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Abstract: We present a convolutional neural network (CNN) that identifies drone models in real-life
videos. The neural network is trained on synthetic images and tested on a real-life dataset of drone
videos. To create the training and validation datasets, we show a method of generating synthetic
drone images. Domain randomization is used to vary the simulation parameters such as model
textures, background images, and orientation. Three common drone models are classified: DJI
Phantom, DJI Mavic, and DJI Inspire. To test the performance of the neural network model, Anti-UAV,
a real-life dataset of flying drones is used. The proposed method reduces the time-cost associated
with manually labelling drones, and we prove that it is transferable to real-life videos. The CNN
achieves an overall accuracy of 92.4%, a precision of 88.8%, a recall of 88.6%, and an f1 score of 88.7%
when tested on the real-life dataset.

Keywords: unmanned aerial vehicles; drones; airport security; convolutional neural network;
synthetic images; synthetic data; domain randomization; drone detection; drone classification; drone
identification; artificial intelligence

1. Introduction

Drones pose a risk to the security of infrastructures such as airports, prisons, and
crowded areas such as stadiums. A drone intrusion affected approximately 1000 flights at
Gatwick airport in 2018. In Britain, drones are reportedly used to deliver drugs and mobiles
to prisoners. There are also numerous reports of drones flying over crowded stadiums at
events. To prevent such unwanted intrusions, detection systems are required to monitor
the airspace around objects of interest.

Counter drone technologies consist of prevention, detection, and mitigation systems.
Prevention aims to stop drones from flying within a certain area, detection aims to find
if any drones exist in a given area, and mitigation aims to incapacitate a drone once its
position is known. The detection aspect is particularly challenging because drones are
small, the area where they can fly is large, and they share their airspace with other objects
(such as birds). Furthermore, it is important to classify the drone to understand the threat
level that it poses. The size, model type, and payload (if any) are all of interest to operators
of security systems, and access to this information would enable them to provide a more
appropriate response. For example, a large drone carrying a suspicious payload may
require a more urgent response than a small drone with only a camera attached.

This paper investigates drone model classification; a niche, mostly unexplored, but
important part of visual drone classification. In particular, three popular drone models
are classified using a convolutional neural network (CNN). This is achieved by creating
a synthetic dataset to train the neural network and testing its performance on a real-life
dataset of flying drones. It is an extension study of [1] that examines more closely the
effects of synthetic noise, dataset size, and simulation parameters (ablation study). It also
updates on the latest literature in the related field of drone detection.
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The novel contribution presented in this paper is the CNN that is trained on a purely
synthetic dataset and can accurately (90%+) predict the model of the drone in a real-life
video feed. From the literature, it is understood that previous CNN models used to identify
drones have mostly been trained on real-life images. The principal novelty of the work
presented here is that our CNN is solely trained and verified using a 3D model of the drone
reducing the time cost associated with classifying other drone models in the future. A
big focus of this research is bridging the synthetic to real-world gap. Some publications
also make use of synthetic images; however, in contrast to those, we test our results on
an open-source real-world dataset. To the best of the author’s knowledge, such a CNN,
trained on a purely synthetic dataset and verified on an open-source dataset of real drones,
has not been presented in the literature.

Commercial detection systems most commonly consist of the following sensors [2]:

• Acoustic (6%);
• Radio Frequency (RF) (26%);
• Radar (28%);
• Visual (40%).

The viability of different sensors and their operating range is evaluated [3]. It is found
that, for a drone with a radar cross-section between 0.05 to 0.2 m2, humans can see the
drone up to 200 m, hear it up to 300 m, infrared sensors are viable up to about 350 m, optical
cameras up to about 2500 m and standard X-band radar up to 3000 m.

Acoustic sensors are the least used type of sensor for drone detection. They have a
relatively short range compared with other sensors but have certain advantages such as
being able to operate in the dark. An acoustic system presented by Kolamunna et al. [4]
correctly detects and identifies drone models using a neural network trained on the sound
of each drone. Another system presented by Liu et al. [5] uses a hybrid system of visual
cameras and microphones to detect drones. They find that using the audio improves
detection accuracy. Ciaburro et al. [6] performs a study to detect a flying drone indoors.
Iannace et al. [7] expands on it by using logistic regression, and reports a drone detection
accuracy of 99.4% at distances of up to 9 m in a noisy environment. Jamil et al. [8] use a
combination of audio and visual features to detect drones, thunderstorms, birds and planes.
They report an accuracy of 98.5% overall.

RF methods look at the RF signature of the drone. They can be cheaper than other
sensors, such as the optical cameras, and can perform at long range. However, they cannot
detect autonomous drones that have no RF transmissions. A hierarchical classifier that
detects the presence of a drone is presented by Nemer et al. [9]. It can identify three models
(Parrot Bebop, Parrot AR, DJI Phantom), and for the Parrot model, it is able to identify the
flight mode of the drone. The DronEnd system [10] is used to jam the RF of the drones.
Yang et al. [11] are able to detect drones with close to 100% accuracy at distances up to
2.4 km. Al-Sa’d et al. detect different types of drones at different flight modes such as on,
off, connected, hovering, flying, and video recording. By using a deep neural network, they
record a 48.6% accuracy for detecting the presence, drone type, and the flight mode. They
report a 99.7% accuracy for detecting the presence of the drone only.

