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Abstract

We propose an active weighting algorithm for composite adaptive control to reduce the state

and estimate errors while maintaining the estimation quality. Unlike previous studies that construct

the composite term by simply stacking, removing, and pausing observed data, the proposed method

efficiently utilizes the data by providing a theoretical set of weights for observations that can actively

manipulate the composite term to have desired characteristics. As an example, a convex optimization

formulation is provided, which maximizes the minimum eigenvalue while keeping other constraints, and

an illustrative numerical simulation is also presented.

Index Terms

Composite adaptive control, Parameter estimation, Rank-one update.

I. INTRODUCTION

Let us consider the following general form of composite model reference adaptive control

(CMRAC) systems that can be found in [1]–[10].

ė = Ae+B
(

δ(t, x)−W Tϕ(x)
)

, (1a)

Ẇ = Γϕ(x)eTPB − (F (t)W −G(t)). (1b)

This work was supported by a National Research Foundation of Korea (NRF) grant funded by the Korean government (MSIT)

(No. 2019R1A2C208394612).

S-h. Kim, H. Lee, and Y. Kim are with the Institute of Advanced Aerospace Technology, Department of Aerospace Engineering,

Seoul National University, Seoul, 08826, Republic of Korea (e-mail: ydkim@snu.ac.kr).

N. Cho is with Centre for Autonomous and Cyber-Physical Systems, School of Aerospace, Transport and Manufacturing,

Cranfield University, Cranfield, Bedfordshire, MK43 0AL, United Kingdom.

August 7, 2022 DRAFT

li2106
Text Box
IEEE Transactions on Automatic Control, Available online 9 August 2022DOI:10.1109/TAC.2022.3197702

li2106
Text Box
© 2022 IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained for all other uses, in any current or future media, including reprinting/republishing this material for advertising or promotional purposes, creating new collective works, for resale or redistribution to servers or lists, or reuse of any copyrighted component of this work in other works



2

Here, e ∈ R
ne is the tracking error vector, x ∈ X ⊂ R

nx is an exogenous state vector that

may contain the states of a plant and/or a reference model, W ∈ R
n×m denotes the adaptive

parameter, A ∈ R
ne×ne is Hurwitz, and B ∈ R

ne×m has full column rank. Let S
n, Sn

+ ⊂ S
n

and S
n
++ ⊂ S

n denote a set of symmetric, positive semidefinite, and positive definite matrices

in R
n×n, respectively. The matrix Γ ∈ S

n
++ denotes the adaptation gain. The second term in the

right of (1b) is the composite term composed of the functions F and G, which are matrix-valued,

piecewise continuous functions in t ≥ 0, and F (t) ∈ S
n
+. The matrix P ∈ S

ne
++ is the solution

to the Lyapunov equation, PA+ ATP +Q = 0, where Q ∈ S
ne
+ , and (A,Q) is observable. Let

R+ and R++ denote a set of nonnegative and positive real numbers, respectively. The function

ϕ : X → R
n is the known basis function locally Lipschitz in x ∈ X , and δ : R+ × X → R

m

denotes the time-varying, state-dependent uncertainty, which satisfies the following assumption.

Assumption 1. The uncertainty function δ in (1) is linearly parameterized as

δ(t, x) = W ◦Tϕ(x) + ε(t, x), (2)

where W ◦ ∈ W ⊂ R
n×m is the unknown true constant parameter, and ε : R+ × X → R

m is

the parameterization residue which is piecewise continuous in t and locally Lipschitz in x, and

bounded by a positive scalar as ∥ε(t, x)∥ ≤ bε for all t ∈ R+ and x ∈ X .

The composite term F (t)W −G(t) is typically designed to represent the gradient of a convex

loss function l : W → R which hopefully has one of its minimum at the true parameter W ◦

in (2). Since it is difficult to obtain the uncertainty δ(t, x) in (2) directly, an observer or a

differentiator is typically used to estimate W ◦ by observing (ξ, y) satisfying

y(t) = W ◦T ξ(t) + ϵ(t), (3)

where ϵ : R+ → R
m denotes the estimation residue bounded by ∥ϵ(t)∥ ≤ bϵ for all t ≥ 0. This

estimation residue may exist even if the parameterization residue ε ≡ 0 in (2).

