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ABSTRACT 

The use of aircraft operational logs to predict potential failure that may lead to 

disruption poses many challenges and has yet to be fully explored. These logs are 

captured during each flight and contain streamed data from various aircraft 

subsystems relating to status and warning indicators. They may, therefore, be 

regarded as complex multivariate time-series data. Given that aircraft are high-

integrity assets, failures are extremely rare, and hence the distribution of relevant 

data containing prior indicators will be highly skewed to the normal (healthy) case. 

This will present a significant challenge in using data-driven techniques to 'learning' 

relationships/patterns that depict fault scenarios since the model will be biased to 

the heavily weighted no-fault outcomes.  

This thesis aims to develop a predictive model for aircraft component failure 

utilising data from the aircraft central maintenance system (ACMS). The initial 

objective is to determine the suitability of the ACMS data for predictive 

maintenance modelling. An exploratory analysis of the data revealed several 

inherent irregularities, including an extreme data imbalance problem, irregular 

patterns and trends, class overlapping, and small class disjunct, all of which are 

significant drawbacks for traditional machine learning algorithms, resulting in low-

performance models. Four novel advanced imbalanced classification techniques 

are developed to handle the identified data irregularities. The first algorithm 

focuses on pattern extraction and uses bootstrapping to oversample the minority 

class; the second algorithm employs the balanced calibrated hybrid ensemble 

technique to overcome class overlapping and small class disjunct; the third 

algorithm uses a derived loss function and new network architecture to handle 

extremely imbalanced ratios in deep neural networks; and finally, a deep 

reinforcement learning approach for imbalanced classification problems in log-

based datasets is developed.  

An ACMS dataset and its accompanying maintenance records were used to 

validate the proposed algorithms. The research's overall finding indicates that an 

advanced method for handling extremely imbalanced problems using the log-

based ACMS datasets is viable for developing robust data-driven predictive 

maintenance models for aircraft component failure. When the four implementations 

were compared, deep reinforcement learning (DRL) strategies, specifically the 
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proposed double deep State-action-reward-state-action with prioritised experience 

reply memory (DDSARSA+PER), outperformed other methods in terms of false-

positive and false-negative rates for all the components considered. The validation 

result further suggests that the DDSARSA+PER model is capable of predicting 

around 90% of aircraft component replacements with a 0.005 false-negative rate 

in both A330 and A320 aircraft families studied in this research.  

Keywords:  

Extremely rare event, deep reinforcement learning, imbalance learning, predictive 

maintenance, aircraft  
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CHAPTER 1: General Introduction 

The concept of predictive and prescriptive maintenance in a complex system has 

recently gained more research attention, especially in the aviation industry. Before the 

advent of the internet of things (IoT) technologies, vehicle maintenance was mainly 

based on prearranged time-based schedules linked to the vehicle's age, the number 

of schedule cycles, or usage. It was not linked to the vehicle's real-time condition. Time-

based maintenance is susceptible to unnecessary onsite vehicle inspections or visits 

to the service centre. Potential failures can go unnoticed between the schedules, and 

there are small or no useful insights for the airlines, OEM's and MRO's. The business 

cannot afford to let the asset run to failure, as it costs equipment damage and 

equipment downtime. The concept of prescriptive maintenance in a complex system 

tries to mitigate time-based maintenance challenges. Predictive maintenance is 

recently gaining more research attention, especially its application in the aviation 

industry [1]. The strength of predictive maintenance is in the ability to provide 

prognostics at the right time and correctly, which depends on the type of data used to 

train the models. Data imbalance distribution is a common challenge in many 

classification tasks. For example, when classifying a financial transaction, it is 

fraudulent or not. It is likely to have the majority of the transaction as legitimate and the 

minority as fraudulent. In this case, the training data contains highly imbalanced 

examples, reflecting the true class distribution in a general population. 

Similarly, in aircraft’ predictive maintenance, the imbalance of failure events to normal 

operation events can exist. This issue is due to the following reasons. The failure 

events usually rarely occur compared to the normal operation state for an in-service 

vehicle, and in total, there are fewer failure events. 

 The use of aircraft operational logs data to predict potential failure that may lead to 

disruption poses many challenges and has yet to be fully explored. These logs are 

captured during each flight and contain streamed data from various aircraft 

subsystems relating to status and warning indicators. They may, therefore, be 

regarded as complex multivariate time-series data. Given aircraft are high-integrity 

assets, failures are extremely rare, and hence the distribution of relevant data 

containing prior indicators will be highly skewed to the normal (healthy) case. This will 

present a significant challenge in using data-driven techniques to 'learning' 
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relationships/patterns that depict fault scenarios since the model will be biased to the 

heavily weighted no-fault outcomes.  

1.1 Motivation 

This research work is motivated by the European AIRMES project [3], which focuses 

on optimising end-to-end aircraft maintenance activities in order to avoid operational 

disruptions. The research is also inspired by how it will impact aircraft maintenance by 

reducing operational disruptions, decreasing the average delay time, and improving 

aircraft utilisation through predictive and prescriptive maintenance. Prescriptive 

maintenance is advanced predictive maintenance. It leverages the approaches and 

capabilities of preventive, descriptive, and predictive maintenance to optimise system 

performance completely. Prescriptive maintenance is built on a technology that taps 

the power of IoT, big data analysis and machine learning to help vehicles become 

proactive participants in their maintenance [2]. This type of maintenance promises cost 

saving over time-based preventive maintenance because maintenance is carried out 

only when warranted. Preventive maintenance involves scheduling maintenance 

procedures in advance and performed periodically. However, when an unexpected 

failure occurs in-between the defined schedule period, the equipment becomes 

unavailable until this problem is fixed. Therefore, predictive maintenance aims to avoid 

such unexpected failures by continuous monitoring of the equipment condition and 

providing failure alerts well in advance to provide enough room to prepare for repairs. 

It gives a forecast of when equipment will fail so that maintenance can be 

systematically scheduled before the failure occurs. 

1.2 Aim and Objectives  

In order to address the research gaps mentioned above, the  overall scientific aim and 

objectives are defined  as follows: 

Aim  

This research aims to develop a data-driven predictive model for aerospace 

applications using advanced imbalanced classification algorithms.  

Objective  
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In order to achieve the aim of the project, a series of objectives are set as follows: 

1. To carry out a comprehensive literature review on the application of data analytics 

in aerospace, machine learning techniques, and then investigate approaches, and 

effects of imbalance problem in developing predictive modelling, also to understand 

the shortcomings and underpin the countermeasures to be designed.  

2. To carry out data Pre-processing to quantify and understand various distribution and 

complexities inherent in the aircraft CMS datasets. 

3. To design and develop a dynamic and robust Imbalance classification algorithm 

using machine learning, ensemble learning, deep learning and deep reinforcement 

learning (DRL) strategies that will handle extreme class imbalance, class overlapping 

and class disjunct in both binary and multi-class scenarios. 

4. To develop an aircraft predictive maintenance model and test it using the different 

testing datasets to establish its adaptability to various challenges. 

5. To validate the model using ground truth data in order to ascertain its accuracy and 

performance.  

1.3 Research Methodology and Structure of the Thesis 

This project consists of four (4) phases viz: 1. Comprehending context and literature 

review. 2. Data pre-processing, design, and development of the new algorithm. 3. 

building a predictive model. 4. Model validation, analysis of the result. 4. Final thesis 

write-up, as presented in Figure 1-1. 
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Figure 1-1 PhD Research Methodology Flow 

Phase 1: In this phase, literature will be reviewed comprehensively on the application 

of data analytics and machine learning techniques in aerospace predictive 

maintenance. The effects of the imbalance problem and existing solutions to 

developing predictive modelling from aircraft log-based datasets will be investigated to 

understand the shortcomings and underpin the countermeasures to be designed. A 

review of methods of handling imbalance problems (both data, algorithm levels, and 

the hybrid) will be conducted. The review of literature generally will provide 

understanding and identification of various gaps existing in the knowledge. Finally, the 

general context of the subject will be understood.  

Phase 2: In this phase, data pre-processing and feature engineering will be conducted 

on the aircraft operational log-based CMS datasets. After transforming the dataset for 

machine learning modelling, the data will be divided into two; 80% will be used for 

model training while 20% for model testing. Based on the findings in the literature and 
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the result of an investigation carried out in phase one, the underpinned challenges will 

be formulated in a clear way for the new proposed algorithm development. Then the 

design and implementation of the novel algorithm will be carried out. The algorithm will 

focus on solving both binary and multi-class imbalance problems, tackling the extreme 

imbalance ratio, irregular patterns and trends and class disjunct in a big data context. 

Phase 3: Based on the new algorithm developed in phase 2, a data-driven predictive 

model for conditioned based maintenance will be trained using the CMS training 

dataset. The new algorithm will iteratively be evaluated to meet the desired 

requirement. After training the algorithm, the resulting model will be tested using the 

testing dataset. The predictive model will be evaluated using matrics appropriate to 

imbalanced classification problems such as precision, recall, F1 score, G-mean and 

ROC curve. Instead of relying on the general accuracy, which is a bias towards the 

majority class. 

Phase 4:  In order to ensure the quality of our data-driven predictive model, validation 

will be carried out using ground truth data available and other related datasets. The 

ground truth data is an actual maintenance record carried out by aircraft maintenance 

engineers. Similarly, another dataset from a different type of aircraft will be used to 

ensure the predictive model's adaptability.  Results obtained will be analysed, and 

conclusions will be made. Finally, a thesis write-up will be carried out.  

1.4 Presentation of the Thesis 

This thesis is organised as a series of chapters, each formatted as a paper for 

publication. There are Six technical chapters in all. All articles were written by the 

primary author, Maren David Dangut, edited and co-authored by Prof. Ian K. Jennions, 

Dr. Steve King, and Dr. Zakwan Skaf.  Chapter 1 show a general thesis introduction. 

Chapters 2-7 are reformatted versions of published papers. Chapter 8 present a 

general discussion. The concluding remarks of this work and suggestions for future 

research are included in Chapter 9.  

Chapter 1: The general research background and context are presented in this 

chapter.  



 

6 

Chapter 2. Exploratory data analysis is presented in chapter 2. The chapter shows 

data visualization, pre-processing, and feature engineering of the aircraft operational 

log-based CMS datasets. 

Chapter 3: In this chapter, an overview of the related work is presented. This review 

is organised into three sections. The first section focuses on imbalanced learning 

techniques, and the second section provides the current trends on the application of 

data analytics in the aerospace industry. The third section gives a general overview of 

maintenance strategies in complex systems.  

Chapter 4: This chapter describes how to deal with an extremely imbalanced log-

based dataset using new data processing techniques. The raw log-based data has a 

variety of features, such as symbolic sequences, numeric time series, categorical 

variables, and unstructured text, which necessitates a thorough and meticulous 

processing strategy. The difficulty in predicting rare failure from a large log-based time-

series dataset was determined to be due to the data distribution's irregular patterns 

and trends, which interferes with temporal feature learning. As a result, an algorithm 

was created to deal with the unique aspects of data pre-processing. The novel method 

combines natural language processing (NLP) with ensemble learning for pattern 

recognition and classification, transforming and integrating well-known NLP techniques 

(TF-IDF and Word vectorization) with ensemble learning. In terms of precision and 

recall, the suggested method performs around 10% better than the baseline method 

(Synthetic Minority Oversampling Technique- SMOTE). It was also discovered that the 

problem of class imbalance could be solved by focusing solely on patterns in the 

minority group. As a result, the classification performance of the model has improved. 

The accompanying paper contains documentation for the proposed implementation. 

(Paper Published - Dangut, Maren David, Zakwan Skaf, and Ian K. Jennions. "An 

integrated machine learning model for aircraft components rare failure 

prognostics with log-based dataset." ISA transactions 113 (2021): 127-139. DOI: 

10.1016/j.isatra.2020.05.001) 

Chapter 5: This chapter presents new proposed techniques for handling extreme 

imbalanced classification problems based on ensemble-hybrid learning using 

heterogeneous datasets. Two new algorithms are proposed and implemented: The 
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Balanced Calibrated Hybrid Ensemble Technique (BACHE) algorithm and the hybrid 

soft mixed Gaussian processes with the expectation-maximisation (EM) algorithm. The 

formulation of BACHE is based on the combination of hybrid-ensemble and cost-

sensitive learning approaches to handle the extreme imbalanced problem. In the 

hybrid-ensemble algorithm, a balance-cascading algorithm is used to divide the data 

into subsets of the majority class. Then the minority class is synthesised and boosted 

using boosting data expansion policy, which overcomes the extreme imbalance 

classification problems and reduces the computational cost (efficient for larger 

datasets). Also, classifiers' unique arrangement and the introduction of cost sensitivity 

to each weak learner reduce variance and bias, producing improved performance. The 

BACHE algorithm shows to be robust and provides a high-performance solution for 

handling data imbalance problems - focusing on extreme imbalance ratio and irregular 

distribution (class drifting) in both binary and multi-class contexts. The implementation 

results showed that BACHE has a better performance than other similar ensemble and 

imbalance learning techniques. It also achieved a lower computational time; this makes 

it suitable for processing imbalanced datasets in a big data context. The approach also 

achieved a significant level of improvement in the reduction of false-positive and false-

negative rates. The documentation of the BACHE is presented in a paper (Paper 

under review (minor correction): Dangut, Maren David, Zakwan Skaf, and Ian 

Jennions "Handling Imbalanced Data for Aircraft Predictive Maintenance using 

the BACHE Algorithm" Applied Soft Computing Journal ). 

In addition, an enhanced method for dealing with imbalance classification problems in 

heterogeneous equipment datasets was developed. To improve the prediction of the 

minority class during learning, the technique uses a mixture of soft mixed Gaussian 

processes and the expectation-maximization (EM) algorithm. (Paper Published: 

Dangut, Maren David, Zakwan Skaf, and Ian Jennions. "Aircraft Predictive 

Maintenance Modeling using a Hybrid Imbalance Learning Approach." Available 

at SSRN 3718065 (2020)). 

Chapter 6: This chapter presents new proposed deep-learning techniques for handling 

extreme rare failure predictions. A novel loss function is derived for deep neural 

networks, enabling the deep learning algorithms to respond favourably to both minority 
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and majority groups. The new approach presents a unique way of changing loss 

function with respect to weights and a unique arrangement of neural networks; it also 

dynamically regulates the combined weight to produce a merged predicting result. The 

approach was verified using LSTM networks. The LSTM model weights are combined 

at each time step adaptively and recursively by using past predictions' errors and 

discarded weight at the forget gate layer. This approach helps in addressing the class 

imbalance problem. The experiment result showed that the Rescaled-LSTM has a 

better performance than other similar imbalance learning techniques. A significant level 

of improvement in the reduction of false-positive and false-negative rates was 

achieved. The documentation of the proposed algorithm is published in the following 

paper (Paper Published: Dangut, Maren David, Zakwan Skaf, and Ian Jennions. 

“Rescaled-LSTM for Predicting Aircraft Component Replacement Under 

Imbalanced Dataset Constraint.” 2020 Advances in Science and Engineering 

Technology International Conferences (ASET). IEEE. DOI: 

10.1109/ASET48392.2020.9118253). 

 Furthermore, the derived rescaled loss function was also used in the implementation 

of a proposed auto-encoder bidirectional gated recurrent network (AE-BGRU) model 

to predict rare failure. The result shows improved performance compared to a 

unidirectional approach. The documentation of the proposed algorithm is published in 

the following paper (Paper Presented at - Conference 4th IFAC Workshop on 

Advanced Maintenance Engineering, Services and Technologies- September 

2020, Cambridge UK. Published - Dangut, Maren David, Zakwan Skaf, and Ian K. 

Jennions. “Rare Failure Prediction Using an Integrated Auto-encoder and 

Bidirectional Gated Recurrent Unit Network.” IFAC-PapersOnLine 53.3 (2020): 

276-282. DOI: 10.1016/j.ifacol.2020.11.045) 

The implementation of the AE-BGRU algorithm was extended to include more analysis 

and integration of convolutional neural network(CNN) into the model to improve 

predicting extreme failures in aircraft. The result is discussed and presented for Journal 

publication. (Paper Accepted: Maren David Dangut, Ian Jennions, Steve King and 

Zakwan Skaf "A Rare Failure Detection Model for Aircraft Predictive Maintenance 

Using Deep Hybrid Learning Approach" Neural Computing and Applications ). 
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Chapter 7: This chapter presents the implementation of deep reinforcement learning 

for the classification of an imbalanced dataset. In this approach, the problem is 

formulated as a Markov-decision process framework and solved using the deep 

reinforcement learning (e.g. deep Q-learning networks) techniques. As in 

reinforcement learning, the agent serves as a classifier, which performs classification 

action sequentially.  The environment evaluates the classification action and returns a 

reward to the agent to make the next classification. A reward for the minority class is 

set higher, so the agent becomes sensitive to the minority class, which handles the 

extreme imbalance. Lastly, the agent finds the optimal classification policy. The 

interaction between state, action, and reward is stored in an experienced memory, and 

a mini-batch of the transactions is fitch and trained using deep neural networks. The 

documentation of the proposed algorithm is presented in the following paper  (Paper 

under review (Minor correction): David Dangut, Ian Jennions, Steve King and 

Zakwan Skaf "A Rare Failure Detection Model for Aircraft Predictive Maintenance 

Using Deep Hybrid Learning Approach" Journal of Mechanical Systems and 

Signal Processing ). 

Chapter 8: This chapter presents a general discussion of the result. The chapter focus 

on the findings of the research in terms of the real-world impact it will have.  

Chapter 9: This chapter presents the general conclusions of the thesis and proposes 

areas for future research. 
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Chapter 2: Exploratory Data Analysis for Aircraft Central 

Maintenance Dataset  

This study was motivated by an increasing need for efficient and optimised data-driven 

machine learning approaches, notably for anticipating extremely rare events [1]. The 

research is based on the European AIRMES project [1], which is tasked with optimising 

end-to-end aircraft maintenance operations in order to avoid operating delays. One of 

their objectives is to develop a novelty identification system based on ACMS data and 

maintenance records. Thus, this project aims to develop robust algorithms for 

predictive models utilising the ACMS dataset. The ACMS data is valuable because it 

offers evidence of possible problems in aircraft operation and maintenance. The ACMS 

data analysis results can be used to develop a predictive model that can be used to 

improve aircraft operations and maintenance. The maintenance driver for this 

research, as aligned with AIRMES project,  is to minimise overall maintenance and 

operating costs while increasing system uptime by using data-driven predictive 

modelling to mitigate unplanned or unscheduled maintenance in a fleet.  

2.1. Description of ACMS Data and visualization 

This study uses more than eight years' worth of data. The datasets are collected from 

two databases. The first database is the aircraft Central Maintenance System (ACMS) 

logs, which comprises error messages from BIT (built-in test) equipment (that is, 

aircraft fault report(s) record) and the flight deck effect (FDE). These messages are 

generated at different flight phases (take-off, cruise, and lading) stages. The second 

database is the corresponding records of aircraft maintenance activities. These 

databases are associated with a fleet of civil aircraft. Usually, in aircraft, the primary 

purpose of ACMS is to facilitate maintenance activities by directly alerting fault 

messages. Pilots and maintenance engineers can use that; to at the main base- 

perform troubleshooting or at the line stop level -perfume component removal [2]. The 

primary function of aircraft CMS is to acquire and store messages transmitted by the 

connected system Built-In Test Equipment (BITE) or by Flight Warning Computers 

(FWCs), as seen in Figure 2-1. 
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Figure 2- 1 Traditional Troubleshooting Philosophy in A330 CMS [2] 

Sensors and monitoring systems are typically installed and configured in aircraft to 

monitor various components. Failure messages are created based on the configured 

rules when any configured rules are broken. According to Airbus training materials [48], 

each time a fault is detected and isolated, a failure message is generated by system 

BITE. The message is memorized in the BITE memory and transmitted to the CMS. 

Each failure message is made up of 48 characters long, composed of a faulty line 

replaceable unit (which is made up of one or more parts depending on the type) and 

an ATA 6-digit reference number. A message might contain several Line Replacement 

Units (LRU), but only one suspected element is faulty. Each message syntax is of the 

form B-FIN-BUSNAME; B (Most probable suspected component) – FIN (Functional 

Item Number) – BUS NAME (complementary information) as seen in Figure 2- 2   
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Figure 2- 2 An example of a real CMS message with event date, aircraft tail number, 

LRU, ATA reference number, and maintenance message 

All the CMS failure messages are recorded in a logbook. Unplanned maintenance can 

be scheduled for malfunctioned items based on the failure messages.  After the 

maintenance, the engineers update maintenance records with the repair details. The 

maintenance record provides detailed information about each component or item 

replaced (such as the repair date, part identification number, time spent on 

troubleshooting, etc.).  

The ACMS log data is obtained from a fleet of civil aircraft. The data is distinctive in a 

variety of ways. It can be seen as a numeric time-series or symbolic sequence with 

features extracted from failure message or event occurrences over some segments or 

window periods. It contains categorical values, both text and numerical, as in the case 

of failure source, failure type, and ATA number. The usual way to predictive 

maintenance with this type of data is to analyse historical failure messages for 

irregularities using domain experts with experience. Then, using some preconditioned 

criteria, predictive patterns can be manually formed for a specific component based on 

this observation. This is a very specialised and time-consuming strategy that requires 

considerable expertise and experience. On the other hand, the traditional approach 

establishes a key concept: system failure can be predicted by evaluating its failure 

history. This study is motivated by the traditional concept and serves as the foundation 

for our problem formulation. ACMS data has been used mostly for short-term 

troubleshooting, anomaly identification, LRU removal, and system failure study or 
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testing. There has been little research on the use of this type of data to develop 

predictive maintenance models. 