Holographic radars [12] can detect and classify 1 m2 drones at a range of 20 nmi. A
CNN [13] can correctly classify drones and non-drones at an accuracy of 98.9%. Multistatic
radars can be used to classify loaded and unloaded drones [14] by use of micro-Doppler
analysis. Similarly, micro-Doppler signatures can be used to predict birds from drones [15].
A CNN trained to classify the micro-Doppler images can identify the drone models [16].

There exist numerous attempts at detecting drones using visual methods. Demir et al. [17]
show a system that can detect drones as far as 700 m away in real-time. To achieve this, they
use a matrix of static cameras and the background subtraction method. Another system
presented by Seidaliyeva et al. [18] also uses background subtraction to detect drones. They
then use a CNN to classify the detected object into drone, bird, and background classes.
Zhang et al. [19] compare detection neural network models (Faster R_CNN, Retina net,
SSD, and their own), to detect drones in infrared videos.
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Datasets containing videos and images of drones, labelled with the ground truth
position of the drone in the image, are crucial to the development of drone detection
methods. The Anti-UAV challenge [20] provides datasets of visual and thermal video
feeds and challenges researchers to detect the drones in the videos. In the test dataset, the
position and the size of the drone in each frame are provided. Bird vs. Drone Challenge [21]
provides another dataset of videos containing drones and birds, with the position and the
size of the drone provided in each frame. To try and unify the datasets of flying drones, a
benchmark aims to directly compare drone detection methods [22]. Furthermore, to test
the re-identification of drones in multiple-camera environments, another benchmark is
proposed [23].

Detection of drones in videos has been tried in literature. Siam R-CNN [24] reports the
best precision score of 95.70% on the infrared Anti-UAV dataset. The best submission to the
drone vs. bird challenge [25] uses a trained ResNet110v2 CNN to classify the flying objects
into drone, bird, and none categories. Fan et al. [26] use Faster-RCNN to detect drones in
images. CNN and Generic Fourier Descriptor (GFD) classifiers [27] are used to identify
birds and drones in images. YOLOv4 is used to detect and classify flying objects into bird,
helicopter, and multirotor classes [28] with a reported accuracy of 83% and mean average
precision of 84%. Furthermore, some publications attempt to identify drone models. A
drone identification system presented by Lee et al. [29] uses 2000 images gathered from the
internet to train a CNN to identify drone models. YOLOv3 is used to detect and classify
whether the drone is a tricopter, a quadcopter or a hexacopter [30]. Lastly, YOLOv2 is used
to detect and classify whether a drone is carrying a payload [31].

Using synthetic datasets for drone classification has been attempted in the literature.
The advantage of using a synthetic dataset is that the ground truth is known, and it is pos-
sible to generate a larger and more varied dataset, by the process of domain randomization.
This method is also quicker compared to producing real-life datasets, where the ground
truth must be manually labelled. A method of generating synthetic drones is shown in [32].
It is done by overlaying 3D drone models on top of random backgrounds. Another method
shown by Peng et al. [33] improves this by using a Physically Based Rendering Toolkit to
generate photorealistic images of drones. Ref. [34] uses synthetic images of DJI Mavic and
DJI Inspire generated using Unreal Engine to train a neural network that segments the
parts of the drone: the body, motors and the camera. It then predicts the orientation—pitch,
roll and yaw—of the drone. Lastly, it identifies the model of the drone. To get around the
problem of scarce drone image data, Ref. [35] uses generative adversarial networks and
topological data analysis to improve the accuracy of a drone detection neural network.

Synthetic images are commonly used for the detection of objects other than drones.
Tremblay et al. [36] detect cars on the real-life KITTY dataset by training a neural network
on a synthetic dataset. They also apply domain randomization, which is the process of
randomizing parameters of the simulation. The aim of this practice is to improve the
ability of the neural network to correctly learn the features of the object. A deep neural
network trained used to control a robot arm based on visual input [37] is a successful
application of transferring a model trained on purely synthetic data to a real-world applica-
tion. Ward et al. [38] use synthetic images to classify different types of ships from overhead
satellite imagery. To achieve the best results, they mix real-world and synthetic data in their
training dataset.

From the literature, we identified the gap of identifying drone models in images, with
very few publications attempting it. Most publications in this space focus on the drone
vs. bird problem, which is very important. However, the identification of the drone model
is also important as it can provide a threat level estimate to security operators. For example,
a larger drone poses a bigger threat than a smaller drone because it can carry a larger
payload. We believe that correctly identifying the drone model is an initial step in the much
larger picture of identifying the potential threat level of the drone. The method presented in
this paper uses synthetically generated drones to train a CNN to detect drones in a real-life
dataset. By showing this method is viable, it opens the possibility to further develop it to
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detect other types of drones or flying objects in the future. Most importantly, this method
of synthetically generating drone images has advantages over creating a real-life dataset,
as it reduces the costs associated with the dataset creation—for example, the labelling of
the bounding boxes on the images is fully automated.

This paper is divided into five sections: In Section 2, the methodology of generating
synthetic images is described. This includes the explanation of a rendering script used to
generate synthetic images in Blender, and an explanation of domain randomization, the
process of varying simulation parameters. In Section 3, the training and tuning of the CNN
using synthetic images are discussed, and the results are presented. In Section 4, the results
of the performance of the CNN when tested on a real-life dataset are discussed. The results
are compared to other results reported in literature. In Section 5, the findings are concluded,
the shortcomings of the study are discussed, and further work is suggested.