Without the composite term, the dynamics (1) becomes vanilla MRAC where it guarantees

the uniform ultimate boundedness (UUB) [11] of W̃ := W − W ◦, and e → 0 by Barbalat’s

Lemma [12]–[14]. The CMRAC utilizes the composite term to improve the vibrating responses

in the vanilla MRAC, by converging not only ∥e∥ but also l to their minimum [1]–[5]. The

above methods require the persistently excited (PE) ϕ for exponential convergence of e and

W̃ , and the UUB of them under ε ̸= 0 [1], [12], [13]. Since the PE condition is difficult to
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guarantee and calculate, memory-based CMRACs utilizing historical (ξ, y) stored in the memory

have been developed over the past decade [6]–[10]. If the stored data is used in batches to

obtain the strong convexity of l, or equivalently F (t) ∈ S
n
++, then e and W̃ have the UUB and

exponential convergence. For example, the concurrent learning methods in [6], [7] use F (t) =
∑N

i=1 ξ(ti)ξ(ti)
T

and G(t) =
∑N

i=1 ξ(ti)y(ti)
T

, where N denotes the size of the memory. Integral-

based methods in [8]–[10] use F (t) =
∫ t

0
γ(t, s)ξ(s)ξ(s)T ds and G(t) =

∫ t

0
γ(t, s)ξ(s)y(s)T ds,

where γ denotes the forgetting factor. Let λ1 be the minimum eigenvalue of F (t). Memory-

based CMRACs are equipped with algorithms that can monotonically increase λ1 to ensure

F (t) ∈ S
n
++ after some time instance. Moreover, since the larger the λ1, the smaller the UUB,

the main concern of the algorithms is how to increase λ1 as much and/or as quickly as possible.

However, most of the existing algorithms rely on passive methods waiting for new (ξ, y) that

can increase λ1 by chance, which are inefficient ways of utilizing data.

In this technical note, we propose an algorithm that can efficiently manipulate the characteris-

tics of F (t) and G(t). First, we show that not only λmin(F (t)) but also G(t)−F (t)W determine

the UUB when ε ̸= 0. The purpose of the algorithm is to minimize the UUB and to bound the

condition number of F (t), that determines the accuracy of estimate W when ε ̸= 0 [15], through

actively weighting (ξ, y) in the memory. The rank-one update theory in [16] guarantees that there

exists a convex set of weights satisfying all the desired conditions of F (t) and G(t). The weights

can then be chosen from the set to conform to the desired strategy, such as to maximize the

minimum eigenvalue while keeping the maximum eigenvalue and the condition number. We

provide the convex optimization formulation to implement this strategy, as an example.

This technical note is organized as follows. The basic notations used in this study are sum-

marized in Section II. The memory-base CMRAC and its UUB and the condition number

analysis are given in Section III. Section IV introduces the active weighting algorithm, and the

corresponding excitation condition, and Section V presents the convex optimization problem. An

illustrative numerical example is provided in Section VI, and the conclusions are summarized

in Section VII.

II. PRELIMINARIES

Let In ∈ R
n×n denote the identity matrix, A ⪰ 0 denote A ∈ S

n, and a relation A ⪰ B

for A,B ∈ S
n mean that A − B ⪰ 0. The norm of a matrix A is defined by the Frobenius

norm as ∥A∥ =
√

tr(ATA), where tr(·) denotes the trace operator, and the norm of a vector
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x is defined by the Euclidean norm as ∥x∥ = ∥x∥2. For two normed vector spaces X and

Y , define the norm on the Cartesian product X × Y as ∥(x, y)∥ =
√

∥x∥2 + ∥y∥2, where

(x, y) ∈ X × Y . Given F ∈ S
n, let λi(F ) denote the i-th eigenvalue of F in increasing order,

i.e., λmin(F ) = λ1(F ) ≤ . . . ≤ λn(F ) = λmax(F ). Let vi’s denote the orthonormal eigenvectors

of F . Then, the projection of a vector ξ ∈ R
n is defined by

PF
i:j(ξ) =

[

vi · · · vj

]T

ξ, ∀1 ≤ i ≤ j ≤ n. (4)

To simplify the notation, let ξi:j stand for PF
i:j(ξ), and let ξi = ξi:i. If there exists a degenerated

eigenvalue λi(F ) that has the multiplicity, denoted by ρi(F ), greater than one, then we list the

eigenvalues in the order in which |ξi|’s do not decrease as follows.

λi−1(F ) < λi(F ) = . . . = λi+ρi(F )−1(F ) < λi+ρi(F ), (5)

where |ξi| ≤ . . . ≤
∣

∣ξi+ρi(F )−1

∣

∣. The condition number of G ∈ S
n
++ is denoted by κ(G) :=

λn(G)/λ1(G). The binary operators ∧ and ∨ denote the minimum and maximum operators,

respectively, such that a ∧ b = min(a, b) and a ∨ b = max(a, b) for a, b ∈ R.

