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Abstract—This paper focuses on real-time techniques for fault 

detection in railway assets through large real-world datasets. It 

aims to investigate data mining methods to detect faulty 

behaviour in time series data. A fault detection on railway door 

systems is carried out using motor current and encoder signal. 

The door data highlighted start-stop characteristics, with 

discontinuities in the data. This paper presents a successful fault 

detection technique, which is a feature-based machine learning 

method that requires several steps for time-series data 

processing, such as signal segmentation and the extraction of 

features. Principal Component Analysis (PCA) is applied to 

reduce the dimensionality of the extracted feature set and 

generate condition indicators. Then, the k-means algorithm is 

employed to separate normal and abnormal behaviour. This is 

followed by an evaluation of the proposed method and 

discussion about current challenges and prognosis possibility.  
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1. INTRODUCTION 

Maintenance tasks are fundamental to meet the growth of the 

number of customers and economic demand in the railway 

industry. With the improvement of infrastructure and 

connectivity within and between cities, the railway sector is 

witnessing an increase in its customer numbers over the 

years. From an ecological point of view, globally, the railway 

industry spends a large amount of money on maintenance 

activities. For example, the annual maintenance expenditure 

of British railway infrastructure was more than £1 billion in 

2015; almost two-thirds of Network Rail’s employees are 

engaged in maintenance work [1].  

The train door is one of the most critical subsystems that can 

cause service delay or breakdown, leading to the increased 

cost of operation and maintenance. As reported in [2], [3], 

door systems are responsible for 30% to 60% of the total 

failures in railway vehicles. In order to prevent these failures, 

predictive maintenance is attracting more and more attention 

recently. Predictive maintenance is a predictive framework to 

estimate the time when a fault is likely to occur and to adopt 

maintenance interventions accordingly [1]. To achieve 

successful predictive maintenance of door systems, a recent 

study has been conducted on fault detection and diagnosis by 

utilising the sensor signals gathered from machinery [4].  

In this area of study, the methodologies usually centre on 

model-based or data-driven approaches. Model-based 

approaches incorporate a physical understanding of the door 

systems through mathematical representations and include 

door system modelling. The output of the model is then 

compared with the actual output measurement throughout the 

residual analysis [5]. Several works in model-driven methods 

encompass differential equation-based modelling [6]. 

However, the train door system contains many components 

interconnected with various uncertainties, which makes the 

modelling approach of limited value in predictive 

maintenance. On the other hand, data-driven approaches use 

statistical pattern recognition and machine learning to detect 

changes[5]. Data-driven approaches do not require 

mathematical modelling of the door systems and have gained 

much attention with the increasing availability of data. The 

previously proposed methods include self-organising maps 

(SOM) [7], logistic regression [8], dynamic time warping [9], 

and convolutional neural networks [10], support vector 

machine (SVM) by using audio sensors [11], and fault 

classification and evaluation for comparison purposes 

between the traditional machine learning method and deep 

learning approaches [12]. 

The present work also explores data-driven approaches but 

differs from proposed methods in the literature because prior 

knowledge and labelled data of the fault behaviour is not 

available. In practical application with complex engineering 

systems, expert knowledge and fault-labelled datasets 

sometimes cannot be obtained in advance, which makes fault 

detection techniques difficult. To address the issue, the 
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unsupervised clustering method, which does not require 

labelled data, is applied in this paper. In addition, this paper 

focuses on the data-driven method by using a real-world large 

dataset of the railway. In general, it has been reported that 

examples of successful fault detection and prognostic 

applications in complex engineering systems are still scarce 

[5]. 

This paper aims to report an example of successful fault 

detection techniques in practical application with railway 

door systems. In Section 2, the fault detection workflow by 

the data-driven approach is proposed. Sections 3 and 4 

describe the data processing method, including pre-

processing, segmentation, and feature extraction. Sections 5 

and 6 explain condition indicator extraction and the 

unsupervised clustering method applied in this research. The 

results are provided in Section 7 to validate the methodology, 

followed by Sections 8 and 9, including the way to automate 

fault detection and the concept of prognosis. A summary is 

given in Section 10 with a discussion of the future 

development of health monitoring systems of railway assets. 

2. HEALTH MONITORING SYSTEM 

The proposed fault detection workflow for train doors is 

shown in Figure 1. The workflow is divided into two 

categories, online and offline. In the online procedure, the 

data-driven approach is proposed by using motor current and 

encoder signals that have been collected from railways. In 

this approach, time-series data is pre-processed to be aligned, 

eliminating noise by a low pass filter. Then, pre-processed 

data is segregated into the opening and closing operations, 

followed by additional segmentation into three different 

movement phases: acceleration, steady-state, and 

deceleration, which is described in Section 4. Then, various 

time-domain features, which characterise the dynamic 

behaviour of the door system, are extracted accordingly. 