2. Methodology for Dataset Generation

In this section, we explain the process of creating the synthetic dataset using Blender
https://www.blender.org/ (accessed on 27 March 2022) an open-source 3D modelling
program. We use it to create a simulation where the camera takes images of the drone
with randomized image parameters. For example, the position, the orientation of the
drone, and the background are randomized in order to create photorealistic images of the
drone. After each step, an image of the drone is generated. After this, the parameters—the
position, orientation, and background—are randomized to create another image. In theory,
a practically infinite dataset size could be generated this way.

The development of the dataset is a challenge with training neural networks. Draw-
ing bounding boxes around the target is a time-intensive task when creating a real-life
dataset. Advancements in synthetic image generation by using domain randomization
such as [36,37] show that it is possible to train a neural network model on synthetic data
and use it on real-life problems. Hence, we decided to train a model on a purely synthetic
dataset, and test it on a real-life video feed of the Anti-UAV dataset [20].

The advantage of this approach is:

• Time and monetary cost savings on performing a real-life experiment involving the
drones. The drones themselves are expensive and require trained operators and a
camera operator to follow the drones;

• Time saving because of automated labelling. In real-life videos, each frame has to be
manually labelled;

• Larger variability in the dataset. It is possible to create niche scenarios that are hard
to create in real life. For example, conditions such as rain or snow can be created in
the simulation. These conditions pose challenges when creating real-life experiments
involving drones. Although we do not create such scenarios here, it is an interesting
idea for future study.

To create the dataset, we modelled DJI-Phantom and DJI-Mavic, and we found a free
3D model of DJI-Inspire https://sketchfab.com/3d-models/dji-inspire-2-with-zenmuse
-x5s-3979efe28b3a4221bdd462638582d0a6/ (accessed on 27 March 2022) online. We then
created a script to generate random images of the drone. The process of image generation
is shown in Figure 1. It shows how the images are rendered by taking the 3D model of a
drone and adding textures and high dynamic range images (HDRI). The synthetic images
with all of the randomizations enabled are shown in Figure 2. The figure shows renders
generated by the simulation created in Blender. Different drone types: DJI Phantom, DJI
Mavic, and DJI Inspire are shown. Lastly, the no drone class is shown, which does not
contain any drone images, and only contains random background images. These images
are used to train and validate the neural network in Section 3.

https://www.blender.org/
https://sketchfab.com/3d-models/dji-inspire-2-with-zenmuse-x5s-3979efe28b3a4221bdd462638582d0a6/
https://sketchfab.com/3d-models/dji-inspire-2-with-zenmuse-x5s-3979efe28b3a4221bdd462638582d0a6/
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Figure 1. Process of rendering a synthetic drone. A 3D model of the drone is required and in this
example we show a DJI Phantom. Random textures are applied to the 3D model. A high dynamic
range image (HDRI) containing a realistic lighting setup is set as the background scene. The drone is
rendered using the Cycles engine in Blender.

(a)

(b)

(c)

(d)

Figure 2. The synthetic drone images with all of the randomizations enabled, generated by the
simulation in Blender, used for training and validation of the convolutional neural network (CNN).
The images are intended to cover a large number of potential scenarios, with different background
and lighting conditions. The camera parameters such as the focal length and focus point are also
randomized to make the dataset as photorealistic as possible. The textures of the drones are also
randomized with the aim of training the CNN to detect the shape, instead of the colour of the drone.
Thus, the colour of the drones appears different in some of the images even for the same drone
models. (a) DJI Phantom, (b) DJI Mavic, (c) DJI Inspire and (d) No Drone.
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2.1. Rendering Script

To generate the synthetic dataset, a Python script is used within Blender to randomize
certain parameters of the simulation. The drone is animated to take off from the origin
and fly around for 200 frames. During each animation frame, the position of the camera is
randomized and within 200 m of the drone. The camera is programmed to always point
towards the drone. After 200 frames, the animation is complete. The animation is reset, the
HDRI is changed, and the texture of the drone is updated. The HDRI contains a background
image for the scene, as well as a realistic lighting setup. The HDRIs were acquired from
PolyHaven https://polyhaven.com (accessed on 27 March 2022).

Algorithm 1 shows the pseudocode for the rendering script. At the start, the position,
focal length and focal distance limits are defined. The number of animation frames is set—
this depends on the length of the animation of the drone. FollowDrone is set to true—in the
program, this sets the camera to automatically follow the drone. The program then enters a
while loop of 10 iterations. Every iteration, the texture and the HDRI are randomized. Then,
the animation is started. Every animation frame, the position of the camera is randomized
within the XYZ position limits. The focal length and focal distance are also randomized.
The frame is then rendered and cropped to the size of the drone. Lastly, the image is saved.
In total, 1000 images are generated, with 10 different backgrounds and textures.