The dataset is acquired from a fleet that consists of two distinct aircraft families: long-

range (A330) and short-aisle (A320); the data is classified accordingly. The aircraft 

classification is important since the data generated varies in terms of attributes and 

structure depending on the type of aircraft. Other distinguishing aspects are the route 

designations; some were reserved for long-distance routes, while others were reserved 

for short-distance routes. Components replaced owing to unplanned maintenance are 

targeted in each family, and their failure behaviours are investigated. The behavioural 

patterns are then used to build a predictive model to predict their replacement, and the 

behavioural patterns are referred to as the failure frequency distribution across the fleet 

for each type of fault. Unscheduled replacement is considered because of the high cost 

of maintenance associated with unplanned failures. Airlines and MRO's have to cut 

costs wherever possible to participate in a market under excessive cost pressure. A 

predictive model for unscheduled maintenance events could help to avoid expensive 

excesses.  Therefore, developing a predictive model to predict the upcoming 

unplanned failure (early warning of systematic failures of aircraft components) can 

reduce the overall maintenance and operation cost. 

The ACMS data requires a thorough study in collaboration with a domain expert to find 

links between qualities and the "decision" variables of interest and cause-effect 

relationships for failure. Because a description does not accompany the ACMS data, 

the initial objective was to comprehend the data characteristics and then determine its 

suitability for predictive modelling. 

Columns (variables) available in the ACMS dataset are :  

1. Event date: Date the failure message occurs 

2. Aircraft Tail Number: Uniquely identified aircraft in the fleet data  

3. FIN Removals: Identify the components removals  

4. Failure Source: This Shows the subsystem that the failure message belongs to 
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5. Failure Message: Show the description of the failure message (Each message 

syntax is of the form B-FIN-BUSNAME; B (Most probable suspected component) – FIN 

(Functional Item Number) – BUS NAME (complementary information)) 

6. Leg of occurrence: Indicates the flight where the failure message occurs  

7. TSI(FH):  It shows time Since the installation of the component replaced  

8. CSI (FC) : Cycles Since Installation (cycles) 

9. Date Install (DT_INST): This shows the date the component/LRU was installed  

10. DT_REM: Component/LRU Removal Date  

11. RAZAO_REMO: Reason for Removal either as Scheduled or Unscheduled. 

12. SIT: Situation at Removal either Serviceable or Unserviceable 

13. Flight Phase: This shows the exact flight phase when the failure message was 

generated (e.g. take-off, cruise, and landing) 

14. Departure Airport: Show the take-off airport   

15. Arrival Airport: Destination Airport  

16. Flight Number: show the flight number assign to the particular aircraft 

 

2.2 Maintenance Records Data Visualization  

The second database contains information about aircraft maintenance activities 

covering the period in question. The maintenance record contains information about 

the components or LRUs replacements. The features relevant for labelling the ACMS 

dataset are the removal date, the reason for the removal (scheduled, unplanned, or for 

convenience), and the aircraft tail number.  

The fist analysis in on the fleet of  A330 family.  The following LRU replacements are 

available from the A330 aircraft designated by their functional identification numbers 

(FINs):  8XS, 8KA, 705QN, 700QN1, 601QL1, 601QL2, 702QN, 5HA1, 5202GG, 

703QN, 1WT1, 4000HA, 5RV1, 1SQ1, 59KV20, 4001HA, 8GV1, 3FP1, 3FP2, 2CE3, 

5100KB, 59KH18, 3FP3, 4104KS1, 59KA10, 5426GG, 59KH23, 516KB, 4113KS, 
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1WT3, 1WT2, 7150HA1, 5RV1, 438HC, 1SH1, 1SH2, 701QN, 4000KS, 4019KS, 1SG, 

1JG, 3GV1, 11GV2, 10GV1, 10GV2, 19FP1, 19FP3, 19FP8, 1SA2, 12HA1, 4GZ, 

7HA1, 5801GG, 5403GG, 709QN, 5151JM2, 1KS1, 5404GG, 5427GG, 4506KS, 

603QL2, 603QL1, 1SA1, 7GV1, 5GV2, 12GV1, 6GV2, 4000JG2, 1SQ2, 2CE1, 5QM1, 

7SG1, 7SG2, 1HA1, 2GV, 5GV1, 19FP5, 19FP7, 5GA1, 1WW1, 1WW2, 1TX1, 

500QU2, 5500QA1, 5QM2, 5491GG, 4057KS, 4511KS, 5208QS, 500QU1, 6GV1, 

8GV2, 12GV2, 4GV2, 59KD, 4GV1 , 280HN, 9GV1,, 9GV2, 11GV1, 1HA2, 2GK, 

59KE21, 13HA1, 5009EN, 5490GG, 5048EG2, 7GV2, 19FP4, 4010EG2, 19FP6, 

16RV, 19RV1, 5216QS, 19FP2, 4112KS, 9KS1, 4010EG1 5048EG1. 

 Within the time under consideration, a total of 2062 LRU replacements were 

documented in the fleet of A330 maintenance records, including 1124 unscheduled 

replacements, 183 scheduled replacements, and 775 convenience replacements. The 

LRU removal is denoted in Figure 2-3 by their functional identification numbers. As 

seen, some replacements are more frequent than others. 

 

 

Figure 2- 3  The number of LRU removals associated with  A330 Aircraft 
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According to the airline from whom this data was gathered, certain unscheduled 

component replacements have a greater impact on business than others, as illustrated 

in Figure 2-4. The higher the frequrncy means more replacement occur which 

increases maintenance cost.  

 

Figure 2- 4  Impact of Unschedule LRU Removals related to A330 Aircraft 

Table 2-1 summarises the selected components related to A330 aircraft. The selection 

is based on their impact on maintenance cost, and the availability of minimum required 

patterns for training machine learning algorithms. The selected components are used 

in this study to validate the proposed machine learning algorithms.   

The training data was divided into 80% training and 20% testing. The train/test data 

ranges from 1 January 2011 to 30 September 2016. The data was divided into 80% for 
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training and 20 % for testing datasets. The validation dataset ranges from 30 

September 2016 to April 2018.  

 

Table 2- 1 Summary of Selected components removals associated with A330 

Fleet of A330 

 Total (train and 
test) 

Scheduled Unscheduled Unspecified 

4000KS 151 80 53 18 

4000HA 137 55 71 11 

5RV1 62 15 28 19 

438HC 46 15 18 13 
 

The second  analysis in on the fleet of  A320 family. The following LRU replacements 

are related to the A320 aircraft,  designated by their functional identification numbers 

(FINs): 11HB, 10HM3, 11HM3, 27HH, 7HH, 3CC2, 10WQ, 19FP1, 19FP2, 19FP3, 

1KS1, 1KS2, 4001HA, 8XS, 15HQ, 8HB, 18HQ, 10HQ, 1CC1, 5WH, 2WH, 1WH, 6WH, 

4WH, 3WH, 4CC, 3CC1, 3FP2, 3FP1, 3FP3, 10HA2, 5HA2, 4000HA, 24HQ, 19FP4, 

19FP8, 22HQ, 1CC2, 1FP1, 1FP2, 5HA1, 22FN, 10HA1, 1HA2, 1HA1, 4005KM, 

4015KM, 10CC, 1TX1, 30HH, 8022KM, 1WW1, 1WW2, 1TW, 59KD, 10WH, 16HQ, 

1WV1, 1WV2, 1WT1, 9WH, 7WH, 10HH, 4QC, 1WD, 1WT2, 57HH, 23HQ, 8WH, 

23HB, 47HH, 24HB, 19FP7, 20LP.  

Within the period under consideration (training and testing), a total of 3239 LRU 

replacement was recorded, of which 1311 were Unscheduled, 1067 Scheduled and 

861 Convenience.  Figure 5-3 shows the frequency of  LRU removals for the A320 

aircraft family. 
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Figure 2- 5 The number of LRU removals associated with  A320 Aircraft 

Table 2-2 shows the summary of selected FIN from A320 aircraft (used to label the 

corresponding ACMS dataset): Dataset ranges from 1 January 2011 – 30 September 

2016. It was divided into training (80%) and testing datasets (20%). The validation 

dataset ranges from 30 September 2016 - April 2018. 

 

Table 2- 2 Summary of Selected components removals associated with A320 

 

FIN Total (Training 
&Testing) 

Scheduled Unscheduled Unspacified 

11HB 245 121 114 10 

10HQ 120 78 21 21 

1TX1 80 44 26 10 

8HB 207 104 95 8 

Among the available components/LRUs, this thesis concentrated on those with the 

greatest economic impact during operation, as determined by the airline that 

contributed the dataset, as shown in Table 2-3. 
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Table 2- 3 Selected Components to be considered in this study 

Description of the Selected Components 

A330 Aircraft Family A320 Aircraft Family  

4000KS – Electronic Control Unit/ Electronic 
Engine Unit 

11HB - Flow control valve 

4001HA/4000HA – High-Pressure Bleed 
Valve  

10HQ - Avionics equipment ventilation 
computer 

5RV1- Satellite Data unit 1TX1 - Air traffic service 

438HC -- Trim Air Valve 8HB - Flow control valve 2 

 

According to a review of maintenance records associated with the ACMS aircraft 

family, the total number of failure/warning messages for the A330 family after pre-

processing is approximately 389902 in 4023 flights. The A320 family contains 

approximately 890120 in 10874 flights. According to the data, unscheduled component 

replacement occurs approximately two to three times every thousand flights.  

2.3 Data Preprocessing  and Transformation  

The two critical processes in developing machine learning models are data pre-

processing and feature engineering. Pre-processing is the process of cleaning data, 

whereas feature engineering is about developing new features. The following 

procedures were followed to engineer and pre-process features using the ACMS 

dataset.  

Step 1- Handling Data Errors: Some data errors were observed in the raw dataset 

(A330 and A320), such as missing values, incorrect time and date associated with 

failure events. Other attributes such as flight Legs, departure and arrival airports 

provided additional information about the data's date and time for events failure. 

Therefore, a method known as imputation using other features [3] is used to handle 

missing data. The other option could be to drop the null, but dropping the null can 
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reduce the data as more data is needed to train the machine learning models. Also, it 

can further worsen the problem because of the extreme imbalanced nature of the 

dataset. With the help of a domain expert, some failure (text) messages starting with 

some keywords are unnecessary. Thus, string comparison techniques were used to 

remove unwanted failure messages.  

Step 2 -Labelling ACMS Data Using the Maintenance Records. The maintenance 

record contains information about the component's replacement. In labelling the ACMS 

data, the removal date and tail number from the maintenance record are used in 

correspondence to the event data and tail number in the ACMS. This information gives 

an idea about the last flight leg before removal.  The leg that component replacement 

occur is labelled as failure leg (Positive), whereas others are labelled as non—failure 

leg (Negative).  

Step 3 - Selecting the Right Features for Predictive Modelling.  

Feature Importance Analysis: In selecting the best feature for modelling, feature 

importance provides insight into the dataset; the score highlight which features are 

more and less relevant to the target variable. Knowing feature importance can give 

meaningful information, such as determining a need to gather more data or using 

different data for predictive modelling [4]. In this study, the importance of the features 

was determined with the help of analysis and domain experts. The domain expert 

provided information about which variables are mostly used for troubleshooting failure 

related to each component, while the analysis reveals other hidden correlations 

between observed and latent variables.  

The first step is to split the dataset into dependant and independent features and select 

the right independent variables which will influence the dependent variable. The aim is 

to develop a model that will predict failure or each component in aircraft using the 

ACMS dataset. Each failure or replacement component is determined by a history of 

failure or warning messages in the dataset. Therefore, each target component is 

represented as a dependent variable (eg '4001HA', '4000KS', '438HC', '5RV1', 

'4000HA') while the related failure messages represent the independent variables (eg 

'ATA', 'SOURCE', 'FAILURE MESSAGE',).  

The following features were selected: 
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A330 Feature Index (['EVENT_DATE', 'TAIL_NUMBER', 'FIN_REMOVALS', 'ATA', 

'SOURCE', 'FAILURE MESSAGE', 'LEG_OF_OCCURRENCE', 'TSI(FH)', 'CSI(FC)', 

'DT_INST', 'FLIGHT_PHASE', 'DEPARTURE_AIRPORT', 'ARRIVAL_AIRPORT', 

'FLIGHT_NUMBER', 'LEG_ID', '4001HA', '4000KS', '438HC', '5RV1', '4000HA'], 

dtype='object') 

A320 Feature Index (['EVENT_DATE', 'TAIL_NUMBER', 'FIN', 'ATA', 'SOURCE', 

'FAILURE MESSAGE', 'LEG_OF_OCCURRENCE', 'TSI(FH)', 'CSI(FC)', 'DT_INST', 

'FLIGHT_PHASE',  'DEPARTURE_AIRPORT', 'ARRIVAL_AIRPORT', 

'FLIGHT_NUMBER', 'LEG_ID', 'AIR_PACKxFAULT', 'VENT_AVNCS SYS_FAULT', 

'DATALINK_ATSU_FAULT', '11HB', '10HQ', '1TX1', '8HB'], dtype='object') 

The target or dependent variables are: '4001HA', '4000KS', '438HC', '5RV1', '4000HA',  

'11HB', '10HQ', '1TX1', '8HB'.  The patterns related to  dependent variable can either 

be 1 or 0, if the value is 1 it indicate component failure while 0 indicate non-component 

failure. For example for 4000HA as displayed below  

 

It shows 683666 warning messages resulting in 71 failure/replacements 

To visualise the link between dependent and independent features, a correlation matrix 

with a heatmap is plotted. As illustrated in Figures 2- 6 and 2-7 for the A330 and A320, 

correlation maps visually indicate the relationship between variables. Any independent 

variables that have a strong correlation (completely correlated features) with the 

dependent variables are undesirable because they introduce multicollinearity into the 

model, which reduces its predictive accuracy. As seen in A330 and A320, all 

independent variables have a correlation coefficient less than 0.5 with all dependent 

variables, which is desirable. 
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Figure 2- 6 Correlation Heatmap for A330 dataset 

 

 

Figure 2- 7 Correlation Heatmap for A320 dataset 
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Step 4 -Creating New Feature:  

In the ACMS data, some features are numerical while others are textual and 

categorical. Those features were all transformed to numerical for machine learning 

modelling. In the process of transforming the data, new features from the existing 

variables are created to improve the quality of the predictive model. The features were 

created using integer encoding and the one-hot encoding methods. The choice of the 

feature conversion process is based on the nature of the dataset because the data is 

heterogeneous with categorical features, which is not suitable for training machine 

learning algorithms in their original form. Figure 2-8 shows a section of the original 

ACMS data. 

 

Figure 2- 8 Section of  the  original ACMS data 

First, the input variables were converted into numerical to allow easy learning by 

machine learning algorithms. Then for variables where ordinal relationships exist, an 

integer encoding was used, and where such a relationship does not exist, one-hot 

encoding was used. Failure messages, for example, are categorical, so One-hot 

encordin is employed.. Figure 2-9 shows a section of the ACMS data after transforming 

it to numeric. 

 

 

Figure 2- 9 Snapshot of the ACMS data after transforming to numeric 
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2.4 Analysis of Intrinsic Characteristics in ACMS Dataset  

First, the ACMS data is grouped based on failure messages, and associated 

components were determined. Figure 2-10 shows how the LRU replacement and its 

associated FIN's are grouped based on related failure messages X. For example, the 

failure message 'ENG 1 COOL VALVE FAULT' is highly associated with the following 

FIN's 4000KS,4019KS, 4057KS, and more. 

 

Figure 2- 10 Link between use cases and available data 

The ACMS dataset reveals that a group of related failure messages (FM) can either 

result in LRU replacement (Positive class or labelled as 1) or Non-replacement 

(Negative class or labelled as zero). Then individual FINs are then plotted against their 

related failure messages.  

2.4.1 Data Normality Check 

 

Data normality check is useful in machine learning modelling because it helps in 

determining whether a data follows normal distribution or not. Knowing data normality 

can help determine the type of machine learning algorithm to use or develop for training 
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the dataset for optimal modelling results. In order to test for data skewness, a  Shapiro-

walks test [5] is used. The test is calculated by multiplying the square of a suitable 

linear combination of sample order statistics by the standard symmetric estimate of 

variance. Because this ratio is invariant in both scale and origin, it can be used to test 

the composite hypothesis of normality. The hypothesis for the test is defined as when 

data is sampled from a Gaussian distribution; if the p-value is less than 0.05, it means 

the data is skewed. The result of the test is as follows P-Value = 0.044474. Since the 

P-value is less than 0.05, we reject the null hypothesis that we have sufficient evidence 

that the sample is not normally distributed. 

Visual normality check is performed by creating histogram plots. Figure 2- 11 shows 

the histogram of the ACMS data, and the data shows mixed Gaussian distribution 

skewed distribution. Therefore, a log transform is applied to fix the skewness to make 

a good decision by machine learning model, as seen in Figure 2-12. 

 

Figure 2- 11 Histogram before data transformation 
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Figure 2- 12 Histogram after applying decomposition and log transformation 

 

2.4.2 Scatter Plot Visualisation of ACMS Dataset 

 

A dataset can be categorised as unbalanced if the distribution of classes is unequal. 

On the other hand, imbalanced data is commonly acknowledged in the machine 

learning community to refer to datasets with significant, and in some cases extreme, 

imbalances. A between-class imbalance is a form of imbalance in which one class 

vastly outnumbers another. Between-class imbalances of 100:1, 1000:1, and 10000:1 

are not uncommon. To visually illustrate the imbalanced learning problem's real-world 

implications, consider the challenge of categorising component failure in an aviation 

system, where non-failure (labelled as negative or the majority class) and failure 

(labelled as positive or the minority class) exist.  

Figures 2-13 to 2- 20 shows a scatter plot of all the selected components. Before 

generating the scatterplot for each component, the warning/failure signals associated 

with each component are grouped and converted to a two-dimensional numpy array. 

Figures 2-13 to 2- 20 - (a) depict the class distribution, while the (b) depicts the Scatter 

Plot. The components are represented by the Y-axis, while the X-axis represents the 

independent variable for the period under consideration. Non-failure (negatives) is 

represented by the blue dots, whereas the orange dots (positives) represent failure.  
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Subconcept, which appears in the distributions, which is of interest. By inspecting 

Figures 2-13 to 2-20,  we see that both distributions exhibit relative imbalances, the 

between-class imbalanced where class (C0) outnumber class (C1). Also, the 

scatterplots in Figures 2-13 (b) have multiple concepts and severe overlapping. Due to 

a lack of representative data, some inducers may be unaware of specific concepts; this 

issue embodies imbalances caused by unusual occurrences, which we will investigate 

further. Imbalance due to rare instances is typical of domains with a small number of 

minority class examples, i.e. when the target concept is uncommon. Regardless of the 

between-class imbalance, the lack of representative data will make learning difficult in 

this case. In addition, the minority concept may contain a subconcept with few 

examples, resulting in varying degrees of classification difficulties. This is due to a 

different type of imbalance known as within-class imbalance [6][7][8], which deals with 

the distribution of representative evidence for sub-concepts inside a class.  

 

(a) 
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(b) 

Figure 2- 13 (a) Class distribution and (b) the scatter Plot of  4000KS- electronic control 

unit replacement with points coloured by class value.  

Data complexity includes overlapping, a lack of representative data, small disjuncts, 

and other issues. Figure 2- 13 illustrates this point. Some of the positive (orange) data 

points are mixed in with the negative (blue) data points (overlapping). Furthermore, 

some of the positive class instances are disjunct, which can cause traditional machine 

learning algorithms to generate an imperfect decision boundary. These challenges are 

again highlighted in Figures 2-14 to 2-20. 
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 (a) 

 

 

(b) 

Figure 2- 14 (a) Class distribution and (b) the scatter Plot of  4000HA- high-pressure 

bleed valve replacement with points coloured by class value 
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(a)  

 

 

(b)  

Figure 2- 15 (a) Class distribution and (b) the scatter Plot of  5RV1- satellite data unit 

replacement with points coloured by class value.  
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(a) 

 

 

(b) 

Figure 2- 16 (a) Class distribution and (b) the scatter Plot of  438HC- trim air valve 

replacement with points coloured by class value.  
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(a) 

 

(b) 

Figure 2- 17 (a)Class distribution and (b) the scatter Plot of  11HB- flow control valve 

replacement with points coloured by class value.  
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(a)

 

(b) 

Figure 2- 18 (a) Class distribution and (b) the scatter Plot of  10HQ – avionics equipment 

ventilation computer replacement with points coloured by class value. 
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 (a) 

 

(b) 

Figure 2- 19 (a) Class distribution and (b) the scatter Plot of  1TX1- air traffic service 

replacement with points coloured by class value.  
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                     (a) 

(b) 

Figure 2- 20 (a) Class distribution and (b) the scatter Plot of  8HB-Flow control valve-2 

replacement with points coloured by class value. 
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Generally, the analysis of each component failure,  looking at Figures 2-13 to 20, The 

proportion of positive label class and negatively label class (pattern not leading to 

failure ) in all of the scatterplots indicates how the data is significantly skewed and 

overlapped. In machine learning and data mining research, data imbalance is a difficult 

problem to solve [9]. Many real-world data mining applications necessitate the creation 

of prediction models from datasets with very skewed distributions. Apart from the high 

imbalance that affects model performance, other data intrinsic characteristics such as 

small class disjunct and class overlapping can also cause performance loss. The 

overlapping problem occurs when some positive samples are mixed together with 

negative samples. As a result, a machine-learning algorithm may generate an 

inaccurate decision boundary, resulting in decreased model performance. In 

conclusion, the ACMS data is significantly skewed, as evidenced by the scatter plot 

depiction, with evidence of class overlaps, with so few positive examples and their 

unstructured nature, the significant class imbalance could provide a solid platform for 

utilising effective classification methods.  

Another factor to consider is when the severely imbalanced data is combined with class 

overlap and the problem of a small sample size. Special methods are required to train 

such data for the predictive models. Large system logs face identification via image 

classification, and gene expressions are just a few examples of data with high 

dimensionality, small sample sizes, and abnormalities problems common in today's 

data analysis and knowledge discovery applications. The small sample size with 

extremely imbalanced problems has long been a research focus in the pattern 

recognition community [10][11]. The combination of imbalanced data, class 

overlapping and small sample size, on the other hand, poses a new difficulty to the 

community when the representative datasets' concepts display imbalances of the sorts 

outlined above. Two major difficulties arise concurrently in this case. Because the 

sample size is so small and intermixed, all of the difficulties around absolute rarity and 

within-class imbalances apply. Second, and more significantly, learning algorithms 

frequently fail to generalise inductive rules throughout the sample space when faced 

with this type of imbalance. Because of the difficulties in building conjunctions across 

the features with few samples, the combination of small sample size and high 

dimensionality in this scenario inhibits learning. If the sample space is large enough, a 
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set of universal (though difficult) inductive rules for the data space can be defined. 

