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Abstract

This paper presents the TRAM-FPV Racing open
database, generated from a set of indoor flights
performed with five racing drones at Cranfield
University (UK), specifically at the Flight Arena,
one of the largest indoor flight fields in the world
for research purposes. The database incorporates
the position and orientation information in the
space of five racing drone models using an opti-
cal measurement system (OMS). It includes read-
ings from accelerometers, gyroscopes, and head-
ing angles recorded by inertial unit (IMU) sensors.
These databases are frequently used to develop and
adjust the sensor fusion algorithms incorporated in
the drones to estimate their current state vector.
However, their field of application is vast, being
able to be used, for example, for the development
of the nonlinear mathematical models of drones or
the generation of trajectories.

Keywords: Racing drones, Database, Trajec-
tory, Guidance, GPS-denied, IMU, Navigation,
Autonomous, Simulation.

1 Introduction

Multiple databases incorporate experimental data
from flight tests of autonomous vehicles, generally
referred to as drones. The available experimental
data are often used to develop, adjust and val-
idate such devices’ estimation, control, guidance
and navigation algorithms.

Table 1: Other datasets
Datasets BD1 BD2 BD3 BD4 BD5

Airframe type Quad SY130 Hexa SY300 Quad SY-MAV Quad SY Quad SY250
Cantidad de veh́ıculos 1 1 1 1 1
Number of vehicles 186 11 1 4 27
Indoor/sensors IMU/OMS IMU/OMS NO NO IMU/OMS
Outdoor/sensors GPS NO GPS/IMU GPS/IMU GPS/IMU

Video/image capture Yes Yes Yes Yes YES
Size room 11, 0X11, 0 M2 1, 5x1, 0 m2 Urban place Outdoor 3, 0x1.5 m2

The databases in table 1 have several differenti-
ating characteristics, such as Blackbird (BD1) [2],
which stores information from aircraft with av-
erage flight speeds close to 7.0m

s
. The EuRoC

(BD2) [7] database is notable for using a laser sys-
tem to track vehicles and improve measurements.

The Urban Mav (BD3) [44] has the peculiarity
that its data comes from flights in urban areas.
At the same time, the KumarRobotics (BD4) [68]
database (BD71) contains a Matlab file that aligns
its GPS measurements with an odometry system.
Finally, the UZH-FPV (BD5) [15] is characterised
by the inclusion of information from the FPV cam-
eras incorporated in the racing drones.

The measurements in these databases are usually
made with only one type of drone, mainly record-
ing information from satellite signals and read-
ings from inertial sensors and measurement sys-
tems external to the drone [8, 26, 30]. Also, the
drones are often general-purpose and are not usu-
ally customised for a clearly defined application.
However, racing drones have burst onto the scien-
tific scene, and we can find numerous studies on
their dynamic behaviour[9, 41]. These studies con-
firm the existence of open questions in their struc-
tural design, flight dynamics and autonomous con-
trol in environments with static or dynamic obsta-
cles. Therefore, new databases have started to be
developed with information on this specific type
of drone, mainly characterised by their fast and
aggressive dynamics [58] compared to traditional
drones.

This paper presents the open database TRAM-
FPV Racing, created to study the dynamic be-
haviour of racing drones. Section 2 briefly in-
troduces the vision system used for 3D motion
and orientation sensing. In section 3, the cali-
bration and configuration of the Flight Arena are
described, together with the racing drones used
and the description of the primary control schemes
that integrate these drones. Section 4 details
the flight procedure, while section 5 describes the
database structure. Finally, section 6 presents the
most relevant conclusions of the work.

2 Sensor systems for 3D
positioning and orientation of
drones.

A system endowed with the capability to plan
its flight trajectory and subsequently execute it
without human intervention, according to specific
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safety standards, is an autonomous air vehicle[10].
If, in addition, during these autonomous trajecto-
ries, the aerial vehicle detects objects, avoids pos-
sible collisions and re-calculates its trajectory by
carrying out different flight manoeuvres, then the
vehicle is said to navigate autonomously [4]. In or-
der to make an air vehicle behave autonomously, it
is necessary to combine measurements from differ-
ent types of sensors, generally referred to as sen-
sory fusion [21, 69]. This combination of infor-
mation is necessary for state estimation, control
and stabilisation, navigation and guidance of the
aircraft [34, 61].

