroleum hydrocarbons 

detection 

PHCs are separated into saturated and aromatic fractions; both fractions consist of 

highly complex mixture of hydrocarbons. The saturated fraction is composed of n-

alkanes, branched alkanes and cycloalkanes and may also contain unsaturated 

hydrocarbons (alkenes). The aromatic fraction contains mainly compounds with two or 

more fused aromatic rings with or without a degree of alkylation. It may also contain 
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polar non-hydrocarbons such as thiophenes, dibenzothiophenes and the oxygen-

analogous aromatic heterocycles due to similar physico-chemical properties and 

therefore they are difficult to separate from the aromatic hydrocarbons. A number of 

analytical techniques have been developed for the quantification of PHCs in soil 

samples. This review, however, focuses only on chromatographic and spectroscopic 

techniques (Table 2-1). 
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Table 2-1: Most common chromatographic and spectroscopic techniques for determining petroleum hydrocarbon contaminants 

(PHCs) in soil and sediment samples. 

Technique Targeted 

analytes 

Sample 

matrix 

Sample* 

preparation 

Measurement 

scale 

Limit of 

detection 

Advantages Limitations Reference 

GC-MS TPHs, 

PAHs 

Sediment 

and soil 

Either air or 

chemically 

dried samples  

SPME 

extraction 

using hexane 

and/or DCM, 

or acetone 

followed by 

Hex: DCM 

(1:1); use 

silica gel, 

florisil or 

alumina to 

clean up 

extract. 

Laboratory 1.0 mg/kg for 

individual PAH  

1.5 mg/kg 

Benzo(a)anthrac

ene in sediment 

TPH = 50 

mg/kg in soil 

  

Relatively 

sensitive and 

specific to 

quantify 

PAHs,  

Assess 

sediment 

quality for 

total PAHs,  

Detect 

signatures of 

priority PAHs 

in sediments. 

Untimely, 

high-labour 

sampling 

demanded, 

Uneconomic 

in assessing 

large-scale 

contaminatio

n, 

Use toxic 

solvent for 

extraction 

purposes 

(e.g., 

Soxhlet),  

Suitable for 

thermally 

stable 

analytes,  

Costly and 

time 

consuming 

analysis 

Wang and 

Fingas, 

1995; 

Brassingto

n et 

al.,2010; 

Poster et 

al., 2006; 

Okparanm

a and 

Mouazen, 

2013; 

Chimezie 

et al. 2005 

Risdon et 

al., 2004 
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Technique Targeted 

analytes 

Sample 

matrix 

Sample* 

preparation 

Measurement 

scale 

Limit of 

detection 

Advantages Limitations Reference 

GC-FID TPHs, 

PAHs 

Soil  Dry sample 

either in an 

oven at 105
o
C 

or chemically 

using 

anhydrous 

Na2SO4, 

extract sample 

using hexane 

and DCM, use 

silica gel or 

alumina to 

clean up 

extract. 

Laboratory TPH = 10 

mg/kg in soil 

PAH = 330 

µg/kg in soil, 

TPH =2.30 

mg/kg in 

soil/sediment 

matrix  

Simple,  

Detect wide 

Measure array 

of hydrocarbon 

compounds, 

Sensitive and 

selective,  

Applied both 

qualitatively 

and 

quantitatively. 

Costly and 

time 

consuming 

analysis,  

Instrument 

calibration 

difficulties,  

Effect of 

sample 

matrix, 

Suitable for 

thermally 

stable 

analytes 

Brassingto

n et al., 

2010; 

TPHCWG

, 1998; 

Vallejo et 

al., 2001; 

Cortes et 

al., 2012 

 

Vis-NIR 

spectroscop

y 

TPHs, 

PAHs 

Soil and 

sediment 

Air dry 

sample, crush 

and sieve to 

remove stones 

and plant 

residues. Field 

level: no 

sample 

preparation. 

Laboratory and 

field 

NA Rapid, simple, 

inexpensive, 

Expedited site 

investigation,  

No prior site 

investigation 

Portable 

Relatively 

fair accuracy, 

Affected by 

moisture 

content,  

Does not 

measure TPH 

directly 

hence has no 

LOD.  

Deeks et 

al., 2014 

Okparanm

a et al., 

2014b 

MIRS TPH Soil Air dry sample 

and sieve 

Laboratory and 

field 

NA Excellent 

detector for 

hydrocarbon 

Affected by 

moisture 

content,  

Horta et 

al., 2015;  

Sorak et 
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Technique Targeted 

analytes 

Sample 

matrix 

Sample* 

preparation 

Measurement 

scale 

Limit of 

detection 

Advantages Limitations Reference 

levels. 

Portable Does not 

measure TPH 

directly 

hence has no 

LOD. 

al., 2012  

Portable 

Field gas 

chromatogr

aphy 

Volatile 

and semi-

volatile 

hydrocarb

ons 

including 

TPHs 

PAHs 

Soil, soil-

gas 

- Field 
a
1-10 mg/kg in 

soil 

Portable, 

lightweight, 

compact, 

durable, 

highest quality 

amongst other 

analytical 

techniques 

Expensive 

due to the ‘fit 

for purpose’ 

gas carrier 

Harris, 

2003 

Immunoass

ay 

PAHs, Soil  - Field  TPH = 10-50 

mg/kg in soil  

Portable, 

quick, 

sensitive, 

economic,  

It 

complements 

chromatograph

y procedures 

Less affinity 

for 

hydrocarbons 

with rising 

soil clay 

content,  

Soil matrix  

effects 

TPHCWG

, 1998; 

Weisman, 

1998 

* There is no single, generic protocol for the analysis of hydrocarbons by GC. The methods vary considerably depending on the nature of the sample and 

the goals of the analysis. Readers are referred to the references provided for additional information on the extraction method. MIRS= mid-infrared 

spectroscopy, PXRF= portable X-ray fluorescence, TPH =total petroleum hydrocarbon, PAH=polycyclic aromatic hydrocarbon, NA=not available, GC-

MS= Gas chromatography mass spectrometry, GC-FID= Gas chromatography coupled to flame ionization detection, 
a
Source: United States Environmental 

Protection Agency (EPA 510-B-97-001) (Expedited Site Assessment Tools for Underground Storage Tank Sites. A Guide for Regulators. 
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2.3  Chromatographic techniques 

2.3.1  Gas chromatography 

Most environmentally important hydrocarbons are relatively volatile and thermally 

stable. Therefore, gas chromatographic techniques requiring the target compounds to be 

vaporised without destruction, have been established as the most important method for 

hydrocarbon separation. Gas chromatography (GC) is perhaps the most robust analytical 

instrument used for determining the structural composition and quantification of volatile 

mixtures such as TPH in environmental samples. The ability to couple highly sensitive 

detectors such as the flame ionization detector (FID) and mass spectrometry (MS) 

makes it a choice for highly sensitive petroleum analysis.  

The principles are common to all chromatographic separation methods: the analytes of 

interest carried along by a mobile phase interact with a stationary phase and separate 

through these interactions. The separated analytes are detected as they elute. In GC, the 

mobile phase is helium the carrier gas. The stationary phase is typically a thin film 

chemically bonded to a narrow-bore capillary column. Most common coating used in 

hydrocarbon analysis are nonpolar stationary phases such as polydimethylsiloxanes or 

slightly more polar polysiloxanes in which a certain proportion (e.g., 5%) the methyl 

groups is substituted by phenyl groups. Important physical parameters influencing the 

separation characteristics of the analytical columns include the column length, its inner 

diameter and the film thickness of the stationary phase.  

Flame ionization detection (FID) is the most used in gas chromatography than any other 

method for signal detection. This is because the burning of carbon compounds produces 

ions that will be detected by the FID. The success of FID resides mainly in its very low 

noise level, linear response over a very wide concentration range, and its sensitivity and 

its response varies very little with factors such as detector temperature and carrier gas 

flow rate (Weisman, 1998). However the FID response depends on the number of ions 

produced by a compound. Since this varies considerably between hydrocarbon classes, 

FID response factors vary accordingly (Karasek and Clement, 2003). The ability of a 

chromatographic method to successfully separate, identify and quantify species is 

determined by many factors as critically reviewed by Hibbert (2012). For example the 
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observed GC retention times mainly depend on the temperature, flow rate and column 

length settings and, therefore, they are not ideal parameters for identification purposes. 

Instead, retention index (RI) also known as Kovats retention index is used to convert 

retention times into system-independent constants (Marriot et al., 2012; Song et al., 

2002). Temperature oven optimisation may also be required to resolve specific target 

compounds such as diastereomers with very similar physical properties. While a 

comprehensive listing of all factors and solutions for optimising GC is beyond the scope 

of this review, there are several references on the gas chromatographic theory and 

principles, instrumentations and applications available -see Dettmer-Wilde and 

Engewald (2014).  

Gas chromatography mass spectrometry (GC-MS) is a hyphenated analytical technique 

commonly used for environmental analysis due its specific and distinct monitoring 

capacity, especially when applied in the selective ion mode (Yang et al., 2015; 

Brassington et al., 2010; Wang and Fingas, 1995). The identification and 

characterisation of petroleum compounds by GC-MS is achieved by comparing 

retention time and a query mass spectrum with reference mass spectra in a library via 

spectrum matching. Versions of the NIST library, currently containing over 276,000 

reference spectra, and search algorithms are available from all major MS manufacturers 

(Yang et al., 2015). Such method has been used to assess the PAHs in tar-contaminated 

soils (Lorenzi et al., 2010) and monitor bioremediation of PAH-contaminated soil via 

in-vessel composting using fresh organic waste (Zhang et al., 2011).  

The MS analyzer can serve as both a selective and universal detector in the analysis of 

hydrocarbons. Electron impact at 70 eV is the most common mode, whereby an electron 

is stripped from the parent molecule (M) generating an M+ ion, which may undergo 

further fragmentation. Most hydrocarbons will only have one charge, so the mass is 

equivalent to the m/z ratio. Other methods, such as chemical, supersonic, and field 

ionization, are amenable to interfacing with gas chromatography and are soft ionization 

techniques that preferentially yield parent ions with limited fragmentation (Giri et al., 

2017). 

Recent studies also demonstrated that the performance compound identification depends 

on multiple factors including the mass spectrum library, spectral similarity measure and 
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weight factors. They further showed that the compound identification based on mass 

spectra only has limited accuracy and the high accuracy compound identification can be 

achieved by incorporating compound separation information into mass spectrum 

matching. Since retention time in GC depends on experiment condition dependent, 

combination of retention index with mass spectrum is becoming more widely used 

(Marriot et al., 2012).  

In comprehensive two-dimensional gas chromatography (GC × GC), the entire sample 

is subjected to two distinct analytical separations resulting in an enhanced separating 

capacity most useful for the characterisation of complex mixtures of organic compounds 

(Li et al., 2015). Additionally, it has been reported that combining two-dimensional gas 

chromatography (GC×GC) and TOF-MS can facilitates the identification of compounds 

by providing adequate spectrum acquisition speed, producing robust structural 

information without mass spectral skewing across the chromatographic peak (Li et al., 

2015; Tran et al. 2010). This system has a high resolution of many co-elution substances 

including tricyclic and pentacyclic terpanes (Avila et al., 2010; Tran et al. 2010). Li et 

al. (2015) also used GC×GC-TOF-MS with a reverse-phase column system (one-

dimensional polar column coupled with two-dimensional nonpolar column) in addition 

to the normal-phase system (one-dimensional nonpolar column coupled with two-

dimensional polar column) to separate and identify components of crude oils. While the 

normal phase system is useful for separating hydrocarbons, especially high molecular 

weight compounds between C25-C35 (Tissot and Welte, 1984), the reverse-phase system 

allows a greater separation for medium-low molecular weight cycloalkanes, which are 

normally very difficult to separate from aromatic hydrocarbons in normal phase system 

(Li et al., 2015). It also allows the identification of suitable biomarkers including 

steranes and terpanes (Li et al., 2015). 

Both high-temperature and comprehensive two-dimensional GC provide relatively 

recent methodological advances for PHC analysis offering greater resolution and 

characterisation of complex mixtures of hydrocarbons. Specifically, high-temperature 

GC is a key technique in extending the molecular application range of gas 

chromatography.  
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Simulated distillation (SimDis) GC utilises fused silica column that considerably lowers 

the elution temperature of the analytes, which results in a decrease in the final oven 

temperature while ensuring a complete separation of the mixture (Boczkaj et al., 2011). 

This removes the chance of breakdown of less thermally stable mixture components and 

bleeding of the stationary phase thereby improving the detector signal. SimDis GC 

method permits the characterisation of the effective carbon number distribution of the 

constituent classes of soil extracts by a non-polar GC as a surrogate distillation column, 

where fractions are distilled using linear temperature profile (Pollard et al., 2004). 

SimDis GC of various fractions of soil extracts were achieved (Pollard et al., 2004) with 

a modified American Society for Testing and Materials (ASTM) method D2887-89 

(ASTM, 1992). The authors performed SimDis GC using a Hewlett-Packard 5890 GC 

equipped with an on-column temperature controlled injector, an aluminium clad and 

Quadrex column coated with phenyl silicone. An oven temperature programmed at 55-

420
o
C was employed at a linear rate of 10

o
C/min.  

2.3.2 Liquid chromatography  

Hydrocarbon analysis can be performed by various liquid chromatography techniques, 

such as thin layer chromatography (TLC), open-column liquid chromatography 

(OCLC), medium pressure liquid chromatography (MPLC) and high-performance liquid 

chromatography (HPLC) (Pan et al., 2013; Barman et al., 2000). Due to the nonpolar 

nature of the PHC normal-phase LC is commonly used (Chibwe et al., 2017). 

Accordingly, solvents or solvent systems used for isocratic or gradient elution are 

typically nonpolar in normal phase separations. A broad variety of detectors can be used 

for PHC, including spectroscopic (UV-Vis, fluorescence, infrared), bulk property 

(refractive index, evaporative light-scattering, dielectric constant, flame-ionisation), 

mass spectrometric and element specific detectors. UV-Vis detection provides excellent 

sensitivity for aromatic but is not applicable to saturated hydrocarbons. The utility of 

common atmospheric pressure ionisation interfaces used for on-line coupling of LC and 

mass spectrometry in the analysis of volatile and/or nonpolar compounds is rather 

limited. TLC coupled to flame-ionisation detection (FID) is an important compound 

group screening method in hydrocarbon analysis (Cavanagh et al., 1995). TLC-FID is a 

promising method for analysing oil fractions including aromatics. It has been used to 



REWARD K DOUGLAS Cranfield University PhD Thesis, 2018 

25 

separate solvent-extractable petroleum organics on silica-coated quartz rods into 

paraffins, aromatics and polar constituents (Dunn et al., 2000). Napolitano et al., (1998) 

also used TLC-FID as a quick way of measuring PHCs in soils.  

HPLC separation is limited to aromatics but has a high sensitivity (Pan et al 2013). 

Greater interference due to co-elution is therefore more likely to occur for HPLC 

separation compared to GC separation. This will be especially marked in a heavily 

hydrocarbon contaminated environmental sample where there will be a large number of 

different PAHs (Coulon et al., 2012). HPLC techniques are applied much less, for oil-

fingerprinting analysis in comparison to GC methods (Yang et al., 2015). The major 

disadvantage of HPLC applications for quantification is the lack of universal detector, 

which yields same response for all class of chemical constituents (Sarowha et al., 1997).  

2.3.3  Portable/Field Gas Chromatography  

The quest to cut down the expensive delays associated to laboratory-based GCs 

triggered portable designs of GCs. For instance, field gas chromatographs (FGCs), 

portable GC FROG 4000, and HAPSITE chemical identification system, among others 

are available. The FGCs measure constituent-definite analysis of soil-gas, soil, and 

water samples for volatile and semi-volatile hydrocarbons. FGCs are the only field 

measuring techniques for methyl tertiary butyl ether (MTBE) and they are of two types, 

namely, (person)-portable gas chromatographs (PGCs) and transportable gas 

chromatographs (TGCs) (EPA, 1997). PGCs are portable analytical devices used for 

hydrocarbons analysis. The PGCs possesses in-house batteries and carrier gas provider 

thus making the equipment portable. However, there is limited power supply due to the 

features (EPA, 1997). Portable gas chromatographs such as Portable FROG 4000 and 

Portable-GC-TMS weighs 2.2 kg and 4.5 kg, respectively (Koshy and Sudhakar, 2013). 

However, “fit for purpose” lightweight cylinders to supply the carrier gas have been 

recommended; thus, it tends to attract high cost (Deeks et al., 2014). Portable GC FROG 

4000 has been applied onsite for analysing volatile organic compounds (VOCs) in soil, 

air and water in ppm and sub ppm in less than 5 min for benzene, toluene, ethylbenzene 

and xylene (BTEX) (California Geotechnical Services, 2016). With benchtop quality 

analysis, GC FROG 4000 satisfy the needs of various applications including site 

characterisation and assessment, soil characterisation, groundwater monitoring, 
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Brownfield remediation, Superfund clean-up and leak detection (California 

Geotechnical Services, 2016). 

HAPSITE is the only field-portable GC-MS for on-site detection, recognition and 

quantification of VOCs, toxic industrial chemicals (TICs) and chemical warfare agents 

(CWAs) [low molecular weight synthetic compounds that act very fast and are deadly at 

low concentration levels] (www.inficon.com). HAPSITE has the ability to detect and 

identify VOCs in parts per million to parts per trillion range. The results (obtained in 

minutes) from HAPSITE may be useful for the investigation of problems triggered by a 

very low concentration of contaminants that are essential for critical decision-making 

affecting human life, health and safety. Operators of HAPSITE require minimal training 

(www.inficon.com).  

In conclusion, PGCs are field deployable and have less analysis run time. However, the 

method is not sensitive to many aliphatic compounds. HAPSITE measures very low 

contaminant’s concentration and is timely. HAPSITE results are useful for health and 

safety decision making. In addition, with European Standard ENISO 22155:2016, it is 

possible to measure volatile aromatic and halogenated hydrocarbons and selected 

aliphatic ethers in soil. ENISO 22155:2016 requires static headspace method for 

quantitative gas chromatographic measurements, and it is useful for all soil types. The 

limit of detection (LOD) depends upon the detection system used and the quality of the 

solvent (methanol grade) used for the extraction. In this method, the following LOD 

applies (expressed based on dry matter): typical LOD using GC-FID for volatile 

aromatic hydrocarbons is 0.2 mg/kg, aliphatic ethers such as methyl tert-butyl ether 

(MTBE) and tert-amyl methyl ether (TAME) is 0.5 mg/kg. Using GC-electron capture 

detection, the typical LOD for volatile halogenated hydrocarbons is 0.01 to 0.2 mg/kg 

(ENISO 22155:2016). However, there remain many obstacles to overcome so that a 

greater community of users can adequately and economically deploy this type of 

instrumentation. This instrumentation is still bulky (vacuum system, gas canister etc.), 

power hungry, and somewhat fragile.  

TGCs are not person-portable (but transportable – heavy weight) and they separate well 

the constituents due to the presence of long capillary columns. TGCs can generate 
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results comparable to laboratory quality (Koshy and Sudhakar, 2013). They accurately 

identify and quantify the constituents in samples. 

Truly most common applications of field GC are the measurement of VOCs in air, such 

as BTEX, and chemical-warfare agents. Due to the huge demand for rapid, on-site 

analysis of environmental contaminants, there is a need for technological advancement 

in developing the already existing fast scanning techniques including GC×GC/TOFMS, 

and GC-QTOF tandem mass spectrometry to achieve analysis of contaminants in the 

field. This would help real-time decisions and cost-effective solutions to the challenges 

encountered during site investigation. The use and demand for field GC-MS will 

continue to grow as these instruments are miniaturised and performance remains at lab-

quality. As more of these newer instruments enter the market, the costs will invariably 

drop to refuel the instrument development cycle. 

2.4  Spectroscopic techniques  

A number of spectroscopic techniques exist for the analysis of environmental 

contaminants (e.g., TPHs and PAHs). However, this current study focuses on the 

applications of XRFS, IR, vis-NIRS and MIRS for the analyses of TPH, PAH or both. 

2.4.1  X-ray fluorescence spectroscopy (XRFS) 

XRFS is a well-known laboratory technique (Hou et al., 2004). XRF functions on the 

principle that electrons embedded in the inner energy shell of an atom cleave from their 

shell upon excitation by X-rays. Electrons from the elevated, external, energy shells due 

to the discharge of excess energy in the form of an X-ray photon, occupy nearly 

instantly the voids in the inner shells created by electrons being cleaved following the 

X-ray excitation (Weindorf et al., 2014). The associated wavelength of the XRF thus 

depends on the energy level of the electrons in the interior shells. Moreover, the 

fluorescence emission is dependent upon the atom’s principal inner shell electrons 

taking part in excitation (Hou et al., 2004). Consequently, XRF detectors can measure 

the X-ray spectrum of any element, though they cannot efficiently measure elements 

with atomic numbers less than twelve (Horta et al., 2015). Hou et al. (2004) have 

previously reported the application of XRF for the analyses of PHCs in soil, water and 

liquid samples. With recent technological improvements, portable XRF spectrometers 
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have now become available; they have been used to rapidly measure soil contaminants 

(with minimal sample preparation required) and offer a number of strengths relative to 

traditional laboratory-based methods (Horta et al., 2015). Both, wavelength dispersive 

x-ray fluorescence (WD-XRF) or energy dispersive x-ray fluorescence (ED-XRF) are 

commonly used as portable XRF instruments. The former is of higher resolution with 

fewer spectral overlaps and lower background intensities, but it is more expensive and 

prone to error than the latter. The ED-XRF analyser is designed to detect a group of 

elements all at once. One of the most advantages of XRF as a portable handheld device 

“gun-shaped meter” is that it can be taken to the field for analysis of soils in situ. The 

time of scanning is short, typically ranging between 60 to 90s. In addition, portable 

XRF instruments are operated by rechargeable Li-ion batteries that enable 6–12 h field 

measurements; thus, requiring no conventional electrical power supply on site. Indeed, 

XRF has been reported to be an accurate, non-destructive, and cost-effective method 

(Ulmanu et al., 2011); its use in environmental surveying has also been described (Hou 

et al., 2004).  

Aside from its ability to mainly quantify and screen soil nutrients, the XRF technique 

has been used in combination with vis-NIR diffuse reflectance spectroscopy (DRS) to 

produce an optimised model for the swift measurement of soil HCs in Texas 

(Chakraborty et al., 2015). The authors concluded that the synergistic use of vis-NIR 

and XRF technique is viable for a quick and cost-effective quantification of petroleum 

contamination in soil.  

2.4.2  Infrared spectroscopy  

The electromagnetic spectrum of IRS consists of three regions i.e., near infrared (14000 

– 4000 cm
-1 

or 750-2500 nm), mid-infrared (4000-400 cm
-1

or 2500-25000 nm) and far 

infrared (400-10 cm
-1

 or 25000-1000000 nm). In this section the application of IRS (lab-

based), vis-NIR and MIR techniques for the analysis of PHCs will be discussed 

separately.  

IRS is generally applied for the measurement of organic compounds in soil, though 

some inorganic compounds may equally produce infrared signals (Horta et al., 2015). 

IR uses the stretching and bending modes of vibrations linked with molecules when 

they absorb energy in the infrared region of the electromagnetic spectrum for property 
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clarification (Weisman, 1998). In this method, spectra of hydrocarbon compounds are 

generated from the carbon-hydrogen (e.g., C-H) linkages of saturated CH2 and terminal 

CH3 functional chemical groups, which are observed within the MIR spectral range of 

3000-2900 cm
-1

 or a particular waveband of 2930 cm
-1

 (Weisman, 1998). To start with, 

samples are extracted using an eluting solvent with no C-H bonds. Prior to IR analysis, 

the eluate is passed through silica gel to eliminate biogenic polar compounds. 

Subsequently, the absorbance of the eluate is measured at the particular waveband, and 

further compared with a calibration curve made using petroleum hydrocarbon standards 

at known concentrations (Weisman, 1998). 

IRS techniques were often employed for the detection of TPH in soils before the 

development of GC-based techniques (Current and Tilotta, 1997) due to its official 

acceptance by EPA (EPA method 418.1) (EPA, 1978) and International Organization 

for Standardisation (ISO) (e.g. ISO/TR 11046) (Becker et al., 2002). Currently, the use 

of IRS-based systems is scanty due to the ban of Freon (1,1,2-trichlorotrifluoethane, 

CFE) for solvent extraction (Forrester et al., 2010; Becker et al., 2002; Weisman, 1998). 