When samples are restricted, however, the rules that are formed can become overly 

specific, resulting in overfitting.  

 

2.4.3 Density Plots 

 

A density plot is a useful tool for visualising correlations between variables in data. A 

density map can be used to represent the proportion of data points that belong to a 

single variable. By superimposing different density graphs on top of each other, you 

can examine whether they overlap or not.  

2.4.3.1 Visualization of a Probability Density Distribution  

In probability theory, a normal distribution, also known as Gaussian or Laplace-Gauss, 

is a continuous probability distribution representing the real value of random variable 

variables whose distribution is unknown [13][14]. Two parameters define a normal 

distribution.  Mean (µ) is the expected value of the distribution (and its median and 

mode), which controls the Gaussian distribution centre. Standard deviation (σ) 

corresponds to the expected square deviation from the mean, typically referred to as 

variance(σ2), which controls the shape of the distribution.  The normal distribution is 

represented as N (µ, σ2), where a standard normal distribution with mean equals zero 

and variance equal to one can be described as N (0,1). Therefore, a probability density 

function (PDF) of a univariate normal distribution can be calculated when mean and 

variance are given.  For a given value x, the dense is represented as follows. 

𝑃(𝑥|𝜇, 𝜎2)  =   
1

√2𝜋𝜎2 
exp(−

(𝑥−𝜇)2

2𝜎2
)        (2- 1) 

Equation 2-1 is called a univariate normal distribution because it consists of one 

variable. Plotting the univariate PDF for the imbalanced ACMS data. Considering the 

data as a binary class (C0 and C1). Data points from class C1 follow a one-dimensional 

normal distribution of mean 0 and variance 5, and the data point from class C0 has a 

mean of C1. A plot in  Figure 2-21 shows the data points along with the distribution of 

each class. As observed, the curve for class C0 is above the curve for class C1 in the 

high-density region (this is the probability, not the actual number of each class). The 
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number of class C0 will be many times the number for class C1 because the dataset 

is imbalanced, meaning that for any given data point, the probability that the point is 

drawn from class C0 will always be greater than that drawn from class C1. The Plot 

clearly shows the effect of imbalance and how it can lead to a situation where the 

machine learning classifier can always classify examples from class C0, becoming 

biased to the negatively labelled (majority) class.  

 

 

Figure 2- 21 Probability Density of Each class independently  

 

2.4.3.2 Multivariate Gaussian Distribution  

What is a multivariate Gaussian or normal distribution, and how does it differ from a 

single-variable normal distribution? The term "multivariate" refers to the presence of 

many variables. Our goal is to portray a normal distribution in several dimensions. 

Multivariate Gaussian Distribution represents the distribution of a multivariate random 

variable (a multi-dimensional generalization of the one-dimensional Gaussian 

distribution); it comprises a correlated random variable. The Central Limit Theorem 

[15], states that a multivariate distribution develops from sums of random variables 

under general conditions, something often borne out, at least approximately, by actual 

data, which partially justify the focus on multivariate Gaussian distributions [16]. The 

multivariate Gaussian distribution is represented by the following parameters [13]. 
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Mean (𝜇): which is the expected value of the distribution. Represented as d X 1 mean 

vector.  

Variance or covariance matrix Σ: which shows how random variables depend on each 

other and how the variables change together. The matrix is of size 𝑑 𝑋 𝑑.  

The multivariate Gaussian distribution can be denoted as M (𝜇, Σ). The covariance 

between random variables 𝑿𝟏 and 𝑿𝟐  can be represented as 𝐶𝑂𝑉 (𝑥1, 𝑥2)  [17]. 

A Join probability density of a multivariate Gaussian with dimension d is given as  

𝑃(𝑥|𝜇, Σ )  =   
1

2(𝜋)𝑑|Σ|
exp(−

1

2
 (𝑥 − 𝜇)𝑡Σ−1 (𝑥 − 𝜇)     (2- 2) 

 

Where 𝑥 is a random variable of size 𝑑 and | 𝛴 | is the determinant. The covariance 

matrix Σ, which represents the variances of all possible pairs of variables as well as 

the covariances between them. Given an n-dimensional random vector, for simplicity, 

say two dimensions: 

  𝑥 = [
𝑥1

𝑥2
]           (2- 3) 

 which has a normal distribution M (μ, Σ) were  

µ = [
µ𝟏

µ𝟐
]            (2- 4) 

and covariance  

Σ = [
Σ11 Σ12

Σ21 Σ22
]         (2- 5) 

The multivariable can be independent or dependent correlated, which is represented 

as  

M (μ, Σ) = ( [
µ1

µ2
] , [

Σ11 Σ12

Σ21 Σ22
])         (2-6) 
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If the variables are independent, then the covariance will be 0. For example, the mean 

and variance for random variable X1 and X2   is represented as   

M( [
0
1
] , [

1 0
0 1

])    

If the variables are correlated, the covariance is set to the respective values other than 

zero. The following parameters are obtained by calculating the mean and variance of 

the ACMS data.  

M( [
0
1
] , [

1 0.7
0.3 1

])    

An N-dimensional array is created from the ACMS dataset. Then, a multivariate 

Gaussian is plotted for independent and correlated variables, as illustrated in Figure 2- 

22. The multivariate Gaussian is useful because of its algebraic features, which 

ensures that we get a normal distribution when marginalising. Marginalisation is a 

method for determining the marginal contribution of another variable by summing the 

various values of one variable. The end result is the distribution of a subset of the 

variables without reference to the removed ones.  

 

 

Figure 2- 22 multivariate Gaussian with dimension d X d for random variables X and Y. 

The figure on the left shows a multivariate Gaussian density  for independent and the 

figure on the right for  correlated variables 
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Using a multivariate Gaussian for correlated variables. The probability of component 

failure is plotted as red dots on the probability density surface, as shown in Figure 2-

23.  

The data is first of all transformed/ decomposed into a 2D array using a Numpy python 

library. The following parameters are obtained from the resulting array by calculating the mean 

and variance of the failure message and target component. 

Xper = M( [
0
1
] , [

1 0.7
0.3 1

])    

Yper = M( [
0
1
] , [

3
−1

] )    

Creating lower-triangular covariance L using Cholesky decomposition. then Apply the 

transformation Y = L.dot(X) + Yper. 

 

 

Figure 2- 23 Drawing the probability of component failure on the probability density 

surface. 

It can be observed from Figure 2- 23 that the failure (component replacement) occurs 

majorly in the region with high density. This shows how challenging for a  machine 

learning classifier to separate between classes effectively because of the ambiguity 

region separating the classes. It can so be observed that the rare cases formed small 

class disjunct.  
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One of the challenges with the conventional distance-based approach for this type of 

mixed data (numerical and categorical) is that the distribution will lose its true 

representation because of the encoded categorical variables. When categorical 

variables are present, the distance metric becomes meaningless, and they must be 

addressed differently than traditional distance-based methodologies. 

Density plot of numerical variables  

Numerical variables were selected, then the data was transformed into the 2D array 

using the NumPy array function. The mean and variance of both failures and the 

normal class are then calculated, and the probability of drawing failure is presented in 

Figure 2-24. 

 

Figure 2- 24 Density plot for numerical values 

Generally, the information obtained from the data visualization indicated that in the 

case of ACMS data, the data is extremely imbalanced, and classes are not well 

separated, which is challenging to use traditional machine learning. The data has a 

skewed class distribution, resulting in an extremely imbalanced, class overlapping, and 

class-disjunct problem. Apart from the extremely imbalanced problem in the ACMS 

dataset, it is also accompanied by the following intrinsic challenges: Class Separability- 
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Figure 2-23 shows how the classes are not well separable (overlapping). It can observe 

that facing imbalanced does not always mean the classes are not separated. Even 

when the classes are separated, if the probability of sampling from one class is more 

than the other, the classifier can always be biased to the class with high probability 

because the points are more likely to be drawn from the class with high probability. 

Hence, robust methods are required to handle such challenges.   

2.5 Imbalanced Datasets Challenge to Traditional Machine Learning 

Algorithms 

Imbalanced classification problems related to other dynamics and characteristics 

inherent in the dataset have been studied for several decades [20], yet several issues 

remain unresolved.  

The reason why imbalanced classification is difficult for traditional machine learning 

algorithms, which leads to performing poorly, is that they are designed with some 

assumptions such as: 

1. The classes in the dataset are balanced. 

2. There is a significant number of data in each class 

3. The class probability distributions of all the classes are the same 

4. The data label is noise-free 

5. The cost of misclassification is the same for both classes. 

6. The sub-concepts present in each class are represented equally  

Violating one or more of the assumptions mentioned above is referred to as a data 

irregularities problem, leading to performance degradation in data-driven machine 

learning models [21].  There exist many domains that the data violates one or more of 

the above assumptions. An example of such a domain is the ACMS data (as 

visualized), which is extremely imbalanced, with unequal sub-concepts within the 

classes. Also, considering the use of the dataset for predictive aircraft maintenance 

modelling, the cost of misclassification is not the same for both classes. For example, 

false positives are more critical (can lead to high loss or fatality) than false negatives 
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(only increases maintenance checks). Thus, this study focuses on the imbalanced 

learning approach for rare failure prediction using the ACMS data. Particularly on the 

impact of severe class Imbalance, small disjuncts, class-overlapping on classifier 

performance. 

2.5.1. Class Overlapping and Class Separability 

Class overlapping is caused due to ambiguous regions in the data where the prior 

probability of two or more classes is approximately equal, making it very difficult to 

distinguish between the two classes within the overlapping area. If the data is linearly 

separable and does not contain any intrinsic data challenges, some classifiers can 

easily classify it. In a situation where class overlapping exists and other inherent 

challenges, there is a need to address those intrinsic challenges to obtain a good 

machine learning model. Many works have focused on the study of the relationships 

between class imbalance and overlapping problems in predictive modelling. 

Particularly Vuttipittayamongkol P et al.  [22]  provided an intensive discussion about 

the impact of class overlapping on classifier performance. [22]  the authors provided 

an intensive discussion about the impact of class overlapping on classifiers 

performance. They compared different oversampling techniques, mostly SMOTE and 

its derivatives, and concluded that classification errors increased with the degree of 

class overlap regardless of imbalance. Also, they state that the effect of class 

imbalance highly depended on the presence of class overlap. Also, In a study by  Prati 

RC et al.[23].[23],the authors generated an artificial dataset and set up an experiment 

to show that the degree of class overlapping strongly correlates with class imbalance, 

varying the degree of overlapping and imbalance ratio between classes. They 

concluded that class probabilities are not the main responsibility for classifier 

performance degradation but rather the degree of overlap between classes. For further 

information on challenges and opportunities in imbalance learning, the reader can refer 

to Johnson JM et al. [3]. 

2.5.2. Class Small Disjuncts  

Rare cases correspond to the minority class of the training set in a particular area of 

the feature space. In concept learning, rare cases are vital to consider because they 

cause the occurrence of a small class disjunct and are identified to be more error-prone 
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than the large class disjunct [24]. More elaborately, machine learning algorithms 

usually create concepts made up of many disjunct. Each disjunct is, in turn, a 

conjunctive definition of the sub-concept of the original concept. The coverage of the 

disjunct corresponds to the number of the training examples that are correctly 

classified, and disjunct is considered small if the coverage is small otherwise large [24]. 

Small class disjuncts are not inherently error-prone than large disjuncts. What makes 

it error-prone is the classifiers biases [5] and other factors such as the noise, missing 

values, data size, and other factors [24].  

Furthermore, a small disjunct arises when data in the same class is represented with 

different clusters of concepts (within class imbalance). Although those small disjuncts 

are implicit in most of the problems, and also cover few instances in a trained model 

and generally have much higher error rates in contrast to large disjuncts. The less 

represented small sub-clusters can further worsen classification performance 

degradation in an extreme imbalance dataset. It becomes hard to know whether these 

sub-concepts represent actual sub-examples or are merely attributed to noise [25]. 

Many works have focused on studying the relationship between small class disjunct 

and imbalanced classification problems. Notably, a broad discussion about the impact 

of class disjuncts as it relates to the class imbalance classification problem can be 

found in Das s et al.[21]. The authors reviewed the class disjunct problem and 

concluded that small class disjunct is the major cause of misclassification. Hence new 

research in the field must strive to outperform the current solutions.  Other studies 

focus on the impact of combining class imbalance and small disjunct [9]. The authors 

show how extreme imbalance can give rise to the small class disjunct. Another has 

study focus on the impact of class imbalance and class skew distribution [21]. The 

open literature lacks a study on the impact of the combination of class Imbalance, small 

disjuncts and class distribution skew on classifier performance, especially for the log-

based dataset. 

2.6 Reference 

1.  Ferreira JF. AIRMES Newsletter 2020. 2020; (681858): 1–11. Available at: 

DOI:http://www.airmes-

project.eu/files/newsletters/AIRMES_Newsletter4_September2019.pdf 



 

47 

2.  Airbus. ACMS Discription Manual. Airbus; 2000. Available at: 

DOI:https://wenku.baidu.com/view/179923f4910ef12d2af9e723.html 

3.  Mostafa SM. Missing data imputation by the aid of features similarities. 

International Journal of Big Data Management. 2020; 1(1): 81. Available at: 

DOI:10.1504/ijbdm.2020.106883 

4.  Kuhn M., Johnson K. Applied Predictive Modeling with Applications in R. 

Springer. 2013. 615 p. Available at: 

http://appliedpredictivemodeling.com/s/Applied_Predictive_Modeling_in_R.pdf 

5.  Shapiro SS., Wilk MB. An Analysis of Variance Test for Normality (Complete 

Samples). Biometrika. 1965; 52(3/4): 591. Available at: DOI:10.2307/2333709 

6.  Ke H., Lu C., Xu H. Global cost parameter selection of extreme learning machine 

for imbalance learning. Harbin Gongcheng Daxue Xuebao/Journal of Harbin 

Engineering University. 2017; 38(9): 1444–1449. Available at: 

DOI:10.11990/jheu.201610045 

7.  Miao Z., Zhao L., Yuan W., Liu R. Multi-class imbalanced learning implemented 

in network intrusion detection. 2011 International Conference on Computer 

Science and Service System, CSSS 2011 - Proceedings. 2011. pp. 1395–1398. 

Available at: DOI:10.1109/CSSS.2011.5975051 

8.  Zhang X., Li Y., Kotagiri R., Wu L., Tari Z., Cheriet M. KRNN: k Rare-class 

Nearest Neighbour classification. Pattern Recognition. 2017; 62: 33–44. 

Available at: DOI:10.1016/j.patcog.2016.08.023 

9.  Moniz N., Monteiro H. No Free Lunch in imbalanced learning. Knowledge-Based 

Systems. Elsevier B.V.; 2021; 227: 107222. Available at: 

DOI:10.1016/j.knosys.2021.107222 

10.  Stefanowski J. Challenges in Computational Statistics and Data Mining. 2016. 

Available at: DOI:10.1007/978-3-319-18781-5 

11.  Hu Y., Guo D., Fan Z., Dong C., Huang Q., Xie S., et al. An Improved Algorithm 

for Imbalanced Data and Small Sample Size Classification. J. Data Anal. Inf. 



 

48 

Process. 2015; 03(03): 27–33. Available at: DOI:10.4236/jdaip.2015.33004 

12.  He H., Garcia EA. Learning from imbalanced data. IEEE Trans. Knowl. Data 

Eng. 2009; 21(9): 1263–1284. Available at: DOI:10.1109/TKDE.2008.239 

13.  Roussas. Probability Density Functions in One Variable Distribution Binomial,. 

2003.  

14.  Sherlock A., Hume B. An Introduction to Probability and Statistics. The 

Mathematical Gazette. 1968. 68 p. Available at: DOI:10.2307/3614484 

15.  Kwak SG., Kim JH. Cornerstone of Modern Statistics. Korean Journal of 

Anesthesiology. 2017; 70(2): 144–156.  

16.  So I., Pdf M. Chapter 4 Multivariate Random Variables, Correlation, and Error 

Propagation. 2008; (1994): 1–14. Available at: 

DOI:https://igppweb.ucsd.edu/~agnew/Courses/Sio223a/sio223a.chap4.pdf 

17.  Vosshenrich R., Doler W., Hellige G., Muller E., Hausmann R., Fischer U., et al. 

Einsatz Der Race-Technik Zur Quantitativen Flussmessung. Evaluierung an 

Einem Klinisch Relevanten Flussmodell. RoFo Fortschritte auf dem Gebiete der 

Rontgenstrahlen und der Neuen Bildgebenden Verfahren. 1993; 158(6): 550–

554.  

18.  Das B., Krishnan NC., Cook DJ. Handling class overlap and imbalance to detect 

prompt situations in smart homes. Proceedings - IEEE 13th International 

Conference on Data Mining Workshops, ICDMW 2013. 2013; : 266–273. 

Available at: DOI:10.1109/ICDMW.2013.18 

19.  López V., Fernández A., García S., Palade V., Herrera F. An insight into 

classification with imbalanced data: Empirical results and current trends on using 

data intrinsic characteristics. Information Sciences. Elsevier Inc.; 2013; 250: 

113–141. Available at: DOI:10.1016/j.ins.2013.07.007 

20.  Johnson JM., Khoshgoftaar TM. Survey on deep learning with class imbalance. 

Journal of Big Data. Springer International Publishing; 2019; 6(1). Available at: 

DOI:10.1186/s40537-019-0192-5 



 

49 

21.  Das S., Datta S., Chaudhuri BB. Handling data irregularities in classification: 

Foundations, trends, and future challenges. Pattern Recognition. Elsevier Ltd; 

2018; 81: 674–693. Available at: DOI:10.1016/j.patcog.2018.03.008 

22.  Vuttipittayamongkol P., Elyan E., Petrovski A. On the class overlap problem in 

imbalanced data classification. Knowledge-Based Systems. Elsevier B.V.; 2021; 

212: 106631. Available at: DOI:10.1016/j.knosys.2020.106631 

23.  Prati RC., Batista GEAPA., Monard., C. M. Class imbalances versus class 

overlapping: an analysis of a learning system behavior. MICAI 2004 Adv. Artif. 

Intell. 2004; (0): 312. Available at: https://link.springer.com/chapter/10.1007/978-

3-540-24694-7_32 

24.  Jo T. Class Imbalances versus Small Disjuncts. 6(1): 40–49. Available at: 

DOI:https://dl.acm.org/doi/pdf/10.1145/1007730.1007737 

25.  Bauder RA., Khoshgoftaar TM., Hasanin T. An Empirical Study on Class Rarity 

in Big Data. Proceedings - 17th IEEE International Conference on Machine 

Learning and Applications, ICMLA 2018. IEEE; 2019; : 785–790. Available at: 

DOI:10.1109/ICMLA.2018.00125 

 

 

 

 

 

 

 

 

 

 



 

50 

CHAPTER 3: Review of Imbalanced Learning Methods and 

The Application of Predictive Maintenance  

This chapter provides an overview of data analytics in the aerospace sector, with a 

focus on imbalance learning for maintenance forecasting. It also goes through the 

issues and possibilities of leveraging data from the aircraft central maintenance system 

to construct predictive maintenance models. The review is separated into three parts, 

as indicated in Figure 3-1. The first section explores techniques for dealing with data 

imbalances. The second section looks at how data analytics can be used in the 

aerospace industry in general. The final section delves into predictive maintenance 

modelling and offers an overview of maintenance approaches.  

 

 

Figure 3- 1 Map of Literature Review 
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3.1 Imbalance learning 

Data imbalance is a difficult problem in machine learning and data mining research. 

When the distribution between classes in a dataset is unequal, it is considered 

imbalanced. Many real-world data mining applications necessitate the creation of 

prediction models from datasets with very skewed distributions [1]. With the 

introduction of Industry 4.0 and further advancements in data analytics, the creation, 

storage, and analysis of vast amounts of data have become more inexpensive. Vehicle 

maintenance procedures have also undergone substantial changes as a result of 

technological advancements. Shifting from preventive to predictive to prescriptive 

maintenance, for example. The study of data-driven prognostic modelling for aircraft 

maintenance is becoming increasingly popular [2,3]. However, one of the major issues 

facing data analytics researchers is the underrepresentation of failure behaviour in 

relation to target events. Due to the infrequent occurrence of failure events, resulting 

in a machine learning challenge known as an imbalanced classification problem [4]. 

This problem arises when the distribution of classes present in the dataset is not 

uniform. The total number of instances in one class far outnumber the other class (also 

known as a skewed distribution). Training machine learning algorithms with the 

imbalanced dataset can cause biases in classification, resulting in model performance 

degradation. Hence, producing a high rate of false-positive and also imprecise 

prognostics of vehicles failures. The imbalanced classification problem or rare event 

prediction problem is generally prevalent in many application domains. For example, 

the historical data is often imbalanced in aircraft operation because of the safety 

measures in place; the vehicle is expected to function normally with fewer faults. The 

rare failure also causes irregular patterns and trends in the generated dataset [5]. 

 Data imbalanced problems or rare event prediction can also be seen in different 

domains. For example, in the financial sector, fraud detection, where illegitimate 

transactions are infrequent and irregular compared to large legitimate ones. Predicting 

the rare fraudulent ones is critical because it can cause enormous damage to business 

[6]. Similarly, in clinical science, rare event prediction is evident in the diagnosis and 

prognosis of rare diseases; in most situations, the healthy population significantly 

outnumbers the sick population [7]. Likewise, when detecting an oil leak in the ocean, 

satellite photos may display a few images reflecting the oil spillage section, while the 
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majority of the images depict non-spill areas [8]. Rare event prediction can be seen in 

developing models to predict an earthquake's occurrence; since earthquakes rarely 

occur and with an irregular pattern. The literature shows that most of the solution to 

handling imbalance classification problems or rare failure predictions depends on the 

application domain or dataset. Therefore, handling an imbalanced classification 

problem using ACMS data in aircraft predictive maintenance modelling remains an 

open research issue [9–11].  