The information in these databases usually con-
tains Global Positioning System (GNSS) data
when flights have been conducted in open space,
as well as records of the inertial navigation sys-
tem sensors and even video sequences for the au-
tonomous guidance of the aircraft [17, 29, 49].
Similarly, some databases incorporate information
from other types of sensors, for example, laser or
ultrasonic sensors, to detect objects or markers
in the navigation environment [46]. Some of the
sensors used to measure aircraft position and ori-
entation, both on-board and external to vehicles,
are detailed below:

• Global Positioning Systems (GNSS). These
are made up of artificial satellites (constel-
lation of satellites) that send radio signals
(EMS) [45]. These systems calculate the time
it takes for the wave to reach a receiver to
determine its position [42, 45, 72]. However,
the reliability of the data is affected by some
factors, with noise in the signal increasing
significantly [27, 35, 52]. These systems in-
clude NAVSTAR-GPS, GLONASS, IRNSS,
GALILEO and BEI-DUO.

• Information from inertial navigation systems
(INS). These systems are on board the vehi-
cle and use inertial units or sensors (IMU).
They are composed of an accelerometer, gy-
roscopes and magnetometers [16, 53, 59]. To
determine position and orientation, measure-
ments from these sensors are combined using
different algorithms, e.g. Extended Kalman
Filter (EKF).

• Information from image processing systems
(IMS). These systems are on board the ve-
hicle and use different types of cameras to
estimate the position and orientation of the
object. Camera sensors capture the dis-
placement by employing sequences of im-
ages digitally processed and analysed using
different methods or algorithms [5, 28, 73].
Consequently, real-time image recognition re-

quires high definition, high speed and high-
resolution cameras.

• Information from acoustical systems (UMS).
The system has two components: The re-
ceiver is on board the vehicle, and the trans-
mitter is fixed at any point in the navigation
environment. These systems determine the
object’s location utilizing ultrasonic waves
travelling through the air [19, 63].

• Information from systems combining optical
and electronic sensors (OMS). These systems
are composed of a set of cameras and mark-
ers. The cameras are located in the naviga-
tion environment, not on-board the vehicle,
and detect light from a marker coated with
luminescent material and attached to the ve-
hicle. A minimum of two cameras is required
to estimate the position and orientation of the
object, i.e. as long as two sensors (cameras)
detect or recognise the marker. It is possi-
ble to reconstruct the position of the vehicle
[20, 25]. The number of cameras determines
the reliability of the data. In addition, their
location and the light intensity in the envi-
ronment [12, 31].

It should be noted that in situations where there
are no GNSS measurements [1, 11, 40], or in
contexts that demand high dynamic performance
[14, 60, 67] with high positioning and orientation
accuracy, OMS systems are used [3, 18, 24, 48].
Likewise, due to the fast dynamics of racing
drones, using OMS systems is essential to study
their behaviour accurately [37, 50].

3 Configuration of measurement
systems for the TRAM-FPV
RACING database.

In order to perform a flight sequence accurately,
the preparation of the flight arena, the respective
measurement equipment and the drone models are
necessary to be used for the flight tests.

The test room is the Flight Arena at Cranfield
University in the UK. The plan dimensions of the
arena are shown in figure 1, with a maximum
height of 10 m throughout the enclosure.

On the other hand, the enclosure is equipped with
30 Vicon cameras[75]. The set of cameras is lo-
cated at the height of 10 meters and separated
by approximately 1.5 meters. The data are trans-
mitted via Ethernet, using the TCP/IP communi-
cation protocol managed by the software tracker
[74].



Figure 1: Scheme. Flight Arena - At the Cranfield
University

3.1 Description and configuration of the

flight arena.

Figure 2: Cameras Vicon. Vantage and Vero

The cameras are Vicon Vantage and Vero (see fig-
ure 2). These cameras can capture motion be-
tween 250 and 1070 FPS, with the field of view
being between 40 and 57 degrees. On the other
hand, the resolution ranges between 1.3 and 5.0
megapixels, depending on the volume calibration,
the effective flight area and the number of frames
per second required for the experiment.

Figure 3 shows the effective measurement area af-
ter calibrations have been performed. It should
be noted that ASTM E3064 relates to the abil-
ity of the cameras to process the images with-
out filtering or post-processing the data when it
agrees with a test result and the accepted ref-
erence values so that Vicon-tracker software can
capture 41993 FPS, with an accuracy of 0.017 mm.
It considers the agreement between independent
test results obtained under stipulated conditions
(as per ISO3534 : 2014) and according to the
standard test method for evaluating the perfor-
mance of optical tracking systems that measure
six degrees of freedom of position and orientation
(ASTM E3064).

Figure 3: Effective flight area for the experiments

However, the calibration process and the ambient
light conditions during the tests give the relative
error between the position of the cameras and the
origin of the effective flight area. Considering the
conditions under which the experiments were con-
ducted, an average range of 0.1 mm for each coor-
dinate axe was accepted.

3.2 Description and configuration of the

racing drones used.

In this database, the geometric structure of 5
types of racing drones has been taken into consid-
eration. These drones have different dynamic be-
haviours depending on their geometry (airframe)
[9], which are defined as symmetric (SY), non-
symmetric (NSY) or hybrid (HS).