Furthermore, the ISO for France has replaced ISO/TR 11046 with ISO/DIS 16703, 

which suggests using GC-FID detector instead of IRS technique to follow extraction 

using non-halogenated solvent (ENISO16703:2011). In addition, the technique has been 

reported to be insensitive to unsaturated fractions of weathered hydrocarbons, showing 

no measurable adsorption bands at screening wavelength (Whittaker et al., 1995; Fan et 

al., 1994). IRS methods face with problems of interference (positive and negative); 

however, multivariate calibration annuls it. Sample porosity also affects IRS signal 

intensity (Forrester et al., 2010). Nevertheless, IRS methods provide quantitative 

responses, by employing calibrated standards with the analyser being positioned at the 

desired wavelength. Via a programmed calibration, concentration in parts per million 

(ppm) of the whole hydrocarbon can be determined (Deeks et al. 2014). IR-based 

techniques are simple, fast, and cost-effective with LOD of ~10mg/kg in soil, though 

they are not portable for field measurement (Weisman, 1998). 

2.4.3 Visible and near-infrared (Vis-NIR) spectroscopy  

The principle of near infrared (NIR) spectroscopy is based on the absorption of energy 

(generated by a light source) by substances, which result from fundamental vibrations of 
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molecules that take place in the MIR range. Fundamental vibrations are of different 

modes but not limited to the stretching and bending of bonds that entails C-H, O-H, N-

H and S-H chemical bonds (Osborne et al., 1993). However, in the NIR range (780 – 

2500 nm) overtones and combinations of fundamental vibration are generated (Kuang et 

al., 2012). Infrared spectroscopy discriminates between chemical compounds by 

detecting the specific vibrational frequencies of molecular bonds, producing a unique 

infrared ‘spectral signal’ thereby enhancing its identification and quantification 

applying chemometrics.. In the visible (vis) range (400–780 nm), absorption bands 

related to soil colour are due to electron excitations, which assist the measurement of 

soil organic matter content and moisture content  (Kuang et al., 2012; Viscarra Rossel et 

al., 2009).  

In the late 1980s, the spectral characteristics of hydrocarbons were first documented 

(Cloutis, 1989). The spectra of hydrocarbons emanated primarily from either a 

combination or overtones of fundamental vibrations in the MIR region e.g., C-H 

stretching modes of aliphatic CH2 and terminal CH3 or aromatic functional groups 

(Aske et al., 2001). A comparison of average spectra between petroleum contaminated 

soils and non-contaminated soils is shown in Figure 2-1 (Chakraborty et al., 2015). 

These are similar in terms of optical intensity only in the visible range (Clark et al., 

1990). However, in the NIR range the reflectance decreases with increasing 

contamination leading to increased absorbance and thus less reflectance than the non-

contaminated samples (Hoerig et al., 2001).  



REWARD K DOUGLAS Cranfield University PhD Thesis, 2018 

31 

 

Figure 2-1: Visible and near infrared (vis-NIR) average reflectance for hydrocarbon 

contaminated (blue spectrum) and non-contaminated (red spectrum) soils (Chakraborty et 

al., 2015) 

A considerable amount of literature has been published on the application of vis-NIR 

spectroscopy for the rapid estimation of soil PHCs (Okparanma et al., 2014a; 

Okparanma and Mouazen, 2013; Chakraborty et al., 2010; Bray et al., 2009; Malley et 

al. 1999). For example, Okparanma et al. (2014a) assessed the ability of vis-NIR diffuse 

reflectance spectroscopy (vis-NIR DRS) (350-2500 nm) for the measurement of 

petroleum hydrocarbon contamination in soils. The authors used sequential ultrasonic 

solvent extraction-gas chromatography (SUSE-GC) to measure PAH in soil samples. 

Both, the SUSE-GC measured data and the vis-NIR soil spectral data were pulled into 

one data matrix, and further subjected to a partial least square regression analysis. 

Prediction models with R
2
 values ranging between 0.77 and 0.89, residual prediction 

deviation (RPD) values ranging between 1.86 and 3.12, and root mean square error 

ranging between 1.16 and 1.95 mg/kg were obtained. Though the PAH concentrations 

were low, vis-NIR reflectance response was also provided. Okparanma et al. (2014a) 

recommended that the method may be promising for quick evaluation of the spatial 

variability of PAHs in petroleum-contaminated soils and could assist site risk 

assessment.  
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The opportunity of employing vis-NIR DRS for the mapping of PAHs and the total 

toxicity equivalent concentration (TTEC) of PAH mixtures in different petroleum-

discharge sites in the Niger Delta, Nigeria, was investigated by Okparanma et al. 

(2014b). The t-test results showed no significant (p>0.05) discrepancies between the 

GC-MS measured and vis-NIRS predicted PAH and TTECs maps (kappa coefficients = 

0.19-0.56). The authors concluded that vis-NIR technique had good potential for 

monitoring hydrocarbon contamination in petroleum-discharged area. Okparanma and 

Mouazen (2013) assessed the applicability of vis-NIR DRS (350-2500 nm) to evaluate 

phenanthrene in 150 diesel-seeded soils. They used PLSR with cross-validation and 

obtained RPD values of 2.0 and 2.32, root mean square error of prediction (RMSEP) 

values of 0.21 and 0.25 mg/kg and R
2 

values of 0.75 and 0.83 for validation and 

calibration, respectively. Other studies have investigated the capability of vis-NIR 

spectroscopy to assess PAHs in artificially contaminated soils (Okparanma and 

Mouazen, 2012; Bray et al., 2009; Malley et al., 1999). Using PLSR, Okparanma and 

Mouazen (2012) achieved an RMSEP of 0.2010 mg/kg, RPD of 2.75 and an R
2
 of 0.89 

for the calibration model. They suggested the potential of the technique to quantitatively 

characterise PAH in diesel-contaminated soils. With an ordinal logistic regression 

method, Bray et al. (2009) predicted total PAHs and benzo[a]pyrene using the vis-NIR 

technique. Their results showed good accuracy (90%) and a moderate to high false-

positive rate at the low and high total PAH threshold, respectively.  

NIR reflectance spectroscopy (1100-2498 nm) in combination with a step-by-step 

multiple linear regression were employed to predict the concentration of TPH in field 

diesel-contaminated soils (Malley et al., 1999), reporting a low accuracy and high 

prediction error. The low performance was attributed to (but not limited to) the small 

number of samples used and the inconsistency in the reference laboratory results. 

Chakraborty et al. (2010) evaluated the performance of vis-NIR DRS (350-2500 nm) to 

quantify PHCs contamination in soils. To achieve their research objective, 46 

contaminated and control samples were collected from Louisiana, USA, after which the 

soil was scanned with a vis-NIR DRS as either ‘field-moist intact’ or ‘air-dry’ samples. 

Using both PLS regression and boosted regression tree (BRT) calibration models, the 

authors obtained a R
2
 of 0.64 and a RPD of 1.70 as the best result for the prediction of 

TPH content from the field-moist scans, since the air-dried scans yielded 0.57 and 1.25 
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for R
2
 and RPD, respectively. Authors concluded that there is the possibility of using 

vis-NIR DRS as a proximal soil-sensing tool for PHCs. However, this is true only for 

the analysis with moist soil samples, where the prediction performance was acceptable.  

The applicability of vis-NIR for the analysis of TPH content in control soil samples 

seeded (spiked) with diesel and crude oil, and control soil mixed with oil was examined 

by Forrester et al. (2010), who reported a RMSE range of 4500-8000 mg/kg out of the 

TPH range of 0-100 000 mg/kg. Although the authors made no conclusions on their 

result, we concluded that since the RMSE upper limit is 8% of the upper TPH range, the 

result achieved is of small error. Thus, NIRS is a suitable screening tool for TPH 

measurement in soil. To examine the detection ability of vis-NIR for TPH in soils, 

Schwartz et al. (2012) utilised contaminated soils with a definite concentration of 

petroleum. Hydrocarbon analysis was carried out in three different certified 

laboratories; hence, the exact procedure was kept confidential. However, all the 

laboratories used the general methodology for the adjusted EPA 418.1 method. The 

measured results from these different certified laboratories in Israel were compared, and 

authors observed discrepancies between them; Laboratory A: 4575, 5288, 4932; 

Laboratory B: 6179, 6292, 6236; and Laboratory C: 3730, 4480, 4111 (represents 

minimum, maximum, and average concentrations of TPH (ppm), respectively. 

However, a satisfactory correlation from the plot of reflectance spectroscopy (4617 

ppm) and the laboratories TPH (4500 ppm) versus projected TPH (5674 ppm) results 

was established. Consequently, they inferred that the accuracy of the vis-NIR 

spectroscopy technique was as promising as the commercial laboratories, and therefore 

it could be a feasible on-line sensing tool. 

In a recent study, Chakraborty et al. (2015) combined XRF technique with vis-NIR 

diffuse reflectance spectroscopy (DRS) to produce an optimised model to predict PHC 

in soils from Texas, USA. Using a combined penalised spline regression (PSR) and 

random forest regression (RFR) modelling approach, authors obtained a R
2
 of 0.78 and 

RPD of 2.19 and concluded that the this synthesised modelling methodology produced a 

better result compared to individual model based analysis, which resulted in RPD of 

1.64, 1.86, and 1.96 for RFR, PSR and PLSR analyses, respectively.  
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Despite the potential advantage of this technique for measuring soil properties and 

detecting PHC in soils, only few studies have been carried out on contaminated 

sediment and soil samples. Therefore, further research is needed to boost the application 

and opportunities for spectroscopy in the future. Especially, vis-NIR DRS holds 

promising potential for rapid and cost-effective measurement of PHCs in soils, to 

inform risk assessment and decision support for remediation of agricultural lands. It is 

also important to mention that this technology offers portable systems that can be taken 

to the field to enable in situ measurement of PHCs, which is a fundamental requirement 

for accurate site-specific land reclamation, based on high sampling resolution data 

(Okparanma et al., 2014b). However, it should be noted that, vis-NIRS results can be 

affected by soil factors such as moisture content, soil types, ambient lights, etc.). 

Therefore, accounting for these external factors affecting the prediction performance is 

a key step for successful implementation of this sensing technology as a portable tool 

for field screening of PHCs in soils. Furthermore, it is important to note that accuracy 

reported so far by different research groups indicates that these detection methods are at 

a semi-quantitative stage, where more works to improve performance is needed. 

2.4.4 Mid-infrared (MIR) spectroscopy  

The principle of mid-infrared DRS is that molecules possess definite frequencies, and 

they vibrate in accordance with different energy levels (Horta et al., 2015). The 

fundamental vibrations of molecules when subjected to energy (e.g., light source) take 

place in the MIR range, which lead to absorption of light, to various degrees, with a 

specific energy quantum corresponding to the difference between two energy levels. As 

the energy quantum is directly related to frequency, the resulting absorption spectrum 

produces a characteristic shape that can be used for analytical purposes (Stenberg et al., 

2010). Spectroscopy in the MIR range (2500-25000 nm) can rapidly capture soil 

information (Horta et al., 2015) important for soil contaminants assessment. 

MIR spectroscopy (MIRS) is one of the rapid and cost-effective techniques developed 

for soil analyses (Bellon-Maurel and McBrtney, 2011). MIRS has been demonstrated to 

be a better measurement tool for soil total carbon, organic carbon, and inorganic carbon 

than vis-NIR spectroscopy (McCarty and Reeves, 2006; McCarty et al., 2002). MIR 

spectroscopy yields more informative spectra and peaks compared to NIR, which is 
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characterised by broad bands of overtones and combinations (Soriano-Disla et al., 2014; 

Reeves, 2010). However, the superior performance of MIRS to vis-NIR is yet to be 

established in all soil science research (Vohland et al., 2014), although some literature 

indicated MIR spectroscopy to overcome the vis-NIR spectroscopy.  

The potential application of MIR for the detection of PHCs in soils has been reported to 

be an excellent tool for hydrocarbon concentration in soils (Wartini et al., 2017; 

Webster et al., 2016; Horta et al., 2015). However, MIR accuracy and reproducibility 

are influenced by sample inhomogeneity and thus requires extra sample preparation 

(Horta et al., 2015). The applicability of MIR for the quantification of TPH in a control 

sample spiked with diesel and crude oil, and a control soil mixed with oil was examined 

by Forrester et al. (2010); they reported a smaller RMSE range of 2000-4000 mg/kg 

compared to NIRS (2000-8000 mg/kg), out of the TPH range of 0-100 000 mg/kg. 

Furthermore, Forrester et al. (2013) used real contaminated soil samples (205) to 

demonstrate  the ability of MIR spectroscopy to detect TPH in soils, reporting 

RMSE<1000 mg/kg for the 0-15000 mg/kg of TPH content range, and recommended 

that this accuracy might be satisfactory in terms of screening. This study also presents 

an overview of analytical techniques, analyte, multivariate analyses and accuracy of 

different methods available for the analysis of soil contaminants (Table 2-2). 
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Table 2-2: Analytical techniques, multivariate analysis and machine learning results for the measurement of petroleum hydrocarbon 

contamination in soils and sediments. 

 

Technique 
Targeted 

analytes 

Number 

of 

samples 

Spectral range 

(nm) 
Modelling 

technique 
Statistical parameters 

Sample 

origin 
References 

Vis-NIR 

DRS 
TPH 46 350-2500 

PLSR 
R

2 
= 0.79, RPD = 1.64, RMSEP = 

0.353 mg/kg 

USA 

Chakraborty 

et al., 2010 

BRT 
R

2 
= 0.38, RPD = 1.38, RMSEP = 

0.42 mg/kg 
 

Vis-NIR 

DRS 
PAH 150 350-2500 PLS 

R
2 
= 0.89, RPD = 2.75, RMSEP = 

0.2010 mg/kg 
UK 

Okparanma 

and 

Mouazen, 

2012  

Vis-NIR 

DRS 
PAH 150 350-2500 PLSR 

R
2 
= 0.75-0.83, RPD = 2.0-2.32, 

RMSEP = 0.21-0.25 mg/kg 
UK 

Okparanma 

and 

Mouazen, 

2013  

Vis-NIR PAH 137 350-2500  R
2 
= 0.77-0.89, RPD = 1.86-3.12, Nigeria Okparanma 
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Technique 
Targeted 

analytes 

Number 

of 

samples 

Spectral range 

(nm) 
Modelling 

technique 
Statistical parameters 

Sample 

origin 
References 

DRS RMSEP = 1.16-1.95 mg/kg et al., 2014a  

Vis-NIR 

DRS 
TPH 108 350-2500 

RFR 

PSR 

PLSR 

RPD=1.64 

RPD=1.86 

RPD=1.96 

USA 
Chakraborty 

et al., 2015  

PXRF+Vis-

NIR DRS 
TPH 108 350-2500 

PSR 

 

R
2 
= 0.78, RPD = 2.19 USA 

Chakraborty 

et al., 2015  

MIR TPH 205 2170-3330 PLSCV 
RMSE<1000mg/kg for 0-

15000mg/kg 

Not 

stated 

Forrester et 

al., 2013  

MIR TPH 67  PLSR R
2 
=0.99, RMSE <200 mg/kg Australia 

Webster et 

al., 2016 

GC-MS PAH 150 Not applicable PLSR 

R
2
P =0.89,  RPD:1.52-2.79, 

RMSE=0.201mg/kg 

 
Osborne et 

al., 1993  

GC-FID TPH 26 Not applicable 
Stepwise 

MLR 

R
2
P: 0.68-0.72, 

RPD: 0.84-1.00 

 
Malley et 

al., 1999  
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Technique 
Targeted 

analytes 

Number 

of 

samples 

Spectral range 

(nm) 
Modelling 

technique 
Statistical parameters 

Sample 

origin 
References 

FTIR TPH 172 400-2500 PLSR 

R
2
cv=0.81 

RMSECV=4,500-8000 mg/kg 

Not 

stated 

Forester et 

al., 2010 

FTIR PAH 65 350-2500 OLR 

Accuracy (65.90.25%), FPR (0.57-

0.91) 

FNR (0.03-0.13) 

Wales 
Bray et al., 

2010 

Vis-NIR DRS = visible and near-infrared diffuse reflectance spectroscopy, PXRF = portable x-ray fluorescence, MIR = mid-infrared, GC-MS= gas 

chromatography-mass spectrometry, GC-FID = gas chromatography-flame ionization detector, PLSR= partial least squares regression, PLSCV = 

partial least squares cross-validation, ANN = artificial neural network, PSR= penalized spline regression, RFR = random forest regression, BRT= 

boosted regression tree, MLR = multiple linear regression, R = coefficient of determination, RPD = residual prediction deviation, RMSEP = root mean 

square error of prediction, TPH = total petroleum hydrocarbon, PAH = polycyclic aromatic hydrocarbon, GEMAS = geochemical mapping of 

agricultural soils and grazing land of Europe, FTIR = Fourier transform infrared spectroscopy, OLR = ordinal logistic regression, FPR=false-positive 

rate, FNR=false-negative rate. 
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Like in the vis-NIR spectroscopy case, advances in MIR spectroscopy have made 

portable systems available for in situ measurement of different soil properties, including 

PHCs. However, it should be noted here that, although sharp and clear signatures of 

organic pollutants can be obtained with MIR spectroscopy, which is encouraging for 

accurate measurements. MIR spectroscopy is susceptible to soil moisture content (MC), 

limiting field applications. In comparison with NIR spectroscopy, the effect of water on 

spectral response is more severe with MIR spectroscopy. This necessitates advanced 

data mining techniques to remove the influence of MC. Recent studies on the use of the 

vis-NIR spectroscopy for the measurement of other soil properties proved that MC 

effect can be removed by adopting direct standardisation of external parameter 

orthogonalisation techniques (Ji et al., 2015). These techniques are yet to be tested in 

the MIR spectroscopy, particularly for PHC contamination detection. Furthermore, 

other approaches that can be adopted to remove the water effect in soil samples is to 

classify spectra into different soil water classes, for each specific calibration models of 

soil consistent is developed (Mouazen et al., 2006). From the brief review on MIR 

spectroscopy, we can conclude that this technique is commonly used for the 

measurement of various soil PHCs contaminants. However, MIR accuracy and 

reproducibility are affected by sample heterogeneity, thus requiring extra sample 

processing. The technique is field-deployable (Sorak et al., 2012) though MC effect is a 

limiting factor in the field. Nevertheless, advanced data mining approaches can remove 

the influence on MC. 

Another IR method for analysis of soil hydrocarbon is attenuated total reflectance 

(ATR) spectroscopy. Quantitative analysis of TPH in oil-contaminated soils by ATR-IR 

spectroscopy was documented (Guryanova et al., 2016). The authors demonstrated the 

feasibility of oil hydrocarbon contamination analysis of soil ATR-IR spectroscopy with 

an infrared fibre-based immersion probe without any sample pre-treatment. Multivariate 

modelling of ATR-IR spectroscopic data of samples was implemented using PLS 

regression method. The authors reported calibration results in terms of root mean square 

error, RMSE =1.51 mg/kg and coefficient of determination, R =0.824. They concluded 

that the proposed methodology can be utilised to develop a portable real-time in-situ 

field analyser presenting a viable alternative to laboratory analysis of collected soil 
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samples. However, the authors further recommend modification of the probe to sample 

interface so as to enlarge the contact surface to enhance oil hydrocarbon determination; 

and increase the number and variety of soils in the calibration to enhance analysis 

accuracy. 

2.5  Multi-sensor and data fusion approach  

A multi-sensor and data fusion approach has recently been introduced in digital 

agriculture, as a tool to improve soil and crop management (Grunwald et al., 2015; 

Kuang et al., 2012). Also, recent reports confirmed that this approach was extended to 

the environmental sector e.g., to measure and manage PHC in soils (e.g., Chakraborty et 

al., 2015; Horta et al., 2015). However, it is worth to stress that multi-sensor and data 

fusion approach is more common for field measurement scenarios, which allow 

overcoming the major shortcoming of these technologies regarding accuracy. In this 

sense, it can be hypothesised that by the integration of more than one field sensor and 

advanced data fusion modelling, improvement in calibration accuracy is expected 

compared to that provided by individual sensing technology. Although field 

measurement methods have been used independently for environmental analysis, they 

are yet to be integrated into single use (data fusion) for swift and better environmental 

analysis. While multi-sensor is the use of more than one sensor (hardware) when 

collecting multi-data layer from one sample or spot, data fusion is the integration and 

modelling of the multi-data layer from different sources to produce more accurate 

(reliable) quantitative assessment of a property, which could not be attained from a 

single source (Horta et al., 2015).  

Data fusion, as a methodology for environmental analysis, is new and has so far 

attracted little attention in the literature. Fused XRF data and vis-NIR spectra was used 

to produce an optimised model for swift and more accurate measurement of soil PHC in 

Texas (Chakraborty et al., 2015). Using spectral libraries and field validation, Horta et 

al. (2015) reported that the synergistic use of vis-NIR and XRF spectrometry data is 

possible for better soil contaminant analysis, nevertheless, they recommended also the 

need to develop unique calibration methods. However, portable sensing technologies are 

not restricted to vis-NIRS, but MIRS (Sorak et al., 2012), micro spectroscopy, XRFS, 

and others that may well be integrated and their multi-layer data analysed. Currently, 
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there is no study yet integrating XRFS, MIRS, and vis-NIRS optical sensors for the 

evaluation of soil PHCs. Thus, a field-portable integrated framework of XRF+MIR, vis-

NIR+MIR or XFR+vis-NIRS+MIR to analyse PHCs in soils and sediments has never 

been proposed. The synergistic use of these combinations, albeit complexity and 

increased capital cost, is portability, requirement for little or no consumable, and 

minimum or no samples preparation. With these advantages, the higher capital cost 

would be recovered within a short period of time, as cost of analysing TPH per sample 

can be high. Either of the hybrids would benefit environment regulators and remediation 

experts. The workflow for the “newly integrated approach of multi-sensor and data 

fusion’’ based on chemometrics, or machine learning is illustrated in Figure 2-2.  
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Figure 2-2: The integrated concept of multi-sensor and data fusion for the measurement of 

petroleum hydrocarbons (PHC) in soil and sediments. 

In this approach the three spectrometers are transferred to the field (in situ 

measurement), or soil samples are brought to the laboratory (laboratory-based analysis). 

The multi-data layers obtained from the three sensing technologies are pooled together 

in one matrix, subjected to data pre-processing, before multivariate statistics (e.g., 

PLSR) and machine learning (e.g. artificial neural network ANN), support vector 

machine (SVM), and random forest (RF) modelling techniques are used to establish 

calibration models to predict PHCs in soils. From the few successes made in earlier 

studies (Chakraborty et al., 2015; Wang et al., 2015) (Table 2-3) with data fusion 

technology, it is expected that the multi-sensor and data fusion outlined in the present 

paper would be effective and feasible for analysing soil PHCs contaminants. This has to 
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be validated with experimental work in the future. However, data fusion has limitations 

since each technique has different requirements on sample preparation but spectral 

measurements are acquired at the same time. These are currently key challenges against 

the implementation of the approach. However, it is hopeful that this will be a reality 

subject to methodological and technological advancement. 

Table 2-3: Comparison of data fusion approach and performance for targeted analytes in 

soil. 

Technique Targeted 

analytes 

Multivariate 

technique 

Sample 

matrix 

Statistical 

parameters 

Reference 

Vis-NIRS TPH PSR Soil 

R
2
=0.70, 

RMSE=0.75 

mg/kg, 

RPD=1.86 

Chakraborty 

et al., 2015 
Vis-NIRS XRF TPH PSR Soil 

R
2
=0.73, 

RMSE=0.59 

mg/kg, 

RPD=1.96 

Vis-NIRS XRF  TPH PSR RFR Soil 

R
2
=0.78, 

RMSE=0.53 

mg/kg, 

RPD=2.19 

XRF TN RFR Soil 

R
2
=0.9, 

RMSEP=0.02 

mg/kg, 

RPD=3.20 Wang et al., 

2015 

XRF TC RFR Soil 

R
2
=0.77, 

RMSE=0.336 

mg/kg, 

RPD=2.11 
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Technique Targeted 

analytes 

Multivariate 

technique 

Sample 

matrix 

Statistical 

parameters 

Reference 

Vis-NIRS TPH PSR Soil 

R
2
=0.70, 

RMSE=0.75 

mg/kg, 

RPD=1.86 Chakraborty 

et al., 2015 

Vis-NIRS XRF TPH PSR Soil 

R
2
=0.73, 

RMSE=0.59 

mg/kg, 

RPD=1.96 

Vis-NIRS TN RFR Soil 

R
2
=0.90, 

RMSE=0.019 

mg/kg, 

RPD=3.23 

Vis-NIRS TC RFR Soil 

R
2
=0.81, 

RMSE=0.331 

mg/kg, 

RPD=2.33 

Vis_NIRS+PXRF TN RFR Soil 

R
2
=0.91, 

RMSE=0.019 

mg/kg, 

RPD=3.39 

Vis-NIRS+PXRF TC RFR Soil 

R
2
=0.83, 

RMSE=0.319 

mg/kg, 

RPD=2.42 

R = coefficient of determination, RPD = residual prediction deviation, RMSE = root mean square error, 

RMSEP = root mean square error of prediction, PSR = penalised spline regression, RFR = random forest 

regression, Vis-NIRS=visible and near infrared spectroscopy, XRF = X-ray fluorescence, TN = total 

nitrogen, TC = total carbon, TPH = total petroleum hydrocarbon. 
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2.6 Decision making in selecting a detection techniques: advantages 

and limitations  

The first step towards decision making on the best technique to measure a source of 

contamination is driven by time, cost, and the final application of results. For example, 

in cases where time is not a crucial factor and accuracy is more appealing, laboratory 

measurement techniques are the most appropriate option, as accuracy is higher than 

field techniques. However, with recent advances in sensing technologies and IT 

infrastructure, field equipment become available, which may soon become real 

competitors of current tradition laboratory analytical techniques (e.g., the gas 

chromatography); particularly, if the current challenges, e.g. accuracy, can be overcome 

or at least minimised with advanced modelling techniques. One example of potential 

solution is the multi-sensor and data fusion approach. A wide range of field measuring 

techniques is available for quick measurement of PHCs in soil (Okparanma and 

Mouazen, 2013), although no single technique measures the whole range of PHCs. 