In the offline procedure, railway data is used as training 

datasets to train an unsupervised clustering model to separate 

normal and abnormal behaviours. First, Principal Component 

Analysis (PCA) is used to reduce the dimensionality of the 

extracted feature set and generate condition indicators. Then, 

the K-means algorithm is trained and employed to cluster 

condition indicators, followed by identification of fault and 

normal clusters, which is described in Section 7. 

The clustering model created offline is implemented on the 

online procedure to detect faulty behaviour. The online fault 

detection workflow can be executed once one operation with 

opening and closing is terminated so that abnormal modes 

can be detected as early as possible to allow maintenance 

activities to be predictive. 

One of the advantages of the proposed workflow is that the 

offline clustering model can be improved by additional 

operational railway data that enable fault detection to be more 

accurate. Furthermore, it is also possible to create more 

clusters of condition indicators by increased data, which 

means unknown fault modes can be identified by gathering 

operational data, which is also beneficial for health 

monitoring and predictive maintenance systems. 

 

Figure 1: The proposed fault detection workflow for 

train doors 

3. DATA PRE-PROCESSING 

In this study, an electric door is considered, which is 

composed of a voltage power source, a DC motor, a door 

control unit (DCU), a transmission and door leaves. An 

example of a door system is shown in Figure 2. In short, a DC 

motor, powered by a voltage source and controlled by DCU, 

can output the specified shaft angular velocity and torque, 

which are transmitted to transmission so that the door leaves 

can move in a pre-designed manner. The door data, which 

consists of current and encoder signals, is collected through 

the communication port from the DCU at a frequency of  

20 Hz. The time lag is often observed between the motion 

profile and the current. To align the time series, the dynamic 

time warping (DTW) method is used for the first alignment. 

The DTW is one of the widely used algorithms for measuring 

the similarity between two temporal sequences that may vary 

in time [4]. The low pass filter is applied on a window of 0.25 

seconds, representing five consecutive measurement time 

intervals to reduce noise carried by both current and encoder 

signals.  
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Figure 2: Example of train doors 

 

4. FEATURE EXTRACTION 

An example of the signal profile of the opening and closing 

operations is shown in Figure 3. In the opening profile, the 

speed and current increase steadily up to a maximum, 

followed by a slight curve, and then decrease to zero. The 

closing profile follows a similar pattern with two main 

differences in the current. One is that the peak in the closing 

profile is lower than the opening. The second is an abrupt 

change at the end of the closing profile, followed by a slight 

bump of the speed, which promotes pushing the door to its 

maximal reachable position where a locking process can be 

triggered [13].  

The opening and closing operations have different 

movements in terms of velocity regime: acceleration, steady-

state, and deceleration, each of which can be identified by 

using the encoder signals as shown in Figure 4 and Figure 5. 

It is more appropriate to segregate them into each segment to 

extract features accurately. The bottom-up algorithm is 

applied to segregate the opening and closing operation 

automatically. The bottom-up algorithm is one of the most 

well-known algorithms for segmenting time series data. This 

algorithm begins by creating the finest possible 

approximation of the time series so that n/2 segments are used 

to approximate the n-length time series. Next, the cost of 

merging each pair of adjacent segments is calculated, and the 

algorithm begins to iteratively merge the lowest-cost pair 

until a stopping criterion is met[14]. In this research, the 

minimum mean squared error of linear approximation is used 

for the cost, and the bottom-up algorithm keeps merging the 

lowest-cost pair until each signal is segregated into three 

segments: acceleration, steady-state, and deceleration. 

Indeed, the current and speed signals might be able to be 

segregated by a user-defined algorithm. However, the signals 

can be separated more appropriately by using a segmentation 

algorithm. Then, time-domain features, which are likely 

sensitive to degradation, are extracted from the current and 

encoder signals. The features for the opening and closing 

operations are given in Table 1 and Table 2, respectively [10], 

[12], [15].  

 

Figure 3: Door speed and current signals of the opening 

and closing operation. 

 

 

Figure 4: Segmentation of the opening operation. 