III. MEMORY-BASED CMRAC

This section introduces a memory-based composite adaptation algorithm that constructs F and

G in (1b). Also, the Lyapunov stability analysis is given for the systems in (1). Suppose that

the controller observes data at each time t ∈ T := {ti}, where i ∈ N and t1 = 0. The data at

time t is denoted by (ξ(t), y(t)), which satisfies the relation in (3). For each time t ∈ R+, the

only data that the controller is supplied with is determined by an index set; this set is denoted

as Ik := {i}ki=1 for k ∈ N, such that t ∈ [tk, tk+1), where tk, tk+1 ∈ T . Consider the following

two auxiliary matrices.

Fk :=
∑

i∈Ik

γ
(k)
i ξ(ti)ξ(ti)

T , (6a)

Gk :=
∑

i∈Ik

γ
(k)
i ξ(ti)y(ti)

T , (6b)

where the scalar γ
(k)
i denotes the weight given to the data measured at time ti ≤ tk in the time

interval [tk, tk+1).
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Theorem 1. For all k ∈ N, suppose that F and G in (1) satisfy F (t) = Fk if λ1(Fk) ≥ bf ,

F (t) = bfIn otherwise, and G(t) = Gk for all t ∈ [tk, tk+1) with bf > 0 and (6). Under

Assumption 1, if the weights γ
(k)
i satisfy

bF In ⪰ Fk+1 ⪰ λ1(Fk)In ⪰ 0, (7a)

hk :=
∑

i∈Ik

∣

∣γ
(k)
i

∣

∣∥ξ(ti)∥ ≤ bγ, (7b)

where bF , bγ ∈ R++, then, the condition number κ(F (t)) ≤ bF/bf for all t ≥ 0, and the error

η(t) := (e(t), W̃ (t)) of (1) is globally uniformly ultimately bounded. Moreover, if there is T1 ≥ 0

such that M := λ1(F (T1)) > bf , then the condition number κ(F (t)) ≤ bF/M for all t ≥ T1,

and the error η(t) satisfies that

∥η(t)∥ ≤
b

θ

(

2

λ1(Q)
+

λn(Γ)

M

)√

c2
c1
, (8)

for all t ≥ T2 with a finite time T2 ≥ T1, where θ ∈ (0, 1), c1 := λ1(P ) ∧ λ1(Γ
−1), c2 :=

λne
(P ) ∨ λn(Γ

−1), and

b :=

√

b2Eλn(Γ−1)2 + b2ε∥PB∥2, (9)

where bE := bγbϵ + bf∥W
◦∥.

Proof. From (7a), λ1(F (t)) is monotonically increasing with t, and it is bounded from below by

bf . It follows that κ(F (t)) ≤ bF b
−1
f for all t ≥ 0 and κ(F (t)) ≤ bFM

−1 for all t ≥ T1 from (7a).

Since
∥

∥y(ti)−W ◦T ξ(ti)
∥

∥ = ∥ϵ(ti)∥ ≤ bϵ, that ∥G(t)− F (t)W ◦∥ ≤ bE follows from (7b). Let

a Lyapunov function candidate be

V (t, η) =
1

2
eTPe+

1

2
tr
(

W̃ TΓ−1W̃ ). (10)

By [11, Section 4.8], the time-derivative of V satisfies V̇ (t, η) ≤ −(1− θ)α(bf )∥η∥
2
, for ∥η∥ ≥

b
θα(bf )

, where the function α : R+ →
[

0, λ1(Q)/2
)

is defined by

α(bf ) =
bfλ1(Γ

−1)λ1(Q)

2bfλ1(Γ−1) + λ1(Q)
. (11)

By [11, Theorem 4.18], there exists a finite t1 ≥ t0 for any η(t0) such that the solution η(t) for

all t ≥ t1 satisfies ∥η(t)∥ ≤ b
θα(bf )

√

c2
c1

, which implies the global UUB of η.