Thus, the detection of these contaminants depends on the samples and the analytical 

technique employed (Deeks et al., 2014). Therefore, choice of technique is important in 

conducting effective measurement of PHCs in soil and sediment. Field measuring 

techniques should be cost-effective, timesaving, portable, and provide sufficient 

accuracy in detecting and monitoring PHCs contamination levels in soil and sediment, 

rather than expensively analysing samples later in the laboratory (Barnes, 2009). These 

advantages allow field techniques to enable collecting a high number of samples per 

field area in a relatively short period, which is a crucial requirement for precision land 

reclamation (Okparanma et al., 2014b). This is because by enabling high sampling 

resolution to be collected, better spatial sample coverage and thus a better understanding 

and characterisation of the contaminated area can be obtained. The accuracy and limits 

of detection in field measuring methods are advancing and some may be applied to 

detect low concentration or even targeted chemicals (Deeks et al., 2014). However, the 

analytical quality of these techniques may be less accurate, and at a semi-quantitative 

range, compared to laboratory analysis for the measurement of PHCs in soils and 

sediments.  
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Table 2-4 shows the factors influencing the decision making process in selecting 

analytical techniques. Factors such as analysis run time, analysis cost per sample, 

operational skills and limitations were considered for decision-making. Among the 

techniques, there are currently no analysis cost per sample for vis-NIR, PXRF and 

portable GC-MS methods. Thus, there is an active research need in this area to enhance 

the decision-making process for analytical methods in environmental analysis. There is 

also need for research into the analysis run time of vis-NIR spectroscopy. In the area of 

operational skills, field GC, portable GC-MS, vis-NIR spectroscopy and PXRF require 

medium to high skill. While headspace FIDs and headspace PIDs require low to 

medium skill, Immunoassay test kits requires medium skill. To select the best analytical 

technique for environmental analysis, the highlighted research needs have to be 

addressed. 
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Table 2-4: Factors influencing decision in selecting analytical techniques. 

Technique 

Analysis run 

time (min) 

Analysis cost per 

sample 

Expertise 

needed 
Limitations 

Headspace 

analysis: PIDs 

a
1-30 a

₤0.69 - 6.89 L-M Less sensitive to detect 

aromatic hydrocarbons, 

High amount of organic 

content can affect the 

measurements 

Headspace 

analysis: FIDs 

a
1-30 a

₤0.69-₤6.89 L-M Less sensitive to aliphatic 

hydrocarbons, High 

organic content can affect 

the measurements 

Field Gas 

Chromatographs 

a
10-60 a

₤13.78 - ₤48.22 M-H A skilled operator is 

needed 

Portable GC/MS: 

 

b
10 na M-H A skilled operator is 

needed, Requires prior 

sample extraction, on-site 

carrier gas, Insensitivity 

issues, particularly 

microchip GCs 

Vis-NIR 

Spectrophotometer  

 

na 

 

na 

M-H Comparable accuracy for 

heavy metals and 

hydrocarbon 

Portable x-ray 

fluorescence 

30 s - 2 min na M-H A skilled operator is 

needed 

Immunoassay test 

kit 

a
30-45 a

₤13.78 - ₤41.34 M Cross-reactivity may 

impact interpretation of 

result 

Key: L = low, M = medium, H = high, na = not available, 
a 

Source: United States Environmental 

Protection Agency (EPA 510-B-97-001) (Expedited Site Assessment Tools for Underground Storage 

Tank Sites. A Guide for Regulators, 
b
 Source: Harris (2003). 
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2.7 Conclusion 

A plethora of chromatographic and spectroscopy techniques and extraction methods for 

the analysis of petroleum hydrocarbons (PHCs) in soil and sediments are available in 

the literature. This literature review has discussed both laboratory and field techniques, 

and showed that no method is problem-free, but there are issues of different magnitudes. 

For example, it has been documented that both near infrared spectroscopy (NIRS) and 

mid infrared spectroscopy (MIRS) are affected by moisture content (MC), which has to 

be accounted for in field measurement protocols by adopting appropriate modelling 

techniques. 

The high selective and sensitive of gas chromatographic lab-based techniques makes 

them the preferred choice for the identification and quantification of hydrocarbon 

contamination in environmental samples. However, they can be time-consuming and 

required a high level of expertise. In contrast, field portable GC techniques offer direct 

on-site analysis of samples for quick detection and measurement. 

Recent advances made with field spectroscopy methods (e.g., X-ray fluorescence 

[XRF], mid-infrared [MIR] and visible and near infrared [vis-NIR]) suggest that the 

development of field techniques towards practical applicability still have to follow; and 

the literature provides rather proof-of-concepts-studies so far. However, these field-

portable methods and the implementation of a multi-sensor and data fusion approach 

improve PHCs prediction accuracy over individual sensing technologies. We believe 

that there are huge research opportunity for improved field measurements of 

contaminants in soil and sediment if data fusion from different optical sensors could be 

integrated. The best spectroscopy combination candidates from environmental 

prospective, and which have not been investigated yet, include XRF+MIR, vis-

NIR+MIR or XFR+vis-NIRS+MIR. There is the chance that this synergy—rather than a 

single technique—could produce more reliable and accurate information for the 

mapping of contaminants in petroleum release sites. MIR and vis-NIR spectroscopy are 

candidate techniques for analysing PHCs, while XRF is widely known for the analysis 

of heavy metals and inorganic compounds. However, the fusion of XRF elemental data 

and vis-NIR spectra has shown to improve the quantification accuracy of soil TPH. 
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When optimal sensor combination, data mining and modelling technique is established, 

and when a successful technique to remove the negative influences on moisture content 

is implemented, high sampling resolution per unit field area can be collected in situ; this 

will assist in contaminated site remediation, contaminated land management, and risk 

assessment of petroleum hydrocarbon on human and welfare health.  

This approach would be useful in the future. However, in order to test the feasibility and 

potential application of the combination of Vis-NIR, MIR and XRF spectrometry 

spectral data for rapid and cost-effective analysis of soil PHCs contaminants, there is 

need for technological advancement in the proposed synergistic method together with 

special calibration approaches; and a pilot study needs to be conducted. In addition, 

multivariate modelling needs to be carried out with the conjoint data, using nonlinear 

analytical methods including artificial neural network and support vector machine, 

instead of commonly applied linear methods like PLS regression. Further work is also 

imperative in the area of analysis run time for generic field measurement methods like 

Vis-NIRS. This would facilitate selection of techniques for petroleum hydrocarbons 

detection in soil. 
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CHAPTER 3 : Evaluation of vis-NIR reflectance spectroscopy 

sensitivity to weathering for enhanced assessment of oil 

contaminated soils 

Douglas, R. K.
a*

, Nawar, S.
a
, S, Cipullo., Alamar, M. C

a
., Mouazen, A.M.

a,b
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a
 

aSchool of Water, Energy and Environment, Cranfield University, Cranfield, MK43 

0AL, UK 

b
Department of Soil Management, Ghent University, Coupure 653, 9000 Gent, Belgium 

Abstract: This study investigated the sensitivity of visible near-infrared spectroscopy 

(vis-NIR) to discriminate between fresh and weathered oil contaminated soils. The 

performance of random forest (RF) and partial least squares regression (PLSR) for the 

estimation of total petroleum hydrocarbon (TPH) throughout the time was also 

explored. Soil samples (n=13) with 5 different textures of sandy loam, sandy clay loam, 

clay loam, sandy clay and clay were collected from 10 different locations across the 

Cranfield University’s Research Farm (UK). A series of soil mesocosms was then set up 

where each soil sample was spiked with 10 ml of Alaskan crude oil (equivalent to 8450 

mg/kg), allowed to equilibrate for 48 h (T2d) and further kept at room temperature 

(21
o
C). Soils scanning was carried out before spiking (control TC) and then after 2 days 

(T2d) and months 4 (T4m), 8 (T8m), 12 (T12m), 16 (T16m), 20 (T20m), 24 (T24m), 

whereas gas chromatography mass spectroscopy (GC-MS) analysis was performed on 

T2d, T4m, T12m, T16m, T20m, and T24m. Soil scanning was done simultaneously 

using an AgroSpec spectrometer (305 to 2200 nm) (tec5 Technology for Spectroscopy, 

Germany) and Analytical Spectral Device (ASD) spectrometer (350 to 2500 nm) 

(ASDI, USA) to assess and compare their sensitivity and response against GC-MS data. 

Principle component analysis (PCA) showed that ASD performed better than tec5 for 

discriminating weathered versus fresh oil contaminated soil samples. The prediction 

results proved that RF models outperformed PLSR and resulted in coefficient of 

determination (R
2
) of 0.92, ratio of prediction deviation (RPD) of 3.79, and root mean 

square error of prediction (RMSEP) of 108.56 mg/kg. Overall, the results demonstrate 

that vis-NIR is a promising tool for rapid site investigation of weathered oil 
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contamination in soils and for TPH monitoring without the need of collecting soil 

samples and lengthy hydrocarbon extraction for further quantification analysis. 

Keywords: visible near-infrared diffuse reflectance spectroscopy; weathering; 

hydrocarbon; land management; chemometrics. 
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3.1 Introduction 

Globally petroleum hydrocarbons are used widely but their uses have caused 

contamination of soil, water and air mainly during oil production activities, storage and 

distribution of petroleum products and spillage accidents (ATSDR, 1999). Petroleum 

hydrocarbons are a complex mixture of aliphatic and aromatic hydrocarbon compounds, 

among which certain compounds can pose a significant risk to human health and or the 

environment (Cipullo et al., 2018; Wartini et al., 2017). While there have been a great 

deal of studies that have been carried out on developing and validating analytical 

framework for characterising and quantifying petroleum hydrocarbons in soil matrices, 

they often require soil sampling and then rely on lengthy extraction procedure that 

needs to be carried out in the laboratory (Douglas et al., 2017; Paiga et al., 2012). There 

is a need for rapid measurement of petroleum hydrocarbons in soil to allow better and 

swifter site characterisation and increased confidence in prioritising remediation actions. 

Most importantly, the concept of taking ‘the lab to the field’ for measuring hydrocarbon 

contamination in soil without compromising data quality and information needs to be 

demonstrated (Douglas et al., 2017; Horta et al., 2015). To this end, field-based 

techniques offer rapid, non-destructive and cost-effective means of defining levels and 

distribution of petroleum hydrocarbons on-site. They also provide real-time monitoring 

data useful for initial site assessment and inform future sampling campaign for detailed 

risk assessment of the contaminated sites. However, one drawback of field-based 

techniques is that they often fail to determine and quantify the entire range of petroleum 

hydrocarbons, the aliphatic and aromatic hydrocarbon fractions, in soil (Douglas et al., 

2017). 

Once petroleum hydrocarbon are discharged to the environment, they undergo physical, 

chemical and biological processes that further alter their composition, toxicity, 

availability, and distribution in the environment. Such weathering (degradation) 

processes include adsorption, volatilization, dissolution, biotransformation, photolysis, 

oxidation, and hydrolysis (Jiang et al., 2016; Brassington et al., 2007). These processes 

shift the chemical composition of the hydrocarbons towards recalcitrant, asphaltenic 

products of increased hydrophobicity (Coulon et al., 2010). Weathered hydrocarbons 

are highly complex mixture and are known soil contaminants, which in the face of 40 

years of petroleum research, are still not adequately understood or appropriately 
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characterise for informing contaminated land risk categorisation (Coulon et al., 2010). 

Recently, research has been intensified in developing robust analytical technique for the 

identification of weathered hydrocarbons, which are the main sources of the organic 

carcinogens or suspected carcinogens that drive quantitative risk assessment (e.g., 

Benz[a]anthracene, benzo[a]pyrene, chrysene) at oil-contaminated sites (Environment 

Agency, 2005). Analytical methods including gas chromatography mass spectroscopy 

(GC-MS), gas chromatography coupled with flame ionization detector (GC-FID), 

gravimetric analysis, and infrared spectroscopy are available for analysing weathered 

hydrocarbons; however, the choice of technique may be influenced by the risk 

assessment being used during the remediation of contaminated land (API, 2001). 

Table 3-1: Previous results of visible near-infrared (vis-NIR) technology performance for 

the analysis of petroleum-contaminated soils at field-scale 

Targeted  

analyte 

N Spectral 

range (nm) 

Modelling 

method 

Statistical parameters References 

TPH 85 350-2500  RF R
2
=0.68, RMSEP=69.64 mg/kg, RPD=1.85 Douglas et 

al., 2018a 
PLSR R

2
=0.54, RMSEP=75.86 mg/kg, RPD=1.51 

PAH 85 350-2500 RF R
2
=0.71, RMSEP=0.99 mg/kg, RPD=1.99 Douglas et 

al., 2018b 
PLSR R

2
=0.56, RMSEP=1.12 mg/kg, RPD=1.55 

TPH 108 350-2500 PSR R
2
=0.70, RMSEP=0.75 mg/kg, RPD=1.86 Chakraborty 

et al., 2015 
RF R

2
=0.61, RMSEP=0.70 mg/kg, RPD=1.64 

PLSR R
2
=0.73, RMSEP=0.59 mg/kg, RPD=1.96 

TPH 164 350-2500 FD (PSR) R
2
=0.87, RMSEP=0.528 mg/kg, RPD=2.78 Chakraborty 

et al., 2014 
SNV-DT 

(PSR) 

R
2
=0.80, RMSEP=0.66 mg/kg, RPD=2.21 

FD (RF) R
2
=0.58, RMSEP=0.95 mg/kg, RPD=1.56 

SNV-DT (RF) R
2
=0.58, RMSEP=0.94 mg/kg, RPD=1.57 

PAH 137 350-2500 PLSR R
2
=0.89, RMSEP=1.16 mg/kg, RPD=3.12 Okparanma et 

al., 2014 

PAH 150 350-2500 PLSR R
2
=0.89, RMSEP=0.20 mg/kg, RPD=2.75 Okparanma et 

al., 2013b 

TPH 205 2000-2500 PLSR R
2
=0.63, RMSEP=5224 mg/kg, RPD=1.5 Forrester et 

al., 2013 

TPH 45 1560-1800 PLSR R
2
=0.94, RMSECV=1590 mg/kg, Bias=0.003 Hauser et al., 

2013 



REWARD K. DOUGLAS Cranfield University PhD Thesis, 2018 

64 

Targeted  

analyte 

N Spectral 

range (nm) 

Modelling 

method 

Statistical parameters References 

TPH 46 350-2500 PLSR R
2
=0.64, RMSEP=0.34 mg/kg, RPD=1.70 Chakraborty 

et al., 2010 

TPH 26 1100-2498 SMLR R
2
=0.71, SEP=770 mg/kg, RPD=1.80 Malley et al., 

1999 

N=number of samples, TPH=total petroleum hydrocarbon, PAH=polycyclic aromatic hydrocarbon, R
2
 = 

coefficient of determination, RMSEP = root mean square error of prediction, SEP= standard error of 

prediction, RPD = residual prediction deviation, RF=random forest, SMLR, = stepwise multiple linear 

regression, PLSR=partial least square regression, PSR=penalized spline regression, FD = first derivative 

pre-processing, SNV-DT= standard normal variate pre-processing followed by detrending. 

Infrared spectroscopy, including visible and near-infrared (vis-NIR) or mid-infrared 

(MIR) spectroscopy, has been shown to be a suitable rapid acquisition method for the 

measurement of hydrocarbon concentration in soil without the need of any sample 

preparation (Douglas et al., 2018a; Horta et al., 2015; Okparanma and Mouazen, 2013a; 

Chakraborty et al., 2010). Infrared spectroscopy for PHCs detection in soils is a proven 

technology (Okparanma et al., 2014a; Forester et al., 2013; Okparanma and Mouazen, 

2013; Charaborty et al., 2010; Bray et a., 2009; Malley et al., 1999). More details on 

previous works on the use of vis-NIR spectroscopy for quantifying hydrocarbons in 

soils can be found in Table 3-1. However, to the best of our knowledge, the application 

of vis-NIR-based techniques to differentiate between freshly contaminated versus 

weathered crude oil contaminated soils has not been investigated. Furthermore, no 

attempts to implement the vis-NIR spectroscopy to quantify the total petroleum 

hydrocarbon (TPH) in soil, across different stages of weathering can be found in the 

literature. 

The objectives of this study were (i) to investigate the sensitivity of two portable vis-

NIR spectrophotometers (ASD and tec5) for the discrimination between weathered and 

fresh oil spill in soils using principal component analysis (PCA), and (ii) to quantify 

TPH in these soils during weathering, using partial least squares regression (PLSR) and 

random forest (RF) modeling methods. 
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3.2 Materials and methods 

3.2.1 Study area and soil sampling 

A total of thirteen (n=13) surface soil samples (0-15 cm) with approximately 5 kg per 

sample were collected using a shovel from 10 sites located in Bedfordshire, namely, 

Avenue, Downings, Orchard, Mound, Wood, Copse, Ivy ground, Near Warden, 

Showground, and Sandpit; all from the Cranfield University’s Research Farm, 

Bedfordshire, UK (Figure 3-1). Samples were taken with Ziploc bags to the laboratory 

and stored in the freezer at 4 
o
C prior to utilisation. Two and three samples were 

collected for Avenue and Ivy ground fields, respectively, while one sample was 

collected from each of the remaining five fields. The collected soil samples were 

subjected to soil physical and chemical analyses. The soil moisture content (MC) was 

measured by oven-drying soil samples at 105 ± 5
o
C for 24 h. Soil pH was measured 

following the Standard Operating Procedure (SOP) of the British Standard BS ISO 

10390:2005; the total organic carbon (TOC) was determined using a Vario III Elemental 

Analyser using SOP based on British Standard BS 7755 Section 3.8: 1995 and the 

particle size was determined using SOP based on British Standard BS 7755 Section 

5.4:1995. 
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Figure 3-1: Location of the study area and sampling points collected from 10 sites in 

Bedfordshire, UK.  

3.2.2  Mesocosms setup 

Using 1 kg soil, 13 soil mesocosms (representing all the 13 samples) were set up. Each 

soil sample was spiked with 10 ml of Alaskan crude oil (equivalent to 1845 mg/kg) and 

allowed to equilibrate at room temperature (21 
o
C) for 48 h. Alaskan crude oil was the 

crude oil available at Cranfield and relatively close to Nigerian oil composition – so for 

practicality the Alaskan crude oil was used. Also it is difficult to obtain crude oil 

samples from Nigeria due to security issues. Vis-NIR scanning was performed on 

pristine soil (control (TC) - pristine samples dried at room temperature to reduce 

moisture effect) and then after 2 days (T2d) and months 4 (T4m), 8 (T8m), 12 (T12m), 

16 (T16m), 20 (T20m), 24 (T24m); whereas gas chromatography mass spectroscopy 

(GC-MS) analysis was performed on T2d, T4m, T12m, T16m, T20m, and T24m. 

Therefore, data of T8m was excluded from the quantitative analysis of TPH. The 
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experiment set up with UK samples was to mimic environmental conditions as 

hydrocarbons are weathered/aged in most of the spill sites in the Niger Delta, Nigeria 

where soil samples were collected. The idea was to take portable versions to site to 

acquire on-site data in the future.  

3.2.3  Optical measurement and spectra pre-processing 

Soil spectral measurements were done in the laboratory using two vis-NIR 

spectrophotometers, namely, an AgroSpec vis-NIR spectrometer with a spectral range 

of 305-2200 nm (tec5 Technology for Spectroscopy, Germany) and an ASD 

LabSpec2500® (Analytical Spectral Devices, Inc., USA), which covers a spectral range 

of 350–2500 nm. Both spectrometers are portable, but use different detectors; ASD uses 

monochromatic detector while tec5 is equipped with a diode array detector.  

Spectral measurement by ASD LabSpec2500® spectrometer in this study followed the 

protocols described by Douglas et al. (2018a). Before scanning, samples were air-dried 

in order to eliminate the effect of moisture content on soil spectral analysis (Mouazen et 

al., 2006). After removal of all plants and pebble materials, three subsamples were 

prepared from each soil sample; these were placed into 3 different Petri dishes (1 cm 

height x 5.6 cm in diameter), and the surface was smoothened gently with a spatula 

before scanning (Mouazen et al., 2005). This was done to achieve optimal diffuse 

reflection and, thus, a good signal-to-noise ratio. A high-intensity probe was used for 

scanning of soil samples, which has a built-in light source made of a quartz-halogen 

bulb of 2727 °K. The light source and detection fibres are assembled in the high-

intensity probe enclosing a 35° angle. The device was calibrated using almost 100 % 

white Spectralon disc before use, and after every 30 min. The spectral measurements 

were made in the dark in order to both, control the illumination conditions and reduce 

the effects of stray light. The three replicates of each sample were scanned at three 

different spots, and an average spectrum was obtained for further analysis. A total of 10 

scans were acquired from each replicate, and the average spectrum of the three 

replicates was considered as the sample spectrum.  

Prior to multivariate analysis, three standardised spectral pre-treating approaches 

(including maximum normalization, first derivative, and smoothing) were carried out 

using R software (R Core Team, 2013). Maximum normalisation divides each row 
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(spectrum) by its maximum absolute value to achieve an even distribution of the 

variances; the first derivative removes the baseline shift to improve the accuracy of 

quantification (Okparanma et al. 2014; Demetriades-Shah et al., 1990); and smoothing 

reduces the impact of noise (Okparanma and Mouazen, 2013b). These routines were 

aimed at keeping all useful chemical and physical information in the spectra for 

analysis. 

3.2.4 Gas chromatography and peak integration 

Chemical analysis for TPH concentration was carried out using sequential ultrasonic 

solvent extraction-gas chromatography (SUSE-GC) as described by Risdon et al. (2008) 

with some modifications. Briefly, 5 g of soil sample was mixed with 20 ml of 

dichloromethane (DCM): hexane (Hex) solution (1:1, v/v) and shaken for 16 h at 150 

oscillations per min over 16 h; and finally sonicated for 30 min at 20 °C. After 

centrifugation, extracts were cleaned on Florisil
®
 columns by elution with hexane. 

Deuterated alkanes and polycyclic aromatic hydrocarbons (PAHs) internal standards 

were added to extracts at appropriate concentrations. The final extract was diluted 

(1:10) for GC-MS analysis. Deuterated alkanes (C10
d22

, C19
d40

 and C30
d62

) and PAH 

(naphthalene 
d8

, anthracene 
d10

, chrysene 
d12

 and perylene 
d12

) internal standards were 

added to extracts at 0.5 µg ml
-1

 and 0.4 µg ml
-1

, respectively. Aliphatic hydrocarbons 

and PAHs were identified and quantified using an Agilent 5973N GC-MS operated at 

70 eV in positive ion mode. The column used was a Zebron fused silica capillary 

column (30 x 0.25 mm internal diameter, Phenomenex) coated with 5MS (0.25 µm film 

thickness). Splitless injection with a sample volume of 1 µL was applied. The oven 

temperature was increased from 60 °C to 220 °C at 20 °C min
-1

 then to 310 °C at 6 °C 

min
-1

 and held at this temperature for 15 min. The mass spectrometry was operated 

using the full scan mode (range m/z 50-500) for quantitative analysis of target alkanes 

and PAHs. For each compound, quantification was performed by integrating the peak at 

specific m/z using auto-integration method with Mass Selective Detector (MSD) 

ChemStation software. External multilevel calibrations were carried out for both 

alkanes and PAH quantification ranging from 0.5 to 2500 µg ml
-1

 and from 1 to 5 µg 

ml
-1

, respectively. For quality control, a 500 µg ml
-1

 diesel standard solution (ASTM 

C12-C60 quantitative, Supelco) and mineral oil mixture Type A and B (Supelco) were 
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analyzed every 20 samples. The variation of the reproducibility of extraction and 

quantification of soil samples were determined by successive injections (n=7) of the 

same sample and estimated to ± 8%. In addition, duplicate reagent control and reference 

material were systematically used. The reagent control was treated following the same 

procedure as the samples without adding soil sample. The reference material was an 

uncontaminated soil of known characteristics, and was spiked with a diesel and mineral 

oil standard at a concentration equivalent to 16,000 mg/kg. Relative standard deviation 

(RSD) values for all the soils was <10%. From the results obtained for alkanes and 

PAHs, TPH was obtained for each sample, and further used for modelling purposes. 

