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Abstract
Disaster management has always been a struggle due to unpredictable changing conditions and chaotic occurrences that 
require real-time adaption. Highly optimized missions and robust systems mitigate uncertainty effects and improve notori-
ously success rates. This paper brings a niching hybrid human–machine system that combines UAVs fast responsiveness 
with two robust, decentralized, and scalable bio-inspired techniques. Cloud-Sharing Network (CSN) and Pseudo-Central 
Network (PCN), based on Bacterial and Honeybee behaviors, are presented, and applied to Safe and Rescue (SAR) opera-
tions. A post-earthquake scenario is proposed, where a heterogeneous fleet of UAVs cooperates with human rescue teams 
to detect and locate victims distributed along the map. Monte Carlo simulations are carried out to test both approaches 
through state-of-the-art metrics. This paper introduces two hybrid and bio-inspired schemes to deal with critical scouting 
stages, poor communications environments and high uncertainly levels in disaster release operations. Role heterogeneity, 
path optimization and hive data-sharing structure give PCN an efficient performance as far as task allocation and communi-
cations are concerned. Cloud-sharing network gains strength when the allocated agents per victim and square meter is high, 
allowing fast data transmission. Potential applications of these algorithms are not only comprehended in SAR field, but also 
in surveillance, geophysical mapping, security and planetary exploration.

Keywords  Swarm Intelligence · Decentralized Heterogeneous Systems · Bio-inspiration · Safe and Rescue · Monte Carlo 
Simulations · Human–Machine Network

1  Introduction

In the last decade, swarming has been a focus of research 
regarding SAR and disaster release operations, where time 
and resources are limiting factors. In real life, each sce-
nario is unique and is conditioned by several operational 
aspects, e.g., communications, aerial regulations, maneu-
verability, power supply, situational awareness, processing 
power limitations, and so forth [1]. Semi-autonomous and 
fully autonomous swarming systems can enhance some of 
the prior working capabilities, while their design is heavily 
influenced by them.

Generally, the bottle neck of SAR activities falls upon 
the scouting stage, which commences after designating the 
boundaries of the observation area [2]. Harsh environmental 
restrictions often lead to improvisation and mission perfor-
mance degradation [3]. Nonetheless, UAV searching mecha-
nisms have proven to be very effective in reconnaissance 
tasks [4]. As long as targets are located gradually, rescuing 
phase is carried out in parallel. Due to the inherent high risk 
involved, this process requires intense or full human supervi-
sion and a series of complex sensors and actuators.

As far as recognition endeavors are concerned, task allo-
cation and swarm functionality are crucial on performance. 
While centralized teaming offers finer global solutions, 
decentralized systems are more robust against communica-
tion loss and system failure, have greater adaptability levels 
under dynamic environments due to individual decision-
making processes, and are highly scalable as a result of a 
decreasing computational demand [5]. Distributed probabil-
istic models framed under Markov Decision Process (MDP) 
or Partially Observable Markov Decision Process (POMDP) 
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have proven to be efficient in task allocation for multi-robot 
purposes with dynamic [6] and constrained tasks [7]. As 
reviewed in [8], nearly optimal solutions are achieved by 
probabilistic models [9] at a significant computational cost 
and time; hence the urge of precomputed searching routines 
[10–12]. Moreover, probabilistic models are very sensitive 
to the modelling phase [13]. For instance, in [14–16] Rein-
forcement Learning (RL) techniques are applied to control 
a group of agents in the classical hunter-prey pursuit game. 
Despite achieving optimal solutions for the given environ-
ment, swarming performance is strongly attached to hyper-
parameters and network configuration.