If there exist T1 and M given in the condition, we have α(M) > α(bf ), and by using the

similar approach used above, there exists a finite t2 ≥ 0 such that for all t ≥ T2 := t2+T1 ≥ T1,

∥η(t)∥ ≤ b
θα(M)

√

c2
c1

, which completes the proof.
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According to Theorem 1, the scalars bf , bF , bγ , and λ1(Fk) determine κ(F (t)) and the UUB

of η(t). The scalar bf is an auxiliary parameter that limits the lower bound of λ1(F (t)) to a

positive number for all t ≥ 0; this is similar to the σ-modification MRAC used when the signal

is not PE [7]. The condition λ1(Fk) ≥ 0 has been considered in many studies [7]–[10]. However,

the scalars bF and bγ have not been addressed much in the literature. The condition number of

F (t) may affect the estimation residue ϵ(t) in (3) when ε ̸= 0 [15]. Hence, for a small UUB

in (8), not only bγ but also bF should be kept as small as possible to make the condition number

κ(F (t)), and therefore bϵ small.

IV. ACTIVE WEIGHTING ALGORITHM

In this section, the active weighting algorithm that keeps bF and bγ bounded while increasing

λ1(Fk) as much as possible is proposed. Let γ
(k)
i be defined by γ

(k)
i = pi

∏k

j=i+1 qj if i < k,

and γ
(k)
i = pk if i = k, for all i ∈ Ik and k ∈ N with some sequences of real numbers {pi} and

{qi}. This form of the weights allows us to draw the following simplified recursive rank-one

update laws from (6) and (7b) as

F+ = qF + pξξT , h+ = qh+ |p|∥ξ∥, (12)

where p ∈ R and q > 0 denote the weight of update (12), F ∈ S
n
+, ξ ∈ R

n, λn(F ) ≤ bF ,

0 ≤ h ≤ bh, and the corresponding update law for G is given by

G+ = qG+ pξyT . (13)

A. Set of Weights

Given (12), the aim of this section is to find a set of (p, q) satisfying

µF ≤ λi(F+) ≤ LF , 0 ≤ h+ ≤ Lh, (14)

for all 1 ≤ i ≤ n and some nonnegative scalars µF , LF , and Lh. To this end, the theoretical

findings in [16] is summarized in the following lemma with a slight modification due to p and
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q. Given F ∈ S
n
+ and ξ ∈ R

n, let us define the corresponding functions f±

i and g±j as

f±

i (p, q) :=
1

2

(

∥ξi:n∥
2p+ λ̄i(F )q

)

±
1

2

∥

∥

∥

∥

∥

∥





∥ξi+1:n∥
2 − |ξi|

2 λ̃i(F )

2|ξi|∥ξi+1:n∥ 0









p

q





∥

∥

∥

∥

∥

∥

, (15a)

g±j (p, q) :=
1

2

(

∥ξ1:j∥
2p+ λ̄j−1(F )q

)

±
1

2

∥

∥

∥

∥

∥

∥





|ξj|
2 − ∥ξ1:j−1∥

2 λ̃j−1(F )

2|ξj|∥ξ1:j−1∥ 0









p

q





∥

∥

∥

∥

∥

∥

, (15b)

for all i, j ∈ N such that 1 ≤ i ≤ n − 1, 2 ≤ j ≤ n, λ̄i(F ) := λi+1(F ) + λi(F ), and

λ̃i(F ) := λi+1(F )− λi(F ).

Lemma 1 (Ipsen and Nadler [16]). Given F ∈ S
n
+ and ξ ∈ R

n, the updated matrix F+ in (12)

satisfies the following conditions for any p ∈ R and q > 0, with f±

i and g±j defined in (15a)

and (15b), respectively.

(i) f−

1 (p, q) ≤ λ1(F+) ≤ g−2 (p, q),

(ii) f+
n−1(p, q) ≤ λn(F+) ≤ g+n (p, q),

(iii) f−

i (p, q) ∨ qλi−1(F ) ≤ λi(F+) ≤ g+i (p, q) ∧ qλi+1(F ), for 2 ≤ i ≤ n− 1.

Let Ωi(µF , LF , Lh) be a set of (p, q) ∈ R × R++ such that f−

i (p, q) ≥ µF , g+n (p, q) ≤ LF ,

and |p|∥ξ∥ + qh ≤ Lh. The set Ωi(µF , LF , Lh) is convex for all i. Moreover, if there exists

(p, q) ∈ Ω1(µF , LF , Lh), then (14) is satisfied under (12) by Lemma 1. If there exists (pk, qk) ∈

Ω1(λ1(Fk), bF , bh) for all k, the iteration (12) implies the hypotheses of Theorem 1.

Proposition 1. Let xj, yj ∈ R+ for j = 1, 2, 3. Then, for all 1 ≤ i ≤ n, Ωi(x1, x2, x3) ⊂

Ωi(y1, y2, y3), if and only if x1 ≥ y1, x2 ≤ y2, and x3 ≤ y3.