3.3  Multivariate analyses 

3.3.1  Principal component analysis (PCA) 

PCA was used for qualitative vis-NIR discrimination of soil samples based on the 

spectral properties of the different contaminated weathering groups. PCA is a 

multivariate technique that reduces the dimensionality of large multivariate datasets. 

PCA helps to transform the wavelengths (independent variables) into principle 

components (PCs). Plotting the PCs enables one to examine interrelationships among 

different variables, and detect and interpret sample patterns, groupings, similarities, or 

differences (Mouazen et al., 2006; Martens and Naes, 1989). The pre-processed spectra 

have been used in the PCA; the results showed a similarity map of principal PCs, as 

well as the loadings that can be used to investigate the significant wavebands for 

hydrocarbons. The PCA was performed using FactorMine R-package (R Core Team, 

2013).  

3.3.2  Quantitative assessment of TPH using PLSR and RF methods 

The pre-processed vis-NIR soil spectra for both ASD and tec5 spectrophotometers 

coupled with the reference laboratory TPH measured by SUSE-GC were used to 

develop calibration models for quantifying TPH through 2 years weathering period. The 

total number of samples used for both PLSR and RF modelling were 78, obtained from 

13 soil samples scanned at six occasions through 24 months. Sixty (n=60) samples were 

selected for calibration while eighteen (n=18) for prediction (validation). The same 

calibration and validation datasets used in PLSR were utilized for RF analysis. The 
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selection of the samples in the calibration and prediction set was done based on the 

Kennard-Stone algorithm (Kennard and Stone, 1969). Kennard-Stone was used because 

it has been widely used in chemometrics and soil spectroscopy and showed good 

performance in separating samples into calibration (cross-validation) and independent 

validation (prediction) data sets (Viscarra Rossel and Webster, 2012; de Groot et al., 

1999). Two groups of calibration models for TPH were developed, one for tec5 and the 

second one for ASD spectral data. The intension was to evaluate the effect of the 

spectral range of the prediction accuracy of TPH in the soil during 2 years weathering 

period. 

PLSR is a commonly used multivariate regression technique available in standard 

statistical and chemometrics software. It is a combination of both the independent 

variables (TPH values) and the dependent variables (wavelengths), which are used as 

regression generators for the independent variables. In this study, we use PLSR with 

leave-one-out cross validation (LOOCV) to develop TPH prediction model, using pls 

package (R Core Team, 2013). It is documented that LOOCV annul the possible effect 

of model under- or over-fittings (Efron and Tibshirani, 1993).  

Random forest is a nonparametric and nonlinear classification and regression algorithm 

using assembly learning strategy that integrates hundreds of individual trees (Breiman, 

2001). A bootstrap sample is first drawn from the training dataset to build each tree. At 

each node split, the candidate set of the regressor is a random subset of all the 

regressors. The final prediction of a new observation is the average of the predicted 

values from all the trees in the forest. The tuning parameters of RF have been defined 

based on function implemented in the R software package and were set to 500, 2, and 2 

for the number of trees (ntree), the number of predictor variables used to split the nodes 

at each partitioning (mtry), and the minimum size of the leaf (nodesize), respectively. 

Models were developed with R program using the software package randomForest 

Version 4.6-12 (Liaw and Wiener, 2015), based on Breiman and Cutler's Fortran code 

(Breiman, 2001). 
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Equation 3-1: Root mean square error of prediction 

    
  

    
 

Equation 3-2: Residual prediction deviation 

     
  

    
 

Equation 3-3: Ratio of performance to interquartile range 

Where                                       , SD=standard deviation of the 

measured reference values, N=number of samples in the set, RPIQ=ratio of performance to 

interquartile range, IQ=difference between the third and the first quartiles (IQ=Q3-Q1) 

3.4 Evaluation of model performance 

The performance of TPH prediction models was assessed by means of three parameters: 

(i) the coefficient of determination in prediction R
2
, (ii) root mean square error of 

prediction (RMSEP), and (iii) residual prediction deviation (RPD), which is a ratio of 

standard deviation (SD) to RMSEP. In this study, we adopted the model classification 

criterion of Viscarra Rossel et al. (2006): RPD < 1.0 indicates very poor model 

predictions, 1.0 ≤ RPD < 1.4 indicates poor, 1.4 ≤ RPD < 1.8 indicates fair, 1.8 ≤ RPD < 

2.0 indicates good, 2.0 ≤ RPD < 2.5 indicates very good, and excellent if RPD > 2.5. In 

general, a best model performance would have the highest values of R
2
 and RPD, and 

smallest value of RMSEP. 

3.5  Results and discussion 

3.5.1  Soil physiochemical properties 

Soil physio-chemical properties (viz. partial size distribution, TOC, and MC) of the 

different soil samples are presented in Table 2. Clay content ranged between 14% and 

57%, silt between 15% and 27%, and sand between 16% and 63%. However, examining 

the soil texture type according to the United State Department of Agriculture (USDA) 

classification system, indicates the majority of soils in the study fields are on the heavy 

side of the texture triangle. TOC was high with minimum and maximum of 1.62 and 

4.48%, respectively. Results indicated a high variation in soil texture and TOC among 
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the soil samples. Tamburini et al (2017) demonstrated that the general effects of 

physical soil characteristics do not generate dramatic interferences with spectral signals. 

Despite a slight worsening of the prediction capacity, the possibility to gather all 

samples and build a unique calibration model has permitted to encompass the two 

principal sources of spectral offsets and shifts in their calibration model, increasing its 

robustness and reliability with unknown samples. Future improvements of this 

application could permit performing NIR analysis of soils directly in field by potentially 

using a probe connected to the NIR instrument (Tamburini et al., 2017). 

Studies have reported on the effect of soil factors potentially soil moisture content on 

vis-NIR. For example, moisture content affects vis-NIR measurement (Malley et al., 

1999). A study by Horta et al. (2015) concluded that effect of moisture content on vis-

NIR happens to cause more attenuation than soil structure. However, since soil samples 

were scanned after air drying, the effect of MC was excluded from spectral analysis. It 

has been reported that small particle size (high clay content) can result in a better model 

performance (Fontán et al., 2010) of soil organic carbon, whereas prediction was 

reported to be less accurate in coarse soil textures (Stenberg, 2010). Since the majority 

of soil textures of the samples analysed in this work were on the heavy side of the 

texture triangle, the similarity in texture is assumed to have minor effect on prediction 

accuracy of TPH. 
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Table 3-2: Soil physio-chemical properties of 13 surface soil samples (0-15 cm) collected 

from ten different locations across the Cranfield University’s Research Farm, 

Bedfordshire, UK. 

Location 

name 
Sample No. Clay % Silt % Sand % TOC % Texture 

Avenue 1 17 20 63 2.02 Sandy 

loam 

 
 2 30 19 51 1.67 

Downings 3 28 19 53 2.3 
Sandy 

clay loam 

Orchard 4 33 26 41 2.32 Clay loam 

Mound 5 16 21 63 1.96 
Sandy 

loam 

Wood 6 42 25 33 2.28 Clay 

Copse 7 38 26 36 2.7 Clay loam 

 8 57 27 16 4.48 Clay 

Ivy ground 9 57 27 16 4.48 Clay 

 11 57 27 16 4.48 Clay 

Near warden 10 57 25 18 3.1 Clay 

Showground 12 24 17 59 1.87 
Sandy 

clay loam 

Sand pit 13 14 15 71 1.62 
Sandy 

loam 

TOC=total organic carbon. 

3.5.2 Spectral data analysis 

Illustrative raw air dry soil spectra and pre-processed soil spectra changes overtime are 

presented in Figure 3-2 (note that only T2d, T12m and T20m are shown for clarity).  In 

both Figure 3-2a and Figure 3-2c, the control soil (TC) reflects higher than the 

contaminated soils or, in other words, absorb less light energy due to the lighter colour 

of samples without oil added.  



REWARD K. DOUGLAS Cranfield University PhD Thesis, 2018 

74 

 

Figure 3-2: Illustrative example of visible and near infrared (vis-NIR) soil spectra 

overtime: Control pristine soil (TC), and contaminated soil after 48 hours (T2d), 12 

months (T12m) and 20 months (T20m); Panels a & b showed raw spectra and pre-

processed spectra obtained with ASD spectrometer; Panels c & d showed raw spectra and 

pre-processed spectra obtained with the tec5 spectrophotometer.  

It is clearly demonstrated that reflectance decreased or absorption increased when 

adding crude oil, due to the darker color. Among the contaminated soils, the spectral 

reflectance increased (i.e., less absorbance) as weathering of hydrocarbons in soils 

progresses. Thus, T2d samples had the highest absorbance, and this decreased with 

weathering time. In terms of equipment performance, a better discrimination between 

groups’ average spectra was achieved with the ASD spectrometer compared to tec5 

spectrometer (Figure 3-2). 

The behaviour of control and contaminated spectra observed herein is in line with the 

conclusions drawn by Hoerig et al. (2001). Both ASD and tec5 spectrophotometers 

captured hydrocarbon features around 1731 nm in the first overtone region (Figure 3-2b 

and Figure 3-2d), which is linked with TPH. Our result is not far from those identified 

by other scientists e.g., 1732, 1758 nm (Douglas et al. 2018a), 1752 nm (Chakraborty et 
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al., 2015), 1712, 1752 nm (Okparanma et al., 2014a). An absorption band of 

hydrocarbons around 2207 nm in the combination region (Figure 3-2) was also observed 

in the ASD spectra, a wavelength that is close to those reported by other researchers 

e.g., 2240 nm by Chakraborty et al. (2015), and 2460 nm by Forrester et al. (2013). The 

other absorption bands are associated with other soil properties, e.g., water, clay 

mineralogy, and organic carbon. More details about the hydrocarbon signatures in soils 

are presented (section 3.2, Figure 3-4). 

3.5.3  Qualitative discrimination of weathering groups by PCA 

In order to examine the variability between spectra of the contaminated soils overtime, 

spectra were subjected to PCA, with the aim to extract distinctive spectral features that 

can assemble similar weathered contaminated soils together in distinguished groups. If 

this can be achieved, we can claim that the vis-NIR spectrometers used in this study can 

differentiate weathered versus fresh oil spill in soils. A scatter diagram of component 

score for the first and second principal components (PC-1, PC-2) is shown in Figure 

3-3a for the ASD spectrometer and Figure 3-3b for the tec5 spectrometer. With the ASD 

spectrometer, PC1 accounted for 94.50% while PC 2 accounted for 5.10% of variance, 

with a total of 99.6%. However, a slightly less variance was accounted for by the PCA 

performed on the tec5 spectra (Figure 3-3b), with PC1 accounting for 93.30% and PC2 

accounting for 5.12%, which sums up to 98.42% of the total variance. It is noteworthy 

that the separation patterns of the various weathering group soils achieved with the two 

portable vis-NIR instruments are different; with ASD (Figure 3-3a) providing the best 

visual separation in the principal component space. The separation was particularly 

clear between the non-contaminated (TC) and freshly contaminated samples at T2d, 

obtained with the ASD spectrometer. Different weathering groups were formed along 

the PC1 of the ASD-PCA plot, showing different degree of overlap between soil groups 

of different weathering time, where overlap becomes more evident after month 12 and 

up to month 24 in Figure 3-3a. Soil samples at T2d and T4m are better separated from 

the remaining weathering groups (Figure 3-3a). Few samples from T4m overlapped 

with those of T2d, whereas one T4m and few T8m samples were in the neighbourhood 

of the T12m and T24m samples. In the case of the T2d and T4m samples, there is less 

compositional resemblance reflected on different spectral signature, whereas more 
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compositional resemblance exists within the T12m to T24m samples, resulting in 

smaller spectral differences of the same sample throughout weathering time, and hence 

the increase of sample overlap. The tec5-PCA plot shows less clear separation between 

different weathering groups (Figure 3-3b) compared to the ASD-PCA plots. Separation 

here occurs along the diagonal access between PC1 and PC2 (Figure 3-3b). It is obvious 

that TC samples are clearly separated from the other groups, and that more clear overlap 

exists between the remaining groups compared to the ASD-PCA plots. For example, it 

is odd to observe that T4m samples are closer to TC samples, in comparison with T2d 

samples, which were further away from TC samples. Furthermore, samples of T24m 

and T20m are closer to TC samples than the remaining groups with smaller weathering 

time (e.g., T4m, T8m, T12m and T16m).  

Overall, we can conclude that, the ASD spectrometer provided logical and clearer 

separation of the different weathering groups and that instrument’s sensitivity to 

weathering reduces overtime due to the reduction of the TPH concentration (see 

discussion below). On the other hand, the clear separation observed between the 

contaminated and TC samples indicate that the two groups are compositionally 

dissimilar. This is in agreement with the results reported by Chakraborty et al. (2010), 

who assessed the ability of vis-NIR spectroscopy to distinguish contaminated and non-

contaminated soils qualitatively using PCA.  
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Figure 3-3: Principal component analysis of the soil scanning profile overtime obtained 

using (a) ASD and (b) tec5 spectrophotometers (TC: control samples (pristine); and 

contaminated soil samples after 48 h (T2d), and months 4 (T4m), 8 (T8m), 12 (T12m), 16 

(T16m), 20 (T20m) and 24 (T24m). 
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Furthermore, PCA loadings were produced to investigate potential wavelengths 

associated with diesel originated hydrocarbon contamination (Figure 3-4). In the PCA 

loadings, an absorption minimum was observed at 1730 nm in both ASD and tec5 

spectrometers, which is attributed to C-H stretching modes of terminal CH3 and 

saturated CH2 groups linked to TPH in the first overtone region. This result is in line 

with observations from others researchers (Okparanma et al., 2014; Workman and 

Weyer, 2008). Furthermore, typical spectral signatures around 1452 nm and 1950 nm 

were clearly observed in both ASD and tec5 spectrometers. These are associated with 

the second and first overtones of water absorption around 1450 nm and 1950 nm, 

previously reported (Mouazen et al., 2005; Mouazen et al., 2006). Absorption features 

around 2279 and 2340 nm were also observed in ASD spectrometer alone. These are 

associated with metal-OH bend and O-H stretch combination and characteristic of clay 

minerals. The results obtained here are similar to those at 2200 and 2300 nm, reported 

in the literature (Viscarra Rossel et al., 2006b; Clark et al., 1990). The absorption band 

at 2207 nm can be attributed to either amides (C=O) absorption (Viscarra Rossel and  

Behrens, 2010) or crude oil spectral signatures (stretch+bend) (Mullins et al., 1992). 

Furthermore, this band can be linked to the hydrocarbon concentration that can be 

effective to discriminate between weathering groups (Figure 3-4a). Therefore, the ASD 

showed a high capability to discriminate between the weathering group, and this is 

because its full vis-NIR range spectrum including all the effective waveband associated 

with hydrocarbons. 
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Figure 3-4: Principal Component analysis loadings of the spectral patterns showing the 

wavelengths associated with hydrocarbon fractions, water and mineralogy. 
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3.5.4  Soil TPH analysis 

The petroleum hydrocarbon profiles and change overtime are illustrated in Figure 3-5. 

Chromatogram showed a well-developed series of n-alkanes distribution with carbon 

band range C10 – C36, but with about 85 % of the mixture existing within the range C12 - 

C28 (Figure 3-5; T2d). The distribution confirms that the hydrocarbon source is 

weathered (degraded) over time. After month 16 and 24, the most prominent residual 

hydrocarbon fractions were the aliphatic fractions C16-C35 and C35-C40, and the aromatic 

fractions C12-C16 and C16-C21, respectively.  

 

Figure 3-5: Illustrative gas chromatography-mass spectrometry (GC-MS) chromatogram 

showing petroleum hydrocarbons fingerprint change overtime. Results are shown for 

contaminated soil samples after 48 h (T2d), after months 4 (T4m), 12 (T12m), 16 (T16m), 

and 24 (T24m). 

Summary statistics of the aliphatic and aromatic fractions as well as the TPH 

concentrations which equal to sum of aliphatic and aromatic fractions are provided in 

Table 3-3. These TPH values were used for the vis-NIR spectra modelling. Samples 

were divided into calibration and prediction sets. In the calibration set, the minimum 

and maximum concentrations of TPH were 187.5 and 1761.5 mg/kg, respectively. The 

minimum and maximum concentrations of TPH in the prediction set were 186.7 and 
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1362.4 mg/kg, respectively (Table 3-4). The largest reduction in both the aliphatic and 

aromatic fractions were obtained after month 16 where 50% and 38% of the aliphatic 

and aromatic fractions, respectively, were degraded. Further to this, TPH reduction 

reached 72% by month 20 and 85% by month 24.  
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Table 3-3: Descriptive statistics of aliphatic and aromatic fraction concentrations (mg/kg) in 13 soil samples overtime (n = 78). 

Results are shown for diesel contaminated soil samples after 48 h (T2d), and months 4 (T4m), 12 (T12m), 16 (T16m), 20 (T20m) and 

24 (T24m). 

Hydrocarbon 

fractions  

T2d  T4m  T12m 

 

Med Min Max  Med Min Max  Med Min Max 

Aliphatic 

nC10-

nC12 
48.24 1.55 121.02  40.90 0.87 

119.2

0 
 32.51 0.44 82.67 

nC12-

nC16 
63.20 32.97 99.04  50.54 4.19 

105.8

4 
 37.56 4.54 81.10 

nC16-

nC35 
34.09 0.14 161.69  18.64 0.15 

107.6

0 
 25.95 0.21 75.43 

nC35-

nC40 
0.56 0.02 4.18  0.78 0.04 4.68  0.73 0.01 13.57 

 Total 
1259 1113 1642  887.11 

813.7

0 
1214.

75 
 880 721 1055 

Aromatic 

nC10-

nC12 
nd nd Nd  nd nd nd  nd nd nd 

nC12-

nC16 
3.32 3.25 3.96  3.33 3.26 4.29  3.36 3.10 3.53 

nC16-

nC21 
3.97 3.26 30.11  4.06 3.21 12.20  3.64 3.10 14.03 

nC21-

nC35 
6.49 3.50 15.24  5.72 3.36 16.51  3.92 3.10 16.63 
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Total 
82.68 71.59 134.37  81.71 64.77 

100.4

7 
 56.09 43.10 94.93 

 

TPH 1343.28 
1190.

78 1716.49 
 

963.83 
884.1

5 
1315.

2 
 

959.9 
802.4

5 
1101.

3 

     

 

   

 

   

  

T16m  T20m  T24m 

  

Med Min Max  Med Min Max  Med Min Max 

Aliphatic 

nC10-

nC12 
21.65 0.64 56.75  6.38 0.14 23.50  2.43 1.01 6.99 

nC12-

nC16 
29.05 13.82 50.42  13.83 1.80 31.91  7.48 1.05 18.81 

nC16-

nC35 
19.96 0.16 75.91  10.80 0.03 44.85  3.28 0.01 20.88 

nC35-

nC40 
0.25 0.01 2.19  0.24 0.01 2.35  0.02 0.01 0.76 

 
Total 678 628 774  326 233 421  162 133 185 

Aromatic 

nC10-

nC12 
nd nd Nd  nd nd nd  nd nd nd 

nC12-

nC16 
3.24 2.92 3.55  3.30 2.22 3.42  2.37 2.29 3.41 

nC16-

nC21 
4.29 2.05 7.64  3.77 3.31 6.29  3.32 3.10 4.40 

nC21-

nC35 
4.47 2.94 7.46  3.54 3.10 5.27  3.34 3.10 6.90 
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Total 59.12 53.07 62.83  47.35 43.41 62.50  46.20 43.38 50.76 

 

TPH 
733.87 

687.6

2 
833.98  380.53 

279.6

8 
465.4

0 
 207.8 

178.4

7 
232.6

4 

nd= not detected, med=median, min=minimum, max=maximum. 
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Table 3-4: Statistical summary of total petroleum hydrocarbons (TPH) concentrations of 

the collected soil samples measured with gas chromatography-mass spectrometry (GC-

MS) for the different weathering stages in cross-validation and independent validation. 

 

N Minimum Mean Median 1st Qu. 3rd Qu. Maximum St. dev 

TPH (mg/kg)         

Cross-validation  60 187.5 773.70 789.20 383.60 990.10 1761.50 133.13 

Independent validation 18 186.7 800.40 838.20 372.50 1121.4 1362.40 40.20 

N = number of samples, 1st Qu. = first quartile; 3rd Qu. = third quartile; St. dev = standard deviation. 

3.5.5  Models performance for estimating TPH 

Table 3-5 and Figure 3-6, and Figure 3-7 summaries the cross-validation and prediction 

results of TPH based on PLSR and RF analyses obtained with both the ASD and tec5 

spectrophotometers. Generally, the RF models outperformed the PLSR in cross-

validation and prediction for both ASD and tec5 measurements. The results of 

prediction based on ASD spectra indicated that RF model resulted in R
2
 of 0.92, 

RMSEP of 108.56 mg/kg, RPD of 3.79, and RPIQ of 6.90, which outperformed PLSR 

model (R
2 

= 0.83, RMSEP = 164.87 mg/kg, RPD = 2.49, RPIQ = 4.54). This was also 

the case for tec5 spectra as the RF model (R
2 

= 0.22, RMSEP = 352.71 mg/kg, RPD = 

1.16, and RPIQ = 2.13) outperformed PLSR (R
2 

= 0.11, RMSEP = 422.50 mg/kg, RPD 

= 0.97, and RPIQ = 1.77). The current results for both PLSR and RF prediction are 

better than those reported by Douglas et al. (2018a, 2018b) using 85 genuine 

contaminated soil samples collected from the Niger Delta region of Nigeria. 

Furthermore, our results for RF prediction are better than those reported by Chakraborty 

et al. (2015) using 108 contaminated soil samples (West Texas, USA) with i) RF 

modelling method only (R
2 

= 0.61, RMSE = 0.70 mg/kg, RPD = 1.64 and RPIQ = 0.57), 

and ii) RF combined with penalised spline regression (PSR) RF+PSR (R
2 
= 0.78, RMSE 

= 0.53 mg/kg, RPD = 2.19 and RPIQ = 0.75). Also, the PLSR prediction in the current 

study are better than the results reported by Chakraborty et al. (2015 and 2010), who 

achieved RPD values of 1.96 and 1.7, respectively, for field-moist soils (Table 3-1). A 

possible reason for the observed difference in the present study may be attributed to the 
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combination of spectral pre-processing (maximum normalization, 1
st
 derivative and 

smoothing) that represents a vital step in multivariate calibration and improves the 

model performance (Nawar et al. 2016; Buddenbaum and Steffens, 2012; Mouazen et 

al., 2010). According to Viscarra et al. (2006) model classification for RPD, excellent 

and very good predictions for TPH were achieved with RF-ASD (RPD = 3.79) and 

PLSR-ASD (2.49), respectively, whereas using tec5, poor and very poor results were 

obtained with RF-tec5 (RPD = 1.16) and PLSR-tec5 (RPD = 0.97), respectively.  

Table 3-5: Summary results of partial least squares regression (PLSR) and random forest 

(RF) models in calibration (cross-validation) and prediction (independent validation) for 

total petroleum hydrocarbons (TPH) prediction in oil-contaminated soil samples using 

ASD and tec5 spectrophotometers. 

    PLSR       RF     

Instrument 

 

R
2 

RMSEP  

(mg/kg) RPD RPIQ LV 

 

R
2 

RMSEP  

(mg/kg) RPD RPIQ ntrees 

ASD 

Calibration  

(n=60) 0.92 113.42 3.60 5.34 6 

 

0.98 44.07 9.28 13.76 500 

 

Prediction 

(n=18) 0.83 164.87 2.49 4.54 4 

 

0.92 108.56 3.79 6.90 200 

tec5 

Calibration  

(n=60) 0.83 164.26 2.47 3.70 8 

 

0.92 111.65 3.63 5.45 500 

  

Prediction 

(n=18) 0.11 422.50 0.97 1.77 8   0.22 352.71 1.16 2.13 200 

R
2
 = coefficient of determination, RMSEP = root mean square error of prediction, RPD = residual 

prediction deviation, LV = number of latent variables, ntrees = number of trees, and RPIQ = ratio of 

performance to interquartile range. 