3.1.1 Review of methods for handling extremely imbalanced Class overlapping 

and small class disjunct problems in the ACMS dataset. 

In concept learning, the dataset is said to be imbalanced if examples of a class far 

outnumber others. Such a situation poses a challenge for traditional machine learning 

algorithms such as support vector machines, decision tree (random forest) induction 

systems, to name a few. Machine learning classifiers are designed to optimise global 

quantities such as accuracy without considering the intrinsic data characteristics such 

as class distribution. As a result, these algorithms ignore the minority class samples 

while accurately classifying the majority class during learning. Data imbalanced 

problems occur in many practical domains, and it is often handled using either data 

level approaches such as resampling, algorithm level approaches such as cost 

sensitive-based approaches or hybrid methods. Algorithm level approaches were 

reported to perform better than the data level methods [16], but they do not have the 

flexibility offered by resampling methods due to the difficulty of knowing the cost for 

each class. In particular, data resampling involve generating new samples or removing 

some existing samples. At the same time, the cost-sensitive approach tries to modify 

the learning algorithm or create new ones to respond favourably to both classes during 

learning. Ensemble learning methods are also increasingly considered as solutions to 

imbalanced problems[17]. The ensemble learning approaches are designed to either 

modify the learning algorithm ( i.e. embedding a cost-sensitive strategy in the learning 

process) or use a data-level method (i.e. resampling the data) before the training stage 

of each weak classifier [18][19]. 
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Figure 3- 2 Showing the three categories of the State-of-the-art approach of the 

handling imbalance problem 

Several research approaches have been conducted to solve the imbalanced 

classification problem or rare failure prediction. Alberto et al. [12], Haixiang et al. [13],  

and Elrahman et al.[14] provided a detailed review of imbalanced learning. The 

Imbalanced classification problem can be grouped into three main categories: the data 

level, the algorithm level, and the hybrid approach, as seen in Figure 3-2. The data 

level approach involves resampling the dataset before presenting it as an input to the 

learning algorithm. The algorithm level approach tries to modify the traditional machine 

learning algorithm to respond favourably to both classes during learning [15]. The 

hybrid process involves combining two or more of either data-level or algorithm level 

techniques to achieve better performance.  

 

3.1.2 Data level approach:- Resampling techniques  

The open literature shows many studies focused on the resampling techniques to 

handle the imbalanced problem in different types of datasets. Those studies have 

empirically proven that balancing the class distribution before training is usually a 

useful solution [13][20]. The resampling techniques are categorised into three main 

groups the oversampling, undersampling, and hybrid. The data oversampling involve 
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creating more examples either by replicating existing ones or creating new ones to 

balance the original dataset. The data undersampling involves eliminating examples 

from the majority class in order to balance with the minority class. The hybrid is the 

combination of oversampling and undersampling. Within these methods, the simplest 

techniques are random oversampling and random undersampling. One of the major 

disadvantages of random undersampling is that it can result in the omission of 

potentially useful instances that could be useful in the training process, such as in 

determining decision boundaries in support vector machine (SVM). Also, several 

authors have argued that random oversampling can increase the likelihood of 

overfitting problems because it replicates exact copies of the existing examples [13].  

The challenges mentioned above have led to several proposed methods. Among them 

is the Synthetic Minority oversampling Technique (SMOTE). The (SMOTE) [21] has 

been developed to mitigate overfitting in random oversampling by taking a subset of 

data from the minority class as an example and then creating new synthetic similar 

instances. With this technique, minority class examples are oversampled by taking 

each instance and introducing an artificial instance along the line segment joining all 

or any n number of minority class nearest neighbours. The number of n nearest 

neighbours are randomly chosen depending on the number of oversampling needed.  

However, SMOTE has the drawback of overgeneralisation in creating the synthetic 

instances, not considering neighbouring examples from other classes when generating 

synthetic samples. The SMOTE approach can crate overlapping of classes and can 

also introduce additional noise into the training data. SMOTE is also not effective in 

high dimensional data, as Lusa et al. [73] argued. Many solutions have been proposed 

to correct the drawbacks of SMOTE [67,74,75]. The majority of the novel solutions are 

specific to either the application domain or dataset in question, as presented by Alberto 

et al. [22].  

Undersampling approaches are majorly based on data cleaning techniques where 

some instances are dropped following defined criteria. Examples of strategy in this 

area include the edited nearest neighbour rules (ENN) [23], where the examples that 

differ from two of its three neighbours are removed from the majority class. The 

NearMiss-2 method [24] selects majority class instances whose average distance to 
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the three farthest minority class samples is the smallest [12]. Other approaches try to 

remove majority class instances that are far from the decision boundary [24]. Support 

Vector Machine (SVM) can also be used to discard irrelevant instances from the 

majority class. All the undersampling methods mentioned are prone to discarding 

useful information that can help in the learning process. Combining imbalanced 

problems with class overlapping makes the situation more complex and difficult to 

solve than handling it independently. A study has shown that identifying the 

overlapping region in the dataspace and dealing with those instances can make the 

data linearly separable [25]. The idea has been implemented in a [26] where SMOTE 

is used with Tomek link also CNN with Tomek link [27]. Other studies have investigated 

the effect of class overlapping on the machine learning classifier. The example is seen 

in Prati RC et al.[28]. They show that class overlapping aggravates the problem of 

imbalance and degrades the classifier's performance. In handling class overlapping 

problems, three stages are involved. Identifying the ambiguous or overlapping regions, 

managing the instances that belong to the region, and finally, the training or learning 

phase.  

One of the major challenges in dealing with class overlapping is identifying the 

overlapping region. However, many solutions to identifying overlap regions in the 

dataset have shown success to some extent in partially imbalanced or balanced 

datasets. For example, the K-nearest neighbour based approach to identify 

overlapping areas on the data space has been proposed by Tang et al. [29]. The 

authors proposed a multi-model classifier known as DR-SVM, combining an SVM 

classifier with a kNN algorithm under a rough set technique. Trappenberg et al.[30] 

also proposed a strategy for identifying the overlapping regions in pattern classification. 

Similarly, fuzzy set representation of the concept that incorporates overlap information 

in the fuzzy classifiers is shown by Sofia et al. [29]. In addition, a one-class 

classification algorithm known as SVDD was used by Haitao et al. [31]  to capture 

overlapping regions in an imbalanced dataset. Once the overlapping region is 

identified, the next step is managing data in that region. Haitao et al. [31]  proposed 

that data with the overlapping region can be modelled using three ways. Discarding, 

merging and separating. The discarding involves ignoring data in the overlapping 

region learning from other data areas without overlap. An example of this approach is 
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seen in SMOTE with Tomek link [26], where discarding is used to improve classifier 

performance in bioinformatics. In contrast, discarding schemes is successful in the 

balanced or slightly imbalanced dataset with enough training data in both classes. 

However, it will be impractical to apply that in data with absolute rarity or extremely 

imbalanced. Merging approaches involves merging the data in the overlap region as 

one class and then built a two-tier classification model with the upper-tier focusing on 

the whole dataset with an additional class and the lower-tier on the overlapping region 

[25].  A separating scheme involves separating that data into overlapping and non-

overlapping and then treating each data subset separately to build the model. Tang et 

al. [29] proposed a multi-model classifier known as DR-SVM, combining an SVM 

classifier with a kNN algorithm under a rough set technique. The KNN is used to extract 

the overlapping region. Then, two SVM are used to train the two subsets of the 

resulting data at the end of the learning process; the classification result will show 

whether the patterns lie in an overlap region. The classification of test examples 

belonging to the overlap or non-overlapping region depends majorly on the aim of the 

application domain. The application of this approach will require a domain expert to be 

determined the class of the test examples. The drawback of this approach is that it can 

not be used in intelligent systems where domain expert input is not required to make 

decisions for the next task. All the approaches mentioned above either consider the 

overlapping data as noise and drop it during learning to increase the confidence level 

of the model.  

In a situation where extremely rare classes exist, handling the class overlapping in an 

imbalanced distribution is more challenging. In the case of the ACMS dataset, class 

overlapping occurs due to the fact that there is an infrequent number of components 

replacement (extremely rare minority) confirmed by data visualisation. Applying the 

approaches mentioned above is not feasible because the extremely rare examples 

could be ignored as noise, and also, intelligence aircraft maintenance systems are 

required to decide with absolute certainty due to the time-critical nature of the asset 

rather than waiting for domain experts intervention. Therefore, the particularities of our 

data (Heterogeneous in nature containing symbolic sequences, numeric time-series, 

categorical variables and unstructured text. It is a non-trivial task to translate free-text 

log messages into meaningful features) limit us from using an out-of-the shelf 



 

57 

approach. A newer approach is required to handle class overlapping in an ACMS 

dataset.  

3.1.3 Algorithm level techniques: Cost-Sensitive Approaches 

The algorithm level approach tackles the imbalanced learning problem by altering the 

learning algorithm or creating new ones to respond favourably to both classes during 

learning [15]. Cost-sensitive learning is an algorithm-level approach. The cost-sensitive 

method is explored by defining the cost of misclassification for each class. Determining 

the cost of misclassification is challenging in the traditional classification algorithms 

(such as support vector machines, decision trees, and more) because such algorithms 

presume that all classification errors carry the same cost. As a result, the loss function 

ignores the data distribution and focuses on minimising global values such as the error 

rate. Hence, majority-class examples are correctly classified, while minority-class 

samples are incorrectly classified. Indeed this solution can be accepted if the aim is to 

simply maximise the accuracy (that is, minimising the error rate) without minding the 

misclassification cost. However, suppose the rare examples are more important to 

classify, such as in the predictive maintenance domain (predicting failure is critical). In 

that case, more robust methods are required to handle the learning process. Moreso, 

in cases where the minority class is extremely rare, the algorithms can treat the 

examples as outliers of the majority and ignore them during learning [32]. In such a 

situation, the learning algorithm will end up creating a trivial model that will classify 

every example as a majority. Therefore, cost-sensitive learning takes into 

consideration the different costs that vary by type of classification (true-positive, true-

negative, false-positive, false-negative) across all samples with respect to different 

classes [16]. 

A cost matrix is used in cost-sensitive learning to assign class penalties to each class, 

which shifts class boundaries to reduce biases induced by class imbalance [33]. The 

cost matrix controls misclassification problems during the learning process. The most 

common approach used is increasing the cost of the minority class samples. The 

classifier will give more importance to the minority class during learning, decreasing 

the likelihood of misclassifying the minority samples as a majority [33].  
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Three general main cost-sensitive approaches have been proposed to deal with 

imbalanced class problems, the direct methods, the meta-learning methods, and the 

re-weighing methods. The direct techniques involve utilising or introducing 

misclassification cost directly into the machine learning algorithm [12]. Examples of 

such approaches can be seen in algorithms such as decision tree induction, where the 

misclassification costs are minimised through tree-building strategies [34]. The cost 

information is either used to split the data [35] or determine the subtree's pruning 

condition  [36]. Also, some methods include misclassification cost in the loss function; 

the example is seen in  Turney [37] hybrid genetic decision tree induction algorithm for 

cost-sensitive applications. The re-weighting cost-sensitive methods involve adjusting 

samples importance by assigning weights of different values to them. The most 

commonly used approach is re-weighting samples inversely proportional to the class 

size [38], the square root of class frequency [39], and the term frequency factor in 

supervised term-weighting schemes for text Classification [40]. Instead of using the 

number of classes heuristically Cui et al.[41] approach it differently, and they proposed 

a re-weighting scheme that uses the effective number of samples for each class to re-

balance the loss. Similarly, Yu-Xiong et al. [42] proposed a transfer learning approach 

for a skewed distribution dataset where knowledge from the data-rich classes in the 

head of the distribution is transferred to the data-poor classes in the tail. The model is 

designed to learn from the tail of a class distribution where minority data is available. 

These methods only focus on the class distribution at the global level, where the fixed 

weight is assigned to all samples in each class. However, not all samples play the 

same role in determining the model parameters (descriptive measures of an entire 

dataset that are used to generate distribution) [33][43]. That is, some samples have 

more contribution to determining the decision boundaries of the model than others. 

Hence, methods to re-weight is sample according to its effect on determining the 

models' decision boundary are required for effective learning.  

Many studies have been conducted recently to deal with sample-based re-weighting 

by the use of loss function. Qi et al.[44] developed a Class Rectification Loss (CRL) 

regularising algorithm for addressing class imbalanced problems. Tsung-Yi et al.[45] 

By redesigning the traditional cross-entropy loss, they developed a loss function known 

as focal loss (FL). It reduces the significance of the loss ascribed to well-classified 
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cases. Tomasz et al. [46] proposed a method based on training a separate linear SVM 

classifier for every example in the training dataset to handle imbalances. These 

approaches basically re-weights the training data by down-weighting the majority class 

and up-weighting the minority class samples.  

The re-weighting process may lead to training the whole dataset, which can be time-

consuming, especially in the case of deep neural networks that are capable of 

memorising the complete dataset. The Deep Neural Networks (DNN) are trained to 

find complex structures in a dataset by using a backpropagation algorithm. The 

algorithm calculates errors made by the model during training, and the models' weights 

are updated in proportion to the error. The drawback of this learning method is that 

examples from both classes are treated the same. In that situation where the data is 

imbalanced, the model will be adapted more to the majority class than the minority 

class, which means the model will be overfitted to the majority class samples, which 

are located at the overlapping region of the dataset affecting the performance of the 

models.  

The meta-learning method involves learning from the output of other machine learning 

algorithms. Most commonly, this means the combination of pre-processing techniques 

for training data or a combination of predictions from other machine learning 

algorithms, i.e. postprocessing of output from other algorithms without altering or 

modifying the original algorithm [47][48]. Meta-learning provides an enhanced learning 

paradigm where models can gain experience after many learning episodes, covering 

the distribution of related patterns in the dataset and using the experience to improve 

model performance [47]. Meta-learning methods are further divided into two, 

thresholding and sampling. Thresholding is based on basic decision theory that 

assigns instances to a class based on the minimum expected cost. An example of 

thresholding can be seen in the decision tree algorithm for the binary classification 

problem. A class label of a leaf node is determined based on the majority class of the 

training sample that reaches the leaf nodes ( if most of the training samples at leaf are 

positive, the label is assigned as positive otherwise negative) [49]. Whereas cost-

sensitive decision tree algorithms assign a class label to a node that minimises the 

classification cost [22][50]. On the other hand, the sampling meta-learning approach is 
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based on modifying the class distribution based on cost metrics, and this is mainly 

achieved through non-heuristic resampling methods.  

Recently, cost-sensitive meta-learning approaches have been developed to enhance 

the performance of re-weighting and direct cost methods [51][52].  Shu et al.[53] 

proposes a meta-learning process known as Meta-Weight-Net to lean the weighting 

function. Their approach is designed to learn an explicit weighting function from data 

adaptively instead of manually pre-specifying the weighting function. Also, Olowookere 

et al. [54] proposed a cost-sensitive meta-learning ensemble approach for detecting 

credit card fraud, Kulluk et al. [55] proposed a classifier based on Cost-sensitive meta-

learning and re[56]sampling techniques, Liu et al.[57] also suggested and resampling 

method by integrating meta-learning ensemble methods. Similarly, Ren et al. [58] 

proposed a meta-sampler with a balanced meta-softmax function as an extension of 

softmax function [59] for long-tailed Visual Recognition. Although these methods have 

some performance improvement levels, they are challenging to apply in real-life cases. 

For instance, Meta-Weight-Net [53] requires additional balanced distributed data for 

training. Also, meta-sampler [58], the learning process is computationally expensive. 

Therefore, to achieve good performance, learning from imbalanced data using cost-

sensitive methods is to design a loss function that does not require a hyperparameter 

or specially designed architecture that integrates data re-sampling with cost-sensitive. 

Another method for handling an imbalanced dataset is one-class classification. It is a 

method for finding anomalous data points compared to known-class examples, and it 

can help with difficulties like severely imbalanced datasets [56]. In other words, one-

class classification methods focus on and analyse only one class, which is usually the 

one of interest. In the case of an imbalanced classification problem, the labelled 

examples of the positive class(es) are either unavailable or insufficient to train a normal 

machine classifier [56]. Under some conditions, such as multi-modality of the domain 

space, one-class approaches to solving the classification problem may actually be 

superior to discriminative (two-class) approaches, such as decision trees or Neural 

Networks[60][61]. Many one-class solutions to imbalanced datasets have been 

proposed in the literature. Seliya et al.[56] provided a general literature review on one-

class classification methods and their potential applications. Some of the one-class 
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methods focus on the intrinsic characteristic data, and their interrelationship to the 

extreme imbalanced classification problem are. For example, to capture the 

overlapping regions in real-life datasets, Xiong et al.[31] employed the one-class 

classification algorithm Support Vector Data Description (SVDD). Raskutti et al. [62] 

show that one class learning is most useful when applied to extremely imbalanced sets 

of data with a high dimensional and noisy feature space. They believe that the one-

class strategy is similar to robust feature selection approaches but that it is more 

practical because feature selection can be costly to implement. One-class learning 

methods for time-series data are seen in Yamaguchi et al. l. [63] suggested a one-

class learning time-series shapelets approach known as OCLTS. The  OCLTS uses a 

stochastic sub-gradient descent approach to efficiently and simultaneously optimise 

shapelets and a non-linear classifier based on a one-class support vector machine. 

Experimental findings demonstrate the method's usefulness for interpretability and 

imbalanced binary classification. In Mauceri et al. l. [64] time-series are represented 

as vectors of dissimilarities derived from a set of prototypes. They analyse a Cartesian 

product of Twelve dissimilarity measures and Eight prototype techniques using this 

method (strategies to select prototypes). The dissimilarity-based representations are 

classified using a one-class nearest neighbour classifier (DBR). They claim to be the 

first to do a full one-class classification experiment using the literature's largest library 

of time series data sets. Finally, one-class classification methods for time-series 

concentrating on an extremely imbalanced dataset with class overlapping and minor 

class disjunct are lacking in the open literature. 

3.1.4 Ensemble Learning Techniques for Imbalanced ACMS Data 

Ensemble learning is a methodology where multiple machine learning models are 

trained to solve the same problem, and the output of the learner is combined to get 

improved performance. The method tries to improve the machine learning classifier's 

performance by combining the decision of other classifiers, known as weak learners 

[34][12]. The major course of error in machine learning algorithms is the presence of 

noise, variance, and bias in the dataset [65][50]. Ensemble classifiers are built to 

minimise these factors, which improves machine learning algorithms' stability and 

learning performance. A study by Zhou et al. [65] shows a broad overview of why and 

how ensemble learning improves prediction performance. The two most basic qualities 
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expected of a model are a low bias and a low variance, which frequently fluctuate in 

opposite ways. Indeed, the model is required to have enough degrees of freedom to 

resolve the underlying complexity of the data it is working with, but not too many 

degrees of freedom to avoid high variance and be more robust.  This is the well-known 

tradeoff between bias and variance.  

 

 

Figure 3- 3 Bias-Variance Tradeoff 

Most of the time, in ensemble learning, the weak learners don’t perform well by 

themselves either because they have a high bias or high variance. Therefore, the idea 

of the ensemble is to try reducing the variance and bias at the same time by combining 

multiple weak classifies to create a strong one for enhancing performance. The 

ensemble learning strategy can be constructed based on the flowing approach,  

boosting, bagging and stacking learning structures. The Bagging (bootstrap 

aggregating) methods involve training homogeneous weak classifies in parallel and 

independently and then combining them by averaging process [34]. The bagging 

implementation that is bootstrap aggregating [66]  can be seen in SMOTEBagging [67]. 

The boosting method involves training the homogeneous weak classifies sequentially 

in an adaptive way and combining them following a deterministic strategy.[34]. The 
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implementation of boosting learning can be found in AdaBoost [68], SMOTEBoost [69]. 

The stacking approach consists in training the homogeneous weak classifies in parallel 

and combining them using a meta-learning model to output the prediction of the bases 

learner on the different weak models [50]. 

In recent years diverse ensemble learning strategies has risen as a possible solution 

to the data imbalanced problems [70].  For instance, Galar et al. [71] provided a broad 

overview of different combinations of multiple classifiers to improve predictive accuracy 

using an imbalanced dataset. López et al.[12] studied about insight into the 

characteristics of the imbalanced dataset scenario in classification. The hybrid-

ensemble approach is another ensemble learning-based method that shows a more 

promising impact on imbalanced classification. The hybrid process involves 

incorporating the resampling or cost-sensitivity in either the weak classifier or base 

classifier levels. For example, an extensive study about hybrid classifies is seen in 

Wozniak [72], Galar et al.[73] develop an ensemble-based algorithm known as 

EUSBoost based on RUSBoost, which combines random undersampling with 

Boosting. Also, Krawczyk et al. [18] use a cost-sensitive ensemble-based decision tree 

algorithm to classify highly imbalanced datasets. López et al.[74] provided a general 

analysis of pre-processing with cost-sensitive methods. Liu et al. [75] integrate 

AdaBoost, and an ensemble learning approach is used to detect overlapping data. The 

study successfully in handling overlapping class problems, which is understandable 

when the data is balanced. However, it was not clear in the case where one class is 

extremely imbalanced combined with overlapping. Although, much research on 

tackling the imbalanced data problem using ensemble-based learning has been 

provided in the open literature [70]. The majority of them focus on either imbalanced 

data without minding other data complexities such as the overlapping or small class 

disjunct or focus on one of the complexities alone. Therefore, the ensemble methods 

still face challenges in tackling imbalanced datasets with the combination of extremely 

rare minority and overlapping issues. The open literature lacks an extensive study that 

uses ensemble learning to address extreme rarity, class overlapping, and class 

disjunct especially using a system log dataset. Therefore, the arising  research 

question is, how can an architecture of  ensemble classifiers be contructed for tackling 

extremely  imbalanced datasets taking into account class overlaping and small disjunct 
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problems. Usually, the number of weak learners is selected arbitrarily, which can result 

in redundancy for similar classifies [70].  For example, relating the size of weak learners 

to the data complexities such as reducing bias and variance in the extremely 

imbalanced dataset.  