Algorithm 1 Synthetic drone rendering script

XYZPositionLimits = [Xmin, Xmax, Ymin, Ymax, Zmin, Zmax]
FocalLengthLimits = [FLmin, FLmax]
FocusDistanceLimits = [FDmin, FDmax]
AnimationFrames = 100
FollowDrone = True
i = 0
while i < 10 do

randomizeTextures()
randomizeHDRI()
CurrentFrame = 0
while CurrentFrame < AnimationFrames do

randomizeCameraPosition(XYZPositionLimits)
randomizeFocalLength(FocalLengthLimits)
randomizeFocusDistance(FocusDistanceLimits)
Frame = renderFrame()
CroppedFrame = cropImageToSizeOfDrone(Frame)
saveImage(CroppedFrame)
CurrentFrame += 1

end while
end while

2.2. Domain Randomization

Preliminary training and testing trials showed that the model translated poorly to
the real-world dataset during testing. We hypothesised that this could be because the
real-world dataset differs considerably from the synthetic images. In their synthetic-to-real
transfer, Tremblay et al. [36] applied unrealistic textures to their 3D cars. The aim of this
was to train the neural network about the features of the object, as opposed to the colour or
texture. Another thing that we noticed was that the real-life images from the Anti-UAV
dataset are not perfectly focused on drones. To counter these effects, we replicated the
randomization of textures in our simulation. As shown in Algorithm 1, the texture of the
main body of the drone is randomized every 200 frames. The textures were acquired from
ambientCG https://ambientcg.com/ (accessed on 27 March 2022). To model the real-world
effects of imperfect focus on the drones, the focus point of the camera is randomized every
frame. Lastly, a no drone class shown in Figure 2d is added, containing random images of
the background. The aim of adding this class is to obtain better differentiation between

https://polyhaven.com
https://ambientcg.com/
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drone and background images. However, we do not explicitly test the accuracy of this no
drone class on the real-life dataset.

To further understand the effects of each of the domain randomization parameters, an
ablation study is completed in Section 3.6.

3. Convolutional Neural Network Training, Tuning and Results

In this section, we describe the process of training the neural network using the
synthetic image dataset generated in Section 2. The aim of this process is to use the CNN to
predict the drone models in real life. Thus, we test the performance of the neural network on
a real-life dataset of images. We explore the effects of freezing layers and adding synthetic
Gaussian noise to the training dataset. We explore the use of different CNN architectures
and using different hyperparameters. We perform an ablation study to explore the effect of
domain randomization parameters on the performance of the CNN. Finally, we perform
a dataset size study. All of the neural networks are coded in Python using the PyTorch
library [39]. We train the models on a HPC with a Nvidia A100 graphic card. The CNNs in
the following section are trained on a dataset of randomly generated 1000 synthetic images,
some of which are shown in Figure 2.

Unless otherwise stated, the CNNs are pre-trained on ImageNet [40], and the hyper-
parameters shown in Table 1 are used. A learning rate of 0.0001, a momentum of 0.9 [41],
and a batch size of 32 is used. The CNN is trained for 100 epochs. A dropout of 0.25 is
applied, to prevent from overfitting [42]. The validation is performed on a separate dataset
of randomly generated 1000 synthetic images.

Table 1. Hyperparameters used to train the CNN.

Learning Rate Momentum Batch Size Dropout Epochs

0.0001 0.9 32 0.25 100

To measure the performance of the classification, average accuracy,

∑l
i=1

tpi+tni
tpi+ f ni+ f pi+tni

l
(1)

average precision,
∑l

i=1
tpi

tpi+ f pi

l
(2)

recall,
∑l

i=1
tpi

tpi+ f ni

l
(3)

and f1 score,

2 · precision · recall
precision + recall

(4)

are calculated [43]. tpi is the true positive value for class i, tni is the true negative value for
class i, f pi is the false positive value for class i, f ni is the false negative value for class i,
and l is the number of classes.

3.1. Testing the Neural Network

The CNN is trained and validated on synthetic images of drones. The aim of this
work is to use the CNN to correctly predict drone models on real-life images. Hence, a
real-life dataset of drones is required to test it. The Anti-UAV dataset [20] contains videos
of different drone models flying in real-life. The Anti-UAV dataset contains videos and
ground truth labels for each frame containing the drone. The dataset contains different
drone models: DJI Inspire, DIJ Mavic-Pro, DJI Phantom, DJI Mavic-Air, DJI Spark, and
Parrot drones. Two video feeds are provided, one from a visual camera, and another from
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a thermal camera. Some of the scenarios provided are filmed at night. To test our CNN,
we only use daytime videos from the visual camera. Four daytime videos of each of DJI
Phantom, DJI Mavic, and DJI Inspire are selected for the testing of our CNN. We use the
provided ground truth label to extract an image of the drone from the video feed. This
image of the drone is input into the neural network to predict the drone model. The videos
used for testing are:

• 20190926_130341_1_1 (phantom);
• 20190926_130341_1_3 (phantom);
• 20190926_130341_1_4 (phantom);
• 20190926_130341_1_6 (phantom);
• 20190926_142435_1_3 (mavic);
• 20190926_141816_1_5 (mavic);
• 20190926_141816_1_1 (mavic);
• 20190926_144550_1_2 (mavic);
• 20190925_130434_1_4 (inspire);
• 20190925_130434_1_7 (inspire);
• 20190925_131530_1_1 (inspire);
• 20190925_131530_1_4 (inspire).

The images in the dataset vary in quality. For example, in some of the images, the
camera is focused on the drone, and it appears sharp. In others, the drone appears blurry,
possibly due to the movement of the drone or the camera. Certain artefacts, such as white
and black lines, also make the classification task challenging. Extracts from the dataset can
be seen in [1,20].