 

 

Figure 5: Segmentation of the closing operation. 
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Table 1: Extracted features for the opening operation 

Signal Segments Feature Feature  

ID 

Speed Whole Settling Time 1 

 Skewness 2 

 Kurtosis 3 

 Standard Deviation 4 

 Crest Factor 5 

Acceleration Overshoot 6 

 Settling Time 7 

 Settling Minimum 8 

Steady State Mean 9 

 Standard Deviation 10 

 Minimum 11 

 Maximum 12 

Current Whole Settling Time 13 

 Skewness 14 

 Kurtosis 15 

 Standard Deviation 16 

 Crest Factor 17 

Acceleration Overshoot 18 

 Settling Time 19 

Steady State Mean 20 

 Standard Deviation 21 

 Minimum 22 

 Maximum 23 

 

Table 2: Extracted features for the closing operation 

Signal Segments Feature Feature 

ID 

Speed Whole Settling Time 1 

 Skewness 2 

 Kurtosis 3 

 Standard Deviation 4 

 Crest factor 5 

Acceleration Overshoot 6 

 Settling Time 7 

 Settling Minimum 8 

Steady State Mean 9 

 Standard Deviation 10 

 Minimum 11 

 Maximum 12 

Deceleration Small Peak 13 

 Small Peak count 14 

Current Whole Settling Time 15 

 Skewness 16 

 Kurtosis 17 

 Standard Deviation 18 

 Crest factor 19 

Acceleration Overshoot 20 

 Settling Time 21 

Steady State Mean 22 

 Standard Deviation 23 

 Minimum 24 

 Maximum 25 

Deceleration Maximum Peak 26 

 Large Peak Count 27 

 

5. PRINCIPAL COMPONENT ANALYSIS  

Condition indicators are generated by using PCA as they 

allow the projection of extracted features into a lower-

dimensional space. This method has been used in many 

previous research works to reduce dimensionality[10] and 

select the most relevant features [16]. PCA can be defined as 

the orthogonal projection of data onto a lower dimensional 

linear space, known as the principal subspace, such that the 

variance of the projected data is maximised [17]. Given an n 

× m data matrix X containing n observations and m variables, 

it is possible to obtain a set of loading vectors V by solving 

the eigenvalue decomposition of the covariance matrix S: 

𝑆 =  1𝑛 −  1 𝑋𝑇𝑋 =  𝑉𝐷𝑉𝑇 (1) 

 

where the loading vectors V are ordered by the amount of 

variance expressed by the corresponding eigenvalue in the 

diagonal matrix D. The loading vectors attached to the largest 

singular values are retained in the loading matrix R ∈ℝm × a. 

This set of vectors generates a lower-dimensional 

representation of the extracted features. The projection of the 

data into this reduced space captures systematic trends of the 

data, reducing the amount of random noise, minimising the 

negative effects of measurement inaccuracies. The score 

matrix W contains the projection of the observed data into the 

lower-dimensional space, while the residual matrix E 

represents the difference between the observations and the 

projection of W back into the m-dimensional space: 

 𝑊 = 𝑋𝑅 (2) 

 𝐸 = 𝑋 − 𝑊𝑅𝑇 (3) 

 

In the research, PCA is applied on features of the opening and 

closing. Then, principal components retaining over 80 per 

cent of the proportion of the variance are selected as 

condition indicators in each dataset. 

 

6. K-MEANS CLUSTERING 

K-means clustering is an unsupervised learning and data 

partitioning algorithm that assigns n training feature vectors 

to exactly one of k clusters. This method has been used in 

many previous research works since industrial data usually 

contains both normal and abnormal data in high-dimensional 

space, making it difficult to segregate manually [12], [13]. 

The steps of K-means clustering are the following [18]: 

1. Choose k centroid (initial cluster centre) and use the 

k-means ++ algorithm for cluster centre 

initialisation [19]. 

2. Compute distances between cluster centres and 

training feature vectors. 
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3. Assign each training feature vector to the cluster 

with the closest centre (this step is called Batch 

update). 

4. Compute the average of the training feature vectors 

in each cluster to obtain k new cluster centres. 

5. Repeat steps 2, 3 and 4 until the centres do not 

change their values. 

 

In this research, the K-means clustering algorithm is used to 

cluster the opening and closing operations represented by 

condition indicators extracted by using PCA, as mentioned in 

Section 5. 

7. RESULTS AND DISCUSSION 

The PCA and K-means clustering results are given in Table 

3. The five datasets gathered from railway assets, which are 

1_A, 1_B, 1_C, 2_A, and 2_B, have been analysed. As stated 

in Section 5, the number of principal components was chosen 

so that at least over 80 per cent of the variance is retained. 

The result of the closing operation is not included in Table 3 

since distinguished clusters of the closing operation does not 

appear, which means the closing operation does not have 

faulty behaviour.  