3.1.5 Deep Learning Techniques for Imbalanced Datasets 

Deep learning is a branch of machine learning consisting of numerous processing 

layers that learn data representations at multiple levels of abstraction using artificial 

neural networks (ANN). Deep learning models have greatly improved the state-of-the-

art performance of models in many domains, such as large-scale data processing, 

image detection, and time series analysis, to name a few [7]. The success has been 

attributed to an increase in the availability of data,  hardware, and software 

improvements and many breakthroughs in algorithm development that speed up 

training and other data generalizations [16]. Despite the advances, little work has been 

done to investigate the effect of extremely imbalanced, class overlapping, and small 

class disjunct on the deep neural network architectures. Many researchers have 

agreed that the subject of imbalanced data with deep learning is understudied [76–79]. 

For resolving data imbalanced problems in predictive modelling, deep learning 

technologies can be combined with either data level or algorithm level solutions. In 

deep learning, the ANNs are trained to find complex structures in a dataset by using a 

backpropagation algorithm. The algorithm calculates errors made by the model during 

training, and the models' weights are updated in proportion to the error. The drawback 

of this learning method is that examples from both classes are treated the same. In a 

situation where the data is imbalanced, the model will be adapted more to the majority 

class than the minority class, which can affect the performance of the models [16]. The 

majority of the deep learning methods for imbalanced classification have depended on 

integrating either data resampling or cost-sensitive methods into the deep learning 

process.  For instance, Hensman et al. [80]  use random oversampling techniques to 

balance the data then train the balanced data using CNN. Similarly, Lee et al.[81] uses 

Random undersampling to balance the dataset for the purpose of pretraining CNN. 

The use of dynamic sampling to adjust the sampling rate according to the class size 

for training  CNN was proposed by Pouyanfar et al. [82]. Buda et al. [79] investigate 

the effect of random oversampling, random undersampling and two-face learning 
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across using several imbalanced datasets on deep neural networks. The literature 

review [16][83] reveals that most of the proposed deep learning resampling 

approaches for imbalanced problems use image datasets and CNN architecture. The 

need to Investigate the effect of imbalanced on other deep learning architectures and 

to use time-series is still lacking.  

On the other hand,  some studies have focused on solving the challenge of imbalanced 

classification using cost-sensitive methods, which involves modifying the deep learning 

process to favour both classes during model training. For example, Khan SH et al. [84] 

proposed a cost-sensitive deep neural network that can automatically learn robust 

feature representations for both the majority and minority classes. Also, Zhang et al.  

[32] propose cost-sensitive deep belief networks, and Wang H et al. [85] propose a 

cost-sensitive deep learning approach to predict hospital readmission. Also, the use of 

loss function to control biases has been shown in Wang S et al. [6]. The authors 

proposed a novel loss function called mean false error and its improved version mean 

squared false error for learning from an imbalanced dataset. Similarly, a new loss 

function called Focal loss was proposed by Lin et al. [45] for dense object detection in 

image classification. The focal loss was proposed to specifically handle the challenge 

of extreme data imbalances commonly faced in object detection problems, where the 

foreground samples usually outnumber the background samples. Normally, this type 

of problem is mostly solved using the one-stage detection approach or two-stage 

detection. The two-stage detection usually performance at the cost of computation time 

as compared to one-stage. In Lin et al.[45]  study, they  focused on determining how 

the one-stage approach with fast computation time can achieve a state-of-the-art 

performance compared to the two-stage. Their study discovered that the main cause 

of performance degradation in one-stage detection is the imbalanced data problem. 

The overwhelming background samples create imbalance, causing the majority class 

to account for most of the overall loss. To address that challenge, Lin et al. [8]. 

Proposed a loss function known as the focal loss (FL) which was derived from a normal 

binary cross-entropy loss. The FL is expressed as follows; 
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Focal Loss FL(𝑝,𝑡) = − (1 − (𝑝𝑡)) 
𝛾𝑙𝑜𝑔10 (𝑝𝑡)                                                 (3- 1)  

The new FL tries to reduce the impact that the majority of samples have on the loss by 

multiplying the cross-entropy loss with a modulating factor − (1 − (𝑝𝑡)) 
𝛾 Where the 

hyperparameter γ ≥ 0 adjusts the learning rate, the negative samples are 

downweighed. Their implementation shows that using one-stage detection with focal 

loss by selecting the right learning rate outperformed the two-stage approach. The 

implantation method was only compared with cross-entropy and tested for imbalance 

problems in objection detection.  The focal loss was later tested in image classification 

by K Nemoto et al.  [86].  The authors used CNN architecture then compare the 

performance of focal loss to cross-entropy loss for image classification. The open 

literature lacks a study investigating the focal loss's effectiveness on time-series 

systems log-based datasets, particularly for datasets such as  the log-based ACMS.   

3.1.6 Deep Reinforcement Learning for imbalanced dataset (ACMS) 

Deep reinforcement learning (DRL), which combines deep neural networks with 

reinforcement learning to produce advanced solutions, is garnering more academic 

attention and delivering state-of-the-art solutions, particularly for performance 

optimization [87]. For example, combining deep learning and reinforcement learning 

has resulted in the development of a new method known as the deep Q-network (DQN)  

[88–90]. DRL has made the use of reinforcement learning appealing in a variety of 

domains. The development of predictive maintenance models for complex systems 

such as aircraft is one such domain that can benefit from DRL. The algorithm level 

method or the data level technique can be used as a hybrid to DRL for imbalanced 

classification in predictive modelling.  

Deep reinforcement learning has recently shown promising results for data 

classification since it can aid classifiers in learning crucial characteristics or selecting 

good instances from heterogeneous data [91]. Feng et al. [92] constructed a deep 

reinforcement learning model for relation classification at the sentence level from noisy 

data. The learning process is divided into instance selectors and relational classifiers. 

The instance selector is an agent that selects high-quality sentences from input, 

whereas the relational classifier learns from previous data and rewards the instance 

selector. Finally, the model acquires a higher-quality data set as well as a more 
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effective classifier. Martinez et al. [93] propose a reinforcement learning framework for 

early classification in time-series data. The method introduces a set of states and 

actions and defines a reward function that aims to find a compromise between 

earliness and classification accuracy. Hashemi et al. [94] presented an ensemble 

pruning strategy that used reinforcement learning to choose the best sub-classifiers. 

However, because selecting classifiers was inefficient when there were many sub-

classifiers, this strategy was only suitable for traditional small datasets[89]. Lin et al. 

[89] formulated an imbalanced classification problem as a Makov sequential decision-

making process that uses agents as a classifier interacting with the environment to 

obtain an optimal policy. However, the process created a high time complexity due to 

the interaction between agent and environment. 

The available literature is lacking in many works on imbalanced classification using 

deep reinforcement learning. Also, the ACMS dataset lacks methodologies that have 

transformed DRL techniques for rare failure prediction modelling. As a result, a 

thorough investigation of the applicability of deep reinforcement learning for 

exceedingly rare event prediction in the context of predictive maintenance modelling is 

necessary.  

3.1.7 Imbalance learning: Summary of Key Literature Findings  

Table 3- 1 Key Literature Findings 

Key Findings 

Stage  Techniques Strength Weakness 

Data 
Level  

 

Sampling (over-
sampling, Under-
sampling and  hybrid) 

It is suitable for large 
datasets and slightly 
imbalanced problems.  

It gives a better 
approach to detecting 
minority class. 

It is easy to implement. 

It is prone to changing the 
original structure of the 
dataset, which can impact 
models' performance.  

Random oversampling 
can cause an overfitting 
problem.  

Under-sampling can 
reduce informative data 
points, and it discards 
potential useful data. 



 

68 

 

3.1.8 Performance Metrics in imbalanced learning domains 

This section contains the performance metrics that have been used throughout the 

thesis. Evolution criteria are critical when evaluating the classification performance of 

a machine learning algorithm, especially when the data is extremely imbalanced.  

Oversampling increases 
computational time.    

Feature Engineering: 

(Wrapper, Embedded, 
and Filter) [95–98] 

Reduce susceptibility, 
overfitting, storage 
memory, and 
processing. 

  

It reduces computational 
time and cost.   

 

Suitable for both time 
series, discrete and 
continuous datasets.  

It is ideal for a dataset 
with a high imbalanced 
ratio.  

 

Suitable for high 
dimensional datasets. 

Measure features 
independently without 
considering Interaction 
between all features 

Dimension reduction 
(PCA, LDA and 
Autoencoder) [99–
103] 

Produce useful features 
for learning.  

Measure features 
dependently, considering 
Interaction between all 
features. 

Increases computation 
time.  

Algorithm 
Level 

 

Cost-Sensitive 
Learning  

Produce good results for 
the minority class. 

Misclassification costs are 
often not known. 

Ensemble technique 
with Iteration 

Produce a strong learner 
by combining two or 
more weak learners. 

  

The high cost of 
computation. 
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3.1.8.1 Classification Matrices 

Correct classification and misclassification results can be shown using a confusion 

matrix in a binary classification problem, as seen in Table 3-2.  

 

Table 3- 2 Confusion Matrix 

 Actual Positives  Actual Negatives TP: True Positive  

TN: True Negative 

FP: False Positives 

FN: False Negative  

Predicted Positives TP (𝐶1,1) FP (𝐶1,−1) 

Predicted Negatives FN (𝐶−1,1) TN (𝐶−1,−1) 

 

When an example from the majority class is misclassified as an example from the 

minority class, a false-positive arises. False-positive is less serious than false-

negative, which occurs when a member of the minority group is mistakenly labelled as 

a member of the majority group. In this study, the term "false-negative" refers to 

misclassifying a components fault as "healthy," which is particularly risky because it 

could result in equipment damage. Similarly, false-positive means misclassifying a 

healthy component as faulty; It is possible that the cost of maintenance checks will rise 

as a result of this. One of the most significant challenges in imbalanced classification 

is the cost of misclassification, which is difficult to accurately define. True-positives and 

true-negatives are the correct classifications of positives and negatives, respectively.  

 

As seen in Table 3-2 for classification models, confusion matrices are often used to 

measure effectiveness in the validation of models. In this study, component failures 

are considered a positive class, while non-failure is considered a negative class.   

Definition of formulae used in this study. 

Patterns with component Failure = Positives  

Patterns without component Failures = Negatives 
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True Positives (TP) = patterns with components failures that have been classified as a 

failure. 

True Negatives (TN) = patterns without component failure who have been classified as 

non-failure  

False Positives (FP) = patterns with components failure who have been classified as 

non-failure 

False Negatives (FN) = patterns without components failure who have been classified 

as  failures  

 Common metrics extracted from these are:        

The true-positive rate (TPR), also known as  Sensitivity, measures the proportion of 

components with failure who have been classified as component failures.  

TPR/sensitivity  =  
𝑇𝑃

𝑇𝑃+FN
          (3- 2) 

   

The false-negative rate (TNR), also known as  Specificity, measures the proportion of 

components without failure that has been classified as non-failure components.  

TNR/Specificity  =   
𝑇𝑁

𝑇𝑁+𝐹𝑃
           (3- 3) 

The false-negative (FNR) measures the proportion of patterns without components 

failure who have been classified as failures.  

FNR =   
𝐹𝑁

𝑇𝑃+𝐹𝑁
         (3- 4) 

                        

False Positive rate (FPR) measures the proportion of patterns with components failure 

that has been classified as non-failure. 

FPR =  
𝐹𝑃

𝐹𝑃+𝐹𝑁
           (3- 5) 
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A false-positive arises when an example (pattern) from the minority class is 

misclassified as an example from the majority class. False-negative is less serious 

than false-positive when patterns with component failures are considered positives 

(minority class) and patterns without component failures are considered negatives. The 

term "false-positive" is used in this study to describe misclassifying a malfunctioning 

component as "healthy," which is particularly dangerous because it could cause 

equipment damage. Similarly, a false negative involves misclassifying a working 

component as faulty; as a result, the extra cost of maintenance checks may increase.  

The performance measurements are often used to compare several models using a 

ROC plot. In the case of failure prediction of an aircraft component, sensitivity is the 

model’s ability to correctly predict failure, leading to component replacement 

(probability of positive prediction given that the failure results in component 

replacement). Model specificity relates to the model’s ability to correctly predict non-

failure, resulting in no replacement (probability of negative prediction given that no 

failure occurs). 

Typically, accuracy is regarded as the most major parameter for assessing a 

classifier's performance. However, using accuracy to measure performance in extreme 

imbalanced issues can be misleading since, in order to attain high overall accuracy, 

classifiers would be biased towards the majority class. For example, a classifier that 

achieves a 90% accuracy in a dataset with a 5% imbalance ratio is not accurate if it 

labels all cases as negative. Accuracy can be represented as   

 Accuracy    = 
𝑻𝑷+𝑻𝑵

𝑻𝑷+𝐅𝐍+𝑭𝑷+𝑻𝑵
       (3- 6) 

           

Some alternative metrics are created using the confusion matrix to measure the classifiers' 

performance more precisely in the presence of an excessively imbalanced situation, taking 

into consideration the class distribution.  

True Positive Rate (TPR) Measure the percentage of positive examples that are 

correctly classified, while True Negative Rate (TNR) Measures the percentage of 

negative examples that are correctly classified.   
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False Positive Rate (FPR): Measures the percentage of negative examples that are 

misclassified which is represented as.  

FPR = 
𝑭𝑷

𝑭𝑷+𝑻𝑵
                   (3- 7) 

False Negative Rate (FNR): Measures the percentage of positive examples that are 

misclassified, represented as. 

FNR = 
𝑭𝑵

𝑻𝑷+𝑭𝑵
                                                                                                  (3- 8) 

   

Precision (p): is the measure of classifier exactness, the percentage of true positive 

predictions made by the classifier that is truly correct. So, low precision indicates a 

large number of False Positives, represented as. 

 Precision (p) = 
𝑻𝑷

𝑻𝑷+𝑭𝑷
        (3- 9) 

             

Recall (r) is the classifier completeness measure and is defined as the percentage of true 

positives that the classifier can correctly detect. So, low recall indicates many False Negatives, 

represented as.  

Recall (r) = 
𝑻𝑷

𝑻𝑷+𝑭𝑵
         (3- 10) 

          

F1-Score or F-measure (F1): Measures the harmonic mean precision and recall 

represented as. 

F1:- 𝟐 ∗
𝑷𝒓𝒆𝒄𝒊𝒔𝒊𝒐𝒏∗𝑹𝒆𝒄𝒂𝒍 

𝑷𝒓𝒆𝒄𝒊𝒔𝒊𝒐𝒏+𝑹𝒆𝒄𝒂𝒍𝒍 
        (3- 11) 

          

The Geometric Mean (G-Mean) is a metric that measures the balance between 

classification performances on both the majority and minority classes. G-mean 

measures the root of the product of class-wise sensitivity; it attempts to maximise each 

class's accuracy and keeps the accuracy balanced. This measure is important in 
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avoiding overfitting the negative class and underfitting the positive class. G-mean is 

represented as.  

G -mean = √𝒑 ∗ 𝒓         (3- 12) 

Receiver Operating Characteristic Curve (ROC) Curves: ROC is a graphical 

representation that illustrates the classifier's diagnostic ability as the discriminant 

threshold is varied. An excellent model has an area under the curve AUC with a value 

near one, meaning the model has a good separability measure.  

Assuming we have two classes, the positive and negative classes ROC curve of those 

classes' probability would be. 

 

Figure 3- 4 ROC curve for an ideal situation 

Figure 3-4 shows the ROC curve for an ideal situation.  The green distribution curve 

represents the positive class (component failure), and the black distribution curve 

represent the negative class(non-failure). When the two curves do not overlap, the 

model has an ideal separability measure (the model can correctly distinguish between 

positive and negative classes). 
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Figure 3- 5 ROC Curves showing overlap distributions with AUC=0.8 

Figure 2-5 shows a situation when two distributions overlap. In this case, type 1 and 

type 2 errors will be introduced. Based on the value of the threshold, the error can be 

minimised or maximised. When AUC is 0.8, the model has an 80% chance of 

distinguishing between positive and negative. The model AUC = 0 is the worst 

separability measure (the model is reciprocating the classes, which means the model 

predicts a negative class as a positive class and vice versa). When AUC = 0.5, it means 

the model has no class separation capacity whatsoever. 

3.2 The Big Data Analytics  in Aerospace  

The term 'Big Data' represents a new generation of technologies and architectures 

designed to extract insight from a large amount of data by allowing processing and 

analysis in real-time. Big data is characterised by volume velocity variety and veracity 

in some cases with large magnitude [104]. Data analytics is the process of inspecting, 

cleansing, transforming and modelling data using diverse techniques to discover useful 

information from data, providing actionable insight for support and decision-making 

[105][106]. The application of data analytics can be seen in many domains for different 

purposes, as shown in Figure 3-6.  Examples of those domains are healthcare, banking 

and finance, engineering, aerospace, marine, to name a few. Big data analytics is used 

in the banking and finance industry to detect financial crimes and fraud, enhance risk 

management, and understand customer behaviour patterns [107][108]. In healthcare, 

data analytics is used to detect diseases and monitor patients' conditions [109]. In 

aerospace, big data analytics is changing the way airlines are doing business and 

0 0.5 1 

TN 

AUC=0.8 

TP 
TP TN 

0 1 

1 

0 

TPR 

FPR 

ROC 



 

75 

enhancing system availability by reducing unscheduled maintenance. Badea et al. 

[104] and Xia BS et al. [105] studied the application of data analytics in different 

domains and pointed out that data analytics solutions are more domain specifics, 

meaning solutions from one domain cannot be directly applied to another.  

 

Figure 3- 6 Industrial applications of big data 

The recent advancement in artificial intelligence (AI) technologies, such as applying 

the Internet of Things (IoT) in the manufacturing system, has produced a technology 

known as industry 4.0.  These technologies are actualising the movement towards 

smart manufacturing (also known as digitisation manufacturing). OEMs embed even 

more sensors on the different aircraft components to monitor and record a larger 

number of aircraft system parameters that contribute to the large amount of data 

generated from modern aircraft. Big data analytics is increasingly becoming relevant 

in the aerospace industry, making it possible to move towards 'smart aircraft'. Smart 

aircraft technology is when aircraft components can communicate (components -to-

Component’s communication) without humans' interference. Embedded devices can 

carry out edge analytics, and the output can automatically influence other systems 

working conditions.  The component's interactions can enable the component to 

automatically adjust to working conditions based on an output from other components. 

An example can be seen as follows; A self-aware cabin system, which monitors the 

sensitivity of loads, overhead storage bins will immediately indicate when passengers 

stow luggage so that other passengers won't have to search around to find a free spot. 
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Aircraft smart seat systems can also report empty seats and show passengers who 

have not fastened their belts, trays, and legs. This will make boarding more 

manageable and help keep flights on schedule. The data generated by the smart 

systems can be used to retrain the system for performance improvement, such as 

making the aircraft more responsive to passengers demands. Many research has 

shown different approaches to implementing smart systems in a modern aircraft 

system. For instance, Daniel et al.[110] shows the architectural design and the 

conceptual framework for a smart maintenance decision system using big data 

analytics. Devish et al.[111] has reviewed some deep learning approaches for aircraft 

maintenance.    

The power of intelligent maintenance systems lays in the historical dataset. According 

to Oliver Wyman's survey of the year, 2019 estimated that the global fleet of aircraft 

would generate more than 98 million terabytes of data by the year 2026 [112][113] (see 

Figure 3-7). The large volume of data collected and proper application of artificial 

intelligence technologies could significantly transform modern aircraft operations. 

 

Figure 3- 7 Oliver Wyman's survey on the future of big data in aerospace [112]. 

3.2.1 Artificial Intelligence -AI 

Artificial Intelligence (AI) is created by a computational study of how the human brain 

functions (how humans think and make decisions). The goal of AI is to build machines 

that act, work, and possibly think like humans. Data-based (Machine learning) and 
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symbolic-based AI are two different types of AI (also known as symbolic learning). 

There are various sections of AI, as shown in Figure 3-8. Speech recognition (SR) is a 

field that attempts to replicate how humans communicate using language by listening 

and speaking. Natural Language Processing (NLP) is an area of artificial intelligence 

that allows robots to read and write text in the same way humans do. Computer vision 

gave robots the ability to see with their eyes and process information in the same way 

that humans do.   

 

Figure 3- 8 AI-Based Approach for Predictive Maintenance 

Humans can see and process images with their eyes. Similarly, AI enables machines 

to recognise objects in their environment and generate a representation of that world. 
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The robotics industry gave the same opportunity for machines to become familiar with 

their surroundings and move around freely. Humans can group images together based 

on patterns, and AI can do the same using pattern recognition.  The recent advances 

have provided machines with more capabilities to perform complex pattern recognition 

than humans [114] because more data with varying degrees of dimensions can be fed 

into machines to produce better results than humans. This field of AI is called data 

analytics and machine learning. 

3.2.2 Application of AI and Big Data Analytics in the Aerospace Industry 

In modern vehicles such as aircraft with installed IoT devices such as embedded 

sensors gave the capability to record more data covering many parameters (such as 

temperature, humidity, pressure, speed, altitude, stability, and other details during flight 

operation). The obtained data can be utilised to examine the health of various 

subsystems and components by providing failure records that can be used for aircraft 

diagnostics and prognostics as well as other ground-based maintenance tasks.  

The aerospace industry can better understand the challenges of handling big data and 

its opportunities than other domains. According to Oliver Wyman's Survey of 2019 

[104], it is shown that a single modern Jet engine can generate up to 10TB worth of 

data in 1:30 minutes of flight time, with many hundreds to- a thousand flights per day, 

data volume could reach up to many Petabytes. There could be challenges in 

transforming this type of big data for actionable insight, but the advantages are 

worthwhile. For instance, by deploying the right data analytics, airlines, OEMs, and 

MROs can maximise their operational efficiency, improve planning and strategically 

align decision making. Data-driven predictive maintenance models can also be 

deployed to mitigate unscheduled maintenance, which will help airlines maximise 

revenue by keeping their fleet up and running. The aviation industry's technological 

development is changing the way data is collected, stored, maintained, processed, and 

analysed for more informed insight. The nature of the data generated comes with 

newer analytical challenges that require newer approaches to handle them [115].  