3.2. Freezing Layers

For synthetic to real transfer, Ref. [44] found that freezing the layers during the training
of the neural network improved the precision. Contrary to this, Ref. [36] found that full
learning, without freezing the layers, improved performance. To investigate the effects of
freezing layers, two tests were performed with the settings mentioned in the training of the
neural network section.

Table 2 shows the effects of training the neural network with and without freezing the
layers. The accuracy of a network with frozen layers is 73.0%, and increases to 92.4% when
the layers are not frozen. With the layers frozen, the accuracy, precision, recall and f1 score
are 73.0%, 68.5%, 59.2% and 56.7%, respectively. With full learning, the accuracy improves
to 92.4%, precision to 88.6%, recall to 88.6% and f1 score to 88.7%.

Table 2. Effect of freezing layers on the accuracy of the neural network.

Settings Average Accuracy (%) Average Precision (%) Average Recall (%) Average f1 (%)

Frozen Layers 73.0 68.5 59.2 56.7
Full Learning 92.4 88.8 88.6 88.7

3.3. Synthetic Noise

Attempts at synthetic to real transfer [36,44] use Gaussian noise as a data augmentation
on their training dataset. However, they do not explicitly test the effectiveness of adding
the noise. Furthermore, Ref. [37] found the effect of noise to be negligible. We have found
that adding Gaussian noise to the training dataset improves the accuracy of the neural
network model when testing on the real-life dataset.

Table 3 shows the effects of adding Gaussian noise as an augmentation to the training
dataset. With no noise added, the accuracy, precision, recall and f1 score are 79.4%, 76.0%,
69.0% and 67.5%, respectively. With Gaussian noise added as an augmentation to the
training dataset, the accuracy improves to 92.4%, precision to 88.6%, recall to 88.6% and f1
score to 88.7%. This is in line with the findings of [36], who found that adding noise to the
training dataset improved the accuracy of their results.
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Table 3. Effect of adding Gaussian noise on the accuracy of the neural network.

Settings Average Accuracy (%) Average Precision (%) Average Recall (%) Average f1 (%)

No Noise 79.4 76.0 69.0 67.5
Added Noise 92.4 88.8 88.6 88.7

To explain the effects of adding noise to the dataset, Ref. [45] visualizes the effect of
noise on neural networks by using sensitivity maps. This method aims to find pixels that
strongly influence the final decision. It shows that adding noise to the training dataset
provides a de-noising effect to the sensitivity map. To test if the same effect can be seen on
our neural network model, we have used a PyTorch implementation of the SmoothGrad
visualization method https://github.com/pikahhh/pytorch-smoothgrad (accessed on 27
March 2022).

Figure 3 shows the SmoothGrad visualization. The left column shows the input image,
the middle column shows the sensitivity map for the neural network trained on a dataset
with no noise added as an augmentation and the right column shows the sensitivity map
of the neural network trained on a dataset with noise added as an augmentation. The
sensitivity maps shown are an average of 50 generated sensitivity maps. The top row
shows a visualization of a synthetic DJI Mavic, the middle row of a synthetic DJI Phantom
and the bottom row of a synthetic DJI Inspire. The difference between the no noise and
noise visualizations is that, in the no noise column, the activated pixels are mostly in the
background of the object. In contrast, when noise is added to the training dataset, fewer
pixels are visible in the background and more pixels are activated in the area covered by
the drone. This is consistent with the findings of the Smoothgrad studies. Although this is
purely a qualitative analysis, it helps to explain the reason for the quantitative improvement
in accuracy shown in Table 3.

3.4. Data Augmentations

The images are resized to 256 × 256 pixels and then cropped to 224 × 224 pixels.
A random horizontal flip is applied. The image is then transformed into a tensor and
normalized. Lastly, the Gaussian noise of mean 0.75 and standard deviation 0.75 is applied
to 75% of the images in the dataset. During validation and testing, the Gaussian noise is
not added.

3.5. Benchmarking Neural Architectures

To find the best performing architecture for this problem, a benchmark is performed by
using open-source implementations in PyTorch [39]. The settings described at the beginning
of Section 3 are used to train each of the models. As described in Sections 3.2 and 3.3, the
layers are not frozen and Gaussian noise is added as an augmentation. Because the models
are sensitive to the learning rate used, each architecture is trained three times using the
learning rates of: 0.01, 0.001, and 0.0001. The architectures are described as follows:

ResNets [46] use residual blocks and skip connections to learn the residual mapping.
They have been shown to perform better than plain neural networks, especially for deeper
networks. The architecture was the winner of the ILSVRC 2015 for image classification,
detection and localization. We test four variations: ResNet18, Resnet50, ResNet50-wide
and ResNet101. The number refers to the number of layers in the network. ResNet50-wide
is a variation of the ResNet architecture [47], which decreases the depth and increases
the width.

DenseNets [48] connect all of the layers together. This architecture was able to beat the
state-of-the-art on the benchmark datasets at the time of publication. We test DenseNet121,
DenseNet 161, DenseNet 169 and Densenet201. The number refers to the number of layers
in the network.

https://github.com/pikahhh/pytorch-smoothgrad
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Figure 3. SmoothGrad visualizations of the neural network models trained on a dataset with and
without Gaussian noise. The drone image input into the network is shown in the left column. The
middle column shows the SmoothGrad visualizations of the CNN trained on a synthetic dataset with
no Gaussian noise added. The column on the right shows the SmoothGrad visualizations of the CNN
trained on a synthetic dataset with Gaussian noise added. Qualitatively, it appears that, by adding
Gaussian noise, more pixels in the area covering the drone are activated. In contrast, when noise is
not added, more pixels in the background are activated.