The scatter plots of GC-MS measured versus ASD and tec5 predicted TPH 

concentrations (based on PLSR and RF models) are shown in Figure 3-6 and Figure 3-7, 

respectively. Both the ASD and tec5 instruments quantitatively discriminated the soils 

at their various stages of weathering; however, a better discrimination was achieved 

with the ASD instrument. The results herein support the qualitative separation of the 

various soil groups by PC score plots illustrated in Figure 3-3.  
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The TPH wavelength regression coefficients plots shown in Figure 3-8 illustrate 

important wavebands around 1452, 1730, and 1950 nm for both ASD and tec5 

spectrometers. The 1730 nm wavelength is attributed TPH absorption in the first 

overtone, which is close to the previous findings (Douglas et al., 2018a; Okparanma et 

al., 2014; Workman and Weyer, 2008; Osborne et al., 2007). The significant spectral 

signals around 1452 and 1950 nm are associated with water absorption bands in the 

second and first overtones, respectively, which accord findings reported in previous 

studies (Douglas et al., 2018a; Mouazen et al., 2007). In the ASD spectra, the spectral 

signature at 2207 nm may be due to the effect of hydrocarbon in the combination region 

around 2220 nm (Chakraborty et al., 2015 Forrester et al., 2013). Interestingly, the 

absorption feature around 2279 nm and 2340 nm is the same with the one observed in 

the PCA loadings (Figure 3-4a). This is characteristic of clay minerals around 2300 nm 

(Clark et al., 1990). The low performance of tec5 in separating the different weathering 

groups (Figure 3-4b). The quantitative assessment of TPH may be attributed to the high 

latent variables (LV), compared to that of ASD (Table 3-5). 
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Figure 3-6: Scatter plots of measured total petroleum hydrocarbons (TPH) using gas 

chromatography-mass-spectrometry (GC-MS) versus visible and near infrared (vis-NIR) 

ASD spectrometer predicted concentrations based on (A) partial least squares regression 

(PLSR) in (a) cross-validation and (b) prediction, and (B) random forest (RF) in (c) cross-

validation and (d) prediction. Results show clear separation of diesel contaminated groups 

of different weathering stages of 48 h (T2d), and months 4 (T4m), 12 (T12m), 16 (T16m), 

20 (T20m) and 24 (T24m). 
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Figure 3-7: Scatter plots of measured total petroleum hydrocarbons (TPH) using gas 

chromatography-mass-spectrometry (GC-MS) versus visible and near infrared (vis-NIR) 

tec5 spectrometer predicted concentrations based on (A) partial least squares regression 

(PLSR) in (a) cross-validation and (b) prediction, and (B) random forest (RF) in (c) cross-

validation and (d) prediction. Results show clear separation of diesel contaminated groups 

of different weathering stages of 48 h (T2d), and months 4 (T4m), 12 (T12m), 16 (T16m), 

20 (T20m) and 24 (T24m). 
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Figure 3-8: Regression coefficients plots resulted from partial least squares regression 

(PLSR) analysis for total petroleum hydrocarbons (TPH) based on visible and near 

infrared (vis-NIR) spectra of oil-contaminated soil samples using (a) ASD and (b) tec5 

spectrophotometers. Wavelengths highlighted on the plot are the potential features for 

TPH. 
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3.6  Conclusion 

This pilot study evaluated visible and near infrared (vis-NIR) diffuse reflectance 

spectroscopy sensitivity to hydrocarbon concentration differences attributed to 

weathering for enhanced assessment of crude oil contamination in soils. It compared the 

performance between a full vis-NIR range of 350-2500 nm spectrometer (e.g., ASD) 

with a short range of 305-2200 nm spectrometer (e.g., tec5), using two calibration 

methods of random forest (RF) and partial least squares regression (PLSR). From the 

results reported the following conclusions can be drawn:  

 Principal component analysis (PCA) showed reasonable separation between the 

different weathered soil groups over time. This was true for the ASD 

spectrometer only, which was attributed to the large wavelength range of 350-

2500 nm, compared to the short wavelength range (305-2200 nm) of the tec5 

spectrometer. However, since total petroleum hydrocarbon (TPH) content is soil 

samples decreases with time due to weathering, the sensitivity of the ASD 

spectrometer for detecting changes due to weathering in soils decreases, 

particularly after 8 months of contamination. 

 Both RF and PLSR analyses supported the PCA results for the ASD 

spectrometer in separation between different weathering groups, which was 

again much better that the separation obtained with the tec5 spectrometer. 

However, the RF model provided clearer separation than PLSR. 

 Both RF and PLSR demonstrated that TPH can be estimated throughout time up 

to two years weathering. However, better estimation of TPH was obtained with 

RF-ASD model (R
2 

= 0.92, RPD = 3.79, RMSE = 108.56 mg/kg), compared to 

PLSR-ASD model (R
2 

= 0.83, RPD = 2.49, RMSE = 164.87 mg/kg).  

Overall, the results demonstrated the potential of vis-NIR spectroscopy with a 

spectral range of 350-2500 nm for the successful estimation and discrimination of 

different weathering groups in oil-impacted soils. It is a rapid measurement tool for 

quick on-site investigation and monitoring through weathering (up to 2 years), 

without the need for collecting soil samples and lengthy hydrocarbon extraction 

associated to traditional laboratory analysis. 
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CHAPTER 4 : Rapid prediction of total petroleum 

hydrocarbons, polycyclic aromatic hydrocarbons and 

alkane concentration in contaminated soil using vis-NIR 

spectroscopy and regression techniques 
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Abstract: Visible and near infrared spectrometry (vis-NIRS) coupled with data mining 

techniques can offer fast and cost-effective quantitative measurement of total petroleum 

hydrocarbons (TPH), polycyclic aromatic hydrocarbon (PAH) and alkanes in 

contaminated soils. Literature showed however significant differences in the 

performance on the vis-NIRS between linear and non-linear calibration methods. This 

study compared the performance of linear partial least squares regression (PLSR) with a 

nonlinear random forest (RF) regression for the calibration of vis-NIRS when analysing 

TPH, PAH and alkane in soils. Eighty eight soil samples (3 uncontaminated and 85 

contaminated) collected from three sites located in the Niger Delta, Nigeria. All plant 

and pebble particles were removed and surface was smoothened gently with a spatula 

for scanning and scanned using an analytical spectral device (ASD) spectrophotometer 

(350-2500 nm) in diffuse reflectance mode. Sequential ultrasonic solvent extraction-gas 

chromatography (SUSE-GC) was used as reference quantification method for TPH, 

PAH and alkanes. Prior to model development, spectra were subjected to pre-processing 

including noise cut, maximum normalization, first derivative and smoothing. Then for 

TPH (65, 20), PAH (58, 23) and alkanes (65, 18) samples were selected as calibration 

and validation set, respectively. Both vis-NIR spectrometry and gas chromatography 

profiles of the respective soil samples were subjected to RF and PLSR with leave-one-

out cross-validation (LOOCV) for the calibration models. Results showed that RF 

calibration model with a coefficient of determination (R
2
) of 0.85, a root means square 

error of prediction (RMSEP) 68.43 mg kg
-1

, and a residual prediction deviation (RPD) 

of 2.61; R
2
 = 0.89, RMSEP = 1.02 mg/kg and RDP =2.99; R

2
 = 0.85, RMSEP = 55.71 
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mg/kg and RDP =2.58 outperformed PLSR (R
2
 = 0.63, RMSEP = 107.54 mg/kg and 

RDP =2.55), (R
2
 = 0.76, RMSEP = 0.81 mg/kg and RDP =2.07) and (R

2
 = 0.49, RMSEP 

= 101.71 mg/kg and RDP =1.41) for TPH, PAH and alkanes, respectively in cross-

validation (calibration). These results indicate that RF modelling approach is accounting 

for the nonlinearity of the soil spectral responses hence, providing significantly higher 

prediction accuracy compared to the linear PLSR. It is recommended to adopt the vis-

NIRS coupled with RF modelling approach as a portable and cost effective method for 

the rapid quantification of TPH, PAH and alkanes in soils. 

Key words: Total petroleum hydrocarbon; polycyclic aromatic hydrocarbon; alkanes; 

vis-NIR spectroscopy; chemometric methods, Partial least squares regression, Random 

Forest regression. 
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4.1  Introduction 

Petroleum hydrocarbons contamination in soil is a worldwide significant environmental 

issue which has raised serious concerns for the environment and human health (Brevik 

and Burgess, 2013). Petroleum hydrocarbons (PHC) encompass hundreds of various 

aromatic (PAH) and aliphatic (alkanes) compounds as well as traces of heterocyclic 

compounds (nitrogen, hydrogen, sulphur), which are well-known environmental 

contaminants (Cozzolino, 2015; Coulon et al., 2010). However the difference between 

the term PHC as such and the term total petroleum hydrocarbons (TPH) should be 

noted. PHC typically refer to the hydrogen and carbon containing compounds that 

originate from crude oil, while TPH refer to the measurable amount of petroleum-based 

hydrocarbons in an environmental matrix and thus to the actual results obtained by 

sampling and chemical analysis (Coulon and Wu, 2017). The determination of PHCs in 

contaminated environmental matrices is a challenge to standardise due to the 

requirements of different jurisdictions. However, most modern risk assessment 

methodologies for contaminated sites dictate a risk-based approach and, hence, 

determination and quantification of particular species and fractions are required 

(Ferguson, 1999). With millions of contaminated locations globally (CRCCARE, 2015; 

Horta et al., 2015), there is a need for efficient, cost-effective, portable and rapid 

measurement tools for real-time analysis of PHCs in soil. 

Over the last two decades, laboratory techniques have been developed for analysing soil 

contamination in the laboratory, which are time consuming and expensive (Chakraborty 

et al., 2015; Okparanma and Mouazen, 2013). Also, laboratory techniques require prior 

sample analysis, extraction and sometimes clean-up steps (Forrester et al., 2013). 

Among the laboratory techniques, gas chromatography with flame ionisation detector 

(GC-FID) and gas chromatography-mass spectrometry (GC-MS) are the most common 

choices for the determination of PHCs in soil using extraction solvents such as 

dichloromethane or hexane, which pose some human health and environmental risk 

hazard (Okparanma and Mouazen, 2012). To rapidly analyse petroleum-contaminated 

soils, optical sensors are recommended (Viscarra Rossel and Behren, 2010).  

A considerable number of studies have assessed the potential of optical techniques for 

the rapid estimation of PHC concentration in soils (e.g. Wartini et al., 2017; Okparanma 
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et al., 2014a, 2014b; Okparanma and Mouazen, 2013, 2012; Bray et al., 2009). Details 

of these studies can be found in Chapter 2 of the thesis. These works have focused on 

developing models to predict TPH and PAH concentrations. Of these literatures 

reviewed, none generated models for the prediction of the alkane fraction (nC10-35) in 

oil-contaminated soils, which is a crucial research need fulfilled in this study. 

There are several factors affecting the measurement accuracy of reflectance 

spectroscopy, including among others the quality of the laboratory reference data and 

spectra, and adopted pre-processing and modelling techniques (Nawar et al., 2016; 

Viscarra et al., 2010).
 
Partial least-squares regression (PLSR) is the most common 

multivariate analysis method, as it is capable to model several response variables 

simultaneously while effectively addressing strongly collinear and noisy predictor 

variables (Wold, 2001). It is important to mention that PLSR is a linear approach that 

may not perform well when solving nonlinear behaviour, e.g., like those of soil. 

Random Forest (RF) is typically known as a hierarchical nonparametric method that 

estimates complex nonlinear relationships among independent and dependent variables. 

RF method was reported to be outperformed by PLSR, multivariate adaptive regression 

splines (MARS), artificial neural network (ANN) and support vector machine (SVM) 

for the analysis of soil organic carbon, clay content and pH (Viscarra and Brehen, 2010; 

Breiman, 2001) whereas Knox et al., (2015) reported that RF outperformed PLSR for 

the analysis of soil total carbon (TC) with residual prediction deviation (RPD) of 2.7 

and 2.6 for RF and PLSR, respectively. For TPH analysis using vis-NIRS, a recent 

study by Chakraborty et al. (2015) showed PLSR outperformed both penalised spline 

regression (PSR) and RF modelling approaches; the authors reported residual prediction 

deviation (RPD) of 1.64, 1.86, and 1.96 for RF, PSR, and PLSR, respectively. This 

single study comparing the performance of RF with PLSR for the analysis of TPH may 

not confirm this trend to be correct, as previous work reported RF to outperform PLSR 

for modelling of other soil properties (Knox et al., 2015). Therefore, it is essential to 

evaluate the capability of the RF as a nonlinear modelling approach for modelling TPH, 

PAH and alkanes contents in soil and to confirm whether or not PHCs can be predicted 

with RF with higher accuracy than with PLSR. To the best of our knowledge: (1) there 

is to date no study where RF modelling has been applied to estimate TPH in soils based 

on vis-NIR spectroscopy with a limited soil dataset, (2) no published works on PAH and 
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alkanes in soils using RF models. Thus, the aim of this study is to compare the 

performance of PLSR linear modelling technique with RF nonlinear technique to 

predict TPH, PAH and alkanes in oil-contaminated soils from Niger Delta, Southern 

Nigeria using vis-NIR spectroscopy. 

4.2 Materials and methods 

4.2.1  Study area and sample collection 

The study area located in Bayelsa and Rivers State, Niger Delta, Southern Nigeria has 

a tropical rain forest climate characterised by two seasons: the rainy season lasts for 

about 7 months between April and October with an overriding dry period in August 

(known as August break); and the dry season lasts for about 5 months, between 

November and March. The temperature varies between 25°C and 35°C. The regional 

geology of the Niger Delta is relatively simple, consisting of Benin, Agbada (the 

kitchen of kerogen) and Akata Formations, overlain by various types of Quaternary 

deposits (Kogbe, 1989; Wright et al., 1985). Soils of the area studied were classified 

according to the United State Department of Agriculture (USDA) (Soil Survey Staff, 

2010) soil taxonomy into two orders, i.e. Inceptisols and Entisols, which include four 

subgroups of Typic Dystrudepts, Aeric Endoaquepts, Typic Udipsammerts and Typic 

Psammaqnents (Udoh et al., 2013). Soil texture fractions were determined by the 

international pipette method (Piper, 1950); the results indicated different soil textures 

for the three sites. According to the USDA textural classification system (Soil Survey 

Staff, 1999), textures were clay and silty clay loam at the Ikarama site, silt loam at the 

Kalabar site, and clay loam and sandy clay loam for the Joinkrama site. A total of 85 

representative spot sample points were collected randomly from three oil contaminated 

sites (Ikarama: 31 samples; Kalabar: 21 samples; and Joinkrama: 33 samples) in 

August 2015. The soil samples (approx. 5 kg) were collected in the top 15-cm soil 

layer using a shovel. In addition, three uncontaminated samples were collected (2 

samples from Joinkrama, 1 sample from Kalabar) for control purpose. Figure 4-1 

shows the sampling location map. Soil samples were kept in air-tight centrifuge tubes 

and stored at 4 C using ice block to avoid hydrocarbon volatilisation and preserve 

field-moist status until shipment to Cranfield University. The samples were then stored 

in a freezer at -20
o
C prior to GC-MS analysis. 
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Figure 4-1: Soil sampling locations for the three sites in the Niger Delta, Nigeria. 

4.2.2  Soil physiochemical properties  

Prior to soil physiochemical properties analysis, soil samples were grouped based on the 

variation of the soil texture using the “Feel Method” (Thien, 1979). Then two 

representative samples were selected from each texture class with a total of 10 samples 

per site. Therefore soil physicochemical properties were determined on 30 soil samples 

selected to represent soil spatial variation in the study. This approach was used due to 

limited of amount of soil that could be transported back to the UK for analysis. Soil pH 

was measured following the Standard Operating Procedure (SOP) of the British 

Standard BS ISO 10390:2005; the total organic carbon (TOC) was determined using a 

Vario III Elemental Analyser using SOP based on British Standard BS 7755 Section 
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3.8: 1995 and the particle size was determined using SOP based on British Standard BS 

7755 Section 5.4:1995. 

4.2.3 Soil scanning and spectral analysis 

The diffuse reflectance spectra of the soil samples were measured using an ASD 

LabSpec2500® Vis–NIR spectrophotometer which covers a spectral range of 350–2500 

nm (Analytical Spectral Devices, Inc., USA). With a spectral interval resolution varying 

of 3 nm at a wavelength of 700 nm and of 6 nm between 1400-1200 nm, the ASD 

LabSpec2500® spectrometer recorded a total 2151 spectral bands. The spectral 

measurements were made in the dark in order to both, control the illumination 

conditions and reduce the effects of stray light. The high-intensity probe has a built-in 

light source made of a quartz-halogen bulb of 2727 °C. The light source and detection 

fibres are assembled in the high-intensity probe enclosing a 35° angle. Before use, and 

after every 30 minutes, the instrument was calibrated by white-referencing with a white 

Spectralon disc of almost 100% reflectance. Three subsamples (field- moist) from each 

soil sample were packed into plastic Petri dishes (1 cm height, 5.6 cm diameter) for vis-

NIR DRS spectra measurement. To obtain optimal diffuse reflection, and hence, a good 

signal-to-noise ratio, samples were properly mixed with spatula, all plant and pebble 

particles were removed and surface was smoothened gently with a spatula for scanning 

(Mouazen et al., 2005). Spectral measurements of all samples were recorded by placing 

the sample in direct contact with the high intensity probe. For each sample, 10 

successive spectra measurements were acquired and further averaged in one 

representative spectrum of a soil sample. To avoid biased predictions due to noise, only 

416-2384 nm spectral range was used to develop the calibration models. The raw 

average spectra were subjected to pre-processing including successively, noise cut, 

maximum normalization, first derivative and smoothing with R software (R Core Team, 

2013). Maximum normalisation was then implemented to align all spectra to the same 

scale or to obtain even distribution of the variances and average values. Spectra were 

then subjected to first derivation using Gap–segment derivative (gapDer) algorithms 

(Norris, 2001), with a second-order polynomial approximation. Finally, the Savitzky-

Golay smoothing was carried out to remove noise from spectra (Okparanma and 

Mouazen, 2013). These routines were aimed at keeping useful chemical and physical 
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information (Naes et al., 2002).
 
The same pre-processed data was used for both PLSR 

and RF analyses. 

4.2.4 Gas chromatography and hydrocarbons quantification 

The petroleum hydrocarbons extraction method and GC-MS analysis used in this study 

followed the procedure described by Risdon et al. (2008) with some modifications. 

Briefly, 5 g of soil sample was mixed with 20 ml of dichloromethane (DCM): hexane 

(Hex) solution (1:1, v/v), shaken for 16 h at 150 oscillations per min over 16 h, and 

finally sonicated for 30 min at 20°C. After centrifugation, extracts were cleaned on 

Florisil
®
 columns by elution with hexane. Deuterated alkanes and PAHs internal 

standards were added to extracts at appropriate concentrations. The final extract was 

diluted (1:10) for GC-MS analysis. Deuterated alkanes (C10
d22

, C19
d40

 and C30
d62

) and 

PAH (naphthalene 
d8

, anthracene 
d10

, chrysene 
d12

 and perylene 
d12

) internal standards 

were added to extracts at 0.5 µg ml
-1

 and 0.4 µg ml
-1

, respectively. Aliphatic 

hydrocarbons and PAHs were identified and quantified using an Agilent 5973N GC-MS 

operated at 70 eV in positive ion mode. The column used was a Zebron fused silica 

capillary column (30 x 0.25 mm internal diameter, Phenomenex) coated with 5MS (0.25 

µm film thickness). Splitless injection with a sample volume of 1 µL was applied. The 

oven temperature was increased from 60 °C to 220 °C at 20 °C min
-1

 then to 310 °C at 6 

°C min
-1

 and held at this temperature for 15 min. The mass spectrometer was operated 

using the full scan mode (range m/z 50-500) for quantitative analysis of target alkanes 

and PAHs. For each compound, quantification was performed by integrating the peak at 

specific m/z using auto-integration method with Mass Selective Detector (MSD) 

ChemStation software. External multilevel calibrations were carried out for both 

alkanes and PAH quantification ranging from 0.5 to 2500 µg ml
-1

 and from 1 to 5 µg 

ml
-1

, respectively. For quality control, a 500 µg ml
-1

 diesel standard solution (ASTM 

C12-C60 quantitative, Supelco) and mineral oil mixture Type A and B (Supelco) were 

analysed every 20 samples. The variation of the reproducibility of extraction and 

quantification of soil samples were determined by successive injections (n=7) of the 

same sample and estimated to ±8%. In addition, duplicate reagent control and reference 

material were systematically used. The reagent control was treated following the same 

procedure as the samples without adding soil sample. The reference material was an 
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uncontaminated soil of known characteristics, and was spiked with a diesel and mineral 

oil standard at a concentration equivalent to 16,000 mg/kg. Relative standard deviation 

(RSD) values for all the soils was <10%. The limit of quantification (LOQ) of 0.02 

mg/kg
 
customarily used for PAH in Nigerian laboratories was adopted for this study 

because samples were collected from Nigeria. The LOQ was defined as the lowest 

concentration, at which an analyte can be reliably detected (Mitra, 2003). As such, any 

value below 0.02 mg/kg was considered unreliable and ignored from the computation. 

Finally, the TPH data was obtained by the sum of the aliphatic fractions and the PAH 

for each sample analysed. 

4.3 Development of calibration models  

A two dimensional data matrix was developed by combining the pre-processed spectra 

(predictor) of the soil samples and the TPH, PAH and alkanes reference values 

(dependent variables) where the resolved spectral bands (wavelengths) were defined as 

Xi (the predictor variables), and TPH, PAH and alkanes concentrations as Yi (the 

response variables). For TPH, the dataset was divided into 75% (65 samples) for cross-

validation (calibration) and 25% (20 samples) for independent validation (prediction). 

For PAH and alkanes, outliers were detected and removed (4 and 2 samples of PAH and 

alkanes, respectively), after which the dataset was divided into calibration and 

prediction sets (58 and 23 for PAH, and 65 and 18 for alkanes), respectively. The 

selection was done by means of the Kennard-Stone algorithm which allows to select 

samples with a uniform distribution over the predictor space (Kennard and Stone, 1969). 

It is a stepwise procedure by maximising the Euclidean distance based on the important 

number of principal components to the objects already chosen. The analyses was 

performed using ‘prospectr’ packages in R (Stevens and Lopez, 2013). 

4.3.1 Partial least squares regression (PLSR) 

PLSR is a widely multivariate analysis method often used in chemometrics. This 

method is introduced in (Wold, 2001; Gelad and Kowalski, 1986). The algorithm uses a 

linear multivariate model to relate two data matrices – the predictor variables, X, and 

the response variables, Y. Information in the original X data is projected onto a small 

number of underlying orthogonal (“latent”) variables called latent variables. In this 

study, the reflectance values for all 2151 spectral wavelengths comprise the set of Xi 
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variables and the TPH, PAH and alkanes reference values the Yi variables. PLSR with 

full cross-validation was used to relate the variation in a single-component variable (e.g. 

TPH, PAH and alkanes) to the variation in a multi-component variable (e.g. 

wavelength) by means of using package ‘pls’ available in R software (R Core Team, 

2013).
 
The optimal number of latent variables (factors) for future predictions was 

determined on the basis of the number of factors with the smallest RMSEP. To develop 

the calibration model, 75% of the samples were used while the remaining 25% were 

used for prediction for modelling soil TPH. While modelling soil PAH (58 and 23) and 

alkanes (65 and 18) samples were used for calibration and prediction dataset, 

respectively. 

4.3.2 Random forest regression 

Random forest (RF) is an ensemble learning method for classification and regression, 

which generates many classifiers and aggregates their results (Breiman, 2001).Tree 

diversity guarantees RF model stability, which is achieved by two means: (1) a random 

subset of predictor variables is chosen to grow each tree and (2) each tree is based on a 

different random data subset, created by bootstrapping, i.e. sampling with replacement 

(Efron, 1979). Instead of testing the performance of all p variables, a modified 

algorithm is used for splitting at each node. The size of the subset of variables used to 

grow each tree (mtry) has to be selected by the user. Each tree grows until it reaches a 

predefined minimum number of nodes (nodesize). The default mtry value is the square 

root of the total number of variables (Abdel-Rahman et al., 2014). Therefore, ntrees 

needs to be set sufficiently high. Consequently, RFs do not over fit when more trees are 

added, but produce a limited generalisation error (Peters et al., 2007). The same datasets 

used in PLSR were utilised for RF and all wavelengths have been included in the RF 

analysis. The optimal number of trees to be grown (ntree), number of predictor 

variables used to split the nodes at each partitioning (mtry), and the minimum size of the 

leaf (nodesize) were set to 500, 2, and 2,  respectively for TPH modelling while 500, 2 

and 3 for PAH and alkanes. These parameters were determined by the tune RF function 

implemented in the R software package, named Random Forest Version 4.6-12 (Liaw 

and Wiener, 2015), based on Breiman and Cutler's Fortran code (Breiman, 2001). 

https://en.wikipedia.org/wiki/Ensemble_learning


REWARD K. DOUGLAS Cranfield University PhD Thesis, 2018 

107 

4.4 Evaluation of model performance 

The performance of TPH, PAH and alkanes prediction models were assessed using: (i) 

the coefficient of determination in prediction R
2
, (ii) root mean square error of 

prediction (RMSEP), and (iii) residual prediction deviation (RPD) which is a ratio of 

standard deviation (SD) to RMSEP. In this study, we adopted (Viscarra et al., 2006)  

model classification criterion RPD < 1.0 indicates very poor model predictions, 1.0 ≤ 

RPD < 1.4 indicates poor, 1.4 ≤ RPD < 1.8 indicates fair, 1.8 ≤ RPD < 2.0 indicates 

good, 2.0 ≤ RPD < 2.5 indicates very good, and excellent if RPD > 2.5. In general, a 

good model prediction would have high values of R
2
 and RPD, and small value of 

RMSEP. 
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4.5 Results and discussion 

4.5.1 Soil chemical analyses 

A summary of the soil samples physicochemical properties (TOC, pH, Sand, Silt, and 

Clay) and TPH, PAH and alkanes concentration determined by GC-MS is provided in 

Table 4-1. The total organic carbon (TOC) content varies between low to medium with 

the mean and maximum values of 1.1% and 12.69%, respectively. The TOC content is 

larger than 2.0% for 70% of samples. Clay content ranged between 13% and 60%, with 

a mean value of 30%. Silt content is high with minimum and maximum values of 19% 

and 71%, and samples with silt content >40% comprised 66% of all soil samples. Soil 

texture varies between sandy clay loam to clay loam according to the United States soil 

texture classification (Soil Survey Staff, 1999). Histograms and box-plots of soil 

properties and TPH are showed in Figure 4-2. 