The aerospace industry's technology advancements have produced a highly 

competitive market, forcing airlines and other businesses to seek out new ways to 

improve service delivery [116]. The key is to continuously improve product quality and 
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operational efficiency to remain viable and competitive [117]. As a result, every 

organization's goal is to improve vehicle availability and system reliability, which 

necessitates implementing a more cohesive and thorough maintenance programme at 

a greater expense. As a result, every company strives to reduce overall costs while 

maintaining efficient operations. They use artificial intelligence (AI) and other 

associated technologies to tap into the massive quantity of data accessible to 

understand their fleet's behaviour better. [118].  

Big-data analytics benefits can be seen throughout the entire life cycle of aircraft 

development, from the early design stages to production to in-flight operations to 

maintenance support [119]. For example, data analytics is critical in designing and 

testing automobile engines and parts. Any risks that could have an impact on the 

vehicle or part quality can be found early by analysing data from the production cycle 

during testing. These investigations' findings can also be used to improve component 

designs in the future. Aircraft operators and maintenance engineers can utilise the 

performance and health data to find flaws and predict future occurrences. Airlines may 

also forecast when certain vehicle parts are likely to fail and do preventative 

maintenance. Onboard sensors create data that analytics systems can employ to 

collect performance and operational data while monitoring the health of aircraft 

components in the cockpit in real-time. Based on the aircraft's performance data, data 

analytics can also be utilised to optimise in-flight operations by estimating an arrival 

time, fuel consumption, and aircraft mass, among other things. These parameters can 

be utilised to optimise the flight route for the best possible fuel efficiency.  

 Many new data analytics technologies have continued to emerge in the aerospace 

industry. The Network Edge Analytics (NEA) capabilities are one of these solutions. 

NEA is a data analysis model in which incoming data streams are analysed in a non-

central place such as a switchboard or connected notes before being moved to the 

core location for analyses [117]. The analytics solutions that can be implemented both 

at the network edge and network core are more advantageous. More reviews about 

NEA can be found in Bakshi et al. [115] and Satyanarayanan et al. [120]. A critical 

review of the techniques, tools, infrastructure and general application of data analytics 

for health monitoring, predictive analysis, and optimisation of aircraft performance can 
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be found in Weerasinghe et al.[121]. Their study further shows the significant capability 

to address contemporary challenges in applying data analytics in aircraft. Data 

analytics framework for improving the quality, performance, and health monitoring of 

aircraft auxiliary power units (APU) is proposed by Xu et al.[122]. Likewise, Yang et al. 

[123] propose a big data platform for civil aircraft to facilitate civil aviation companies' 

operations. The architecture of the platform is based on the standards of cloud 

computing. It provides techniques to support decision-making, such as maintenance 

scheduling, prognostics alerts, diagnostics, fuel-saving, and airline schedules. 

Sciancalepore et al. [124] developed an IoT-based measurement system for 

monitoring aerial vehicles. It has the capability of coordinating a collection of 

large datasets from embedded devices installed on the aircraft.  

In conclusion, this section provides a brief overview of the use of data analytics in the 

aerospace industry. Data is becoming more accessible as a result of technological 

advancements, but it also brings with it new analytical hurdles. These problems 

necessitate innovative solutions in order to extract knowledge from them and make 

better decisions. Many data analytics methodologies and solutions established for 

other industries, such as healthcare, banking, online applications, and so on, were also 

proven to be incompatible with the difficulties faced by the aerospace industry. More 

study on edge analytics for aviation use is also required. There is also no unified data 

analytics solution for network edge and core analytics in the free literature. This is 

because, as a competitive advantage strategy, businesses want to process their data 

internally.  

3.3 Predictive Maintenance in Aerospace 

Over time, aircraft maintenance procedures have evolved, but the purpose has 

remained the same: to protect the aircraft. Mainly, maintenance strategies can be 

categorised into three, failure-based (Reactive), time-based (preventive), and 

condition-based (predictive) maintenance.  

Failure-based maintenance, also known as reactive maintenance, is carried out after 

a failure, as shown in Figure 3-9. Reactive maintenance is only appropriate for non-

critical components because it increases unscheduled downtime and makes 

maintenance difficult to plan. Doing business with this form of maintenance is quite 
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expensive, especially in a complicated and safety-critical system like an aircraft. 

Preventive maintenance was initially developed to overcome reactive maintenance 

challenges by periodically 

 

Figure 3- 9  Types of Maintenance 

scheduling assessment and replacement of components [125]. In Preventive 

maintenance, maintenance activities can be scheduled, such that human resources 

requirements can be planned, spare parts can be ordered as needed. This can reduce 

events of unpredictable failure because the component can be replaced before failure 

[126]. Preventive maintenance can be optimised to reduce unnecessary failure, which 

in turn reduces downtime and associated cost.  One of the significant challenges with 

preventive maintenance is knowing when to do maintenance since failure can occur 

even before the next scheduled repair. In planning for preventive maintenance, one 

must be careful, especially in a safety-critical system. Also, because preventive 

maintenance is time-based, components can be prematurely replaced. Resources can 

be underutilised if components are prematurely replaced, which adds to the cost 

[116,127]. Therefore, preventive maintenance is unable to completely remove 

unscheduled maintenance scenarios, which incurs additional maintenance cost. 
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However, if machine failure can be predicted, maintenance can be scheduled right 

before it occurs.   

Predictive maintenance tries to mitigate the drawbacks of preventive maintenance. The 

goal is to prevent unexpected failures by continually monitoring the health condition of 

aircraft components. This will enable estimation of time to failure, diagnose problems 

in complex vehicles, and help identify the parts that need to be fixed, minimising 

downtime and maximising vehicle life. Predictive maintenance requires the 

development of robust algorithms that are capable of predicting in advance a time 

when a component will fail and when maintenance will be required.  

Many new study ideas have been offered in the literature, all of which focus on 

employing data analytics to improve aircraft maintenance. A systematic literature 

review about data analytics applications and related technologies in maintenance is 

shown in  Buam et al.  [128]. Their study aims to generally provide a literature-based 

evaluation of the application of big data analytics for maintenance. Moreover, a data 

analytics model for managing aircraft routing and maintenance staffing with price 

competition using the Stackelberg-Nash game algorithm developed by Eltoukhy et 

al.[129]. The authors designed the model to capture the interdependence between 

aircraft routing of airlines and maintenance providers' maintenance staffing to reduce 

cost savings for both airlines and maintenance providers. Likewise, Hiruta et al. [130] 

design a data analytics process for condition-based maintenance. Their work aims to 

bridge the gap between the data scientist and maintenance engineers in developing 

predictive maintenance models. They developed an engineering tool that specifies a 

workflow stating roles for data scientists and maintenance engineers in the modelling 

process. Puttini et al. [131] discuss how big data analytics can be incorporated into the 

Integrated Vehicle health management (IVHM) platform. They also present business 

benefits derived for such incorporation, which include but are not limited to optimisation 

in vehicle design, operation, and maintenance. Also, Nayak et al.[132] show how big 

avionic data (sensor data and LRU fault data) can be used to provide on-board and 

off-board prognostics using OSA-CBM and Hadoop framework. Similarly, a study 

conducted by Dubrawsk et al. describes how big data analytics techniques are used 

for public health surveillance to support aerospace fleet management [30] effectively. 
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Their study focuses on techniques for early warning of systematic failures of aerospace 

components. [133] proposed a platform for integrating big data technology into the 

process of civil aircraft health management.  

3.3.1 The Role of IVHM in the Aerospace Industry  

NASA first conceptualised Integrated Vehicle Health Management (IVHM) in 1992 in 

an article titled "research and technology goals and objectives for IVHM" [134]. It 

describes a set of unified systems to assess the current or future performance that 

enables effective and efficient health assessment of the target vehicle before, during, 

and after the operation. It accounts for collecting data relevant to an asset's present 

and future performance and transforming it into information to support operational 

decisions. This includes the ability to perform timely status determination, diagnostics, 

and prognostics [135–137]. IVHM technologies provide many advantages to vehicle 

management, such as reducing maintenance cost, provision of precise scheduled 

maintenance, real-time prognostics and diagnostics services, timely arrangement for 

spare parts, and provision of more realistic condition-based maintenance. Integrating 

AI in the IVHM system can increase the effectiveness of its applicability. 

Internet of Things (IoT) has evolved tremendously in all spheres of our lives, ranging 

from social to industrial applications. The concept of IOT describes intelligent 

networking of physical smart devices (such as sensors, actuators, and switches) using 

the internet network, which enables them to collect and share data.  IoT is already 

playing a significant role in aircraft maintenance and safety. Towards smart-

maintenance, AI-Based IVHM algorithms can interpret and organise data from sensors 

and send the data in a report which can easily be comprehended[138]. This algorithm 

also identifies and reports on potential failures in real-time and arranges proper 

timelines for repairs.  As seen in Figure 3-10, IoT enabled cyber-physical systems to 

generate data, and the data goes through a pre-processing phase to be transformed 

for machine learning. The performance of the predictive model is highly dependant on 

the pre-processing methods. After the data is transformed, AI-based reasoning 

algorithms are trained to produce a model that provides intelligent maintenance 

decisions. 
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Figure 3- 10 Example of a Cyber-Physical System IVHM Framework 

Many tools and software have been developed and successfully deployed using IVHM 

architecture. For example, the Livingstone -open-source model-based diagnostic 

reasoning tools developed by NASA Ames Research Centre (NASA-ARC) has been 

successfully implemented on X-34 and X-37 [139][140]. Integrated System Health 

Management (ISHM) and Beacon-based Exception Analysis for Multi-mission (BEAM), 

reasoning and diagnostic tools developed by NASA -ARC and the Jet Propulsion 

Laboratory (JPL), were successfully applied in the X-33 project [141]. Some aircraft 

condition monitoring system that has been developed and successfully implemented 

are as follows. The health and usage monitoring system (HUMS), the aircraft condition 

monitoring system (ACMS) [142], the engine monitoring system (EMS), IVHM and 

Engine Health Monitoring EHMS in the aircraft and engine systems [143], the 

integrated diagnostics and prognostics system (IDPs) [144,145], integrated condition 

assessment system (ICAS) [146]. Crew Information Service/Maintenance System 

(CIS/MS) was recently implemented in Boeing B787 aircraft. The CIS/MS is 

responsible for applications such as central maintenance systems and electronic flight 

bags. IVHM was named the Prognostic Health Management (PHM) and the Autonomic 

Logistics in the United States joint strike fighter JSF-35 [147]. In implementing the PHM 

- In-flight and connected with the joint distributed information system (JDIS) in the 
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ground forms a complete IVHM system [148]. JDIS implementation was recognised as 

the highest level of U.S. military condition-based maintenance (CBM) technology [149]. 

Its operation and safety system is designed on-board, and the control of maintenance 

scheduling and fleet management is deployed on the ground station [148]. The logical 

reasoning system structure is adopted, and the inference engine is designed at the 

member, regional, and aircraft levels [149].  

IVHM system's implementation has shown significant benefits to aircraft maintenance. 

However, some areas need further research. One of the challenges is the inter-system 

data compatibility resulting from inter-system connectivity in the IVHM ecosystem due 

to different manufacturers' architectural designs, hence having a different data pre-

processing method. Therefore, integrating the data for analysis becomes challenging 

[150].    

2.3.2 Digital Prescriptive Maintenance for Complex Systems  

Before the advent of IoT, vehicle maintenance was mainly based on prearranged time-

based schedules linked to the vehicle's age, the number of schedule cycles, or usage. 

It was not linked to the vehicle's real-time condition of the vehicle. Time-based 

maintenance is susceptible to unnecessary onsite vehicle inspections or visits to the 

service centre. Potential failures can go unnoticed between the schedules, and there 

are small or no useful insights for the OEM's and MRO's. 

 The concept of prescriptive maintenance in a complex system is gaining more 

research attention, especially in the aviation industry [151]. Prescriptive maintenance 

is advanced predictive maintenance. It leverages preventive, descriptive, and 

predictive maintenance approaches and capabilities to optimise system performance 

completely. Prescriptive maintenance taps the power of IoT, big data analysis, 

machine learning and dynamic case management to help vehicles become proactive 

participants in their maintenance [152]. This type of maintenance promises cost saving 

over time-based preventive maintenance because maintenance is carried out only 

when warranted. Figure 3-11 shows the functional flow for digital prescriptive 

maintenance for aircraft. As we can see, aircraft data from different sources recorded 

over time can be analysed in the data analysis platform by applying machine learning 

and other related technologies. The pre-processed data can then be used to train 
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predictive models. Predictive models can predict when a component will fail so that 

maintenance can be planned. A prescriptive section can recommend the type of repairs 

needed. The smart Interaction can leverage IoT to adjust parameter based on the 

conditions of others automatically.  

 

Figure 3- 11 Functional Flow for digital Prescriptive Maintenance for aircraft 

Despite the advantage of predictive maintenance, most airlines still rely on preventive 

maintenance strategies. Preventative maintenance is a strategy where vehicle 

maintenance procedures are defined and scheduled to be performed periodically. 

However, when an unexpected failure occurs in-between the defined schedule period, 

the vehicle becomes unavailable until this problem is fixed. Predictive maintenance is 

developed to handle some of the drawbacks of preventive maintenance.  

One of the design goals of predictive maintenance is to avoid unexpected failures by 

monitoring the vehicle condition and providing failure alerts well in advance. Predictive 

maintenance models are developed to forecast when likely the vehicle will fail, so that 

maintenance can be systematically scheduled to occur way in advance before the 

failure point. Predictive maintenance can be modelled in physics-based, knowledge-

based, and data-driven-based [153]. Physics-based modelling can be defined as a 

simplified mathematical description of a system or process to assist calculations and 

predictions [154]. The prediction is based on a mathematical equation inside the mode; 

therefore, it uses a limited amount of data compared to other methods. However, the 
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physics-based model is challenging to create and implement, especially for complex 

systems, because it is sensitive to the system's design and material properties. Also, 

enough component information and a good knowledge of the failure mechanism is 

highly required to formulate the model.   

The knowledge-based model, also known as the expert system, uses defined rules or 

fuzzy logic to solve complex problems. The rules are set based on the knowledge of a 

domain expert. Converting domain knowledge to a set of rules is challenging, requiring 

another prognostics technique. Also, the set of rules needs to be updated anytime 

there is any system update. This process can be cumbersome and sometimes 

impractical, especially in a complex system with many components and processes.  

 The data-driven approach involves training machine learning algorithms using large 

historical datasets to automatically learn a system behaviour model. A data-driven 

approach is easy to implement, flexible, adaptable with a low cost of implementation. 

However, large historical data representing failure is needed, and getting such data is 

always challenging. However, the advancement in technology data is increasingly 

available, making it more appealing to use a data-driven approach for developing 

predictive maintenance models in complex systems. The hybrid of the two or three 

approaches to predictive maintenance is also possible [155]. 

In conclusion, both predictive maintenance modelling approaches have inadequacies 

in real-world scenarios, and there is no universally accepted predictive modelling 

approach. Adapting modelling is dependent on the scenario at hand.  Data-driven and 

machine learning approaches are desirable in developing predictive models for 

complex systems such as aircraft. However, it requires a large dataset to provide 

desirable results. 

3.3.3 Application of Machine Learning for Predictive Modelling 

Data-driven predictive maintenance modelling depends majorly on machine learning 

techniques to build models. The use of machine learning for developing predictive 

models has significantly increased in recent times. The growth is due to technological 

advancement, which provides more computational power, processing speed, and 

improved data storage. The emerging AI technologies have also made processing 



 

88 

larger, unstructured, and more complicated datasets easier and faster, producing 

models with improved performance. Machine learning is divided into the following 

major categories; supervised learning, unsupervised learning, semi-supervised 

learning, and reinforcement learning. Supervised learning is a type of machine learning 

which uses labelled data to train a learning algorithm. In other words, the input and 

input are known, and the algorithm learns by comparing the actual with correct inputs 

and finds errors. Supervised learning is mostly used for classification or regression 

problems. Unsupervised learning is a type of machine learning that draws an inference 

from an input dataset without label responses. Unsupervised learning is mostly used 

to find hidden patterns in a dataset—for example, the k-means algorithm partitions data 

into k distinct clusters based on the centroid's distance.  

As seen in Figure 3-12,  reinforcement learning is an area of machine learning involving 

an agent taking action in an environment, and a reward is returned for every action 

taken [156].  

 

Figure 3- 12 Parameter Interaction in Reinforcement Learning 

The 'environment' is the world through which the agent moves, 'State' is a concrete 

situation in which the agent finds itself, the reward is the feedback that measures the 

success and failure of an agent's action. Choosing the suitable type of machine 

learning approach to use is highly dependant on the challenge at hand.  

Conditioned-based Maintenance (CBM): In CBM, sensors are installed to monitor a 

vehicle's health performance. Thresholds can be defined and subsequently be 
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adjusted manually based on human-defined rules so that when sensor data violet 

thresholds rule, an alert is triggered to signal potential fault. This type of maintenance 

approach can only be feasible in monitoring a small number of embedded sensors or 

components. The component-based approach is limited to a complex system with 

many parts. Managing each component will be cumbersome and, in most cases, 

impractical. On the other hand, the machine-learning approach does not require rules 

or manual threshold settings. A large amount of data can be fed into a machine-

learning algorithm and trained automatically to cluster similar components, identify 

patterns and correlations, and detect abnormalities. The algorithm can identify 

components degradation using related failures record and predict maintenance needs 

based on behavioural analysis.  

Machine learning has been applied widely in many domains to solve complex analytical 

problems. Recently, substantial research and development in the aerospace industry 

have focused on optimising asset maintenance through AI or machine learning 

methods. For example, Wim et al.[157] developed a data-driven predictive model for 

aircraft component failure prediction. Also, predictive line maintenance optimisation of 

redundant aeronautical systems subjected to multiple wear conditions is developed by 

Wlamir et al.[158].  

Finally, machine learning has proven to be beneficial in developing predictive 

maintenance models. However, to train the model for more accurate prediction, a vast 

amount of data is required. As a result of the recent advancements in artificial 

intelligence, more data is becoming available, allowing for the development of more 

efficient models. Despite these advantages, several discovered issues require further 

investigation, such as the data imbalance problem and high dimension space.  

3.4 Research Gaps  

This thesis considers the following research gaps.  

Research Gap 1-  Lack of algorithm to extract patterns log-based ACMS data for 

predictive maintenance model.  

The large log-based dataset is a fruitful source of information for equipment diagnostics 

and prognostics; however, elaborate data pre-processing is necessary to harness such 
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valuable pieces of information. Analysing the large system log to develop predictive 

models is the main challenge of data-driven predictive maintenance [4]. The raw ACMS 

data contains heterogeneous characteristics, including numeric time series, symbolic 

sequence, categorical variables, and unstructured text, requiring an intensive and 

meticulous pre-processing approach. The challenge of predicting rare failure using a 

large log-based time-series dataset is that the data distribution has irregular patterns 

and trends, which affects the learning of temporal features. Some data complexities 

coexist with imbalance problems, which can negatively impact the performance of 

data-driven models, such as noise, outliers, class overlapping, small class disjuncts, 

small sample size, and extreme minority class. 

Research Gap 2- Most studies for rare failure prediction problems for the vehicle 

predictive maintenance model usually validate their work on a slightly 

imbalanced dataset while extreme failure cases are ignored: Frequent events 

create an imbalanced dataset. Meaning having significantly fewer samples in one class 

(say positively labelled) than other classes with large samples (say negatively 

labelled). The positively labelled data can be around 5–10% of the total dataset in a 

slightly rare event problem. In an extremely rare event problem, the positively labelled 

data can be 1% or less of the whole dataset. Training machine learning algorithms with 

an extremely imbalanced dataset with irregular patterns and trends can cause biases 

in the classification process, resulting in model performance degradation. Hence, 

producing a high false-positive rate and imprecise prognostics. Most of the open 

literature research validates its work on a slightly imbalanced ratio of the total dataset. 

However, in some real-world problems, such as big data, it can contain an imbalance 

ratio of up to 1% or less; in such cases, the existing solution becomes limited.  

Research Gap 3-Extremely imbalanced dataset with class overlapping and Small 

class disjunct problem in ACMS dataset: - Diversity analysis is required to 

investigate the variation and bias rate and determine its effects in imbalanced 

ensemble learning models. There is no clear indicator of how classifiers should be 

constructed and connected in a large data domain. Also, the open literature lacks a 

study that investigates the impact of the combination of class Imbalance, small 

disjuncts and skewed class distribution on classifier performance, especially using the 
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ACMS dataset. Also, existing methods for handling slightly imbalanced datasets are 

understandable for certain types of datasets (such as image classification). However, 

because there may be no precise temporal contexts and observable in text-sequence 

learning, it is questionable whether training severely imbalanced, heterogeneous time-

series data using the existing approach may increase model performance.  

3.4.2 Summary of other potential Gaps in the imbalance learning 

The following research gaps are future directions that the thesis does not cover. 

1. Analysing the structure of classes present in the dataset: In the analysis of the 

class structures, it was discovered that there exist some data complexities that coexist 

with imbalance problems which can negatively impact the performance of data-driven 

models, such as noise, outliers, class overlapping, small dis-jaunts, small sample size, 

extreme minority class.  

Suggested solution: Develop a new machine learning algorithm to incorporate data 

structure checking, especially the neighbourhood of minority class data points. The 

learning algorithm should stop bias towards the majority class and be able to handle 

small dis-jaunts inherently. A previous study has shown how to investigate nosily and 

outlier roles in minority classes Napierala et al. [67].  The study suggested dropping 

data points that are considered noise or outliers, but losing more points may not be a 

good idea considering the small data size. Other preliminary work shows a high 

potential for accurate filtering of noise and outliers in a cluster, which can then be safely 

dropped [159–161]. Filtering noise in rare event prediction or learning from the 

imbalanced dataset can be investigated for algorithm optimisation.  

2. Multi-class imbalanced classification problem: There is a situation where the 

classes present in a dataset are more than two, known as multi-class. A multi-class 

imbalanced classification problem exists in many forms. It could be one majority class 

to multi-minority or one majority to some normal minority and some extreme minority. 