Decentralized bio-inspired systems have been applied 
successfully and widely in many areas such as problem 
optimization [17, 18] task allocation [19–22], Defense and 
Security sector [23], Artificial Neural Networks (ANN) opti-
mization [24–26], path planning [27–29], searching activi-
ties [30] and fleets of UAVs [31, 32]. Based on stigmergy 
[33], i.e., indirect communication, biological swarming 
asynchronously places signs or cues in the environment to 
methodically complete tasks, e.g., ant pheromones for path 
optimization, bee structures for hive construction or bacte-
rial substances for foraging activities. These attributes make 
those algorithms highly adaptable and robust. Nevertheless, 
some require prior environment information that usually is 
not available in SAR, e.g., Ant Colony Optimization (ACO) 
[24, 26] needs a predefined map with known paths. Despite 
relying on decentralized decision-making, other algorithms 
such as Particle Swarm Optimization (PSO) [34], based 
on flocking or schooling behaviors, use global information 
exchange for optimization, becoming poor candidates in 
wide exploration areas with low bandwidth schemes.

On the other hand, evolutionary algorithms inspired by 
Darwinian models of evolution (e.g., Coevolutionary Algo-
rithm (COEA) [35–37] and Genetic Programming (GP) 
[38]) evaluate exhaustively candidate solutions through 
mutation mechanisms, i.e., arbitrary solution modifications. 
Although being efficient in small state spaces, evolution-
ary methods are intractable in large problems with time and 
computational constraints.

This piece of research introduces two techniques that 
regardless of their sub-optimal performance are highly 
responsive without prior environment information and uti-
lize effective decentralized communications. Inspired by 
Bacterial and Honeybee Foraging behaviors [39, 40], CSN 
and PCN are solid, robust and scalable networks that rapidly 
adapt to big area extensions, dealing with critical scouting 
stages common in SAR missions.

The respective methodologies are adapted to a hybrid and 
heterogeneous team of UAVs and human rescue teams in a 
2D post-earthquake scenario. Hybrid human–machine inter-
action grants rescue labors in parallel, mitigating the associ-
ated human risk. The main goal of the swarm is to obtain 

victim coordinates and transmit the information to in-field 
rescuers. The study focuses on heterogeneous task alloca-
tion and team responsiveness under harsh communication 
schemes. Thus, target detection, tracking, path planning [41] 
(including collision avoidance), and communication proto-
cols remain assumptions. The developed systems not only 
work for the studied case, but also can be applied to similar 
fields like planetary exploration, geophysical mapping, sur-
veillance, security, and so forth.

The rest of the paper is organized as follows: in Sect. 2, 
global nomenclature and assumptions are reviewed. Sec-
tion 3 introduces and describes CSN, including specific ter-
minology, requirements, and discussion. Likewise, Sect. 4 
reports PCN. Gathered results from Monte Carlo simulations 
are presented in Sect. 5, evaluating and comparing network 
performances for different parametrizations. Concluding 
marks and future work are presented in Sect. 6.

2 � Problem Formulation

Let Λ be the vector representing the given space, being 
dim(Λ) = 2 , and A a set of heterogeneous agents, formed 
by �A and �A , with the respective control parameters �A

�
 and 

�A
�

 . �A represents a group of UAVs with infrared (IR) sensors 
of sp� detection range, capable of identifying victims located 
on the surface. On the other hand, �A are UAVs equipped 
with acoustic sensors of sp� detection range, used to reveal 
possible buried survivals. Positioning x, y , heading � and 
flight mode � are common navigation attributes included in 
� . Sensor measurements are given by C� and C� sensor fields, 
which are a linear representation of the scenario in bins bΛ

t
 , 

being Λ =
∑n

t=1
bΛ
t
 . Sensor fields contain all the information 

that agents can sense, including IR-visible victims, buried 
victims and rescuer signals.

All vehicles have duplexers, i.e., Transmit/Receive (TR) 
antennas, to send or receive specific coded signals either 
from A or P static1 human rescue teams. Signal ranges are 
designated according to spA and spP specifications respec-
tively. For a given k agent, strategic mission data is stored 
and transmitted through ck information array. Victims are 
defined as N = [�N, �N] , being �N IR-visible individu-
als located on the surface, and �N buried people by the 
earthquake.