Figure 4 shows the results of the benchmark. There appears to be no clear trend
amongst the architectures, and at an optimized learning rate, they are all able to achieve
above 85% accuracy. Densenet201 at learning rate of 0.0001, ResNet101 at learning rate of
0.001 and DenseNet121 at a learning rate of 0.001 are the top 3 performing architectures
based on their accuracy score. To further investigate their performance, we can also
compare their recall, precision and f1 score metrics.
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Figure 4. Accuracy of different CNN architectures at different learning rates: 0.01 (blue), 0.001
(orange) and 0.0001 (green).

Figure 5 shows the accuracy, precision, recall and f1 metrics for the top three per-
forming architectures in terms of the accuracy metric. Overall, DenseNet201 at a learning
rate of 0.0001 shows the best performance across every metric, with an accuracy of 92.4%,
precision of 88.8%, recall of 88.6% and an f1 score of 88.7%. It should be noted that, be-
cause the DenseNet201 contains more layers, it takes a longer time to train compared with
DenseNet121. Thus, although the DenseNet201 performs better overall, the trade-off is that
it takes longer to train.

Figure 6 shows the DenseNet201 architecture [48]. The architecture used is the same
as in the original paper, with the modification in the final layer to output four classes of
drone models: DJI Phantom, DJI Mavic, DJI Inspire and no drone. The input to the CNN
is a 224 × 224 RGB image of a drone. The DenseNet201 contains 201 layers. DenseNet
architectures connect every layer together. Hence, it has L(L + 1)/2 connections, compared
to L connections for standard neural networks. The open-source implementation of the
DenseNet201 architecture is available on the GitHub page of PyTorch https://github.com/p
ytorch/vision/blob/main/torchvision/models/densenet.py (accessed on 27 March 2022).

Figure 5. Accuracy, precision, recall and f1 score metrics for the top three performing architectures.

https://github.com/pytorch/vision/blob/main/torchvision/models/densenet.py
https://github.com/pytorch/vision/blob/main/torchvision/models/densenet.py
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Figure 6. DenseNet201 architecture [48] with the final layer adapted to classify the four classes of DJI
Phantom, DJI Mavic, DJI Inspire or no drone. In the graphic, ‘Conv’ refers to a convolutional layer,
‘Dense’ refers to a Dense Block, ‘Trans’ refers to a Transition Layer, ‘GAP’ is the global average pool
and ‘FCL’ is the fully connected layer. The input is a 244 × 244 RGB image of a drone, and the output
is a prediction of a drone model.

3.6. Ablation Study

To compare which domain randomization parameters have the most influence on
the accuracy of the classification, an ablation study is performed. The ablation study is
performed by turning off one of the parameters at a time and generating a dataset of
1000 images for training, and 1000 for validation. A neural network model is then trained
on this dataset and tested on the real-world Anti-UAV dataset.

The results of the study are shown in Figure 7. The domain randomization parameters
that are compared are:

• No randomization of camera position shows a drop in accuracy from 92.4% for the
baseline, to 53.6%. In this dataset, the camera is fixed in a single position, as opposed
to the camera position being randomized during every frame in the baseline dataset.
Because the drone is animated to take off and fly around, the drone still moves.
However, this creates a much smaller variation in the orientation of the generated
images. This shows that randomizing the position of the camera is the most important
domain randomization parameter that is compared in this study.

• Eevee render engine shows a drop in accuracy from 92.4% for the baseline, which
uses the Cycles render engine, to 61.0%. The difference between Eevee and Cycles
render engines is that Eevee is a real-time engine and works similarly to game engines.
Cycles is a ray-tracing engine that simulates the physical behaviour of light. It creates
more realistic renders but is slower to generate them. The result of the Cycles engine
performing better than Eevee is not surprising—the datasets are of the same size.
However, the trade-off of cycles is that it is slower to generate renders.

• No focal point randomization shows a drop in accuracy from 92.4% for the baseline,
to 63.4%. The images generated using this method produce images perfectly focused
on the object, with sharp features of the drone. With focal point randomization enabled,
the focus point of the camera is not always at the same distance as the drone, which
produces blurry images of the drone. The reason for enabling this randomization is
that the images of drones filmed in real-life are seldom focused on the drone. This
is because it is hard to focus on a small drone that may be hundreds of metres away
from the camera. Hence, datasets of real-life images of drones, such as the Anti-UAV
dataset [20], tend to be blurry.
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• No HDRI randomization shows a drop in accuracy from 92.4% for the baseline, to
70.2%. In this scenario, all 1000 images in the dataset use the same HDRI. In contrast,
with HDRI randomization enabled, the HDRI is changed every 200 frames, meaning
five different HDRI scenes are used.

• No texture randomization shows a relatively small drop in accuracy from 92.4% from
the baseline, to 89.3%. This suggests that randomizing the texture is not as important
as randomizing the other parameters. With this parameter enabled, the texture of the
drone is randomized every 200 frames to an unrealistic texture. With it enabled, the
default colour of the drone is used.

Figure 7. Impact on the accuracy of the neural network by omitting individual randomized compo-
nents from the data generation procedure described in Section 2.2.