Another form can be a multi majority to one or more minorities. Many studies in the 

open literature have been done in two-class problems, with less attention to multi-class 

problems. Previous studies have tried to simplify the problem by decomposing the 

multi-class into sub binary classes and then combining the result after that (one vs one 
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or one vs all techniques)[69]. However, there is a need to have a unified solution to 

handle all the varied forms of multi-class imbalanced problems.    

Suggested Solution: Develop a different solution, either one-vs-one or one-vs-all 

techniques, like a high number of base classifiers or introducing additional artificial 

imbalance [70]. Develop a method to consider varying relationships between classes 

in multi-class imbalance learning. Considering the algorithm level approach, design a 

classifier or modify the existing classifier to handle multi-class imbalance problems and 

be insensitive to skewness. An algorithm level approach is seen in Cieslak et al. [163]; 

the authors show how the decision tree algorithm can be modified to accommodate 

the multi-class imbalance problem. Similarly, Yu et al.[79] transform neural networks 

and proposed an ensemble solution for multi-class by decomposing it into classes. The 

approach suffers a drawback as the same approach to all the decomposed classes 

without considering when there are complexities in the distribution (overlapping, multi-

majority, multi-minority, class noise), which can result in inconsistency in the pairwise 

relationship 

4. Imbalanced Regression problem (predicting continuous target variable): -The 

imbalance perspective of regression is yet to be explored exhaustively, which concerns 

the prediction of rare and extreme values of a continuous target variable. Methods to 

identify the difference between noise and outlier in imbalanced regression problems is 

needed. 

Suggested Solution: Investigate the solution of imbalance classification problems for 

possible application to imbalance regression problems. Some previous work is Torgo 

et al. work on evaluation metrics for continued value [166] and SMOTE  for Regression 

[167]. 

5. High Dimensionality: The continuous development of IoT enabled cyber-physical 

systems and made more data available. The dataset comes with newer analytics 

challenges such as high and multi-dimensional. For example, sensors embedded in 

an aircraft to monitor many components and other systems configuring could give the 

resulting dataset a high dimension. A large number of variables or features in an 

observation can affect the learning algorithm's performance. It becomes more 

challenging in the case where the dataset is extremely imbalanced. 
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Suggested Solution: Create a method for reducing features in large data sets with 

many dimensions that is both efficient and effective. One example is combining feature 

reduction techniques like PCA, LDA, or Autoencoder with resampling or cost-sensitive 

algorithms. Consider employing a deep learning strategy.  

6. Imbalance learning for data streams (concept drift): In online learning, 

imbalanced data that is in batches or online poses new challenges because of its 

dynamic nature (changing in imbalance ratio, the relationship between classes, 

general underlying distribution); this is known as concept drift. An adaptive method 

approach is needed to deal with skew data coming in online in real-time. Challenge of 

drifting, which affects the class distribution Getting the character and structure of 

minority class in streaming data, is not easy as static. 

Suggested solution: Investigate the effects of multi-label or multi-instance and 

ensemble learning in the concept drift domain. Consider approaches dedicated to 

storing general solutions for streams instead of reacting to each reappearance of class 

imbalance anew. The stored classifiers can be used when similar distribution 

reappears. Investigate the nature of the imbalance problem in the data stream and 

shifting drift consider multi-class [168][169]. 
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CHAPTER 4: An Integrated Machine Learning Model for 

Aircraft Components Rare Failure Prognostics with Log-

Based Dataset  

This chapter details the proposed pre-processing strategy for dealing with a highly 

imbalanced log-based dataset. The chapter is formatted as a paper with the following 

content.  

Predictive maintenance is increasingly advancing in the aerospace industry, and it comes 

with diverse prognostic health management solutions. This type of maintenance can unlock 

several benefits for aerospace organizations. Such as preventing unexpected equipment 

downtime and improving the service quality. One of the challenges that cause model 

performance degradation is the data-imbalanced distribution in developing data-driven 

predictive modelling. The extreme data imbalanced problem arises when the distribution 

of the classes present in the datasets is not uniform. Such that the total number of 

instances in a class far outnumber those of the other classes. Extremely skewed data 

distribution can lead to irregular patterns and trends, which affects the learning of temporal 

features.  This paper proposes a hybrid machine learning approach that blends natural 

language processing techniques and ensemble learning for predicting extremely rare 

aircraft component failure. The proposed approach is tested using a real aircraft central 

maintenance system log-based dataset.  The dataset is characterized by extremely rare 

occurrences of known unscheduled component replacements. The results suggest that the 

proposed approach outperformed the existing imbalanced and ensemble learning methods 

in terms of precision, recall, and f1-score. The proposed approach is approximately 10% 

better than the synthetic minority oversampling technique. It was also found that the class 

imbalance problem could be overcome by exclusively searching for patterns in the minority 

class. Hence, the model classification performance is improved.  

4.1 Introduction 

Airlines are increasingly concerned about the availability and reliability of assets and 

services. Most of them rely on scheduled maintenance to ensure that equipment is 

operating correctly in order to avoid unplanned breakdowns. Such types of maintenance 

are usually carried out on independent targeted components based on their usage without 

considering the relationship of components working together and influencing each other's 

lifetime. Moreover, this type of maintenance is labour-intensive and ineffective in identifying 

and predicting failures, especially in a complex system such as aircraft.  In contrast, 
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predictive maintenance helps identify anomalous behaviour from extensive historical 

failure data and turn it into meaningful, actionable insights for proactive maintenance – 

preventing downtime or accidents. This type of maintenance provides an intelligence 

forecast of when or if equipment will fail, so maintenance and repair can be scheduled 

before the failure occurs. Predictive maintenance requires working knowledge of the 

equipment, which can be achieved by installing sensors to record and monitor target 

variables. So that alerts are triggered when there is a violation of the defined threshold 

settings. This approach can sometimes be an effective solution in a simple system. 

However, it is impractical in a complex system since adding sensors to all components is 

unfeasible, especially in a large, cost-intensive fleet with potential regulatory challenges.  

Furthermore, Fault detection, diagnostics, and prognostics (FDDP) have a huge potential 

to improve aircraft operational reliability and stability since the main aim of FDDP is to 

minimize losses while ensuring the safety of equipment and reducing the risk of unplanned 

breakdowns [1]. FDDP involves detecting the occurrence of fault as early as possible, 

classifying the fault type accurately, and predicting the next occurrences of such a fault. 

FDDP models are designed to detect anomalies of critical components by analyzing 

historical data to provide actionable alerts to the operators [2]. Since modern aircraft's 

operational and maintenance datasets have become much larger, the number of samples 

and dimensionality has increased. Therefore, implementing the traditional model-based 

and knowledge-based approaches are becoming too tricky [3]. 

Moreover, finding abnormal patterns in large log-based data is extremely challenging due 

to the complex non-linear relationships among the components process and sub-systems. 

Component failure resulting in unplanned breakdowns rarely occur during stable operation.  

The rare component failures create skewness or imbalanced distribution in the generated 

dataset [2], [3]. The imbalanced data problem has been shown to degrade data-driven 

models' performance, causing unreliable prognostics [4], [5]. The aforementioned 

challenges have motivated more research in the application of data-driven prognostics for 

conditioned-based maintenance in the aerospace industry [6].  

In recent times, most of the aerospace industry's predictive maintenance are trends of 

modelling some specific data features such as vibration, pressure, exhaust gas, etc. More 

concentrated on the engine and auxiliary power unit [7], [8]. Whereas, considering 

predictive modelling at the system level is more efficient because the model will be able to 

capture the working relationship between components. Therefore, equipment failure logs 
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are fruitful sources of information both for diagnoses and prognostics. However, intensive 

data pre-processing is required to harness valuable pieces of information. The recent 

technological advances have made equipment to operate through software applications. 

For example, modern aircraft are incorporated with advanced technology such as 

monitoring sensors and various aircraft communication systems (such as ACARS, ACMS) 

[9], which generates more extensive datasets. This application produces records of their 

operations, which includes some predefined parameters, failure messages, and other 

valuable target variables representing failures detected during the last operations—

exploring such large historical record help in detecting an impending issue in advance.  

Therefore, relying on these flight failure records to develop predictive modelling for asset 

health management is a promising technique. The application of advanced analytics to 

anticipate maintenance needs to avoid the risk associated with service disruption [10].  

Furthermore, building a predictive model from aircraft central maintenance system CMS 

data (which is the record of failure messages) in the total absence of digital sensor data 

measurements poses many challenges that are not yet fully explored. Many problems arise 

from learning with textual-based datasets. The first problem concerns the multidimensional 

data to be able to identify patterns leading to the component replacement. The second 

problem is mining patterns from random failure messages generated from different aircraft 

in a fleet [11]. The third problem is the inherent imbalanced distribution in the dataset. For 

instance, most of the failure messages in the CMS data are related to component 

replacement due to planned maintenance or not-fault-found. At the same time, the minority 

are related to unplanned component replacement (that is, the real unplanned 

replacements, which are our target in this study).   

The imbalance classification problem or rare event occurrence is prevalent in many real-

life application domains. For instance, detecting fraud in a credit card transaction, where 

most transactions are legitimate and few are fraudulent. The fraudulent minority 

transactions are more important to predict than the legitimate majority because the 

consequences can be grave if any fraudulent transaction goes unnoticed [12]. Likewise, 

most patients can be healthy in clinical diagnosis, while a few diagnose a certain rare 

disease [13]. The costs of misclassifying infected as healthy cannot be tolerated because 

of the high risks of deterioration and fatality. 

Similarly, Imbalanced classification can also be applied in aircraft predictive maintenance 

modelling, where most of the generated failure messages represent false alarm or no fault 
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found, and the minority represents the real faults that resulted in component replacement. 

The problem of imbalanced data in aircraft predictive maintenance modelling using log-

based CMS failure messages is that component failure rarely occurs, which creates 

imbalanced distribution in the generated dataset. In some cases, the ratio between classes 

in the dataset can be as high as 10000:1, which is known as an extreme imbalanced 

problem [14]–[16].   Moreover, identifying patterns and learning from extreme imbalanced 

datasets increases classification challenges in machine learning.  Hence, an improved 

method of accurately recognizing the minority class instances is a required process [17], 

[18].  

Several research approaches have been conducted to solve the imbalanced classification 

problem. The imbalanced classification problem's solution can be categorized into three 

main groups; the data level, the algorithm level, and the hybrid approach see Figure 4-1. 

The data level approach involves resampling the dataset before presenting it as an input 

to the learning algorithm. The algorithm level approach tackles the imbalanced data 

problem by modifying the traditional machine learning algorithms to respond favourably to 

both classes during learning [19]. The hybrid method combines two or more algorithms or 

data level approaches to achieve better performance. 

Although imbalance classification problems have been extensively researched [20], [21], 

the open literature lacks an exhaustive unified solution to generally handle the problem for 

predictive modelling. Hence, it is still an open area of research. Therefore, this study aims 

at developing an actionable prognostics model, which will enable the anticipation of 

unscheduled maintenance activities relating to aircraft functional items replacements, 

which can be achieved by identifying predictive signatures in the CMS failure messages.  

 

Figure 4- 1 Three approaches to handling  the imbalanced dataset problem 

Firstly, we propose a novel hybrid model that blends natural language processing 

techniques and ensemble learning for predicting rare aircraft component failure using 

imbalanced textual log-based data. The model is based on a log-based pattern 
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identification technique, which involves transforming and integrating well-known natural 

language processing techniques (the TF-IDF and Word2vec) and ensemble learning for 

pattern identification and classification. It uses log-based aircraft central maintenance 

system data, which is not often used for predictive maintenance modelling. In addition, our 

approach helps in tackling the extreme imbalanced classification problem by searching for 

patterns exclusively in the minority class, which improves model performance.  In predictive 

maintenance, a state-of-the-art ensemble-learning algorithm is adapted as a base 

classifier; we also show how unscheduled maintenance can be mitigated using reliable and 

robust prognostic models.  

This paper is structured as follows; in section 2, we present related work and a description 

of the datasets. Section 3 explains the methodology and the proposed approach. Section 

4 presents the case study and experimental setup and discuss the result. Finally, 

conclusions and future work are presented in section 5.   

4.2 Related Work 

The system's operational logs are well studied in different application domains [22]. Each 

application domain has its specific requirements that have an impact on the design and 

development of the corresponding solution. Some researchers have focused on log data 

for troubleshooting and anomaly detection solutions [23], [24]. Other application domains 

that have practically shown its use are computer hard-disk failure prediction [25], [26], 

medical equipment failure [27], [28], and many more [29].  System failure messages 

obtained from logs can also be used to understand the equipment's behaviours and 

common failure patterns. The most closely related work to our approach is failure-

messages-based machine learning modelling.  Li et al. [30] provide an approach for mining 

system log files. The authors attempt to understand and categorise common failure 

patterns that resulted in system failures.  

In recent times Natural Language Processing has been shown to help extract useful 

information from text data [31][53].  NLP is a field of Artificial Intelligence (AI) that studies 

the interaction between human language and machines, mainly how to program computers 

to process and analyse large amounts of natural language data. NLP has widely been used 

to solve text classification, summarisation, extraction problems. Different techniques can 

be used to assign text into categories according to the content. There are various available 

methods for extracting raw text data, such as a bag of words (using term-frequency inverse 

frequency), word embedding [54]. The application of NLP is seen in many domains. For 
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example, Tanguy et al. [31] show the application of  NLP in mining text-based aviation 

incident reports data to identify future threats. However, they did not further show how such 

failure can be predicted to prevent its future occurrence[55]. Po-Hao Chen et al. [56] use 

the combination of  NLP algorithms the term frequency-inverse document frequency (TF-

IDF) and term frequency weighting (TF) to Categorize oncologic response in radiology 

reports. The open literature lacks a study that has transformed natural language 

techniques such as TF-IDF and Word vectorization method for pattern identification using 

the ACMS dataset.  

The use of aircraft data has been used for modelling. For example, Korvesis et al. [32], use 

aircraft post-flight report data to develop an event failure prediction system via multi-

instance regression. In contrast, we focus on classification and finding a solution to the 

rare occurrence of failures instead of regression. Another close work that uses the aircraft 

ACMS dataset to develop the predictive model is Nicchiotti et al. [9]. The authors design a 

two-step process, a transformed Eigen-face from image processing to produce the 

signatures of the different types of maintenance action; a Support Vector Machine (SVM)  

is used to select the flight legs candidate for a prognostics alert. Our study explores the 

impact of extremely rare failure on the predictive model by the following strategy. Natural 

language processing techniques were used to identify patterns related to aircraft 

component failures. Likewise, Yan et al. [33] proposed a predictive model to predict faults 

with high priority in advance by exploring the historical data of aircraft maintenance 

systems. The authors did not take into consideration the problem of the rare failure 

occurrence, which is part of our focus in this study. Their study also considers single aircraft 

instead of a fleet.  Analysing fleet data can be more challenging; therefore, our 

methodology considers a fleet-based approach instead of a single aircraft. Verhagen et al. 

[34]  develop an approach to reduce unscheduled maintenance by focusing on identifying 

operational factors affecting component reliability. The research uses a statistical data-

driven approach and, the authors applied a proportional hazard model on aircraft 

operational and maintenance datasets. Though, their work uses an aircraft operational 

dataset, which is closely related to the one used in our study. However, because of the 

multi-variate nature of the ACMS data, our approach focuses on exploring the application 

of machine learning.  

Another related category for predicting failure from log-based data is the rule-based expert 

system [35], [36]. In this type of approach, preconditioned rules are defined; the rules are 

then matched against the input data. If the predefined condition is met, a failure alert will 
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be triggered. The rules are mainly defined by domain experts, not through data mining. 

Vilalta et al. [37] described the use of a rule-based approach to detect patterns in the 

sequence of events. In practice, rule-based approaches are more effective for a small and 

simple system. Its application in a large and complex system is quite challenging and, in 

some cases, impractical because domain experts need to continually update the rules in 

the event of any upgrades or changes, which is cumbersome.    

Another related category for processing log-based data is the application of sequential 

pattern mining [38], [39], which is mainly about extracting interesting, useful, and 

unexpected patterns across sequential data using a statistical approach. Many studies 

have shown the applicability of using text sequence mining for failure prediction in a 

complex system [40]–[42]. We explore the sequence mining techniques and find out that 

applying sequence pattern mining alone is not suitable for our problem because of the rare 

occurrence of unplanned aircraft component replacement.  

Although there are many existing approaches in the literature, some are suitable for solving 

failure prediction in specific types of equipment. Hence, the particularities of our data 

(Heterogeneous in nature containing symbolic sequences, numeric time-series, 

categorical variables and unstructured text. It is a non-trivial task to translate free-text log 

messages into meaningful features) limit us from using an out-of-the shelf approach. Our 

approach differs from the aforementioned approaches in many aspects. We proposed a 

new approach of pre-processing the aircraft central maintenance log-based data. In 

addition, the new approach provides a solution to the imbalanced classification problem, 

which enhances the model performance. Finally, the proposed hybrid machine learning 

technique for aircraft component replacement prediction is developed.   

Our approach applies a unique combination of TF-IDF and Word2Vec notions from the 

NLP to extract patterns and categorise failure messages into common failures.  

Considering text-based aircraft CMS failure messages, each segment of patterns is 

considered a document, and each pattern is considered a word. TF-IDF helps in pruning 

out unproductive and redundant patterns. At the same time, Word2Vec is used to find the 

most relevant documents related to the target component. It also helps in converting words 

into a vector of numbers. The approach improves the categorization accuracy by 

considering CMS failure messages' temporal characteristics, which improves the overall 

performance of the predictive model (such as reducing false positives, increasing 
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prediction recall, and precision). The approach also includes a solution to the rare 

occurrence of target failures by searching for patterns exclusively in the minority class. 

4.3 Methodological Approach 

This section describes the methodology used in this study. 

As seen in Figure 4-2, the traditional machine learning framework is divided into three 

phases: The pre-processing phase, the model training, the testing and validation phase, 

and the model deployment phase.  Building a machine-learning model from any data 

source must often deal with imperfect data. Therefore, we ensure data quality by cleaning 

the data - correcting outliers, handling missing values, and aggregating impossible 

combinations before further analysis. Cleaning and transforming the data is necessary 

because jumping into analyzing data that has not been carefully screened for such 

problems can produce misleading results [43]. 

 

Figure 4- 2 The pipeline for developing a predictive model using an imbalanced dataset 
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Secondly, the feature engineering step is necessary to select the best predictors for our 

problem. The datasets are merged at this stage. The feature engineering process 

determines the right features that best describe our target components. The aircraft 

operational log data contains timestamp and flight cycle numbers, making it easier for 

creating windows. The third step involves identifying component failure patterns and 

trends. We focus on the component replacement that occurs due to unplanned 

maintenance. The aim is to find the best framework for processing time-series, log-based 

datasets with rare failures, focusing on addressing the imbalanced classification problem 

and improving the base learning algorithm's performance.   

4.3.1 Problem Description 

We formally describe the log-based rare failure prediction problem as follows. Given a 

functional item number 𝐹𝐼𝑁 of a particular aircraft family 𝐴, with the rare occurrence of 

failure. Using log-based failure messages 𝑓𝐼𝑚(𝐴) Collected from a fleet. Can we infer the 

probability of its replacement 𝜋𝑅(𝑇)  within a time window 𝑇?  This problem can be solved 

using machine learning; hence, we consider it as a binary and multi-class classification 

problem for predicting aircraft functional item failure with a given period 𝑇. The training data 

contains predictive features extracted from the log of failure messages obtained from a civil 

aircraft fleet. The failure labels are provided from the actual aircraft maintenance record.  

Note that our solution is targeted at specific functional items replacements, not a generic 

replacement. In addition, the targeted functional items are extremely rare, and our goal is 

to develop a model that can overcome the challenge of rarity while making predictions.   

The prognostic system's main aim is to adequately provide failure alerts early enough to 

give maintenance engineers enough time to deal with the problem before it actually occurs. 

Also, the alerts should not come too early to avoid component wastage due to premature 

replacement. Therefore, the prediction window needs to be defined using domain expert 

knowledge. A prediction window is defined as; at least two flights and no more than ten 

flights in advance in this study. The dataset is imbalanced; hence the imbalanced problem 

is defined as follows: Slightly imbalanced is when the imbalanced ratio (IR) between 

classes is approximately 5% to 30%. If IR is less than 5%, we consider it to be an extremely 

imbalanced problem. Finally, our prediction aim is, for each selected Functional Item 

Number (FIN), we target to achieve at least 50% prediction of unscheduled maintenance 
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 4.3.2  The proposed approach 

This section discusses the implementation of our novel approach. The approach can be 

applied in multivariate time series, text-based, and imbalanced datasets. Therefore, the 

raw aircraft ACMS data is sequential and in time-series format. The flight cycles are also 

in sequence. The failure messages are text-based. The records of unplanned components 

replacements are rare in the dataset. This specification makes it suitable to test our 

approach. We also focus on solving the extreme imbalanced problem to enhance the 

reliability and performance of data-driven models.  Thus, improving predictive models will 

mitigate the risk associated with unscheduled maintenance.   

We use natural language processing and time series analysis approaches to find trends 

and patterns. Natural language processing -Term Frequency-Inverse Document 

Frequency (TF-IDF) and the word2vec approach are used to recognise target component 

patterns and trends, as shown in Figure 4-3. We made several assumptions to account for 

the infrequent incidence of component substitution in the flight dataset. For example, the 

replacement of aircraft components is described by categorical and text-based 

characteristics and occurs at irregular intervals.  Secondly, we also assume that target 

components are less represented (highly infrequent). Therefore, we develop our algorithm 

to exclusively search for all patterns preceding each target component to predict the next 

replacement. To achieve that, we transform the TF-IDF and word2vec technique to 

evaluate the importance of each failure or error message [33], [44]. TF-IDF is a machine 

learning Natural Language Processing (NLP) word embedding technique that weighs 

words in text mining [45]. This technique allows us to represent text in a coordinated system 

where related error messages are placed closer together based on the corpus of 

relationships.  It helps us also to filter out unrelated failure messages. The TF-IDF consists 

of two parts, namely, 

1. TF- Term Frequency: which calculates the frequency of word appearance in a document. 

If a given term is 𝑡 

∴  𝑻𝑭(𝒕) =  
𝒏𝒕

𝒏𝒅
           (4- 1)   

Where 𝑛𝑡 is the total number of times 𝑡 appear in a document and 𝑛𝑑  is the total number of 

terms in the document. 