As far as mobility is concerned, rk,i
(

xk,i, yk,i
)

 represents 
movement constraints of k vehicle at time i , i.e., rk,i are no-
flying zones that for the studied case delimit the designated 
area of operation. mk,i(rk,i, �k,i,�k,i) determines the movement 
of every vehicle. For a given optimal cruise speed u , flight 

1  Human teams are distributed in different interconnected static 
bases.
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restrictions, flight mode and heading, mk,i = u(cos�k,i, sin�k,i) 
decomposes movement in cartesian coordinates. Thus, con-
sidering unit time steps, next iteration position is computed 
xk,i+1, yk,i+1 = xk,i, yk,i + mk,i

(

rk,i, �k,i,�k,i

)

.
Initially, injured and rescue team bases are randomly 

allocated in Λ , while agents start from the cartesian ori-
gin located on the bottom-left corner. Despite having a 
two-dimensional space, this problem contemplates a third 
dimension where obstacle avoidance is assumed. The pro-
jection of agents’ velocity in the x, y plane is assumed to be 
constant; hence, vehicles follow their 2D projection path 
without changing direction nor stopping. Simulation ends 
when all victim locations in Λ are discovered by the swarm 
and shared with human rescue teams. Ultimate goals are 
to minimize mission time and travel costs (refer to Sect. 5 
Simulation Results for further detail). Remark that in a real-
world case, human teams do not know the number of vic-
tims there are in a specific area. Thus, mission should not 
end until all surface and underground has been swept by the 
swarm. For this study, optimized area scanning has not been 
considered and remains as future work.

3 � Cloud‑Sharing Network

Bacterial Foraging Algorithm (BFA) [39] reproduces bac-
terial swarm exploratory behavior, moving towards food 
sources and avoiding noxious environments. Every time 
step, agents sense external stimulus and compute a gradient 
between previous and current measurements. Increments of 
food and toxicity levels act as attractive-repulsive forces, 
respectively. The overall decision-making process resembles 
to system control with integral feedback.

Bacterial motion mechanism alternates tumble and run, 
which are random and directional movements correspond-
ingly. The first one is given for searching purposes, while 
the latter is used to reach strategic objectives. Thusly, an 
elevated percentage of runs occur when goals are nearby, 
whilst neutral or homogeneous surroundings entail higher 
exploratory moves. Bacterial motion, as described in Fig. 1, 
is achieved by means of the flagella; an organ placed at the 
rare end of the organism.

Stigmergic procedures are manifested as a form of cell-
to-cell communication when external stressful agents are 
encountered. To overcome the adversity and enhance sur-
vivability, stimulating substances are generated to attract 
bacteria towards the epicenter of the invasion.

CSN incorporates gradient navigation and data-sharing 
through stimulating messages to gather valuable informa-
tion in uncovered areas and spread it locally. Individual 
agents replicate and broadcast victim locations found by the 
swarm forming a cloud network that rapidly disseminates 
key rescue coordinates. Fast decentralized data transmission 
in dense agent systems makes CSN a powerful candidate in 
SAR operations. A general system diagram is displayed in 
Fig. 2, where the agent in red finds a victim location and 
broadcasts to other agents to reach human units. All vehicles, 
except those who found victims (guardians), are constantly 
moving to explore the area. Guardians are freed after victims 
are rescued by human.

3.1 � Nomenclature and Requirements

For a set of agents �A and �A equipped with IR and acoustic 
sensors, let �A

�k
 and �A

�k
 be an assortment of k vehicle control 

parameters including current position xk, yk , heading �k , 

Fig. 1   Bacterial motion mecha-
nism [39]



	 Journal of Intelligent & Robotic Systems          (2022) 105:88 

1 3

   88   Page 4 of 14

flight mode �k , tumble- run alternation rate �k , and previous 
position xk,prev, yk,prev.

CSN incorporates a navigation gradient-based method 
similar to potential field. Victims play an attractive role 
adopting negative values in C� and C� sensor fields, while 
signals emitted by human rescue teams and eventual agents 
are seen as deflectors and are interpreted with positives. The 
latter are remarkably important, agent deflecting signals are 
used for task relocation, avoiding more than one vehicle get-
ting stuck in a same location. Likewise, P signals avert agent 
surveillance near human teams for rescue efficiency matters.