3.7. Dataset Size Study

The advantage of the synthetic dataset is that it allows for the generation of a large
number of images quickly. To test if increasing the dataset increases the performance of
the model on the real-life test dataset, a dataset size study is performed. The DenseNet201
architecture with a learning rate of 0.0001 is used. Noise is added to the training dataset
and the layers are frozen.

Figure 8 shows the accuracy, precision, recall and f1 score for the neural network
trained on different dataset sizes. The performance is the worst for the smallest, 500 image
dataset. It then improves and performs best for the 1000 image dataset. For the larger sized
datasets of 5000 and 10,000, the performance drops. This is an interesting result because it
is expected that a larger dataset will produce better performance. This leads to the question
of: why does the model perform worse when trained on a larger dataset? Ref. [36] found
that, after using a dataset size of 10,000 images, the average precision saturates around 79
for the pre-trained network. However, in the dataset study presented in Figure 8, the drop
in performance is significant between the 1000 image dataset and the 5000 image dataset.
The accuracy drops from 92.4%, and the f1 score drops from 88.7% to 69.5%. This suggests
that, unlike in [36], where the performance saturates, the performance drops off.
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Figure 8. Dataset size study for datasets of 500, 1000, 5000, and 10,000 images.

The plots in Figure 9 show the accuracy during the training across the 100 epochs. Both
of the plots show the training converging to a very high accuracy. The 5000 image dataset
in Figure 9b shows a convergence to near 100% accuracy on the validation dataset. This is a
sign of overfitting, suggesting that the network has optimized for the validation dataset
too well. In turn, it performs worse on the real-world dataset. This could be potentially
solved by adding more variability to the validation dataset.

(a) (b)

Figure 9. Training accuracy plots across 100 epochs. (a) 1000 image dataset, (b) 5000 image dataset.

4. Discussion

The best performing model in Section 3 is the DenseNet201 model, pre-trained on the
ImageNet dataset, with layers not frozen, with noise added to the synthetic training images,
trained on a dataset of 1000 images, using a learning rate of 0.0001, and a batch size of 32.

Figure 10 shows the confusion matrix of the best performing model when tested on the
real-life Anti-UAV dataset. The predicted values are shown on the x-axis, and the ground
truth is shown on the y-axis. A true positive is indicated when the predicted value matches
the ground truth. The confusion matrix shows that the neural network model correctly
identifies the DJI Inspire in 88%, the DJI Mavic in 89%, and the DJI Phantom in 89% of
the test images. This shows that the model is not biased towards detecting a single drone
type. The confusion matrix presents an overall accuracy of 92.4%, a precision of 88.8%, a
recall of 88.6%, and an f1 score of 88.7%. Note that there are no true occurrences of the no
drone class in the confusion matrix. This is because there are no no-drone occurrences in
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the Anti-UAV dataset. Although it is possible to add other occurrences of no-drone images,
this is not the aim of this study.

Figure 10. Confusion Matrix of the best performing model.

Classification of drones poses a problem because there is not a direct state-of-the-art
benchmark to compare this against. Most of the other publications focus on the detection
aspect and use region proposal algorithms. In turn, their performance metric, mean average
precision, is based on the overlap of the prediction and ground truth. Although this should
not be compared directly to the results presented here, we will mention notable results in
this category.

Table 4 shows the results of this paper, compared with other literature. Scholes et al. [34]
identify the DJI Mavic and DJI Inspire drones. They report an accuracy of 100% on their
synthetic dataset, and an accuracy of 100% when they tested on a real-life video of the
DJI Mavic taken by a Quantic4x4 camera. For the classification and orientation detection,
they use a decision tree coupled with an ensemble network. They then use a U-net type
architecture for the segmentation. The difference between theirs and our results is that their
focus is on the segmentation of the parts of the drone and on finding the orientation. The
results presented here focus purely on the identification of the drone model and bridging
the simulation to the real-world gap. Because the results are not tested on the same dataset,
it is not possible to make the direct comparison in terms of the classification results between
the two methods.

Samadzadegan et al. [28] classify the detected objects into three categories: bird,
helicopter and multi-rotor. They report an accuracy of 83%. Their reported precision, recall
and f1 can be averaged across the three classes giving average precision of 84%, average
recall of 83% and average f1 of 83%. However, their test dataset is different, and they
classify different objects, hence a direct comparison should not be made to the results
presented here.
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Table 4. Comparison of visual drone detection and classification results with literature. One exception
is Ward et al., who classified ships instead of drones, but because they used a synthetic dataset, it
makes their results a useful comparison.

Paper Training
Dataset

Classification/
Detection Method Test Dataset Classification

Accuracy
Detection

mAP

This paper Synthetic Classification DenseNet201 Subset of
Anti-UAV 92.4% n/a

Scholes et al. [34] Synthetic Classification

Decision tree coupled
with ensemble

network + U-Net
(segmentation)

Real-life drone
video 100% n/a

Samadzadegan
et al. [28] Real Both YOLOv4 Real-life drone

video 83% 84%

Lee et al. [29] Real Classification CNN Internet images 91.6% n/a

Seidaliyeva
et al. [31] Synthetic Both YOLOv2

Video of drones,
birds and

helicopters
n/a 75.0%

Ward et al. [38] Mixed synthetic
and real

Classification
(Ships) ResNet34 Ship satellite

images 96.9% n/a

Ward et al. [38] Synthetic Classification
(Ships) ResNet34 Ship satellite

images 59.2% n/a

Lee et al. [29] train a CNN by gathering a dataset of drone images from the internet.
They report an accuracy of 91.6% during training. However, they do not report using a
validation dataset. When training neural networks, it is recommended to use separate
validation and testing datasets to prevent overfitting [49]. If a CNN model is overfitted to
the training dataset, it is likely to perform poorly on test datasets. Hence, it is important
to use a validation dataset during training, and a separate test dataset for reporting the
final results.