Figure 4: Airframe geometry of racing drones

Table 2: Configuration of the flight platform
Components Description

Airframe geometry SY, NSY, HS
ESC 55 mA - Tmotor
Flight controller F7 - Tmotor
Video transmitter VTX Viva FPV - Tbs
Radio receiver R-XSR - FrSKY
Antennas Emax lineales
Battery 6s - 4s
Propellers 5147 - Tmotor
Motors - Tmotor F60PRO 1950-2550 Kv
Firmware Betaflight

In figure 4, the symmetrical geometries (SY) rep-



resent an angular distance between upper and
lower arms equal to 90 degrees and motor centre
distances equal to 210 and 250 millimetres (mm).

The angular distance of non-symmetrical struc-
tures (NSY) is between 80 and 65 degrees, and
the motor centre-to-centre distance is between 210
and 230 mm. Hybrid structures have an angular
distance between upper arms equal to 80 degrees
and lower arms of 90, while the wheelbase is 250
mm. Moreover, all racing drones were equipped
with the same electronic components, motor group
and power supply as shown in table 2.

Figure 5: Hybrid structure - HS.

Figure 6: Symmetrical Structure - SY.

Some of the drones used for the experiments are
shown in figures 5, 6 and 7. It should be noted
that the geometric parameters of these model rac-
ing drones were entered into the firmware of each
of the 5 flight controllers. The navigation aids and
stability control were configured under the same

conditions to perform the experiments[9]. In addi-
tion, the settings related to the travel of the radio-
control levers were set to their default values.

Figure 7: Non-Symmetrical Structure - NSY.

Figure 8: Location of the markers on the Drone

In order to capture the flight trajectories most ac-
curately, five 14 mm diameter spherical and lu-
minescent markers were placed on each of the air-
frames as shown in figure 8. In addition, they were
placed in non-symmetric positions with a mini-
mum distance of 10 mm, which ensures that the
OMS system can more quickly reconstruct the po-
sition of the markers during movement.



3.3 Control scheme of the drones used

Databases like TRAM-FPV Racing are integrated
between various control levels to merge with the
different sensor readings, which is to train the mo-
tions of autonomous racing drones or to validate
their behaviour in enclosed spaces under certain
safety conditions. [23, 32, 36].

Figure 9 shows a basic control scheme or archi-
tecture for two racing drones in a controlled en-
vironment. It shows how the translation and ro-
tation information obtained from the optical sys-
tems (Vicon cameras) replaces the information
usually provided by a more inertial satellite sys-
tem for autonomous navigation. In addition, it
shows the possible interactions of this data with
the control architecture modules in an environ-
ment to detect, evade or pass through obstacles
and avoid collisions.

Figure 9: Alternatives with Vicon system

In general, using the direct data from the vision
system is a recurrent use [51, 70, 71], this allows
the management of possible obstacles [39, 55, 56]
either to detect and/or evade them during a flight
path. Some of the algorithms related to these
obstacle management strategies are precise local-
isation, simultaneous localisation with imagery
(SLAM), LiDAR, odometry and others that in-
clude the classification and extraction of images
preloaded in databases for the recognition of dy-
namic environments.

4 Flight sequences.

Figure 10: Software - Vicon Tracker.

First of all, before starting the flights, it is neces-
sary to adjust the sampling frequencies of the Vi-
con camera sensors and the inertial sensors (IMU)
according to the effective flight area (see figure 3),
as well as the relative measurement errors.

In the case of the Vicon cameras, the flight se-
quences were captured at 250 FPS, while the cap-
ture of data collected by the inertial sensors (IMU)
of the controller embedded in the racing drone was
performed at 500 Hz. This calibration was per-
formed every ten flights, and a calibration error
of less than 0.1% was allowed, and these flight se-
quences were synchronised with video recordings
for each test.

Figure 11: Flight Arena Cranfield University. Dis-
tances and trajectories covered.

It should be noted that the Tracker software (see
Figure 10) was used to match the reference system
of the object with the inertial reference system of
the sand volume. The origin of coordinates of the



object was adjusted according to NED coordinates
concerning the reference system of the cameras.

Recording of the data can start after calibration
of the effective flight area. The calibration pro-
cedure depends on the light conditions and the
camera parameters and is effective when the soft-
ware tracker registers the acceptable error mar-
gins. Subsequently, the pilot will activate the IMU
sensors of the drone to start the flight test.

Each test lasted between 2.5 and 3.0 minutes of
flight time. 30 tests were performed for each drone
used, for a total of 150 tests, equating to a range
between 75 and 90 hours of flight time for each
drone used. These data are stored in the TRAM-
FPV database.

All cameras in the flight arena (figure 11) were
directed toward the trajectories performed by the
racing drone so that at least three cameras could
detect a marker during rotations or turns at the
end of the 18 metres performed and at the start
of the trajectory.