Figure 3 yellow areas of influence, identical in both sam-
ples, are signals received from rescuer teams through TR 
antennas. Purple areas represent sensor measurement from 
acoustic and IR sensors. Note that acoustic measurements 
have smaller radius due to specifications. At i time step, 

Δgk,i(Ck,i,Ck,i−1)
2 sensor gradient is computed for every k 

agent, then flight mode �k,i(Δgk,i) is selected accordingly. 
If measurements surpass threshold 𝛾 < 0 , a victim is close 
enough to be acquired by the respective agent.

To accelerate convergence and avoid getting stuck in dif-
ferent flight modes when computing Δgk,i , state aggregation 
techniques are applied, dividing � ∈ 2� into 8 intercardinal 
circular sectors � = (�N , �NE, �E, �SE, �S, �SW , �W , �NW ) of 
�∕4 radians. Whenever there is a rk,i mobility restriction, 
the whole section �k,i containing �k,i is banned. However, in 
normal conditions, vehicles can take any �k,i ∈ 2�.

Fig. 2   General Cloud-Sharing 
Network diagram

Fig. 3   Random agent sensor 
fields: (a) Acoustic-TR sensor 
field, (b) IR-TR sensor field

2 Ck is equivalent to C� or C� depending on k vehicle type. For sim-
plicity, this notation is used multiple times with different algorithm 
parameters (e.g., spk instead of sp� or sp� , �A

k
 instead of �A

�
 or �A

�
).
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Tumble-run alternation rate �k,i is used as an exploring 
tool to compute �k,i . �k,i = 1∕100 means that for every 100 
runs where �k,i = �k,i−1 if �k,i−1 ∉ rk,i , the agent performs 
a tumble, in other words, randomly selects a non-restricted 
heading �k,i ∉ rk,i . If runs are interrupted by flight restric-
tions rk,i , agent tumbles and the process restarts.

Communication array of information ck,i contains all the 
victim locations found by agent k or received from other 
agents. Every time an agent receives a sequence of infor-
mation from a close co-worker with new victim locations, 
the local data array is updated, and broadcasting labors 
resume. Hence, agents constitute a cloud-sharing network, 
where data is spread locally through the swarm until reach-
ing P teams. Survivals located by P are contained in Ψi.

Algorithm  After initializing all main simulation objects, 
first Ck sensor fields are obtained and main simulation loop 
in Fig. 4, is triggered. Every dt , each k agent measures and 
computes a sensor gradient.

being Ck,i = Ck(xk,i, yk,i) the current sensor measurement, 
and Ck,i−1 = Ck(xk,i−1, yk,i−1) the previous sensor measure-
ment. Depending on Ck,i and Δgk,i(Ck,i,Ck,i−1) , k agent 
switches to a flight mode �k,i(Ck,i,Δgk,i).

Guarding victim ( Ck,i ≤ �)  If current measurement in bin 
bΛ
k,i

 is smaller than � target detection threshold, k  agent 
automatically activates this mode, acquiring the location 
of the victim and entering in hovering state. Subsequently, 
a deflecting signal is generated affecting C�,i,C�,i sensor 
fields. In addition, a stimulating message with the tar-
get position is broadcasted in ck,i communication array. 
Therefore, this temporary mode initiates two noteworthy 
mechanisms: stigmergic task relocation through temporary 
deflecting signals (i.e., pulses generated by vehicles act 
as an eventual repulsive cue placed in the environment, 
affecting the behavior of the swarm), and cloud-sharing 
communication where agents generate local messages with 
victim positions.

Like repeaters, in-range nearby vehicles intelligently 
select, replicate, and add new data sequences to ck,i array. 
Together, both stratagems ensure an efficient and decen-
tralized data transmission and task allocation. Guarding 
victim flight mode is active until the covered location is 
acquired by any rescue team and subsequently included 
in Ψi . At that moment, the victim is considered rescued, 
the deflecting signal of k vehicle ceases, and exploring 
mode is reactivated. Each time step, P rescue teams check 
the communication cloud to look for new �N, �N target 
positions. Simulation ends when �N, �N ∈ Ψi (when all 
victims are localized by P).