In addition to satisfying (14), another goal of the algorithm is to increase λ1(F+) as fast as

possible so that there is no eigenvalue of zero. However, it will be shown that if ρ1(F ) ≥ 2,

only one of them can be increased with (12). Let us introduce a practical assumption before

continuing the analysis.

Assumption 2. All nonzero eigenvalues of F in (12) are distinguishable.
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The multiplicity of eigenvalue zero is inevitable in the early stages of the iteration because the

update (12) starts with F = 0. However, the distinct nonzero eigenvalues are generally acceptable

since F is updated by ξ that depends on the state x of a real physical plant. Moreover, adjusting

p and q can also avoid the situation that F has indistinguishable nonzero eigenvalues.

Definition 1 (Minimum Effective Eigenvalue). Given F ∈ S
n
+ and ξ ∈ R

n, let r = ρ1(F ). Then,

the eigenvalue λr(F ) is the minimum effective eigenvalue of F under ξ.

When ρ1(F ) = 1, the minimum effective eigenvalue is always the unique minimum eigenvalue

which can be zero or not. However, ρ1(F ) ≥ 2 implies that there exist two or more eigenvalues

of zero, and the one with the largest |ξi| is the minimum effective eigenvalue.

Theorem 2. Given (12) under Assumption 2, let r = ρ1(F ). Then, for all (p, q) ∈ Ωr(µF , LF , Lh),

it follows that λr(F+) ≥ µF , and λi(F+) = 0 for all 1 ≤ i ≤ r − 1.

Proof. First, we will show that λr(F+) ≥ µF . When r = 1, it follows immediately that λr(F+) =

λ1(F+) ≥ f−

1 (p, q) ≥ µF by Lemma 1 (i). When r ≥ 2, we have λr(F+) ≥ f−
r (p, q) ∨ 0 ≥

f−
r (p, q) ≥ µF by Lemma 1 (iii).

Now, let us show that λi(F+) = 0 for all 1 ≤ i ≤ r − 1. By Lemma 1 (i), we have

0 ≤f−

1 (p, q) ≤ λ1(F+) ≤ g−2 (p, q) =
1

2
∥ξ1:2∥

2(p− |p|) ≤ 0, (16)

which implies that λ1(F+) = 0. For 2 ≤ i ≤ r − 1, we have λi−1(F ) = λi+1(F ) = 0,

and the corresponding functions satisfy f−

i (p, q) = 1
2
∥ξi:n∥

2(p− |p|) ≤ 0 and g+i (p, q) =

1
2
∥ξ1:i∥

2(p+ |p|) ≥ 0 for all p ∈ R. Hence, from Lemma 1 (iii), we have

0 = f−

i (p, q) ∨ qλi−1(F ) ≤ λi(F+) ≤ g+i (p, q) ∧ qλi+1(F ) = 0, (17)

which completes the proof.

Theorem 2 indicates that only the minimum effective eigenvalue can be increased in one update

in (12) for any µF , LF , and Lh, because Ωr(µF , LF , Lh) ⊂ Ωr(0,∞,∞) by Proposition 1.

Remark 1. Even if Assumption 2 does not hold, i.e., there is a nonzero eigenvalue with mul-

tiplicity greater than 1, Lemma 1 still holds. In the worst-case scenario where the minimum

eigenvalue is nonzero and has the multiplicity greater than one, only one of them can increase

while the others are unchanged, as in the case of the eigenvalue of zero in Theorem 2, with an

additional constraint q ≥ 1. This constraint reduces the set of weight (p, q), but may decrease
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the multiplicity. Therefore, Assumption 2 holds within a finite number of updates with some

additional conditions on the observed data (ξ, y). To avoid the complexity of considering all the

situations and based on the practical reasons discussed in Section IV, Assumption 2 is considered

throughout this study.

B. Excitation Condition

This section provides the condition that Ωr(µF , LF , Lh) in Theorem 2 is nonempty. Indeed,

if LF ≥ λn(F ) and Lh ≥ h, the set Ωr(λr(F ), LF , Lh) is nonempty because (0, 1) is the trivial

point of Ωr(λr(F ), λn(F ), h) ⊂ Ωr(λr(F ), LF , Lh). However, for (p, q) ∈ Ωr(λr(F ), LF , Lh),

there may be the case that λr(F+) = λr(F ) by Theorem 2, which is said that ξ does not excite

F . Therefore, we introduce an excitation condition for ξ and F , which can be interpreted as the

existence of nonempty set Ωr(µF , LF , Lh) where µF > λr(F ).