Table 4-1: Soil properties, TPH, PAH and alkane concentrations of the soil samples 

collected from oil spill sites in the Niger Delta, Nigeria. 

Soil properties and 

PHCs No Min Mean Median 
1st 

Qu. 
3rd 

Qu. Max  SD 

TOC (%) 30 1.11 4.55 3.85 1.79 5.71 12.69 3.3 

pH 30 5.2 6.25 5.95 5.73 6.73 8.2 0.83 

Sand (%) 30 0.83 25 25 14 33 57 15 

Silt (%) 30 19 45 49 34 57 71 14 

Clay (%) 30 13 30 30 19 34 60 12 

TPH (mg/kg) 85 16.07 252.6 213.69 120.66 339.27 666.33 165.51 

PAH (mg/kg) 85 0.52 9.11 1.39 0.89 4 312.28 40.2 

Alkanes (mg/kg) 85 9.9 187.2 151.75 84.55 259.25 551.22 133.13 

TPH (mg/kg) = Total petroleum hydrocarbons; PAH (mg/kg) = polycyclic aromatic hydrocarbon, 

Alkanes (mg/kg), 1st Qu. = first quartile; 3rd Qu. = third quartile; SD = standard deviation, 

PHC=petroleum hydrocarbon. 
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Figure 4-2: Histograms, box-plots with outliers of total petroleum hydrocarbon (TPH) of 

85 soil samples, and total organic carbon (TOC), pH, sand, silt and clay content of selected 

soil samples (30). 

Substantial variability was observed for soil pH ranging between 5.2 and 8.2. The TPH 

values ranged between 16 and 666 mg/kg
 
with mean and standard deviations of 253 
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mg/kg and 166 mg/kg, respectively. No significant relationship was identified between 

TOC, pH, sand, silt, clay, and TPH content (randomisation test p-values ranged between 

0.38 to 0.9 and 0.11 at 0.05 or 0.01 significant level, respectively) (Figure 4-3).  

 

Figure 4-3: Scatterplot matrix for possible pairs of soil variables (lower diagonal), 

histograms with kernel density overlays for each the target variable (middle) and absolute 

value of the correlations at significance level of 0.05 (*) and 0.01(**) between the defined 

pairs of variables (upper diagonal). Soil variables are total petroleum hydrocarbon (TPH), 

total organic carbon (TOC), pH, sand, silt and clay content of the selected soil samples 

(30).  

The concentrations of alkanes varied between small to medium amounts with mean and 

maximum values of 151.6 and 551.2 mg/kg, respectively. There were only two samples 

with values above 512 mg/kg;
 
both were outliers (Figure 4-4a). The concentrations of 

PAHs ranged from 0.52 to 312.28 mg/kg, with a mean value of 9.11 mg/kg. Four 

outliers were detected (Figure 4-4b) and were removed before modelling (Figure 4-4c). 
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Figure 4-4: Histograms and box-plots of concentrations for (a) alkanes with outliers, (b) 

polycyclic aromatic hydrocarbons (PAH) with outliers, and (c) PAH without outlier, of the 

collected eighty five soil samples collected from genuine oil-contaminated sites in the Niger 

Delta, Nigeria.  

Table 4-2 shows the average concentrations of the hydrocarbon fractions and the TPH 

concentration in 85 soil samples. The alkanes and PAH distribution is medium/heavy-

end skewed and unimodal with a higher proportion of nC16-C21 hydrocarbons suggesting 

a mid-range distillate heavy oil product type. The average concentrations for the nC16-

C21 alkanes ranged between 5.4 and 372 mg/kg and the nC16-C21 PAHs between 0.1 and 

2.0 mg/kg (Table 4-2). Site 1 had higher average TPH concentration, followed by site 3 

and 2. The LOQ for every PAH is shown in Table 4-3. The lowest and highest LOQ in 

site 1 were 0.02 and 0.47 mg/kg for fluorene and acenaphtylene, respectively. In site 2, 

the lowest LOQ was 0.02 mg/kg and for Indeno[1,2,3-c,d]anthracene, whereas the 

highest was 0.26 mg/kg for Benzo[k]fluoranthrene. While the lowest LOQ was 0.04 

mg/kg for fluorene, the highest was 1 mg/kg and for indeno[1,2,3-c,d]anthracene. 

The distribution and concentrations of the aliphatic fractions and individual PAH across 
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the three sites are summarised in Table 4-4. The three study sites followed the same 

trend: nC10–nC12 had the smallest values at all the sites, whereas nC16–nC21 dominated 

at all sites. The distribution of hydrocarbons confirms that the hydrocarbon source at the 

three sites is weathered (degraded) (Brassington et al., 2010). More particularly, the 

concentration of aliphatic compounds at Site 1 (767.0 mg/kg) was 1.5 times greater than 

at Site 2 (498.1 mg/kg) and 1.1 times greater than Site 3 (671.2 mg/kg) (Table 4-4). 

Conversely, the concentration of aromatic compounds at Site 3 (321.8 mg/kg) was 

97.23 times greater than at Site 2 (3.31 mg/kg) and 39.98 times greater than Site 1 (8.05 

mg/kg) (Table 4-4). 

Among the three sites studied, Joinkrama and Kalabar were the most and least 

contaminated sites with aliphatic hydrocarbons, respectively. The only exception was 

that the maximum concentration of the nC10–nC12 in Kalabar was larger than at its 

counterpart in Ikarama. The concentrations of 3- and 4-ring PAHs ranged from 0.002 to 

0.782 mg/kg, 0.003 to 0.514 mg/kg and 0.004 to 309.325 mg/kg at Sites 1, 2 and 3, 

respectively. The concentration of 5- to 6- ring PAHs ranged from 0.001 to 2.246 

mg/kg, 0.000 to 0.016 mg/kg and 0.004 to 2.527 mg/kg at Sites 1, 2 and 3, respectively. 

The relatively large concentration of Benz[a]anthracene (309.3 mg/kg) at Site 3 cannot 

be explained because its degradation has not been documented elsewhere. Overall, Site 

3 appeared to be the most contaminated compared to Sites 1 or 2. 
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Table 4-2: Hydrocarbon fractions concentration (mg/kg)
 
and statistics across the three sites (n= 85). 

Hydrocarbon fractions 

(mg/kg) 

Site 1       

 

Site 2       

 

Site 3       

N Med Min Max N Med Min Max N Med Min Max 

  nC10-nC12 31 6.6 1.6 31 

 

21 11 2.70 36 

 

33 12 0.6 74 

Aliphatic nC12-nC16 31 21 4.7 83 

 

21 18 6.90 53 

 

33 28 2 154 

  nC16-nC21 31 106 26 372 

 

21 105 33 241 

 

33 83 5.4 314 

  nC21-nC35 31 81 15 281 

 

21 290 20 168 

 

33 39 3.7 129 

∑Alkanes 

 

  214.6 47.3 767 

  

424 62.6 498 

  

162 11.7 671 

  nC12-nC16 31 0.4 0.1 0.7 

 

21 0.1 0.1 0.1 

 

33 0.1 0.1 0.3 

Aromatic nC16-nC21 31 0.3 0.1 2.1 

 

21 0.3 0.1 1.0 

 

33 0.6 0.2 1.8 

  nC21-nC35 31 0.3 0.1 4.7 

 

21 0.3 0.1 1.6 

 

33 3.4 0.3 310 

∑PAH 

 

  1.0 0.2 7.4 

  

0.7 0.3 2.7 

  

4.1 0.6 312.1 

∑TPH 

 

  220 49 666     227 65.87 485     188 16 619 

N = number of samples, Med = median, Min = minimum, Max = maximum, TPH = total petroleum hydrocarbon, PAH = polycyclic aromatic hydrocarbon. 
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Table 4-3: List of limit of quantification for every study polycyclic aromatic hydrocarbon 

(PAH) in the three sites. 

PAH compounds 
Number 

of rings 

Site 1 Site 2 
 

Site 3 

LOQ used 

by 

laboratories 

in Nigeria  

LOQ 

(mg/kg)
a 

LOQ 

(mg/kg)
a   

LOQ 

(mg/kg)
a 

LOQ 

(mg/kg)
b 

Acenaphtylene 3 0.47 0.08   0.15 0.02 

Fluorene 3 0.02 0.03   0.04 0.02 

Anthracene 3 0.11 0.17   0.63 0.02 

Phenantrene 3 0.14 0.08   0.08 0.02 

Pyrene 4 0.11 0.06   0.24 0.02 

Benz[a]anthracene 4 0.06 0.07   0.12 0.02 

Benzo[a]pyrene 5 0.12 0.21   0.78 0.02 

Benzo[b]fluoranthrene 5 0.30 0.17   0.54 0.02 

Benzo[k]fluoranthrene 5 0.36 0.26   0.77 0.02 

Dibenzo[a,h]anthracene 6 0.06 0.03   0.61 0.02 

Benzo[g,h,i]perylene 6 0.07 0.03   0.81 0.02 

Indeno[1,2,3-

c,d]anthracene 6 0.05 0.02   1.00 0.02 

LOQ (mg/kg)
a
 and LOQ (mg/kg)

b
 represents limit of quantification obtained for PAH from this current 

study and limit of quantification
 
customarily used for PAH in Nigerian laboratories, respectively. 

 

 

 

 

 



REWARD K. DOUGLAS Cranfield University PhD Thesis, 2018 

115 

Table 4-4: Statistical summary of the concentrations of alkanes (mg/kg) and polycyclic aromatic hydrocarbons (PAHs (mg/kg)) for the three 

contaminated sites from the Niger Delta, Nigeria. 

Compound  LOQ(mg/kg) 
Ikarama Kalabar Joinkrama 

N Med.  Min. Max. N Med.  Min. Max. N Med.  Min. Max. 

   mg/kg  mg/kg  mg/kg 

nC10-nC12 Ali 0.02 31 6.59 1.52 31.46 21 11.34 2.65 35.52 33 12.45 0.59 73.77 

nC12-nC16 Ali 0.02 31 21.42 4.70 83.19 21 18.42 6.89 52.84 33 27.59 1.92 154.14 

nC16-nC21 Ali 0.02 31 106.4 26.26 371.53 21 105.49 32.76 241.39 33 83.23 5.38 314.32 

nC21-nC35 Ali 0.02 31 80.52 15.07 280.78 21 89.73 20.10 168.38 33 39.00 3.65 128.97 

Alkanes   214.97 47.55 766.96  224.98 62.4 498.13  162.27 11.54 671.20 

Acenaphtylene 0.02 31 0.375 0.054 0.691 21 0.321 0.083 0.514 33 0.132 0.045 0.319 

Fluorene 0.02 31 0.025 0.011 0.122 21 0.019 0.005 0.041 33 0.037 0.004 0.085 

Anthracene 0.02 31 0.111 0.034 0.397 21 0.111 0.023 0.330 33 0.286 0.088 0.982 

Phenantrene 0.02 31 0.124 0.038 1.121 21 0.100 0.021 0.364 33 0.104 0.013 0.859 

Pyrene 0.02 31 0.059 0.014 0.545 21 0.093 0.030 0.262 33 0.120 0.019 1.070 

Benzo[a]pyrene 0.02 31 0.049 0.005 0.948 21 0.068 0.016 0.495 33 0.445 0.024 1.940 

Benzo[b] 

Fluoranthrene 
0.02 31 0.099 0.006 0.957 21 0.062 0.016 0.420 33 0.460 0.037 2.527 

Benzo[k]- 0.02 31 0.028 0.006 2.246 21 0.030 0.004 0.516 33 0.695 0.004 2.150 
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Compound  LOQ(mg/kg) 
Ikarama Kalabar Joinkrama 

N Med.  Min. Max. N Med.  Min. Max. N Med.  Min. Max. 

fluoranthrene 

Benz[a]anthracene 0.02 31 0.027 0.002 0.782 21 0.031 0.003 0.170 33 0.052 0.005 309.325 

Dibenzo[a,h] 

anthracene 
0.02 31 0.011 0.002 0.073 21 0.014 0.001 0.067 33 0.406 0.009 0.765 

Benzo[g,h,i] 

perylene 
0.02 31 0.007 0.001 0.076 21 0.010 0.000 0.066 33 0.323 0.008 0.805 

Indeno [1,2,3-c,d] 

anthracene. 
0.02 31 0.017 0.002 0.094 21 0.021 0.004 0.065 33 0.340 0.015 0.996 

PAHs   0.932 0.175 8.052  0.88 0.206 3.310  3.399 0.271 321.823 

TREPH    215.90 47.73 775.01  225.86 62.61 501.44  165.67 11.81 993.02 

N=number of samples, Med=median, Min=minimum, Max=maximum, Ali=aliphatic, PAH=polycyclic aromatic hydrocarbon, TREPH=total recoverable petroleum 

hydrocarbon. 
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4.5.2 Spectral analysis of the oil-contaminated 

Figure 4-5 shows average raw reflectance spectra and continuum removed reflectance 

spectra for uncontaminated (n=3) and contaminated (n=85) soil samples, respectively. 

The average raw spectra and the average of continuum removed spectra for the 85 soil 

samples showed that oil contaminated soil samples with high TPH content ( 654 

mg/kg) and uncontaminated soil sample with TPH below 0.04 mg/kg (as a control). 

Overall, the spectrum response (reflectance) pattern is similar for both contaminated and 

uncontaminated (control) samples, although the contaminated reflects relatively less 

light (energy). A similar phenomena was reported by Chakraborty et al. (2015) which 

was related to the higher absorbance
 
of contaminated soils, particularly in the NIR range 

(700-2500 nm). This finding is in agreement with previous studies (Chakraborty et al., 

2015; Okparanma and Mouazen, 2013; Hoerig et al., 2001). There are two distinct 

absorption peaks at 1415 nm and 1914 nm which are attributed to water absorption 

overtones, and a third adsorption peak at 2200 nm which is attributed to metal–hydroxyl 

stretching (Clark et al., 1990). Minima spectral absorption of oil-contaminated soil 

samples are observed around 1712 and 1758 nm in the first overtone region and around 

2207 nm (stretch + bend) in the NIR range (Figure 4-5). Absorptions around 1712 and 

1758 nm are attributed to C-H stretching modes of terminal CH3 and saturated CH2 

groups linked to TPH (Forrester et al., 2010; Workman and Weyer, 2008).
 
Similar 

significant wavebands around 1712 and 1752 nm that were associated to vibrational C-

H stretching modes of terminal CH3 and saturated CH2 functional chemical groups 

linked to TPH were reported elsewhere (Okparanma and Mouazen, 2013). The 

absorption band at 2207 nm can be attributed to either amides (C=O) absorption, or to 

crude oil spectral signatures (stretch + bend) and therefore linked to hydrocarbons 

(Mullins et al., 1992). However, these features are practically absent in the 

uncontaminated reflectance spectra (Figure 4-5) which was also confirmed 

(Chakraborty et al., 2015). Therefore, the absorption bands of hydrocarbons around 

1712 and 1758 nm and 2207 nm band can be used to discriminate uncontaminated from 

contaminated samples (Figure 4-5). 
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Figure 4-5: Average of raw (R) and continuum removed (CR) spectra of contaminated (85 

samples) version uncontaminated soil samples (3 control samples). (1712, 1758) and 2207 

nm are known features total petroleum hydrocarbon (TPH) and alkanes, respectively. 

The loadings (regression coefficients against wavelengths) based on the first two 

components (Comp1 and Comp 2) resulted from the cross-validated PLSR analysis for 

TPH are shown in Figure 4-6. Notably, the numbers and intensities of significant 

wavelengths have changed, compared to the raw and continuum removed spectra shown 

in Figure 4-5. Significant wavebands from around 1650 to 1850 and from 2250 to 2350 

nm can be observed, which can be associated with the 1725 nm (two-stretch) and 2298 

nm (stretch + bend) crude oil spectral signatures reported by Mullins et al. (1992). The 

1758 nm wavelength is associated with TPH absorption in the first overtone, which is in 

line with observation of Workman and Weyer (2008) and Osborne et al. (2007) who 

indicated a significant wavelength for TPH absorption at 1752 nm. Moreover, typical 

spectral signatures at 1415 nm and 1914 nm were clearly observed which are associated 

with the second and first overtones of water absorption bands around 1450 and 1940 nm 

reported elsewhere (Mouazen et al., 2007).  
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Figure 4-6: Regression coefficients based on the first and second components (Comp1 and 

Comp2) versus wavelengths resulted from cross-validated partial least squares regression 

(PLSR) analysis for total petroleum hydrocarbon (TPH) using visible and near infrared 

spectroscopy (vis-NIRS) for oil-contaminated soils from Niger Delta, Nigeria. Wavelengths 

(1732, 1758, 1774), 1675 and 2207 nm are associated with TPH, polycyclic aromatic 

hydrocarbon (PAH) and alkanes, respectively. 

The regression coefficients versus wavelength for alkanes and PAHs are shown in 

Figure 4-7. The coefficients resulted from the cross-validated PLSR analysis. Plots of 

the regression coefficients illustrate important wavelengths or bands that associate with 

properties or compounds to be predicted, in this case alkanes and PAHs. Figure 4-7(a) 

shows two absorption bands in the alkanes plot around 1716 and 2306 nm. The 

absorption band around 1716 nm in the first overtone region is characteristic of TPH. 

The absorption feature around 2306 nm is attributed to the long-chain C–H+C–C stretch 

combinations, which is related to –CH2 aliphatic groups. This agrees with the range 

reported by Wartini et al. (2017) for petroleum-contaminated soil (2300-2340 nm). For 

PAHs, two distinct spectral absorption peaks can be identified around 1688 and 1736 

nm in the first overtone region of the NIR spectral range (Figure 4-7b). The absorption 
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around 1688 nm is attributed to C–H stretching modes of ArCH associated with PAHs, 

whereas the absorption around 1736 nm is attributed to C–H stretching modes of 

terminal CH3 and saturated CH2 chemical group characteristic of TPH. The absorption 

bands around 1400 and 1900 nm in Figure 4-7(a, b) are attributed to O–H stretching 

bands in the second and first overtone regions, respectively. The TPH absorption bands 

identified in the regression coefficients plots accord with the results reported elsewhere 

(Wartini et al., 2017; Okparanma et al., 2014a), whereas the PAHs absorption bands are 

similar to those of Okparanma et al. (2014a) and Workman and Weyer (2008). The 

absorption bands around 1394, 1873 and 1881 nm identified in this study compare well 

with the results of Stenberg et al. (2010) and Whalley and Stafford (1992), and they are 

associated with O–H stretching modes of water in the second (1394 nm) and first 

overtone (1873 and 1881 nm) regions, respectively. However, the largest absorption 

bands were those associated with water at the first and second absorption overtones of 

O–H, whereas those associated with PAHs were significantly smaller. 
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Figure 4-7: Regression coefficient plots from partial least squares regression (PLSR) 

analysis for (a) alkanes and (b) polycyclic aromatic hydrocarbon (PAH), based on visible 

and near infrared (vis-NIR) spectra of oil-contaminated soil samples collected from three 

sites in the Niger Delta, Nigeria. Wavelengths: 2306 and 1688 nm are associated with 

alkanes and PAH, respectively. 

4.5.3 Model performance for estimating TPH, PAH and alkanes from vis-

NIR spectra 

Table 4-5, Figure 4-8, Figure 4-9, and Figure 4-10 summarise the calibration and 

prediction models of TPH, PAH and alkanes based on PLSR and RF analyses. Figure 

4-8, Figure 4-9 and Figure 4-10 represent the scatter plots of predicted TPH, PAH and 

alkanes versus laboratory measured TPH, PAH and alkanes, respectively. For TPH 

analysis, RF model (R
2
 of 0.85, RMSE of 68.43 mg/kg, RPD of 2.61 and RPIQ = 3.96) 

outperformed the PLSR model (R
2 

of 0.63, RMSE of 107.54 mg/kg, RPD of 1.66 and 
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RPIQ of 2.55) in calibration. A similar trend to that of the calibration was observed for 

the prediction set with both RF (R
2
 = 0.68, RMSE = 69.64 mg/kg, RPD = 1.85 and 

RPIQ = 2.53) and PLSR (R
2 

= 0.54, RMSE = 78.86 mg/kg, RPD = 1.51 and RPIQ = 

2.10). Our results for RF prediction are better than those reported by Chakraborty et al. 

(2015) using 108 contaminated soil samples (West Texas, USA) subjected to RF 

analysis alone (R
2 

= 0.53, RMSE = 95.6 mg/kg, RPD = 1.48 and RPIQ = 1.91) and RF 

combined with penalized spline regression (PSR) (R
2 

= 0.78, RMSE= 0.53 mg/kg, RPD 

= 2.19 and RPIQ = 0.75). For PLSR, Chakraborty et al. (2015 and 2010)
 
reported 

slightly higher RPD values of 1.96 and 1.70, respectively, for in field-moist soils using 

PLSR. This difference with our results can be attributed to the combination of spectral 

treatment that represents an important phase in multivariate calibration and enhances the 

model performance (Nawar et al., 2016; Buddenbaum and Steffens, 2012; Mouazen et 

al., 2010). Moreover, Stenberg et al. (2010) and Wang et al. (2010) reported that the 

model performance depends to a large extent on the variability encountered in the 

dataset, including soil types, which was the case in our study (TPH value:16 - 666 

mg/kg), while this was not the case in the two studies conducted by Chakraborty et al. 

(2015 and 2010) where the original TPH values were widely and non-normally 

distributed (1.22 to 3.74×10
9
 mg/kg and 44 to 48 mg/kg, respectively). Also, the high 

variation of TOC (1.1-12.7%) in our study may increase the performance for estimating 

the TPH (Table 4-1). It is worth to note that the lower prediction performance observed 

in this study for PLSR compared to RF might be attributed to the non-linear behaviour 

of the spectral response of the data set. This feature was not accounted for by the linear 

PLSR model (Nawar and Mouazen, 2017). In contrast,
 
the RF was capable to handle 

well the nonlinearity of the dataset of this study. According to RPD classification 

suggested by Viscarra et al. (2006), good predictions for TPH are obtained using RF 

(RPD = 1.85), whereas only fair prediction performance is obtained with PLSR (RPD = 

1.51).  
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Figure 4-8: Scatter plots of laboratory measured total petroleum hydrocarbon (TPH) 

(mg/kg) by SUSE-GC versus predicted TPH with partial least squares (PLSR) in (a) 

calibration and (b) prediction models, and random forest (c) in calibration and (d) 

prediction model. These models were developed using soil samples from three oil-

contaminated sites in Niger Delta, Nigeria. 
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Table 4-5: Summary results of partial least squares regression (PLSR) and random forest 

(RF) models in calibration (cross-validation) and prediction for total petroleum 

hydrocarbon (TPH), polycyclic aromatic hydrocarbon (PAH) and alkanes prediction in 

oil-contaminated soil samples collected from three petroleum-contaminated sites in Niger 

Delta, Nigeria, developed using visible and near-infrared (vis-NIR) spectroscopy. 

Compound Model N 

PLSR 

 

RF 

R
2
 

RMSEP 

(mg/kg) RPD LV   R
2
 

RMSEP 

(mg/kg) RPD ntrees 

TPH 

(mg/kg) 

Calibration 65 0.63 107.54 1.66 8 

 

0.85 68.43 2.61 500 

Prediction 20 0.54 75.86 1.51 4 

 

0.68 69.64 1.85 200 

PAH 

(mg/kg) 

Calibration 58 0.76 0.81 2.07 6 

 

0.89 1.02 2.99 500 

Prediction 23 0.56 1.21 1.55 4 

 

0.71 0.99 1.90 200 

Alkanes 

(mg/kg) 

Calibration 65 0.49 101.71 1.41 6 

 

0.85 55.71 2.58 500 

Prediction 18 0.36 66.66 1.29 4   0.58 53.95 1.59 200 

N= number of samples, R
2
 = coefficient of determination, RMSEP = root mean square error of prediction, 

RPD = residual prediction deviation, LV = number of latent variables, and ‘ntrees’ = number of trees. 