(1)Δgk,i
(

Ck,i,Ck,i−1

)

= Ck,i − Ck,i−1,

Exploring ( Δgk,i = 0)  Agent k keeps searching at �k,i tumble 
and run alternation rate. This stochastic process does not 
signify a big computational challenge.

Reaching target ( Δgk,i < 0)  At time i , heading �k,i = �k,i−1 , 
i.e., if the gradient measured is negative, the agent keeps 
with the previous heading. Hence, agents are progressively 
oriented towards acquisition targets.

Fig. 4   CSN main simulation loops: (a) Main loop, (b) Guarding vic-
tim, (c) Communication loop
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Reorienting ( Δgk,i > 0)  Either there is a deflector point 
nearby (rescuer or agent “noxious” signal) or agent k is fly-
ing away from a victim. In any case, heading is switched 
randomly, fulfilling �k,i ≠ �k,i−1 for some �k,i−1 ∈ �k,i−1 ; that 
is, any direction not included in the previous circular sec-
tor. Thence, positive gradients (1) unleash position adjusting 
techniques towards strategical points.

Formal definition of CSN is presented in Table 1. Note 
that T time step is reached on a terminal state when simula-
tion ends. New in-range messages imply unduplicated posi-
tioning data, i.e., vehicles and rescue teams smartly select 
new data sequences in the cloud, absorb recent information 
and recodify their own transmission. Positions �A

i
(xi, yi) com-

prehend all vehicle locations at time step i , while spA repre-
sents the beacon range of A agents (refer to Sect. 2 Problem 
Formulation for further notation detail). After finding a vic-
tim Nk and incorporating its position within ck,i , a deflecting 
signal of range spk is generated, triggering an update of the 
global sensor field Ck,i . In terms of convergence, highlight the 
state aggregation technique used in reorienting flight mode 
to escape gradient oscillations (from Δgk,i > 0 to Δgk,i < 0 

and vice versa). �k,i−1 heading restrictions provide vehicles 
enough inertia to break non-transient states.

4 � Pseudo‑Central Network

Bees are known to live in hierarchical structures with het-
erogeneous roles, all contributing to the survival of the 
hive. Many algorithms have been inspired by these little co-
workers. This paper presents PCN, specifically inspired in 
Honeybee Foraging Algorithm (HBFA) [40].

Nectar recollection starts when explorer bees leave the 
hive to search profitable sources while observer bees stay 
passively. After finding a site, explorer co-workers return 
to the hive with a little sample of nectar, and a surprisingly 
advanced communication process starts. Explorer bees carry 
out an 8-shaped dancing performance at a specific angle from 
the vertical of the colony. From the waggling performance, 
observer bees deduce the direction of the strategic location by 
measuring the angle of the dancing pattern with respect to the 
sun. It has been demonstrated that foraging bees modify the 
angle of their appearance throughout the day.

Moreover, passive bees estimate the amount of nectar 
found, as it is directly linked to the time and strength 
in which their swarm mates dance. Bigger foraging key 
points are associated with impetuous and lasting perfor-
mances, which consequently recruit greater number of 
individuals to exploit all natural resources. Profitability 
of a site is reduced as the number of bees exploiting its 
nectar increases. Nectar quality can always be tested 
with samples that explorer bees carry themselves.

PCN takes advantage of honeybee organization struc-
ture, using the hive as a pseudo-central node to locally 
communicate with the rest of the swarm. Each agent, after 
finding any point of interest (victims or rescue teams), 
returns to the hive to share the information with the struc-
ture as the explorer agent in red indicates in Fig. 5. All 
passive vehicles (observers) that are connected to that 

Table 1   CSN simulation

Fig. 5   General Pseudo-Central Network diagram
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node have access to the recollected data, and head towards 
human rescue teams (messenger) to share information. 
The proposed honeybee network becomes strong in weak 
communication scenarios with vast ground extensions, a 
perfect fit for the studied case.