5 Structure of the TRAM-FPV
dataset.

The data from the experiments were stored in a
database hosted in a dedicated repository at Cran-
field University. This database is open and avail-
able at the bibliographic reference [76].

Figure 12: Map tree of the TRAM-FPV Racing
dataset.

The TRAM-FPV Racing database is composed of
3 folders segmented by the geometry of the racing
drones (SY, NSY and HS). An additional folder
that relates the mass distributions and different

moments of inertia of each of the models used is
also organised in three sub-folders segmented by
the geometries of the drones (Ver figura 12).

Inside the first three folders, SY, NSY and HS,
there are three other sub folders called test1, test2,
and test3, except for the SY folder, which is com-
posed of 4 tests. Likewise, inside each test sub-
folder, there are three files: a video file in WEBM
format and two excel - CSV files. The battery
number calls the CSV files produced by the Vicon
software from zero to 9, and the CSV files pro-
duced by the IMU are also called by the battery
number and the acronym bbl.

The CSV-IMU files contain 11 columns by approx-
imately 90000 rows and are organised as in the ta-
ble 3. This table describes three rotations, three
accelerations and 3 heading angles according to
the coordinate axes (X, Y Z). On the other hand,
it must be taken into consideration that the mag-
nitudes of the accelerations and the heading angle
are raw values (RAW) according to the travel of
the stick, so their equivalences are: 2048 units of
accelerations is equivalent to one unit of gravity
(1g). In addition, the data is smoothed by a low-
pass filter, where one unit of Heading is equivalent
to 58.1 degrees.

Table 3: Dataset - IMU
Row Description Magnitude Error (%)
1 loopIteration < 1.284.656
2 Local Time µs
3 Roll axis rotation deg/s < 0, 01
4 Pitch axis rotation deg/s < 0, 01
5 Yaw axis rotation deg/s < 0, 01
6 X-axis acceleration raw < 0, 1
7 Y-axis acceleration raw < 0, 1
8 Z-axis acceleration raw < 0, 1
9 Roll-Heading raw < 0, 09
10 Pitch-Heading raw < 0, 09
11 Yaw-Heading raw < 0, 09

Table 4: Dataset OMS-Vicon
Row Description Magnitude Error (%)
1 Frames fps < 0.017
2 Subframes 0 NA
3 RX X-axis rotation rad 0.397− 0.79
4 RY Y-axis rotation rad 0.397− 0.79
5 RZ Z-axis rotation rad 0.397− 0.79
6 TX X-axis translation mm < 0, 149
7 TY Y-axis translation mm < 0, 149
8 TZ Z-axis translation mm < 0, 149

The CSV-Vicon files contain 8 columns with ap-
proximately 50000 rows and are organized as
shown in the table 4. This table contains three
rotations and translations, plus the data capture
rate or FPS. Note that the rotation order is he-
lical, i.e. the rotation is relative to the position



of the marker at different time instants (roto-
translation) and can be transformed to any other
type of non-instantaneous rotation such as Euler
or quaternion expressions. The errors in the table
are percentage coefficients of variations given by
the tracker software. For more precise measure-
ments, please consult [48].

Figure 13: IMU readings synchronized with video

In the WEBM video files (figure 13), it is possible
to visualise the behaviour of the gyroscopes at the
top and the accelerometers at the bottom while
the flight tests were performed. These video se-
quences have been synchronised, and the changes
in the angle signals can be seen in a synchronised
manner.

6 Conclusions

This paper presents the TRAM-FPV database
containing accurate flight information of 5 racing
drone models. The diversity of data related to
mass distributions, together with position and ro-
tation information, makes it one of the complete
sources of information found in open repositories
(see table 5). It guarantees the integrity and con-
sistency of data since it incorporates 30 flight se-
quences for each model used, for a total of 150
between all the models.

Table 5: Caracteŕısticas de la Base de datos
Base de datos TRAM-FPV Racing

Tipo de chasis SY, NSY, HS
Cantidad de veh́ıculos 5
Secuencias de vuelo 150
Interior/sensores IMU/OMS
Exterior/sensores NO

Captura v́ıdeo/imagen Śı

Área utilizada 20x20 metros

The incorporation of 5 models contributes to a
more accurate characterisation of the different de-
sign approaches in which the TRAM-FPV RAC-
ING database can be employed. Approaches
based on the geometry of their structures to im-
plement control algorithms allow the characterisa-

tion and development of aerodynamic models for
racing drones.

This database aims to continue expanding inter-
est in developing sensors for autonomous racing
drones. Sensors capable of sensing the typical dy-
namics of a radio-controlled racing drone can be
implemented in autonomous racing drones.

Finally, the large volume of data, together with
their present accuracy, allows them to be used for
the design and adjustment of models, estimation
algorithms, navigation and guidance.
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