The model performance of PLSR and RF for polycyclic aromatic hydrocarbon (PAH) 

and alkanes are summarised in Table 4-5 showing that RF outperformed PLSR in both 

the calibration and prediction. The prediction performance of PAH with RF indicated 

excellent performance in calibration (R
2 

= 0.89, RMSEP = 1.02 mg/kg and RPD = 2.99), 

and good performance in prediction (R
2 

= 0.71, RMSEP = 0.99 mg/kg and RPD = 1.90). 

Results also showed that the PLSR model performed better for PAHs than for alkanes, 

with good performance in calibration (R
2 

= 0.76, RMSEP = 0.81 mg/kg and RPD = 

2.07) and fair performance in prediction (R
2 

= 0.56, RMSEP =1.21 mg/kg, and RPD = 

1.55) (Table 4-5). The better performance of RF compared to PLSR can be attributed to 

the fact that the RF modelling technique typically yields better results when the relation 

between reflectance and concentration is a nonlinear (typical in soils) (Douglas et al., 

2018a; Nawar et al., 2016), whereas the PLSR model fits only linear relations (Nawar et 

al., 2016). Results obtained with PLSR are not as good as those already reported in the 

literature. Okparanma et al. (2014a) reported an RPD range of 1.86-3.12 using soil 

samples from the Niger delta, whereas Okparanma and Mouazen (2013) reported a 
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range of 1.67 - 3.20. An RPD value of 2.75 was reported by Okparanma and Mouazen 

(2012). The fair to good performance observed in this study with PLSR might also be 

related to the small number of samples used in the present study, compared to those 

reported elsewhere. 

 

Figure 4-9: Scatter plots of the measured polycyclic aromatic hydrocarbon (PAH) using 

gas chromatography mass-spectrometry (GC-MS) versus visible and near infrared (vis-

NIR) spectroscopy predicted concentrations based on (A) partial least squares regression 

(PLSR) in (a) cross-validation and (b) prediction, and (B) random forest (RF) method in 

(c) cross-validation and (d) prediction for samples from the Niger Delta, Nigeria. The blue 

lines and the grey areas represent the regression line and 95% confidence interval, 

respectively. 
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For alkanes, RF calibration results (R
2 

= 0.85, RMSEP = 55.71 mg/kg and RPD = 2.58) 

are typically better than the prediction results (R
2 

= 0.58, RMSEP = 53.59 mg/kg, and 

RPD = 1.59). It is clear that PLSR performed poorly and resulted in R
2 

of 0.49, RMSEP 

of 101.7 mg/kg and RPD of 1.41 in calibration, and of 0.36, 66.66 mg/kg and 1.29, 

respectively, in prediction (Table 4-5). With the RPD classification system of Viscarra 

Rossel et al. (2006) to evaluate prediction performance of the models, predictions for 

alkanes based on an RF were between fair to excellent (RPD = 1.59–2.58), whereas the 

prediction performance of PLSR models was classified as poor to fair (RPD = 1.29–

1.41). There is no other study yet on the use of vis–NIR spectroscopy to predict alkanes 

in soil, therefore, we could make no comparison of our results with independent 

literature. However, the prediction performance here suggests that more research is 

needed to improve the model outputs, and to understand why the prediction was not in 

the good to excellent categories. One reason might be the limited number of samples 

used in the current research (85 samples for calibration and validation). Kuang and 

Mouazen (2013) showed that the prediction accuracy for soil total nitrogen and total 

carbon could be improved with the increase in number of samples that added (spiked) 

into a general calibration set. Also, very low hydrocarbons concentrations and mixing of 

soils from three different sites in the same calibrations might have influenced the model 

prediction accuracy.  
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Figure 4-10: Scatter plots of measured alkanes using gas chromatography mass-

spectrometry (GC-MS) versus visible and near infrared (vis-NIR) spectroscopy predicted 

concentrations based on (A) partial least squares regression (PLSR) in (a) cross-validation 

and (b) prediction, and (B) random forest (RF) in (c) cross-validation and (d) prediction 

for samples from the Niger Delta, Nigeria. The blue lines and the grey areas represent the 

regression line and 95% confidence interval, respectively. 
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4.6 Conclusion 

This study compared the performance of nonlinear random forest (RF) and linear partial 

least squares regression (PLSR) modelling methods coupled with visible and near 

infrared (vis-NIR) spectroscopy spectral signals to predict total petroleum hydrocarbon 

(TPH), polycyclic aromatic hydrocarbons (PAH) and alkanes in genuine oil-

contaminated soil samples collected from three petroleum release sites in the Niger 

Delta, Nigeria. Much better prediction results were achieved by RF with coefficient of 

determination (R
2
), root mean square error of prediction (RMSEP) and ratio of 

prediction deviation (RPD) of 0.68 and 69.64 mg/kg, and 1.85, respectively, compared 

to PLSR with 0.54 and 75.86 mg/kg, and 1.51 values, respectively for modelling TPH. 

The R
2
, RPD, and RMSEP values obtained herein by RF models confirm its suitability 

as ‘a good model predictor’ for the estimation of soil TPH.  

RF models for chemometric analysis of PAH and alkanes also outperformed PLSR with 

R
2
 of 0.71, RMSEP of 0.99 mg/kg, RPD of 1.90 and R

2
 of 0.58, RMSEP of 53.95 

mg/kg, RPD of 1.59 in prediction, respectively. The RF models’ prediction performance 

of PAHs and alkanes was classified as good and fair, respectively, whereas PLSR 

models’ performance was fair for PAH and poor for alkanes. Nevertheless, the small 

number of soil samples in this study might have affected the model performance at both 

the calibration and prediction stages. This was particularly so for RF at the prediction 

stage, whereas the model provided much better results in calibration than in prediction. 

In contrast, the PLSR model performance slightly only deteriorated between calibration 

and prediction. Overall, the better performance of RF may be attributed to the fact that 

RF had the advantage of handling the different sources of non-linearity that apparently 

exist in the studied dataset. There is a strong indication that vis-NIR spectroscopy signal 

acquisition followed by RF algorithm can be trusted for real application in hydrocarbon 

analysis in petroleum-contaminated sites where limited data are available. Further work 

is being undertaken to improve the prediction accuracy of vis–NIR spectroscopy 

coupled with the RF nonlinear modelling approach by using the existing Nigerian 

contaminated soil spectral library and spiking technique.  
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CHAPTER 5 : Rapid prediction of total petroleum 

hydrocarbon, polycyclic aromatic hydrocarbon and 

alkanes contamination in soils by a handheld mid-infrared 

spectroscopy 
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Abstract: Rapid analysis of petroleum-contaminated soils is important to facilitate risk 

assessment and remediation decision-making process. This study reports on the 

potential of a handheld mid-infrared (MIR) spectrometer for rapid, non-destructive and 

inexpensive prediction of total petroleum hydrocarbons (TPH), polycyclic aromatic 

hydrocarbons (PAH) and alkanes in petroleum-contaminated soils. Partial least squares 

(PLS) regression and random forest (RF) modelling techniques were compared for the 

prediction of TPH, PAH and alkanes in eighty five (n=85) genuine petroleum-

contaminated soil samples collected from the Niger Delta, Southern Nigeria. Results 

revealed that prediction of RF models outperformed the PLSR with coefficient of 

determination (R
2
) values of 0.80, 0.79 and 0.72, residual prediction deviation (RPD) 

values of 2.35, 2.72 and 1.96, and root mean square error of prediction (RMSEP) values 

of 63.80, 0.83 and 65.88 mg/kg for TPH, PAH, and alkanes, respectively. Considering 

the limited dataset used in the independent validation (18 samples), accurate predictions 

were achieved with RF for PAH and TPH, while the prediction for alkanes was less 

accurate. Therefore, results suggest that RF calibration models can be used successfully 

to predict TPH and PAH using handheld MIR spectrophotometer under field 

measurement conditions. 

Keywords: Petroleum-hydrocarbon contamination; soil pollution; reflectance 

spectroscopy, mid-infrared; random forest regression, partial least squares regression 

 



REWARD K. DOUGLAS Cranfield University PhD Thesis, 2018 

137 

5.1 Introduction 

Soil pollution with petroleum hydrocarbons (PHCs) severely impacts the environment 

and wellbeing of the people, and reduce the agronomic potential of agricultural, 

grasslands and forest lands. PHCs cover a wide range of aliphatic and aromatic 

compounds with different concentrations. These include benzene, toluene, 

ethylbenzene, and xylenes (BTEX), polycyclic aromatic hydrocarbons (PAHs), and 

oxygen-, nitrogen- and sulphur-containing compounds (Ritchie et al., 2001), which can 

contaminate the soil through oil spills or leaks as a result of exploration, production, 

storage and transportation of petroleum products. PHCs are not only widespread 

contaminants in the soil and water domains but also toxic for human health and other 

species (Li et al., 2014; Sammarco et al., 2013). Thus, BTEX can further enter the 

human body via ingestion of contaminated food or intake of contaminated water, vapour 

inhalation from the impacted soil, and dermal contact (Yang et al., 2017). Similarly, 

PAH fractions contain toxic constituents that can be adsorbed and further accumulated 

in the soil, and which may then leak to groundwater causing significant food chain 

contamination (Chen et al., 2013). Therefore, environmental pollution as a result of oil 

spill requires immediate attention and actions to reduce contamination levels and 

reclaim contaminated lands (Pinedo et al., 2013). The first step towards achieving this 

urgent goal is by rapid detection techniques of PHCs in soils that offer in situ 

measurement with high sampling density to allow spatial and temporal assessment.  

Chromatographic techniques, particularly gas chromatography-mass spectrometry (GC-

MS), have been a common choice for the measurement of PHCs in environmental 

samples due to their relative selectivity and sensitivity (Brassington et al., 2010; Wang 

and Fingas, 1995). However, GC-MS methods for soil hydrocarbon analysis depend on 

the use of toxic extraction solvents such as hexane, acetone, dichloromethane (Douglas 

et al., 2018a, 2018b; Okparanma and Mouazen, 2013). Overall, traditional techniques 

for the measurement of soil contaminants in the laboratory are slow, expensive and 

require specific expertise (Chakraborty et al., 2015; Horta et al., 2015; Viscarra Rossel 

et al., 2011). Thus, there is need for rapid, accurate, and cost-effective measurement 

tools for PHC concentrations in soils for in-field applications, where there is no need for 

the use of toxic extraction solvents. The most obvious candidates that offer all the 
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advantages over traditional analytical methods of PHCs are the optical methods 

(Douglas et al., 2018a, 2018b; Okparanma and Mouazen, 2013). 

There are a number of studies that have successfully used optical sensors for the 

analysis of petroleum-contaminated soils. In analysing soils, these sensors use 

electromagnetic energy, especially those in the visible and near-infrared (vis-NIR) and 

mid-infrared (MIR) regions. Both, vis-NIR and MIR spectroscopy have been used for 

the analysis of oil-contaminated soils. While the majority of studies were reported on 

the use on the vis-NIR spectroscopy (e.g., Douglas et al., 2018a, 2018b; Chakraborty et 

al., 2015; Okparanma et al., 2014; Chakraborty et al., 2010), only few studies have used 

the MIR spectroscopy. For example, Forrester et al. (2010) have successfully 

determined total petroleum hydrocarbon (TPH) in spiked minerals with both vis-NIR 

(root mean square error of prediction [RMSEP)] = 4500-8000 mg/kg) and MIR (root 

mean square error of prediction of cross validation [RMSEcv] = 2000-4000 mg/kg) 

laboratory-based spectroscopy for 0-100 000 mg/kg TPH range; whereas Forrester et al. 

(2013) predicted TPH concentration in 205 naturally contaminated soils by laboratory-

based MIR (RMSE = 601 mg/kg and ratio of prediction deviation [RPD] = 3.4) and NIR 

(RMSE = 564 mg/kg and RPD = 3.7) methods. Webster et al. (2016) utilised a handheld 

MIR field instrument for the prediction of TPH in three sites (n = 194), reporting 

RMSEP of 1225, 1293, and 1091 mg/kg and RPD values of 13, 8, and 10 for Sites 1 

(laboratory constructed soils), 2 (field contaminated soils), and 3 (laboratory constructed 

soils), respectively, where all samples were air-dried before scanning. Wartini et al. 

(2017) used portable MIR and vis-NIR spectroscopy for rapid prediction of total 

recoverable hydrocarbon (TRH) in air-dried contaminated soils (n=126), resulting in 

RMSE of calibration (RMSEcal) values of 1592 and 1881 mg/kg, respectively. More 

details on available studies can be found in a recent review of chromatography and 

spectroscopy for PHCs analysis published by Douglas et al. (2017). Hitherto, there is no 

study yet on the application of MIR spectroscopy for the prediction of alkanes and 

PAHs in soils indicating an important research gap which is addressed in this study. 

From the scanty literature on the use of MIR for PHCs analysis in soils, no study was 

reported on the performance of the MIR methodology using field-moist soils. Therefore, 

the focus of the current study was to assess the potential of a handheld MIR instrument 

for the prediction of TPH, PAH and alkanes in eighty five genuine petroleum-
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contaminated soil samples (field-moist) collected from oil spill sites in the Niger Delta 

region of Nigeria. PLSR and RF regression models were developed to estimate soil 

TPH, PAH and alkanes. These modelling methods were evaluated to determine which 

method could perform best based on independent validation (prediction) datasets. 

5.2 Materials and methods 

5.2.1 Study area and soil sampling 

The area of study is located in Bayelsa and Rivers State (Ikarama 6.4519
o
 and 6.4527

o
E, 

5.1538
o
 and 5.1542

o
N; Kalabar: 6.4502

o 
and 6.4511

o
E, 5.1369 and 5.1357

o
N; 

Joinkrama: 6.1213 and 6.1224
o
E, 4.9213

o
 and 4.9314

o
 N), in the Niger Delta province 

of Nigeria. The soil sampling location map is shown (Chapter 4, Figure 4-10). The 

geology as a part of the Niger Delta is simple and consisting of Benin, Agbada and 

Akata formations, overlain by various types of Quaternary deposits (Kogbe, 1989; 

Wright et al., 1985). More details of the study area including geology, sampling method, 

number of samples collected, sampling depth, mass of samples, and sample preservation 

can be found in Chapter 4, section 4.2.1. 

5.2.2 Hydrocarbon analysis 

Chemical analysis for hydrocarbon concentrations in soil was carried out using 

sequential ultrasonic solvent extraction gas chromatography (SUSE-GC) as described in 

Risdon et al. (2008) with some modifications. Briefly, 5 g of soil sample was mixed 

with 20 ml of dichloromethane (DCM): hexane (Hex) solution (1:1, v/v) and shaken for 

16 h at 150 oscillations per min over 16 h; and finally sonicated for 30 min at 20°C. 

Identification and quantification of aliphatic hydrocarbons and PAHs were carried out 

by an Agilent 5973N GC-MS operated at 70 eV in positive ion mode as described in 

Chapter 3 section 3.4 of the thesis. The validation methodology was set against a robust 

and validated GC-MS method previously reported (Risdon et al., 2008). 

5.2.3 MIR spectra collection and pre-processing 

MIR diffuse reflectance spectra of field-moist soil samples were collected using an 

Agilent 4300 handheld Fourier transfer infrared (FTIR) spectrometer (Agilent 

Technologies, Santa Clara, CA, United States), with spectral wavenumber range of 
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4000 cm
−1

 to 650 cm
−1

 at 8 cm−
1
 resolution and ~2 cm

−1
 sampling interval. A total of 32 

scans were acquired per sample and these were later averaged to produce a reflectance 

spectrum for each individual sample using Microlab software V5.0 supplied with the 

spectrometer (Agilent Technologies, Santa Clara, CA, United States). This instrument 

was calibrated with the standard background, a silver reference cap provided by the 

manufacturer. A total of eighty five (n=85) field-moist oil-contaminated soil samples 

were placed in a 5-cm diameter plastic Petri dishes without compression and levelled 

using a stainless-steel blade. 

All collected spectra were converted from reflectance (R) to absorbance by log (1/R), 

smoothed using the Savitzky-Golay (SG) algorithm with a window size of 11 and 

polynomial of order 2, and normalised using maximum normalization transformations. 

SG algorithm was used to remove instrument noise within the spectra by smoothing the 

data using the polynomial regression, while normalisation of the spectra was 

implemented to align all spectra to the same scale and to obtain even distribution of the 

variances and average values (Rinnan et al., 2009). Baseline corrections were finally 

implemented using ‘modpolyfit’ methods in chemometric R- package (R Core Team, 

2013), before modelling. 

5.3 Modelling 

The data matrix including the processed MIR spectra and the SUSE-GC TPH, PAH and 

alkanes reference values were used to develop PLSR and RF prediction models. Five 

samples out of the eighty five samples were detected as outliers by principal component 

analysis (PCA) and removed before the modelling. The remaining 80 samples were 

divided into two sets: 77% of them for calibration (62 samples) and the remaining 23% 

for prediction (18 samples). Kennard-Stone algorithm was used to select the calibration 

and validation sets based on its capability to select samples with a uniform distribution 

over the predictor space (Kennard and Stone, 1969). After outlier removal and division 

of samples into calibration and validation sets, the former set was subjected to both 

PLSR and RF analyses to establish calibration models for TPH, PAH and alkanes. 
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5.3.1 Partial least squares regression (PLSR) 

PLSR is a widely used multivariate analysis method in spectroscopy, which was 

introduced previously by Wold et al. (2001). The algorithm uses a linear multivariate 

model to relate two data matrices – the predictor variables, X (MIR spectra in this case), 

and the response variables, Y (TPH, PAH or alkanes). Information in the original X data 

is projected onto a small number of underlying orthogonal (“latent”) variables called 

latent variables. PLSR with full cross-validation was used to relate the variation in a 

single-component variable (TPH, PAH or alkanes) to the variation in a multi-component 

variable (e.g., wavelength), using package ‘pls’ available in R software (R Core Team, 

2013). The optimal number of latent variables (factors) for future predictions was 

determined as the number of factors that resulted in the smallest RMSEP. 

5.3.2 Random forest regression  

Random forest (RF) developed by Breiman (2001), is an ensemble learning method 

commonly used for classification and regression analyses. The algorithm works by 

growing an ensemble of regression trees based on binary recursive partitioning, where 

the algorithm first begins with a number of bootstrap samples (ntree) from the predictor 

space (original data) (Breiman, 2001). Each bootstrap sample will then grow a 

regression tree with a modifying operation, in which subsequently a number of the 

predictors (mtry) are randomly sampled, and the algorithm chooses the best split from 

among those sampled variables rather than considering all variables. In this work, an 

ntree of 500 and 200, and an mtry of 2 were used to develop the TPH, PAH and alkanes 

models. The same datasets with the same spectra pre-processing used in PLSR analysis 

(77% calibration, 23% validation) were utilised for RF. The RF models were performed 

using the R software package, named Random Forest Version 4.6-12 (Liaw and Wiener, 

2015). 

5.4 Evaluation of model performance 

The performance of models for the prediction of TPH, PAH and alkanes was assessed 

using: (i) the coefficient of determination in prediction R
2
, (ii) RMSEP, and  (iii) RPD, 

which is a ratio of standard deviation (SD) to RMSEP. We adopted the Chang et al. 

(2001) RPD classification criterion, where: RPD < 1.4 indicates no predictive ability, 

https://en.wikipedia.org/wiki/Ensemble_learning
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1.4 <RPD < 2.0 indicates limited predictive ability, and RPD > 2.0 indicates accurate 

predictive ability. In general, a good model prediction would have high values of R
2
 and 

RPD, and small RMSEP values.  

5.5 Results and discussion 

5.5.1 Laboratory analysis of TPH, PAH and alkanes 

Table 5-1 displays the summary statistics of TPH, PAH and alkanes concentrations 

acquired using SUSE-GC from the three study sites (Ikarama, S1; Kalabar, S2; and 

Joinkrama, S3). Among the sites, S3 happened to be most contaminated. More details of 

the hydrocarbon concentrations including limit of quantification of the every studied 

PAH across the sites can be found in Douglas et al. (2018a).  

Table 5-1: Statistical summary of total petroleum hydrocarbons (TPH), alkanes and 

polycyclic aromatic hydrocarbons (PAH) concentrations of the collected soil samples 

measured with sequential ultrasonic solvent extraction gas chromatography (SUSE-GC). 

 

N Min. Mean Median 1st Qu. 3rd Qu. Max. St. dev. 

TPH (mg/kg) 85 16.07 252.59 213.69 120.66 339.27 666.33 165.51 

Alkanes (mg/kg) 85 9.9 187.24 151.75 84.55 259.25 551.22 133.13 

PAH (mg/kg) 85 0.52 9.11 1.39 0.89 4.00 312.28 40.20 

N= number of samples; Min. = Minimum; 1st Qu. = first quartile; 3rd Qu. = third quartile; St. dev. = 

standard deviation. 

5.5.2 Spectra of soils 

MIR absorption spectra of oil contaminated soils from the three sites are compared with 

an uncontaminated soil spectrum in Figure 5-1A and B, for raw and maximum 

normalised spectra, respectively. The comparison shows clear differences between 

contaminated and non-contaminated spectra, as well as among contaminated spectra 

themselves. However, the overall shape of the MIR spectra in all the samples presented 

in Figure 5-1A and B were similar, and differences can be attributed to soil physico-

chemical properties and level of oil contamination. Absorbance peaks (Figure 5-1A) 

between 1353-1625 cm
-1

 were identified to be associated with aromatic functional 
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groups, while peaks between 2840-3015 cm
-1

 are linked to total recoverable petroleum 

hydrocarbon (TREPH) concentration (aliphatic-CH2, -CH3). Absorption peaks around 

1353-1625 cm
-1

 observed in the current study are close to those reported by Wartini et 

al. (2017), which were attributed to aromatic C, C=C conjugated with C=O (1580-1630 

cm
-1

). Similarly, the significant absorption peaks around 2840-3015 cm
-1

 are not far 

from 2990-2810 cm
-1

 reported by Wartini et al. (2017). Significant absorbance range of 

3000-2800 cm
-1

 obtained by a PCA was reported by Webster et al. (2016) to be 

associated with TPH concentrations. Forrester et al. (2013) identified the wavenumber 

of 2730 cm
-1

 to be potentially specific to TPH absorption in soils, whereas the same 

research group (Forrester et al., 2010) found the a spectral range of 2700-3000 cm
-1

 to 

be characteristic features of alkyl-CH3 stretching vibrations. The aforementioned 

absorbance signals of hydrocarbons are practically absent in the uncontaminated 

absorbance curve (UC) in Figure 5-1A and B, which is a clear characteristic to 

differentiate the contaminated samples from the uncontaminated sample.  
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Figure 5-1: (A) Raw mid infrared (MIR) absorbance spectra and (B) maximum 

normalized MIR absorbance spectra of site 1 (S1) oil-contaminated soil, site 2 (S2) oil-

contaminated soil, site 3 (S3) oil-contaminated soil, and uncontaminated (UC) soil 

spectrum. All samples were collected from the Niger Delta, Nigeria. Absorbance peaks 

between 1353-1625 cm
-1

 were identified to be associated with aromatic functional groups, 

while peaks between 2840-3015 cm
-1

 are linked to total recoverable hydrocarbon (TRH) 

concentrations. These features were not observed in the UC soil spectrum. 
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5.5.3 Models performance for predicting TPH, PAH and alkanes 

Table 5-2 shows the modelling results in calibration and prediction of TPH, PAH and 

alkanes using both PLSR and RF prediction methods. Results indicate that RF-MIR 

models outperformed PLSR in prediction (using prediction set) for the three 

hydrocarbon components with R
2 

= 0.8, RPD = 2.35, RMSEP = 63.80 mg/kg, R
2 

= 0.79, 

RPD = 2.27, RMSEP = 0.83 mg/kg and R
2 

= 0.72, RPD = 1.96, RMSEP = 68.88 mg/kg
 

for TPH, PAH and alkanes, respectively. The highest prediction accuracy is obtained for 

TPH, for which RPD values obtained with the RF models were 1.19 and 1.04 times 

better than alkanes and PAH models, respectively. Lower prediction performance was 

observed for PLSR compared to RF, which can be attributed to the non-linear behaviour 

of the MIR spectral response of the data set that is not accounted for by the linear PLSR 

model, whereas RF is capable to handle this nonlinearity (Nawar and Mouazen, 2017). 

This in line with Douglas et al. (2018a) findings for the prediction TPH based on vis-

NIR spectroscopy. It has been previously reported that MIR spectra are sensitive to 

moisture content, which affects the prediction accuracy of PHCs by reducing the 

intensity of peaks related to these contaminants (Hazel et al 1997); and the non-linearity 

effect becomes much stronger with high moisture contents (Webester et al., 2016). 

Having said that, it can be claimed that results presented in the current work are of 

strong prediction capability, although the analysis were based on fresh (wet non-

processed) soil samples with high soil moisture content. 