Theorem 3. Given (12) under Assumption 2, suppose that µF , LF , and Lh satisfy µF > λr(F ),

LF > λn(F ), and Lh > h. Then, for all ξ ∈ R
n with ξr ̸= 0 where r = ρ1(F ), the set

Ωr(µF , LF , Lh) is nonempty.

Proof. Let

p0 =
Lh − h

2∥ξ∥
∧
LF − λn(F )

2∥ξ∥2
, (18)

q0 =
Lh − p0∥ξ∥

h
∧
LF − p0∥ξ∥

2

λn(F )
. (19)

Note that (p0, q0) ∈ Ωr(λr(F ), LF , Lh), p0 > 0, and

q0 ≥
Lh + h

2h
∧
LF + λn(F )

2λn(F )
> 1. (20)

Hence, it follows that

f−

r (p0, q0) =
1

2

(

∥ξr:n∥
2p0 + λ̄r(F )q0

)

−
1

2

√

(

∥ξr:n∥
2p0 + λ̃r(F )q0

)2

− 4λ̃r(F )|ξr|
2p0q0

>
1

2

(

λ̄r(F )− λ̃r(F )
)

q0 = λr(F )q0 > λr(F ), (21)

which implies that there exists µF such that f−
r (p0, q0) ≥ µF > λr(F ). With Ωr(µF , LF , Lh) ⊂

Ωr(λr(F ), LF , Lh) by Proposition 1, we have (p0, q0) ∈ Ωr(µF , LF , Lh).
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Since LF and Lh are design parameters, it is always possible to find (p, q) ∈ Ωr(µF , LF , Lh)

where µF > λr(F ) whenever ξr ̸= 0 by Theorem 3, and therefore the update (12) implies

λr(F+) > λr(F ) by Theorem 2.

V. WEIGHT SELECTION EXAMPLES

Once µF , LF , and Lh are determined to satisfy the hypothesis of Theorem 1, various al-

gorithms, such as greedy or optimization methods, can be used to choose the weight (p, q) ∈

Ωr(µF , LF , Lh) according to the strategy to be used. This section introduces a convex optimiza-

tion formulation and its reduced form to find the optimal weight according to the strategy that

maximizes λr(F+) while satisfying (7).

Consider the following optimization problem.

maximize
p,q,µF

µF

subject to (p, q) ∈ Ωr(µF , LF , Lh),

(22)

where 0 ≤ LF ≤ bF and 0 ≤ Lh ≤ bh. This is a SOCP because (p, q) ∈ Ωr(µF , LF , Lh) is

a second-order cone constraint by (14) and (15), and the solution satisfying µF > λr(F ) can

always be found under the hypotheses of Theorem 3.

The optimization problem (22) can further be reduced to a simpler line search problem.

From (15b), if we fix p, there is a unique q > 0 such that g+n (p, q) = LF . Let qF (p) be the

unique solution, and

qh(p) :=
Lh − |p|∥ξ∥

h
. (23)

Also, we have p ∈ (−Lh/∥ξ∥, Lh/∥ξ∥) from (14).

Lemma 2. For the problem described by (22), let Ω = Ωr(λr(F ), LF , Lh), and ξr ̸= 0. Then,

(p∗, q∗) := argmax(p,q)∈Ω f−
r (p, q) satisfies q∗ = qF (p

∗) ∧ qh(p
∗).

Proof. Let a matrix C be

C =





∥ξr+1:n∥
2 − |ξr|

2 λ̃r(F )

2|ξr|∥ξr+1:n∥ 0



 . (24)

From (15a), the gradient of f−
r with respect to ζ := [p, q]T is given by

∇f−

r (p, q) =
1

2





∥ξr:n∥

λ̄r(F )



−
1

2
∥Cζ∥−1CTCζ, (25)
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and this implies that f−
r (p, q) = ζT∇f−

r (p, q) for all (p, q) ∈ R × R++. It is easily seen that

f−
r (p

∗
0, q

∗
0) = 0, for all optimal points (p∗0, q

∗
0) of f−

r such that ∇f−
r (p

∗
0, q

∗
0) = 0.