The silhouette score is used to evaluate the clustering 

algorithm by incorporating measures of compactness and 

separation between the proposed clusters. The silhouette 

score is a well-known clustering evaluation approach that 

introduces clustering quality scores for each individual point 

and calculates the final quality index as an average of the 

point-wise quality estimate [20]. Each point-wise estimate for 

a point xq ∈Ci , i ∈{1…k}, k which denotes the number of 

clusters is derived from two quantities. ai,p and bi,p which 

correspond to the average distance to other points within the 

same cluster and the minimal average distance to points from 

a different cluster, respectively. N denotes the number of 

observations: 

𝑎𝑖,𝑝 =  1|𝐶𝑖| − 1 ∑ ||𝑥𝑞 −𝑥𝑞 ∈ 𝐶𝑖,𝑞≠𝑝 𝑥𝑝|| (4) 

𝑏𝑖,𝑝 =  𝑚𝑖𝑛𝑗∈{1…𝐾},i≠j 1|𝐶𝑗| ∑ ||𝑥𝑞 −𝑥𝑞 ∈ 𝐶𝑖 𝑥𝑝|| (5) 

𝑆𝐼𝐿(𝑥𝑝) = 𝑎𝑖,𝑝 − 𝑏𝑖,𝑝max{𝑎𝑖,𝑝, 𝑏𝑖,𝑝} (6) 

𝑆𝐼𝐿𝑖 =  1𝑁 ∑ 𝑆𝐼𝐿(𝑥𝑝)𝑁
𝑝=1 (7) 

𝐴𝑣𝑒𝑟𝑎𝑔𝑒 𝑆𝑖𝑙ℎ𝑜𝑢𝑒𝑡𝑡𝑒 𝑆𝑐𝑜𝑟𝑒 =  1𝑘 ∑ 𝑆𝐼𝐿𝑖𝑘
𝑖=1 (8) 

As shown in Table 3, the silhouette scores in each dataset are 

over 0.70, which means C1 and C2 clusters are well separated 

by the k-means clustering algorithm. The projection example 

of the original features of 1_C into a lower-dimensional space 

is shown in Figure 6. The results show two distinctive clusters 

separated by the k-means clustering algorithm. The first 

conclusion that can be made is that as most of the data 

represent normal conditions, cluster C1, which contains the 

majority of the observations, represents the normal operation. 

In contrast, the remaining cluster, which is C2, is the fault 

occurring in the door systems.  

What is essential in this research is to detect faulty data and 

separate normal and abnormal behaviour by a clustering 

algorithm. The examples of speed and current signals of each 

cluster are shown in Figure 7 and Figure 8. The encoder 

signal of C1 has no negative peak as normal behaviour. In 

contrast, that of C2 has a prominent negative peak during step 

response as a faulty behaviour, which means faulty data is 

detected and normal and abnormal data are well separated. 

Thus, fault and normal clusters can be identified by using an 

unsupervised clustering method without labelled datasets. As 

a result, the clustering model created and identified as stated 

above can be implemented on the online procedure to detect 

faulty behaviour in real-time as described in Sections 2. 

Dataset Segment 

PCA K-means 

Principal 

Components 

Proportion of 

variance (%) 

Average 

Silhouette Score 

Number of 

observations of 

C1 

Number of 

observations of 

C2 

1_A Opening 5 81 0.865 3280 14 

1_B Opening 5 83 0.748 3507 76 

1_C Opening 5 81 0.825 4135 51 

2_A Opening 9 95 0.701 10107 151 

2_B Opening 6 85 0.719 3348 47 

Table 3: PCA and K-means results 
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Certainly, the proposed health monitoring system entails 

some limitations if an unknown fault should be detected in 

real time. As stated in Section 2, it is necessary to identify 

abnormal and normal clusters in the offline procedure, which 

means only known anomalies can be included in clusters. 

However, the offline clustering model can be improved by 

additional operational data that enables fault detection to be 

more accurate once unrevealed abnormal data can be 

obtained. 

 

Figure 6: The example of the projection. 

 

Figure 7: Speed and current signals of C1. 

 

Figure 8: Speed and current signals of C1. 