Our results for RF prediction are better than those reported by Wartini et al. (2017) for 

cross-validation prediction of TRH in laboratory spiked soil samples using a field 

portable MIR coupled with PLSR (RMSE and R
2
 of 1592 mg/kg and 0.89, 

respectively). Compared to the prediction results of a portable vis-NIR 

spectrophotometer for TPH (Douglas et al., 2018a), and alkanes and PAH (Douglas et 

al., 2018b), where the same samples were studied, results obtained herein with the MIR 

are more accurate (Table 5-2). 

The superior performance of MIR over that of vis-NIR may be attributed to 

fundamental vibrations of molecules that take place in the MIR spectral region, which 

generates more intense peaks (Soriano-Disla et al., 2014; Reeves, 2010). These findings, 
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therefore, support the use of a portable MIR instrument to predict TPH, PAH and 

alkanes in fresh oil contaminated soil samples. 
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Table 5-2: Summary results of partial least squares regression (PLSR) and random forest (RF) models in calibration (cross-validation) and 

prediction for total petroleum hydrocarbon (TPH), polycyclic aromatic hydrocarbon (PAH) and alkanes (ALK) prediction in oil-contaminated 

soil samples collected from three petroleum-contaminated sites in the Niger Delta, Nigeria. Results compare the RF and PLSR mid infrared 

(MIR) prediction performance of the present study with those obtained from visible near infrared (vis-NIR) spectroscopy analyses reported 

previously by Douglas et al. (2018a) and Douglas et al. (2018b). 

Instrument   PLSR     RF     Property 

Present study R
2 RMSEP (mg/kg) RPD RPIQ LV R

2 RMSEP (mg/kg) RPD RPIQ ‘ntrees’ 

MIR Calibration 

(n=62) 0.25 156.26 1.17 1.82 8 0.82 76.62 2.32 3.68 500 

 

TPH 

Prediction  

(n=18) 0.10 142.98 1.05 0.85 8 0.80 63.8 2.35 1.9 200 

Calibration  

(n=62) 0.26 120.6 1.16 1.52 8 0.82 59.92 2.35 3.03 500 

 

ALK 

Prediction  

(n=18) 0.12 117.8 1.09 1.01 8 0.72 65.88 1.96 1.81 200 

Calibration  

(n=62) 0.68 1.01 1.87 2.56 8 0.91 0.52 3.48 4.97 500 

 

PAH 

Prediction  

(n=18) 0.67 1.03 1.8 2.09 8 0.79 0.83 2.27 3.83 200 
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Instrument   PLSR     RF     Property 

Present study R
2 RMSEP (mg/kg) RPD RPIQ LV R

2 RMSEP (mg/kg) RPD RPIQ ‘ntrees’ 

Vis-NIR Previous study 
a                      

Calibration  

(n=65) 0.63 107.54 1.66 2.55 8 0.85 68.43 2.61 3.96 500 

 

TPH 

Prediction  

(n=20) 0.54 75.86 1.51 2.1 4 0.68 69.64 1.85 2.53 200 

Vis-NIR Previous study 
b   

         

 

Calibration  

(n=65) 0.49 101.71 1.41 

 

6 0.85 55.71 2.58 

 

500 

 

ALK 

Prediction  

(n=18) 0.36 66.66 1.29   4 0.58 53.95 1.59   200 

Calibration (n=58) 0.76 0.81 2.07 

 

6 0.89 1.02 2.99 

 

500  

PAH Prediction  

(n=23) 0.56 1.21 1.55 

 

4 0.71 0.99 1.99 

 

200 

Previous study
a 
=Douglas et al., 2018a; Previous study

b
 =Douglas et al., 2018b; R

2
 = coefficient of determination; RMSEP = root mean square error of prediction; RPD 

= residual prediction deviation; LV = latent variables; ‘ntrees’ = number of trees; and RPIQ = ratio of performance to interquartile range, TPH =total petroleum 

hydrocarbon, PAH = polycyclic aromatic hydrocarbon, ALK = alkanes. 
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The performance of the PLSR models in the current research is considered poor, 

compared with previous works by Webster et al. (2016), who reported site specific TPH 

prediction models with RPD values of 8-13 for three groups of diesel contaminated 

soils, field contaminated and laboratory constructed soils. The poor result in the current 

study may be attributed to the small dataset used. In another study, Wartini et al. (2017) 

reported R
2 

and
 
RMSEcv of 0.89 and 1592 mg/kg,

 
respectively,

 
for TRH in processed 

(air-dried) soils; however, no independent predictions were provided to be able to 

compare them with results from the present study. It can be challenging to put the 

results of PAH and alkanes into context with the other studies, since there are no RF-

MIR prediction models yet reported in the open literature. 

Figure 5-2, Figure 5-3, and Figure 5-4 show the scatter plots of measured versus 

predicted TPH, PAH and alkanes for both the cross-validation and prediction sets 

obtained with both the RF and PLSR models. Visually, these scatter plots demonstrate a 

relatively compact data cloud in all the three plots; indicating a better fit. Among the 

three studied hydrocarbon components, the RF prediction of TPH was more accurate, as 

the measured versus predicted points are close to the 1:1 line (Figure 5-2) compared to 

more scattered points around the 1:1 lines for PAH (Figure 5-3) and alkanes (Figure 5-

4). According to RPD classification suggested by Chang et al. (2001), accurate 

predictions for TPH and PAH were obtained using RF (RPD = 2.35 and 2.27, 

respectively), whereas a limited prediction for the alkanes with RPD of 1.96 was 

observed. These results are consistent with previous studies for estimating TPH based 

on MIR (Wartini et al., 2017; Webster et al., 2016). The limited prediction of alkanes in 

this study with both RF and PLSR might be attributed to the small range of the 

concentration, as well as the limited number of samples in the prediction set (18). The 

dataset size (e.g., sample number) has shown also to have a considerable influence on 

the prediction performance of TPH (Douglas et al., 2018a) and organic carbon as 

mentioned in (Nawar and Mouazen, 2017).  

It was reported that a small dataset size leads to a negative effect that is difficult to 

measure and may result in very poor performance (Klement et al., 2008). However, the 

prediction performance here with RF was much better than that obtained with PLSR. 

Therefore, the current work confirms previous findings and provides additional 
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evidence that suggests that advanced data mining methods (e.g., RF in the current work) 

have the capability to improve MIR spectroscopy prediction performance for PHCs 

estimation. Moreover, the use of a handheld MIR coupled with RF method has been 

proved to be a promising tool for field investigation and estimation of the TPH, PAH 

and alkanes with limited number of soil samples scanned in fresh (wet non-processed) 

field sample conditions. 

 

Figure 5-2: Scatter plots of sequential ultrasonic solvent extraction gas chromatography 

(SUSE-GC) measured total petroleum hydrocarbon (TPH) versus mid-infrared (MIR) 

spectroscopy predicted concentrations based on (A) partial least squares regression 

(PLSR) in (a) cross-validation and (b) prediction (b), and (B) random forest (RF) in (c) 

cross-validation and (d) prediction. The blue lines and grey areas represent the regression 

line and 95% confidence interval, respectively. 
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Figure 5-3: Scatter plots of sequential ultrasonic solvent extraction gas chromatography 

(SUSE-GC) of measured polycyclic aromatic hydrocarbon (PAH) versus mid-infrared 

(MIR) spectroscopy predicted concentations based on (A) partial least squares regression 

(PLSR) in (a) cross-validation and (b) prediction, and (B) random forest (RF) method in 

(c) cross-validation and (d) prediction. The blue lines and grey areas represent the 

regression line and 95% confidence interval, respectively. 
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Figure 5-4: Scatter plots of sequential ultrasonic solvent extraction gas chromatography 

(SUSE-GC) measured alkanes versus mid-infrared (MIR) spectroscopy predicted 

concentations based on (A) partial least squares regression (PLSR) in (a) cross-validation 

and (b) prediction, and (B) random forest (RF) method in (c) cross-validation and (d) 

prediction. The blue lines and grey areas represent the regression line and 95% confidence 

interval, respectively. 
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5.6 Conclusion 

This study investigated the potential of a handheld mid infrared (MIR) 

spectrophotometer for the measurement of total petroleum hydrocarbon (TPH), 

polycyclic aromatic hydrocarbon (PAH) and alkanes in soils. MIR soil spectra were 

acquired from eighty five (n=85) petroleum-contaminated soil samples collected from 

three oil spill sites in the Niger Delta region of Nigeria. Random forest (RF) and partial 

least squares regression (PLSR) prediction models were developed and the prediction 

performance for TPH, PAH and alkanes was compared using an independent prediction 

dataset. The prediction results showed that RF models outperformed PLSR for the 

estimation of TPH (coefficient of determination [R
2
] = 0.80, ratio of prediction 

deviation [RPD] = 2.35, and root mean square error of prediction [RMSEP] = 63.80 

mg/kg); PAH (R
2 

= 0.79, RPD = 2.27, RMSEP = 0.83 mg/kg) and alkanes (R
2 

= 0.72, 

RPD = 1.96, RMSEP = 65.88 mg/kg). Results also showed that MIR spectroscopy 

performs better than visible and near infrared spectroscopy- based on previously 

published work on the same samples. Results obtained herein suggest RF-MIR 

spectroscopy as a good approach for the analysis of TPH, PAH and alkanes in soils 

based on a limited number of soil samples. It is, therefore, concluded that handheld MIR 

spectrometer coupled with RF modelling can be very useful in quantifying soil 

hydrocarbon and would provide a rapid and cost-effective means of contaminated site 

investigation to enhance on-site risk prioritisation; and to support timely pollutant 

management decision-making and remediation with a potential future field application. 

Further work on the development of Nigerian soil-spectral library is needed to support 

the assessment of soil PHC contamination variability in the numerous contaminated 

sites in the Niger Delta, Nigeria. 
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CHAPTER 6 : General conclusions, research implications and 

recommendations for future work 

6.1 Introduction 

The overarching aim of this PhD research was to implement spectroscopy as rapid 

measurement tool (RMT) to support risk assessment and/or remediation in petroleum 

contaminated sites in the Niger Delta, Nigeria. To achieve this aim, laboratory-and 

field-based studies were designed to assess the detection and sensitivity of spectroscopy 

to both aliphatic and aromatic hydrocarbon fractions in different soils contaminated 

with crude oil products. The ability of two vis-NR spectroscopy (wavelength 350-2500, 

305-2200 nm) to differentiate fresh from weathered oil contaminated soils was 

investigated (Chapter 3). Translation to real-time field application was assessed using 

vis-NIR (wavelength 350-2500 nm) and MIR (wavenumber 4000-650 cm
-1

) portable 

spectrometers on genuine contaminated soils with crude oil in the Niger Delta, Nigeria 

(Chapter 4 and 5, respectively). The original concept of the field-scale study was to 

acquire diffuse reflectance spectra on-site but due to logistics of transporting the 

equipment to Nigeria, soil samples were collected and shipped to Cranfield University 

for spectral measurement. 

6.2 Overview of the key findings and contribution to knowledge 

Recognising the UNEP report of 2011 and other studies (Sam et al., 2017; Ambitunni et 

al., 2014; Ite et al., 2013; Kadafa, 2012) pertaining soil total petroleum hydrocarbon 

(TPH) contamination in the Niger Delta region of Nigeria, and the twin problems of 

funding and trained personnel in handling contaminated sites; this research underline 

the need for the establishment of RMT to rapidly diagnose contaminated sites and assist 

on-site site characterisation to inform contaminated land risk categorisation in the 

numerous petroleum contaminated sites in the region. Consequently, a comprehensive 

review of chromatographic and spectroscopic analytical techniques for rapid 

determination of hydrocarbons in soil and sediment matrices. The review critically 

discussed both laboratory and field measuring methods with their associated issues and 

pointed out solutions highlighting explicitly the pros and cons and research needs. For 

instance, the critical review shows that both the vis-NIR and MIR spectroscopy are 
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influenced by soil moisture, however this bias can be minimised using spectroscopic 

pre-processing methods like first derivative which is independent of soil moisture 

content (Wu et al., 2009). Although both MIR and vis-NIR have been widely used for 

analysing petroleum hydrocarbons in soil and even been supplemented with X-ray 

fluorescence (XRF) there is to date no systematic studies that have looked into 

technology integration (combination of two or more sensors) and data fusion method to 

improve hydrocarbon prediction. This chapter proposed the first integrated analytical 

framework based on spectroscopic techniques integration and data fusion coupled with 

multivariate modelling to improve prediction accuracy and rapid measurement of 

petroleum hydrocarbons in soil and sediment. This chapter provides further 

recommendation on undertaking real-time field measurement using vis-NIR 

spectroscopy to increase the selection of techniques for hydrocarbon detection in soil. 

Next, vis-NIR spectroscopy was utilised to successfully investigate and distinguish 

fresh from weathered oil contamination in soils and to quantify TPH concentrations. 

This was the first study of its kind. The sensitivity of two portable vis-NIR 

spectrophotometers, namely, ASD and tec5 with wavelength ranges of 350-2500 and 

305-2200 nm, respectively to crude oil contamination in soil was assessed (Objective 2).  

The key novelty is that this study demonstrates vis-NIR spectroscopy (ASD with 

wavelength 350-2500 nm) as effective and sensitive tool to hydrocarbon concentration 

differences due to weathering as no study has previously investigated. This was 

achieved through the application of nonlinear random forest (RF) regression technique, 

enabling to account for nonlinearity of the soil spectral responses. The finding has 

created new avenue for scientists to explore the potential of vis-NIR spectroscopy for 

rapid soil hydrocarbon contamination assessment to support environmental and human 

health risks assessment on-site without involving soil sampling, tedious and time-

consuming traditional laboratory analysis. 

Principal component analysis (PCA) showed reasonable discrimination between the 

different soil groups with ASD spectral data only (Figure 3-3). This supports the 

qualitative separation achieved with PCA based separation of control, crude oil 

contaminated and heavy crude oil contaminated soil samples which is good agreement 

with Chakraborty et al. (2015). However, the instrument’s sensitivity decreases over 
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time as TPH levels in soil decreases due to weathering of hydrocarbons [TPH = 1761.5 

mg kg
-1

 and 186.7 mg/kg for start (after 48 h) and end of experiment (after 24 month), 

respectively]. From spectral perspective, reflectance increased as weathering of 

hydrocarbons in soil continuous, while the control sample (no TPH) had the highest 

reflectance (Figure 3-2). The result supports the conclusion that soil absorbance 

increases with increasing oil concentrations (Okparanma and Mouazen, 2013) and 

conversely the average reflectance decreased in the contaminated soil in comparison to 

uncontaminated soil (Chakraborty et al., 2015). Furthermore, partial least squares 

regression (PLSR) and RF modelling techniques provide a quantitative separation of the 

oil-contaminated soil samples based on weathering pattern. This was the first study of 

its kind to qualitatively discriminate and quantitatively estimate hydrocarbon 

concentration differences in soil due to weathering by vis-NIR spectroscopy. 

Interestingly, the separation achieved with PLSR and RF was in agreement with the 

PCA; however, RF separates better than PLSR (Figure 3-6, Figure 3-7). This is because 

RF is a non-linear regression technique that handles the nonlinearity of the spectral 

response. Better quantitative estimation of TPH was obtained using RF-ASD calibration 

model than PLSR-ASD model. Therefore for effective soil TPH modelling, RF 

regression technique is recommended. 

The performance of PLSR and RF modelling techniques to predict TPH, PAH and 

alkanes in genuine contaminated soils with crude oil using vis-NIR spectroscopy 

(Objective 3). Soil samples were collected from oil spill sites in the Niger Delta, 

Nigeria. Results showed again that RF modelling technique outperformed PLSR for all 

hydrocarbon groups including aliphatic and aromatic hydrocarbon compounds. The 

most striking outputs of the study are i) the good to fair prediction of TPH despite the 

limited dataset, and ii) the fact that no case study on hydrocarbon prediction has 

previously reported the superior performance of RF modelling method over PLSR.  

Good (RPD=1.99) and fair (1.55) predictions for PAH was achieved with RF and PLSR 

models, respectively while respectively, fair (RPD=1.59) and poor (RPD=1.29) alkanes 

prediction results were obtained using RF and PLSR models. This PhD research is the 

first to report on the assessment of aliphatic fractions (alkanes) using spectroscopy, 

however the model predictions were only fair to poor and this is likely due to the low 
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concentration of alkanes. The alkanes calibration models developed in this study has 

open up the opportunity of exploiting diffuse reflectance spectroscopy to successfully 

predict the full range of hydrocarbons (TPH, PAH and alkanes) in soil, thus this is a 

significant advancement in the application of spectroscopy. Based on this study, vis-

NIR and non-linear regression RF technique is strongly recommended for quantitative 

determination of soil hydrocarbons concentrations. 

A portable MIR spectroscopy (wavenumber 4000-650 cm
-1

) was evaluated for 

predicting the concentrations of TPH, PAH and alkanes in genuine contaminated soils 

with crude oil using non-linear RF and linear PLSR methods (Objective 4). The aim 

was to compare the predictive capability of the MIR and vis-NIR sensing techniques for 

predicting soil TPH, PAH and alkanes. Results showed that the MIR over-performed 

vis-NIR with RF modelling method performing better than PLSR for predicting TPH, 

PAH and alkanes. However, PLSR-vis-NIR produced slightly better results than PLSR-

MIR in predicting TPH and alkanes. This may be attributed to the low concentration of 

alkanes used in the development of MIR models. Other reason could be the sensitivity 

of MIR to moisture content, which is larger than the sensitivity of vis-NIR 

spectroscopy. So far, MIR technique has not been used for the prediction of aliphatic 

(alkanes) fractions in contaminated soil. Thus, this study has filled the research gap 

identified in chapter 1. This chapter demonstrated that MIR spectral technique is 

superior to vis-NIR technique for detecting and quantifying rapidly oil contamination in 

soil and therefore being identified as a promising tool for field screening.  

6.3 Spectroscopy approach for soil identification and prioritisation 

The prediction results of the aliphatic and aromatic hydrocarbons in air-dried and field-

moist soil samples in this study confirm that spectroscopy approach alone can be used 

for hydrocarbon contamination assessment in soil. The motivation of this approach is to 

provide rapid and cost-effective identification of hydrocarbon contaminated soil/site and 

support risk assessment and/or remediation plans. The proposed approach is presented 

in Figure 6-1, panel A. This approach would overcome much the cost and time-

consuming efforts associated with conventional laboratory analysis of hydrocarbon 

contamination in soil. The guiding attributes in selecting spectroscopy as RMT over the 

commonly used analytical wet chemistry methods was based on: i) ease of use, ii) 
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sample preparation, and iii) analysis run time. These attributes amongst others are 

presented in Figure 6-1. The use of vis-NIR and MIR spectroscopy for soil scanning 

require just little operational skills, whereas analytical techniques (e.g., laboratory-based 

GC) need expert operators. Similarly, little or no sample preparation is required when 

using either vis-NIR or MIR for soil contamination assessment while laboratory-based 

GC technique involves lengthy sample preparation protocols. Because GC-based 

techniques involve sample preparation and use extraction solvents (Risdon et al., 2008), 

there are concerns of occupational health and safety. Analysis run time refers to the total 

cycle time [time expended by the analytical system to go from one analysis to the other 

(Harris, 2003)] and the time used in preparing the sample for analysis. High analysis run 

time is associated with analytical techniques involving lengthy prior sample preparation 

protocols, potentially laboratory-based GC techniques. For example, the conventional 

GC analysis time (excluding sample preparation) is 30 minutes or even more (Barman 

et al., 2000). It is pertinent to also mention that vis-NIR or MIR spectroscopy analysis 

time is between 30-40 seconds. Thus, the shorter analysis run time of vis-NIR or MIR 

would position spectroscopy potentially better technique for cost-effective soil analysis, 

rapid investigation and decision-making at contaminated sites. Portability of the 

instrument is another factor for the selection of RMT techniques for field applications, 

as the selection of the best technique to measure the source of contamination is driven 

by time (Douglas et al., 2017). Portable versions of spectrophotometers are being 

previously developed and used globally for various applications including soil studies 

(Pimstein et al., 2011). Portability would enhance quick identification and risk mapping 

of hot spots of hydrocarbons for in-field applications. 

Despite the above advantages of the vis-NIR over the laboratory-based GC techniques, 

vis-NIR results can be influenced by soil moisture content, soil types, ambient lights, 

etc.). Therefore, accounting for these external factors influencing the prediction 

performance is key for successful implementation of this sensing technology as a 

portable tool for field screening of petroleum hydrocarbons in soils. Also, it is pertinent 

to note that accuracy reported so far by different research groups show that 

spectroscopy detection methods are at a semi-quantitative stage, where more work is 

needed to improve the performance. 
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Figure 6-1: Hydrocarbon contamination assessment flowchart: proposed approach (panel 

A) and current approach (panel B).  

Previous studies have reported on the effect of soil factors potentially soil moisture 

content on vis-NIR and MIR results. For example, moisture content affects vis-NIR 

measurement (Malley et al., 1999). Similarly, MIR has been affected to a greater degree 

by soil moisture (Soriano-Disla et al., 2014; Hazel et al., 1997). A study by Horta et al. 

(2015) concluded that effect of moisture content on vis-NIR happens to cause more 

attenuation than soil structure. However, spectra pre-processing method (first 

derivative) has been reported to be independent of soil moisture content (Wu et al., 

2009). Because spectral pre-processing takes few minutes only and even can be 

automated to be done in few seconds, the proposed approach could be most resource-

effective; and would provide rapid real-time soil contamination assessment to support 

site-specific risk prioritisation at oil spill sites. In conclusion, there is room to optimise 
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the proposed approach for enhanced investigation of soil contamination by 

hydrocarbons rather than the onerous analytical GC-based techniques. 

6.4 Implications of the research 

The Niger Delta region of Nigeria has faced serious petroleum hydrocarbon originated 

land contamination challenges due to the activities of oil and gas industries in the region 

for over five decades, which has posed significant threat to ecological systems and 

human health. Thus, this study evaluated RMT for identification of contaminated sites 

to facilitate site prioritisation and to inform risk assessment and remediation of 

contaminated sites in the region. This study will potentially impact on: 

 Risk assessment and remediation experts in risk decision making and 

management of oil-contaminated sites in the Niger Delta, Nigeria, and can be 

used elsewhere in the World. This is because the implementation of RMT would 

enhance rapid diagnosis of oil spill sites (both fresh and weathered) to support 

risk classification procedures that by-pass time-consuming and costly wet 

chemistry analytical laboratory protocols. Since money and trained personnel are 

among the critical challenges facing the Nigerian Government to handle 

contaminated sites, there is no doubt that both the regulators (the Government) 

and the regulated (the oil operators) would benefit as the use of these techniques 

are cost-effective and did not require high operational skills. 

 Diffuse reflectance spectroscopy can be used as a viable technique for the 

quantification of TPH, PAH and alkanes in soil science research, both for 

laboratory and field applications; thus it could replace time-consuming and 

expensive traditional wet chemistry methods for analysing petroleum 

hydrocarbons in soil.  

6.5 Limitations of the research 

During this PhD research, challenges encountered with funding and access to petroleum 

contaminated sites in the region limited the number of soil samples that could be 

collected and analysed. These factors may have affected the robustness of the models in 

predicting TPH, as a small dataset (85 samples) was used for developing the calibration 

models. In addition, mixing of soils from three different sites in the same calibrations 
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might have affected the model performance. However, the results achieved were good 

in most of the case at the exception of the alkanes to draw reasonable conclusions.  

6.6 Recommendations for future work 

Considering the achievements and limitations of this PhD research, the following 

recommendations are made for future work: 

 More work is needed in this area of research to cover large variability of TPH 

concentrations, soil types and properties in the Niger Delta, Nigeria.  

 Diffuse reflectance spectral data should be acquired on-site with handheld 

equipment to identify contaminated sites and facilitate risk assessment and 

remediation for petroleum contaminated land sites in the Niger Delta region of 

Nigeria and elsewhere faced with similar challenges. 

 Based on the better performance of nonlinear RF modelling method over the 

linear PLSR approach in this study, RF modelling is recommended for the 

prediction of soil TPH, PAH and alkanes instead of the commonly used PLSR 

modelling method. Among the nonlinear modelling techniques, future study 

should compare RF with other non-linear modelling techniques including 

support vector machine (SVM), artificial neural network (ANN), and penalised 

spline regression (PSR) to select the best technique for the prediction of TPH, 

PAH and alkanes in contaminated soil. 

 It is suggested to test the potential of multi-sensor and data fusion for more 

accurate predictions of soils contaminated with hydrocarbons. Sensing methods 

should include different combinations of XRF, vis-NIR and MIR spectroscopy. 

 Diffuse reflectance spectroscopy approach (Figure 6-1, panel A) should be 

implemented in practice for cost-effective, rapid identification and risk 

assessment of petroleum contaminated sites in the Niger Delta region of Nigeria. 
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