4.1 � Nomenclature and Requirements

Let �A

k
 represent the main parameters of k agent with cur-

rent position xk, yk , heading �k , flight mode �k and observer 
parameter ok counting the amount of time steps that the 
vehicle passively remains at H hive node located on the 
cartesian origin. Agents resting at H  make PCN com-
patible with autonomous dock and advanced recharging 
systems [42, 43], an option worth considering enhancing 
swarm autonomy. At i time step, the hive contains hP,i, hN,i 
rescuer and victim locations shared by previous explorers, 
i.e., initially agents are not aware neither of injured nor 
human team positions. Therefore, explorers need to iden-
tify these coordinates and share them with the colony. To 
distinguish victims on the surface from human rescuers, 
P emit an encoded signal of spP range with their position.

Another important parameter of PCN is probability dis-
tribution pk,i(hN,i, �N, �N,Ψi) (2). For a given k vehicle at i 
time step, pk,i is the chance to head towards a rescuer team, 
if acquired, and share new victim locations contained in H.

� i = �N + �N − �i are the remaining unlocated victims, 
and ai(hN,i,�i) the relative new positions stored by the hive. 
Notice the difference between Ψi and �i ; while the first term 
refers to injured coordinates obtained by P , the latter are vic-
tim locations sent through an agent to a rescuer team. Con-
sequently, �i can immediately be updated after recruiting an 
agent to head P , and ai = 0 . Additionally, pk,i is 0 if no human 
team positions have been gathered by H , that is, hP,i = 0 . 
Greater number ai(hN,i,Ψi) increases the probability of being 
recruited, as a passive vehicle, to share new data with P.

For efficient agent and energy management, note that 
initially 𝜓 i ≫ ai . Thereupon, recruitment usually occurs 
when H has gathered a significant number of coordinates. 
Besides, recruited agents always fly to the closest avail-
able hP,i location. Any vehicle staying at H more than �o 
time limit switches to explorer mode and ok resets. Hence, 
active and passive swarm balance is dynamically modified 
according to environment needs.

Unlike CSN, PCN place physical cues (e.g., paint, radio 
beacons) on top of target locations to warn other co-workers 
that respective tasks have been completed and enhance swarm 
resource allocation. In a real-world case, this process may be 
arduous and time consuming compared to CSN task relocation 

(2)
pk,i =

ai

𝜌i
=

hN,i−𝜓i

𝜓 i

if hP,i > 0,

else pk,i = 0

mechanism. Different indirect communication techniques are 
suggested to be tested in real experiments. Likewise, navi-
gation is not gradient-based, and point acquisitions happen 
instantly after discovery. In compensation, the given analysis 
considers smaller sp� and sp� victim detection ranges in PCN.

4.2 � Algorithm

Initially, primary agent roles are distributed heuristically 
and PCN exploring and observing swarm behaviors in 
Fig. 6 ensue. Agent �k,i(Ck,i) flight modes are selected based 
on sensor measurements.

Exploring ( Ck,i

(

xk,i, yk,i
)

= 0)  The agent selects randomly 
heading �k and follows it until flight restrictions require a 
direction adjustment. The implemented searching stage, pre-
sented as an alternative approach, has fewer turn rates (direc-
tional adjustments) per agent than CSN.

Returning Hive ( Ck,i

(

xk,i, yk,i
)

< 0)  Agent k finds a point of 
interest (i.e., victim or rescue team), stores it in ck,i commu-
nication array, places a physical cue in Λ to alert the swarm 
that the respective site has already been attended ( Ck,i sensor 
field is modified), and computes the vector back to H node 
each iteration. When H is reached and, the agent shares the 
information with the hive and switches to observing state.