For λr(F ) > 0, which means r = 1 from Assumption 2, suppose that (p∗0, q
∗
0) ∈ Ω. From

the definition, any tuple (p, q) ∈ Ω satisfies f−
r (p, q) ≥ λr(F ) > 0. Thus, by contradiction, the

tuple (p∗0, q
∗
0) /∈ Ω, which implies (p∗, q∗) lies on the boundary of Ω. Moreover, from Theorem 3,

there always exists a tuple (p′, q′) such that f−
r (p

′, q′) > λr(F ), thereby, it can be concluded that

(p∗, q∗) satisfies q∗ = qF (p
∗) ∧ qh(p

∗).

When λr(F ) = 0, all the tuples (p∗0, q
∗
0) are contained in a set {(p, q) | f−

r (p, q) = λr(F ) = 0}.

Again, by Theorem 3, there always exists a tuple (p′, q′) such that f−
r (p

′, q′) > 0. It follows that

(p∗, q∗) /∈ {(p, q) | f−
r (p, q) = λr(F ) = 0}. Therefore, we have q∗ = qF (p

∗) ∧ qh(p
∗), which

completes the proof.

By Lemma 2, the SOCP in (22) can be reduced to the following line search problem which

is much faster to solve.

maximize
p

f−

r (p, qh(p) ∧ qF (p))

subject to p ∈

(

−
Lh

∥ξ∥
,
Lh

∥ξ∥

)

.
(26)

The singular value maximizing algorithm for concurrent learning methods executes the singular

value decomposition N times for each time t ∈ T , where N denotes the size of the memory [6],

[7]. Since N ≥ n is required for λr(Fk) > 0 for some k, the time complexity of the algorithm is

O(n4) if the decomposition takes O(n3) time. The proposed method, as well as the integral-based

methods in [8]–[10], takes O(n3) time, because it requires only one execution of the eigenvalue

decomposition for each t ∈ T and the time complexity of finding (p, q) ∈ Ωr(µF , LF , Lh) is

linear in n. Note that O(n3 + n) = O(n3). For example, Brent’s method for solving the line

search problem in (26) takes O(L2n) where L is the maximum number of iteration steps of the

optimization process, which is independent of n. For the same n, the integral-based methods such

as [8]–[10] may take shorter time at each t ∈ T than the proposed method using optimization

process. However, they still have the same linear time complexity in the number of observation

steps which depends on the measurement update interval.

VI. NUMERICAL EXAMPLE

To illustrate the characteristics of the composite term satisfying (7) under the hypotheses of

Theorem 2, three CMRAC methods are compared using the same system as used in [10]: i)
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a concurrent learning-based CMRAC with singular value maximization [6], denoted by CL-

CMRAC, ii) an integral-based CMRAC with finite excitation [10], denoted by FE-CMRAC, and

iii) the proposed method. The data (ξ, y) is assumed to be observed every 0.01 seconds, and

to illustrate the effectiveness of bounding the condition number κ(Fk) and hk, the following

parameterization residue in (2) is considered.

ε(t, x) = sin(5t) + cos(2t)2. (27)

The bounds are set as bF = 2.637 and bh = 10, and LF and Lh are gradually increased to

these bounds for the proposed method to satisfy the hypotheses of Theorem 3. Brent’s method

is used to solve the line search problem (26). Also, N = 10 for CL-CMRAC, and all the other

design parameters of CL-CMRAC and FE-CMRAC are set to be the same as in [10], except for

the weights of each observation γ
(k)
i in (6), which will be discussed later.

The state, control input, and the tracking error norm ∥η(t)∥ responses are presented in Fig. 1,

and the characteristics of composite term represented by λ1(Fk), κ(Fk), and hk are shown in

Fig. 2. The weights γ
(k)
i for CL-CMRAC and FE-CMRAC are manipulated so that the both

methods have the similar minimum eigenvalue as the proposed method, while the condition

number κ(Fk) and hk of the proposed method are much smaller than the other methods. As

we can see in Fig. 1, this manipulation highlights that the low κ(Fk) and hk can induce the

low UUB, which is expected from Theorem 1. However, it should be noted that as a strategy

of constructing the composite term affects the closed-loop system responses and the observed

data (ξ, y), it is difficult to conclude that low κ(Fk) and hk always cause low UUB of CMRAC

systems. Rather, the contribution of this study is that the proposed method can theoretically

control the characteristics of the composite term as shown in Fig. 2, where the proposed method

satisfies the condition in (7) that keeps κ(Fk) and hk bounded while λ1(Fk) monotonically

increases as predicted by Theorems 2 and 3.