Seidaliyeva et al. [31] classifies loaded and unloaded drones and reports a mean
average precision of 75.0% using the YOLOv2 object detection model. The authors were
unable to find a public dataset of loaded and unloaded drones, so they created their own.
The mean average precision for detection methods is calculated differently to the average
precision presented in our paper because it relies on the overlap with the ground truth
bounding box, so a direct comparison should not be made to our results.

Ward et al. [38] present a Resnet34 CNN used to classify ships. It is trained using
both real and synthetic images to predict the class of a ship (barge, cargo, container, or
tanker) from overhead satellite images. This method is similar to the method presented
in our approach but for a different domain of ship identification. An accuracy of 96.9%
is reported when training the CNN on a mix of real and synthetic data. An accuracy of
59.2% is reported when training on purely synthetic data. Comparing this to our results, we
presented an accuracy of 92.4% using DenseNet201 and a purely synthetic dataset. These
results suggest that our accuracy could potentially be improved by mixing real-world data
into the training dataset.

Table 4 does not contain results from non-visual methods. For comparison, the accu-
racy of RF detection of drones presented in [9] of 99.2% is higher compared with the visual
detection approach presented in this paper. However, there are situations where RF sensors
are unsuitable for the detection of drones and optical sensors are more appropriate. It is
possible to fuse the data from both of the sensors together to produce an even more reliable
system. Hence, even though the RF detection works better, the two detection methods
should be developed alongside.
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5. Conclusions and Further Work

We present a CNN trained on a purely synthetic dataset that correctly classifies
drone models in real-life video feeds of the Anti-UAV dataset. To the best of the author’s
knowledge, it is the first attempt to classify the drone models on the Anti-UAV dataset. It is
also a successful attempt at bridging the synthetic to real-world gap in drone imaging. To
achieve this, a synthetic dataset is created by applying domain randomization (random
positions, orientations, lighting conditions and textures) to the 3D models of the drones. A
benchmark identified that the DenseNet201 architecture showed the highest accuracy. We
found that adding Gaussian noise to the training dataset increases the performance of the
classifier. We believe that this is an initial step in accurately identifying threats posed by
different kinds of drones. We have shown that the method of using 3D models to generate
synthetic images to train a neural network can be used for drone model detection in real
life videos. The use of this method greatly reduces the time taken to generate a dataset for a
new drone model. Given different 3D drones, this method could be used to detect different
types of drones than the ones already mentioned in this paper.

There are some shortcomings to this method. A computer with a powerful graphics
card is required for the generation of the synthetic images. The CNN was tested on only
one real life dataset. The CNN should be tested on other datasets to verify how well it
transfers to real life drones in different conditions. The challenge here is the comparison
between existing publications because of the difference in the objects being classified and
the differences in test datasets. However, we have taken many steps to make sure our
method of identifying drones is reproducible on real-life datasets. The drone detection field
should aim to unify benchmarks to make direct comparisons easier to produce, similarly to
the attempts of the UAV detection and tracking benchmark [22].

The work presented here is an initial step in correctly identifying the threat level posed
by the drone. As airports face a growing risk of drone intrusions, it is important for airport
security teams to correctly identify the level of risk associated with an intruding drone.
This method of training CNNs on synthetic images can be expanded to include other drone
models, birds and drones with payloads attached. This would greatly reduce the cost
associated with including new threats to airports, compared with traditional methods.
With further development, it is possible for the CNN presented here to be used as a part of
a larger system which detects drones at airports.

As we have shown that synthetic drone images can be used to train neural networks,
this method could be expanded to object detectors such as Faster-RCNN. Thus far, we
have classified the drone type. However, with the use of object detectors, we would
be able to predict the position of the drone in images. The use of synthetic images is
particularly interesting because the simulation is able to output a pixel-level mask of the
drone’s position.

This method could be expanded to find the orientation and segment individual parts
of the drone, similarly to [34]. Other drone models could also be added to the dataset.
Different flying objects, such as planes, helicopters and birds, could also be generated using
synthetic images. The CNN model presented in this paper could be improved by further
optimizing hyperparameters such as learning rate and batch size. It should be tested on
other datasets such as the Drone vs. Bird Challenge dataset. It was found that increasing
the size of the dataset saturated above 1000 images. It should be understood why this
saturation happens, and if fixed, it would enable the use of larger datasets. Drone area
in pixels could be compared with the detection accuracy. This would provide a valuable
metric in terms of classification capability.

As the field of drone detection is seeing more high-quality publications, it is important
for the field to have a common dataset benchmark. The UAV detection and tracking
benchmark [22] try to unify existing datasets in terms of detection accuracy. However, the
real-world datasets only contain limited information about the position of the drone in
the video frame. Further information, such as orientation, payload, pixel-level masks of
the individual drone parts, annotations of birds, multiple drones in one frame and drone
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model labels, would make the field of drone detection more challenging and would enable
researchers to directly compare their results on common real-world datasets.
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