Observing (Reached H)  Agent awaits new locations to 
be shared with the hive by foraging vehicles. After-
wards, the recruitment stochastic process takes place 
following pk,i probability distribution defined in (2). If 
the agent is recruited flight mode changes to heading 
rescuer. On the other hand, if ok,i ≥ �o , observer shifts 
to exploring mode.

Heading Rescuer (Agent Recruited)  Flying towards the clos-
est hP,i rescue team location. Optimal path is designed to 
achieve an energy-efficient swarm behavior. After reaching 
the target, agent shares the information with P , increasing Ψi 
rescued victims, and exploring stage starts again.

Table  2 displays a formal definition of PCN algo-
rithm. In a real experiment, vN and �N existing victims 
are unknown. Approximations based on current disaster 
scenario are suggested to be used instead.

5 � Experimental Results and Discussion

CSN and PCN systems are evaluated and compared under 
a SAR framework. The proposed metrics, state-of-the-art 
parameters in disaster release operations, assess algorithm 
and mission performance.



	 Journal of Intelligent & Robotic Systems          (2022) 105:88 

1 3

   88   Page 8 of 14

Time-to-complete mission (TTC) [44, 44] focuses on res-
cue efficiency. Expressed in seconds, represents the time in 
which human rescue teams acquire all victim coordinates. 

As far as autonomy and energy saving are concerned, travel 
efficiency (TE) and travel per victim captured per vehicle 
(TVV) are employed. As a modification of path length [46, 
47] TE is the minimum path divided by the total travelled 
distance, where the first term is twice the distance from all 
points of interest (victims and human team bases) to the car-
tesian origin, and the latter refers to the total meters flown by 
agents. Instead, TVV are the meters travelled by each agent 
divided by the number of victims allocated in the scenario.

5.1 � Fleet Size Analysis

Algorithm performance is tested in Fig.  7 for different 
swarm sizes, where scenario dimension Λ = 1 km2, victims 
N = 16 , and human rescue bases P = 3.

Both algorithms present similar tendencies for an 
increasing number of agents, with logarithmic decre-
ments in all the analysis. PCN demonstrates to be an 
efficient method for a reduced number of agents, ergo, 
in environments with lower number of allocated vehicles 
per area unit. Despite facing a hard scouting phase, hive 
communication system and path optimization techniques 
allow agents to complete their task one third quicker 
than CSN for a swarm of 10 agents.3 However, explor-
ing stochasticity leads travel efficiency to dramatically 
decrease when the number of agents per area rises. PCN 
path optimization weakens and TVV aligns with CSN 
energy consumption.

Timewise, both algorithms enhance performance as the 
swarm scales up in number. Cloud-sharing scheme empow-
ers in dense swarms. Thus, fast-data transmission authorizes 
CSN to outperform the Hive for big fleets of 70 agents.

5.2 � Scenario Dimension Analysis

The studied networks are examined in different coverage 
areas, given a fixed number of vehicles A = 50 , victims 
N = 50 , and rescuers P = 3.

As expected, vaster coverage areas in Fig. 8 result in 
slower rescue performance and greater energy consumption 
for a fixed swarm size. Low in-field agent density makes 
CSN struggle to perform in big areas, while PCN pseudo-
central communication method mitigates considerably 
ground extension effects. Thence, the difference between 
CSN and PCN mission time growth. Travelled meters per 
victim and agent rise similarly, inducing a decrease of dis-
placement efficiency.

Fig. 6   PCN main simulation loops: (a) Exploring, (b) Returning 
Hive, (c) Observing, (d) Heading rescuer

3  Agents are distributed equally in �A and �A heterogeneous vehicles 
(e.g., 40 agents are composed by 20 �A and 20 �A vehicles).
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Disparity in results is another noteworthy aspect to 
consider. PCN confidence intervals around medians are 
especially smaller than in CSN, ergo, the Hive achieves a 
constant and stable performance independently of the ini-
tial randomized problem distribution. Hence, cloud-sharing 
system becomes vulnerable and environment-dependent in 
low-density networks.