VII. CONCLUSION

In this technical note, we proposed a theoretically guaranteed method to manipulate the

characteristics of CMRAC composite term that affects the UUB of system and the condition

number of estimate. The set of weights for the composite term to have the desired properties

was given by rank-one update technique. Also, as an example, a convex optimization problem was

provided, which maximizes the minimum effective eigenvalue while keeping other conditions,
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Fig. 1. The state, control input, and tracking error responses.

and an illustrative numerical simulation was also presented. Future research should consider the

extensions of the proposed method to output feedback.

ACKNOWLEDGMENT

This work was supported by a National Research Foundation of Korea (NRF) grant funded

by the Korean government (MSIT) (No. 2019R1A2C208394612).

August 7, 2022 DRAFT



14

10−10

10−5

100

λ
1
(F

k
)

CL-CMRAC

FE-CMRAC

Proposed

100

104

108

κ
(F

k
)

0 10 20 30 40 50

Time, sec

100

101

102

103

h
k

Fig. 2. The composite term characteristics of each method. The top graph shows the history of minimum eigenvalues where

the red filled area indicates the range between minimum and maximum eigenvalues of the proposed method. The black dashed

lines in the top and the bottom graphs represent the bounds of the maximum eigenvalue and hk set for the proposed method,

respectively.

REFERENCES

[1] J.-J. E. Slotine and W. Li, “Composite adaptive control of robot manipulators,” Automatica, vol. 25, no. 4, pp. 509–519,

1989.

[2] M. A. Duarte and K. S. Narendra, “Combined direct and indirect approach to adaptive control,” IEEE Trans. Autom.

Control, vol. 34, no. 10, pp. 1071–1075, 1989.

[3] M. K. Ciliz, “Combined direct and indirect adaptive control of robot manipulators using multiple models,” Advanced

Robotics, vol. 20, no. 4, pp. 483–497, 2006.

[4] E. Lavretsky, “Combined/composite model reference adaptive control,” IEEE Trans. Autom. Control, vol. 54, no. 11, pp.

2692–2697, 2009.

[5] E. Lavretsky, R. Gadient, and I. M. Gregory, “Predictor-based model reference adaptive control,” J. Guid. Control Dyn.,

vol. 33, no. 4, pp. 1195–1201, 2010.

[6] G. Chowdhary and E. Johnson, “A singular value maximizing data recording algorithm for concurrent learning,” in

Proceedings of the 2011 American Control Conference, San Francisco, CA, Jun. 2011.

[7] G. Chowdhary, M. Mühlegg, and E. Johnson, “Exponential parameter and tracking error convergence guarantees for

adaptive controllers without persistency of excitation,” Int. J. Control, vol. 87, no. 8, pp. 1583–1603, 2014.

[8] Y. Pan and H. Yu, “Composite learning from adaptive dynamic surface control,” IEEE Trans. Autom. Control, vol. 61,

no. 9, pp. 2603–2609, 2016.

August 7, 2022 DRAFT



15

[9] Y. Pan and H. Yu, “Composite learning robot control with guaranteed parameter convergence,” Automatica, vol. 89, pp.

398–406, 2018.

[10] N. Cho, H. Shin, Y. Kim, and A. Tsourdos, “Composite model reference adaptive control with parameter convergence

under finite excitation,” IEEE Trans. Autom. Control, vol. 63, no. 3, pp. 811–818, 2018.

[11] H. K. Khalil, Nonlinear Systems, 3rd ed. Prentice Hall, Upper Saddle River, NJ, 2002.

[12] B. Anderson, “Exponential stability of linear equations arising in adaptive identification,” IEEE Trans. Autom. Control,

vol. 22, no. 1, pp. 83–88, 1977.

[13] S. Boyd and S. Sastry, “Necessary and sufficient conditions for parameter convergence in adaptive control,” Automatica,

vol. 22, no. 6, pp. 629–639, 1986.

[14] E. Lavretsky and K. Wise, Robust and Adaptive Control: With Aerospace Applications, ser. Advanced Textbooks in Control

and Signal Processing. Springer-Verlag, London, 2013.

[15] D. A. Belsley, E. Kuh, and R. E. Welsch, Regression diagnostics: identifying influential data and sources of collinearity,

ser. Wiley series in probability and mathematical statistics. Wiley, NY, 1980.

[16] I. C. F. Ipsen and B. Nadler, “Refined perturbation bounds for eigenvalues of hermitian and non-hermitian matrices,” SIAM

J. Matrix Anal. Appl., vol. 31, no. 1, pp. 40–53, 2009.

August 7, 2022 DRAFT