8. HOW TO AUTOMATE FAULT DETECTION 

It is significant to implement an automatic fault detection 

procedure for practical predictive maintenance activities due 

to the massive amount of data acquired from railway assets 

in real time. The proposed automatic monitoring and fault 

detection system, which is consists of several cloud services, 

is shown in Figure 9. The cloud service is being developed 

rapidly so that the proposed architecture is one of the 

examples utilising the cloud services of Microsoft. The 

essential point is the way how to automate the entire system 

from data acquisition to failure detection. First, railway 

sensor data is transferred to IoT Hub as streaming data. The 

IoT Hub is a managed service hosted in the cloud that acts as 

a central message hub for communications between an IoT 

application and its device. Then, streaming raw data is pre-

processed to extract features, followed by condition indicator 

extraction and clustering by Spark on DataBricks. Spark is an 

Apache open-source software tool, distributed processing 

system used for big data workloads initially developed at the 

University of California. DataBricks is a data analytics 

platform optimised for the Microsoft Azure cloud services 

platform. Azure DataBricks offers environments for 

developing data-intensive applications. In this architecture, 

an unsupervised machine learning model trained by railway 

data, as shown in previous sections, is utilised in Spark to 

detect faulty behaviour as early as possible. Finally, the 

extracted features, condition indicators and fault detection 

results are stored in storage for a long-term purpose to utilise 

the data to train the machine learning model for greater 

accuracy.  

 

Figure 9: Proposed automation architecture. 
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9. PROGNOSIS 

In this section, the concept of prognosis of railway assets is 

discussed. Prognosis technology aims to accurately predict 

and estimate the component or system remaining useful life 

(RUL) to enhance reliability and performance [21]. Prognosis 

refers to monitoring the equipment health status in real time 

to utilise the future state of the equipment and estimate the 

possible time of failure modes by computing a proper 

prognostic technique. During the early stages of the health 

monitoring technology, the traditional applicable 

technologies were concentrated on detecting and isolating 

failures. As the demand for Condition-Based Maintenance 

(CBM), the idea of RUL has shown up as prognostic failure 

prediction techniques.  

Current prognostic approaches can be categorised into three 

classes, namely model-based, data-driven, and hybrid 

prognostic approaches. A typical model-based prognostic 

strategy consists of dynamic models to perform the prediction 

function of the system future state. Model-based approaches 

provide technically comprehensive solutions that have been 

used widely to understand the failure progression [21]. The 

physics-based model can be used to determine the system life 

usage by calculating the current physics parameters for the 

system. Once the current physics parameters have been 

identified, the model can predict the future conditions based 

on historical conditions using stochastic techniques.  

In certain situations of an engineered complex system, it 

might be challenging to design a model-based technique 

involving all the physical aspects. In such cases, a particular 

form of the dynamic model can be assumed, then based on 

the system's actual input and output, and the desired 

parameters can be determined to obtain accurate results [22]. 

For these case scenarios, it is impossible to have a prediction 

model without covering the physics calculations. However, 

the data-driven model can only be implemented if the 

historical failures data are available by using a nonlinear 

network approximator, such as Fuzzy logic, neural network, 

and other computational intelligence techniques to obtain the 

desired outputs.  

A hybrid prognostic approach, which fuses the outputs from 

the model-based approach and data-driven approach, was 

proposed in [23], in which prognostics results are claimed to 

be more reliable and accurate [24].  

The implementation of prognosis by using the railway dataset 

is beyond the scope of this paper. However, the concept of 

prognosis of railway assets by the data-driven approach is 

proposed. The faulty data extracted by using the proposed 

method mentioned in the previous sections is shown in Figure 

10. As shown in Figure 10, the door speed signals have 

prominent negative peaks during step response as a faulty 

behaviour. In addition, negative peaks have different peak 

depths on each profile that looks fault growing. Suppose the 

peak depth is one of the key features to represent degradation. 

In that case, it can be applied to monitor the development of 

fault as a health indicator, followed by a data-driven approach 

for prognosis, which will be future work for health 

monitoring systems for railway assets. 

 

Figure 10: Faulty data of door speed. 

10. SUMMARY  

In this paper, the successful fault detection techniques in 

complex engineering systems, especially railway door 

systems, are proposed by using the large real-world 

operational dataset gathered from railway assets.  

First, the time-domain features, which are likely sensitive to 

degradation, are extracted from the current and encoder 

signals. Principal Component Analysis (PCA) is applied to 

reduce the dimensionality of the extracted feature set and 

generate condition indicators. Then, the k-means algorithm is 

employed to separate normal and abnormal modes. Finally, 

the silhouette score is used to evaluate the unsupervised 

classification algorithm. As a result, clusters are well 

separated by the k-means clustering algorithm. Thus, fault 

and normal clusters can be identified by using an 

unsupervised clustering method without labelled datasets, 

which enable an unsupervised clustering method to be 

implemented on practical health monitoring systems. The 

way to automate fault detection and the concept of prognosis 

which is proposed will be future work for health monitoring 

systems for railway assets. 
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