5.3 � Victim Number Analysis

In SAR operations, victim density fluctuates according to 
the occurrences. Allocated rescue resources and deployed 
systems need to be dynamic to fulfill mission requirements. 
Thus, it is important to study CSN and PCN performance 

Table 2   PCN simulation

Fig. 7   Fleet size simulation analysis
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tendencies for a variable number of injured.4 The rest of 
environment and algorithm parameters are Λ = 1 km2, 
A = 50 , and P = 3.

Dealing with an elevated number of tasks is often time 
and energy consuming. However, Fig. 9 displays an ener-
getic improvement in both human–machine networks. 
Despite showing analogous performances, observing agents 
in PCN accomplish greater energy savings by waiting in H a 
considered amount of time before sharing information with 
closest P human camps. Therefore, the colony obtains lower 

Fig. 8   Scenario dimension simulation analysis
Fig. 9   Victim number simulation analysis

4  Like agents, victims are distributed evenly in surface vN and buried 
�N targets.
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TVV and greater TE for an increasing number of injured. 
Furthermore, role balance effectively manages vehicle allo-
cation in scouting stage, attaining similar results to CSN in 
terms of simulation time.

On the other hand, the cloud performs accurately for a low 
number of victims. In this manner, CSN is not only affected 
by agent-extension density, but also by victim-agent relation. 

A reduced number of victims with respect to agents allow to 
allocate more vehicles as scouters, and as a result, victims are 
located faster, and data is spread quicker towards P.

5.4 � Variable Human Teams Analysis

P rescue teams are key data-sharing points that play an 
essential role in both the SAR operation and human–machine 
connection. Figure 10 reflects the influence of these strate-
gic coordinates, in terms of quantity, for a set of A = 50 , 
N = 16 , and a coverage area of Λ = 1 km2.

As expected, cloud rescue and energetic performance is 
significantly enhanced when augmenting P . This way, agents 
need not travel that much to share victim positions. Given a 
set of P = 5 , CSN towers the Hive regarding mission time, 
and almost reaches PCN in energy optimization endeavors. 
However, an excessive number of human bases appears to 
have a negative impact on CSN performance. What at first 
seemed like a capable task relocation mechanism, human 
deflecting signals end up being an obstacle to the swarm, 
especially affecting exploring vehicles.

Contrarily, an opposite effect develops in the colony. 
From previous analysis, PCN already demonstrates outstand-
ing outcomes in low-density areas, that is, in vast coverage 
areas and small fleets. Likewise, the colony remarkably out-
reaches the cloud for P = 1 . Nonetheless, performance, in all 
aspects, is degraded in the subsequent batch. PCN agents 
need first to locate human team positions before sharing tar-
get coordinates. This fact becomes a short-term drawback 
that manifests its peak when P = 3 . Onwards, path-optimi-
zation mechanism improves with human teams, and so does 
PCN behavior.

6 � Conclusion and Future Work

The research conducted in this paper aims to contribute and 
enhance SAR operations by coupling swarming and human 
rescue systems. The gathered results attempt to be a step 
forward in real human–machine hybrid solutions for disaster 
release operations, becoming a niching reference in future 
research.

CSN and PCN demonstrate to be dynamic, decentral-
ized, scalable, and semi-autonomous schemes promoted 
in bigger swarm sizes. Cloud-sharing network develops a 
powerful performance when the allocated agents per victim 
and squared meter is high. Pseudo-central network exhibits 
a solid and consistent performance throughout the entire 
study. Hive decentralized communication combined with 
path-optimization techniques unfold an exceptional execu-
tion in large areas and diminished systems. Moreover, PCN 
proves to be energetically superior to CSN in all the analysis, 
i.e., travel efficiency is higher and flight distance is curtailed. 

Fig. 10   Variable human teams simulation analysis
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Both CSN and PCN fulfill operational demands despite 
achieving sub-optimal performance.

Future work considers optimized searching techniques to 
improve scouting and artificial intelligence, such as Deep 
Reinforcement Learning (DRL) methods, to enhance swarm-
ing. In addition, a realistic analysis in 3D physics simulators 
is likely to be considered.
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