2. IDF- Inverse Document Frequency:  which measures the importance of each term in the 

document.  
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∴  𝐼𝐷𝐹(𝑡) = 𝑙𝑜𝑔 
𝑚𝑑

𝑚𝑡
          (4- 2)  

Where,  𝑚𝑡 is the total number of documents that contain term 𝑡 and 𝑚𝑑 is the total number 

of documents 

 

Figure 4- 3 Failure message patterns- A, B, C... represents CMS failures messages and R1, 

R2...  represents LRU replacements 

 

 

Putting it all together 

⇒ 𝑇𝐹_𝐼𝐷𝐹(𝑡) = 𝑇𝐹(𝑡). 𝐼𝐷𝐹(𝑡)      (4- 3)   

Therefore, implementing the above approach, we denote document to be each window in 

the dataset, and term 𝑡 to be target components, and failure messages represent words.  

For instance, for a given dataset, let 𝑅1 be the first component replaced due to unplanned 

breakdown of equipment, 𝑅2 for second replacement and 𝑅3 for third and so on. Let the 

alphabet (A, B, C, etc.) represent the failure messages. Therefore, all failure messages in 

a window preceding each replacement constitute a pattern and are represented as follows. 

𝑅1 →  ABC, YZP, PPB…. 

𝑅2 →  XYZ, AEP, CDB…. 

𝑅3 →  CDA, EDM, OPN…. 

We then identify the pattern for each 𝑹𝒊 within that window. For instance, looking at Figure 

4-3, W1 = {𝑅1: (ABEG), 𝑅2: (ECDB), 𝑅3: (GBED), 𝑅2: (DEAB)}.  We then find all patterns 
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that are related to each target component replacement 𝑹 across all the datasets. Finally, 

the extracted patterns are then used to train the algorithm.  

Therefore, during model training, taken, for example, all failure messages related to  𝑅1 

are identified and all the possible combinations of failure messages related to  𝑅1 are 

created, which produces more new different patterns. This is done to increase more 

patterns related to each replacement, which will address the imbalanced problem. The 

combination and creation of new patterns are achieved using bootstrapping techniques. 

We use the select with a replacement approach to avoid the overfitting problem.  

Furthermore, the model is developed to flag up component replacement prognostic alerts 

when a pattern is detected.  The features, such as date-time and flight cycle numbers, play 

a vital role in defining when the model should flag up prognostic alerts in advance.  

Furthermore, our pattern recognition strategy is similar to the one developed by Vilalta et 

al. [37]. However, our approach differs in the learning strategy instead of using the rule-

based model; we make use of supervised learning (classification technique) to build a data-

driven model. The imbalanced classification problem is overcome by exclusively searching 

for patterns in the minority class. The strategy is shown in Algorithm 1.  Having known the 

patterns, the next step is we represent the features into a vector space using the word2vec 

method. Prior to that, categorical features are handled using the one-hot-encoding 

technique [46].  As shown in Figure 4-3, all the terms in the pattern are selected and then 

converted into a vector space dimension. To illustrate, considering the windows 𝑤𝑖 and 

patterns 𝐴𝐵𝐶 … leading to components replacement𝑠 𝐹𝑖. 

𝑊1= ABEG𝑅1 −CBDE𝑅3 −DEAB𝑅1 −EDCB𝑅2 

𝑊2= AEDB𝑅1 −BEAG𝑅1 −CDCB𝑅2-DEBC𝑅3 

𝑊3= EDCB𝑅2 −ABEG𝑅1 −EDBC𝑅2 −CBDE𝑅3 

Using TF-IDF and word2vec approach to identify all failure messages related to each target 

component replacement.  

𝐵𝑜𝑜𝑙𝑒𝑎𝑛 𝑓𝑟𝑒𝑞𝑢𝑒𝑛𝑐𝑖𝑒𝑠 = 𝑚(𝑡)  {
                           1,   𝑖𝑓 𝑡 𝑜𝑐𝑐𝑢𝑟𝑠 𝑖𝑛 𝑤𝑖𝑛𝑑𝑜𝑤 

0, 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒
  (4- 4) 

Where 𝑚(𝑡)  represents the term frequency of patterns of failure messages leading to each 

component replacements. All corresponding replacements in each window are then sum 

up. tf (t,w) is the total number of patterns present in each window. 
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The inverse document frequency measures the total number of  each pattern  in relation 

to components replaced in each window. That is if it is common or it is rare across all 

windows. 

𝐼𝑑𝑓 (𝑡,𝑊) = 𝑙𝑜𝑔 
𝑁

|{𝑑 ∈𝑊:𝑡 ∈𝑑}|
                  (4- 5)  

Where N is the total number of failure messages in a window N = |𝑊|, and  

|{𝑑 ∈ 𝑊: 𝑡 ∈ 𝑑}|, a number of windows where the term t appears.   

𝑡𝑓_𝑖𝑑𝑓(𝑡, 𝑑,𝑊)  =  𝑡𝑑(𝑡, 𝑑). 𝑖𝑑𝑓(𝑡,𝑊)           (4- 6)  

We then create our feature victor using the following equation.  

𝑣𝑤𝑛⃑⃑ ⃑⃑ ⃑⃑  ⃑ = 𝑡𝑓(𝑡1, 𝑤𝑛), 𝑡𝑓(𝑡2, 𝑤𝑛), 𝑡𝑓(𝑡3, 𝑤𝑛), … , 𝑡𝑓(𝑡𝑛, 𝑤𝑛)         (4- 7) 

Using a continuous bag of words strategy in word vectorization, each dimension of the 

feature vector is represented by the pattern, for example, 𝑡𝑓(𝑡1, 𝑤𝑛) represents the 

frequency of term 1. For example, using equation 4-4 and Table 4-1, patterns for window 

1 to 3 are represented as victors as follows: 

𝑣𝑤1⃑⃑ ⃑⃑ ⃑⃑  ⃑ = 𝑡𝑓(𝑡1, 𝑤1), 𝑡𝑓(𝑡2, 𝑤1), 𝑡𝑓(𝑡3, 𝑤1), 𝑡𝑓(𝑡4, 𝑤1),… , 𝑡𝑓(𝑡𝑛, 𝑤1)    (4- 8) 

𝑣𝑤1⃑⃑ ⃑⃑ ⃑⃑  ⃑ = (2,1,1…n)   

𝑣𝑤2⃑⃑ ⃑⃑ ⃑⃑  ⃑ = 𝑡𝑓(𝑡1, 𝑤2), 𝑡𝑓(𝑡2, 𝑤2), 𝑡𝑓(𝑡3, 𝑤2), 𝑡𝑓(𝑡4, 𝑤2),… , 𝑡𝑓(𝑡𝑛, 𝑤2)    (4- 9) 

𝑣𝑤2⃑⃑ ⃑⃑ ⃑⃑  ⃑ = (2,1,1…n)  

𝑣𝑤3⃑⃑ ⃑⃑ ⃑⃑  ⃑ = 𝑡𝑓(𝑡1, 𝑤2), 𝑡𝑓(𝑡2, 𝑤3), 𝑡𝑓(𝑡3, 𝑤3), 𝑡𝑓(𝑡4, 𝑤3),… , 𝑡𝑓(𝑡𝑛, 𝑤3)     (4- 10) 

 

𝑣𝑤3⃑⃑ ⃑⃑ ⃑⃑  ⃑ = (1,1,1…n)  
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Table 4- 1 Sample of the pre-processed aircraft CMS dataset 

Date Time Flight circle A/C No Window lag FM pattern FIN Rplmt 

10-03-15 09.03 -91 1 𝑊1 ABEG 𝑅1 

10-03-15 10.03 -88 2 𝑊1 DEAB 𝑅1 

11-03-15 10.00 -81 8 𝑊1 EDCB 𝑅2 

11-03-15 11.05 -80 21 𝑊1 CBED 𝑅3 

13-04-15 09.08 -79 12 𝑊2 AEDB 𝑅1 

13-04-15 10.03 -76 9 𝑊2 BEAG 𝑅1 

14-04-15 22.00 -73 23 𝑊2 EDCB 𝑅2 

15-04-15 09.05 -71 2 𝑊2 CBED 𝑅3 

16-04-15 09.02 -70 3 𝑊3 BEAH 𝑅1 

16-04-15 21.08 -65 18 𝑊3 ABCG 𝑅3 

17-04-15 13.00 -64 28 𝑊3 EDBC 𝑅2 

 

The resulting vectors show that window one  

𝑣𝑤1⃑⃑ ⃑⃑ ⃑⃑  ⃑ = (2,1,1… ) has two patterns that prompt replacement of the component  𝑅1 , one 

pattern for 𝑅2, and one for 𝑅3   We then represent it in a general matric with the shape |𝑤| ∗

𝑙  where |𝑤| is the cardinality of the feature vector space in each window, and 𝑙 is the total 

number of pattern vectors. The unique patterns are then encoded and tranformed into 

feature space.  

𝑀 = |

2 1 1…n
2 1 1…n
1 1 1…n
1 2 0…n

| 
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Algorithm 1: Detecting patterns and trends of target components   

• Find the pattern of failure message preceding the target component within a given 

fixed window. 

• Carry out validation of characters that uniquely identify the target component. 

• Combine the characteristic to build a data-driven predictive model. 

The pseudocode:  

INPUT: 

 Imbalanced time series dataset  

{ 

F = Sequence of failure messages  

fm =failure message  

W = window size 

r = Target replacements  

T= Time 

} 

OUTPUT:  P = Pattern for Target Replacement 

TARGET_PATTERN ( F, W, r, T) 

Step 1∶ Get the Data D 

Initialize variables G= 0, H=0  

Define window size W 

Step 3: loop through the series of event in each W to identify a component 

 replacement. 

 FOREACH  F,   𝒇𝒎(𝒊) = ( 𝒓𝒊, 𝒕𝒊 ) ∈ 𝑭   

  (where 𝒕𝒊 = 𝒄𝒖𝒓𝒓𝒆𝒏𝒕 𝒕𝒊𝒎𝒆) 

Step 4:  Identify a pattern preceding the component replacement. 

  FOREACH F,  𝒇𝒎(𝒋) = ( 𝒓𝒋, 𝒕𝒋 ) ∈ 𝑯 

   If (𝒄𝒖𝒓𝒓𝒆𝒏𝒕 𝒕𝒊𝒎𝒆 − 𝒕𝒋) > W ; Remove 𝒇𝒎(𝒊) from H 

  END  

Step 5: Generate a pattern for each event that occurs together, leading to the 

             replacement of the component.  

  IF 𝒇𝒎(𝒊) is a target replacement  

   G = G ∪ {𝒓𝒋| 𝒓𝒋, …} 

   H ∪ 𝒇𝒎(𝒊) 

  Identify frequent patterns [51] on G  

 END 

Step 6: Next window: Go-to step 3 

Use TF-IDF on G to find all related pattern M 

Step 7: Output M 

 



 

 

Algorithm 1 transverses through the sequence of failure messages, which is in time-

series format. The algorithm stores patterns of failure messages related to each target 

functional item failure in memory. The identified patterns are then used for fault prediction.  

 

Validation: To validate the performance of predicting aircraft components failure from 

imbalanced log-based data with the proposed approach, we modelled it into binary 

classification and multi-class classification.  In the first scenario, we modelled it as a multi-

class classification problem that predicts all the targeted component failures at the same 

time. Secondly, we modelled it as a binary classification problem that predicts individual 

functional items. In both instances, we use ensemble-learning algorithms as a base-

classifier. We choose to evaluate the approach using random forest ensemble learning 

because of its capability of combining more than once classifiers to achieve better results, 

which has an advantage over a single classifier, especially in a skewed data distribution 

context.  To evaluate the model in terms of imbalance classification, we compare our 

proposed approach with the existing synthetic minority oversampling technique 

(SMOTE). 

As shown in Table  4-1, the data is grouped into two categories representing different 

types of aircraft in the fleet. The A330 –long-range (LR) and the A320 -Single-aisle (SA) 

aircraft.  The dataset ranging from 2011 to 2015 is used to train the model, while from 

2016 to 2018 is used for testing. After the pattern identification-using algorithm 1, the 

resulting dataset is divided into two (for training and testing). Data ranging from 2011 to 

2015 is used for model training, while from 2016 to 2018 is used for evaluation and 

testing.   

The effectiveness of the proposed approach was demonstrated on the log-based CMS 

dataset. We choose a target functional item Number (FIN) of high practical value for each 

aircraft family with an adequate number of known failure cases.  We selected out of many 

the following aircraft functional items to be used in the experiment. The target 

components selected for this study are based on some group of common failures in an 

aircraft subsystem that happens with a frequency of 0.1 - 1% over some time.   

LRU for A330 –long-range (LR) aircraft family: 4000KS - Electronic Control Unit/ 

Electronic Engine Unit,  4001HA – Pressure Regulating Valve, 5RV1 – Satellite Data unit, 

and 438HC – Trim Air Valve. 
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LRU for A320 -Single-aisle (SA) aircraft family: 11HB – Flow control valve, 10HQ - 

Avionics equipment ventilation computer, 1TX1 - Air traffic service unit, and 8HB - Flow 

control valve 2. 

Imbalanced Ratio (IR): In the A330 aircraft family, the size of the training dataset is 

360575, and the A320 family size is 389829. The frequency of functional items 

replacement emanating from unscheduled maintenance is as follows. In the A330 aircraft 

family, 4001HA is replaced 17 times, giving us the imbalance ratio (IR) of 360558: 17, 

4000KS is replaced 15 times given us IR of 360560: 15, 5RV1 is replaced 16 times given 

us IR of 360559: 16, and 438HC is replaced 25 times given us IR of 360550: 25. Similarly, 

in the A320 aircraft family, 11HB is replaced 11 times, giving us the imbalance ratio (IR) 

of 389818: 11, 10HQ is replaced 12 times given us IR of 389817: 12, 1TX1 is replaced 

25 times given us IR of 389804:  25, and 8HB is replaced 14 times given us IR of 389815: 

14. 

𝐈𝐑 =  
𝑀𝑖𝑛𝑜𝑟𝑖𝑡𝑦 𝑐𝑙𝑎𝑠𝑠

𝑀𝑎𝑗𝑜𝑟𝑖𝑡𝑦 𝑐𝑙𝑎𝑠𝑠
∗ 100         

(4- 11)   

 

 

Figure 4- 4 Representation of flight cycles from replacement 

 

 

Scenario 1: multi-class approach   

We make a prediction for all FIN and compare it against the baseline imbalanced learning 

algorithm -SMOTE.   
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1. SMOTE + Random Forest (RF) After cleaning the data. We divided the data into 

training and testing. The training data was resampled using SMOTE. Then the different 

machine learning algorithms are used to train the classifier.  

2. Our approach + Random Forest (RF), After cleaning the data. We carry out behavioural 

pattern analysis.  We then divided the data into training and testing. We train the model 

without applying any existing imbalanced learning method. Then the different machine 

learning algorithms are used to train the classifier.  

 

Figure 4- 5 Showing the performance comparison between SMOTE and the proposed 

method using the random forest as a classifier in both cases 

 

In the first instance, we consider all the aforementioned targeted FIN failures. During 

evaluation, accuracy, recall, and precision is used as performance metrics. The 

comparison result of the two cases is shown in Figure 4-7. Random forest outperformed 

other ensemble classifiers. Therefore, in the second scenario, which is predicting 

individual functional items (binary classification approach), we use only a random forest 

algorithm. 

Scenario 2: Binary classification approach- Individual component failure 

prediction model: 

We make a prediction for each FIN and compare it against the baseline imbalanced 

learning algorithm -SMOTE.   

0

0.2

0.4

0.6

0.8

1

1.2

Precision Recall F1-Score

RF +Proposed approach RF +SMOTE



 

133 

 

 Any machine-learning algorithm for classification can be used in choosing the base-

classifier for binary classification. Our choice of an ensemble-learning algorithm as a 

base-classifier is effective in improving predictive performance, especially in classifying 

skew datasets. In addition, because RF is an ensemble bagging technique that combines 

multiple decision trees to achieve a better result. The trees in RF create high variance 

and low bias, making it a suitable choice. Also, since data is distributed over different 

trees in the forest, and each tree sees a different set of data, in general, RF does not 

over-fit. Because they are made of low bias trees, it does not suffer from the under-fitting 

problem. Thus, we choose a random forest among the ensemble algorithm because it 

gives better precision and recall compared to others. We use algorithm 1 to generate 

patterns related to each targeted FIN. We then adept the RF as seen in Figure 4-8 

 

Figure 4- 6 Random Forest Ensemble Algorithm 

 

Algorithm to create the individual failure prognostic model. RF is an ensemble learning 

method where the training data is divided into several subsamples, and each subsample 

is trained using a decision tree classifier know as a weaker learner. The result is then 

aggregated by majority voting providing a stronger base learning algorithm. Apart from 
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sampling on the dataset, trees are randomized by using boosting and bagging techniques 

to generate splits [49], [50]. This approach enhances the performance of the model.  

In predicting targeted individual functional items, their failures are extremely rare. 

Normally, accuracy is mostly considered an important metric to evaluate the performance 

of a classifier. However, the use of accuracy to evaluate performance under extreme 

imbalanced problems can be misleading because classifies will be biased towards the 

majority class to achieve high overall accuracy. Therefore, to evaluate the classifiers' 

performance more precisely, some alternative metrics are adapted, which include 

precision, recall, F1-score, and area under the curve.  

4.5 Result and Discussion  

As shown in Figures 4-7 , it is observed that comparing our approach with SMOTE using 

different ensemble learning algorithms as base-classifier. The performance of all the 

base-classifiers is better with the proposed approach compared to SMOTE. Furthermore, 

RF outperformed other ensemble algorithms; it shows comparative performance in recall 

and precision, which means RF can identify more faults than other base-classifiers. 

Although the multi-class approach produced a significant improvement, most predictions 

fall close to the defined maximum wasted life.  

As shown in Table 4-2, For individual FIN prediction. It can be observed that our model 

has a precision of more than 70% for all the functional items. It means whenever the 

model predicts aircraft failure, that leads to component replacement. 

Table 4- 2 Showing experiment results using binary classification approach with RF as 

the base classifier 

A330 Aircraft 

  RF+ SMOTE RF + Our approach 

IR FIN Precision Recall F1 AUC Precision Recall F1 AUC TPR FPR 

0.0047 4001HA 0.83 0.62 0.70 0.72 0.94 0.79 0.86 0.87 0.79 0.21 

0.0043 4000KS 0.80 0.60 0.68 0.69 0.90 0.76 0.82 0.83 0.76 0.24 

0.0044 5RV1 0.80 0.60 0.68 0.69 0.91 0.77 0.83 0.84 0.77 0.23 

0.0069 438HC 0.90 0.85 0.87 0.88 0.96 0.85 0.84 0.86 0.85 0.15 

A320 Aircraft 

0.0028 11HB 0.70 0.59 0.64 0.65 0.81 0.70 0.75 0.76 0.70 0.30 

0.0031 10HQ 0.75 0.62 0.68 0.67 0.86 0.72 0.78 0.79 0.72 0.28 

0.0064 1TX1 0.88 0.80 0.83 0.84 0.91 0.82 0.86 0.87 0.82 0.18 

0.0036 8HB 0.80 0.66 0.72 0.73 0.88 0.74 0.80 0.81 0.74 0.26 
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 In other words, this indicates that out of the total prediction, the model prognoses more 

than seventy percent of failures that lead to LRU replacement. The precision score also 

shows the model produces less than thirty percent of false-positive alerts. Similarly, an 

average recall of more than 60% is achieved in all the considered FIN's.  Indicating that 

the model correctly predicts more than sixty percent of actual failure that leads to LRU 

replacement. It is important to note that for individual prediction (binary classification), 

most prediction falls close to the defined minimum notice period, which means the 

component will be adequately utilized. This means binary classification has an advantage 

over multi-class prediction. Since the high cost associated with false-negative is the main 

concern in this study- that is a misclassifying real failure as not failure, especially for 

safety-critical equipment where the consequence is grave. Therefore, the recall score 

shows that the model triggers 60% of the actual failure alert, leading to LRU replacement.   

The goal is to obtain both a high percentage of precision and recall in all cases. However, 

more than 20% of the false positives and 30% false-negative rates are still recorded. 

Nevertheless, our approach achieved our target: to predict more than 50% of aircraft 

component replacement within the desired defined range (in-between MNP and MWL). 

This can be seen by the overall percentage F1-score, which is approximately 65% in all 

cases.  Similarly, to obtain the trade-off between the model sensitivity (TPR) and 

specificity (1-FPR), ROC Curves of each target component replaced is acquired.  

The graphical representation of the average result obtained is presented in Figure 4-10 

to 4 - 13; as seen in most of the cases, the area under the curve (AUC for the testing 

dataset is above 70%. Indicating good overall sensitivity of the classifier to predicting 

component replacement due to unscheduled maintenance). Note that the ROC curve 

does not depend on data distribution. This makes it useful in evaluating classifiers 

predicting imbalanced datasets. 
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Furthermore, although the proposed approach achieved approximately 20% of the overall 

percentage of the false-positive rate, in contrast, SMOTE achieved an approximately 

overall false-positive rate of 30%. This shows a difference of 10%, indicating that our 

approach achieved a significant improvement compared to synthetic minority 

oversampling techniques.  Furthermore, it can be observed that the imbalanced ratio has 

an impact on performance. For instance, in extreme IR cases, we obtain a lower precision 

and recall compared to the ones with higher IR.  Despite the extreme imbalance ratio in 

all the cases considered, our approach still achieved better performance than SMOTE, 

which indicates its robustness in handling extreme imbalanced datasets. 

4.6 Conclusion 

This paper proposes an integrated data-driven learning technique for predicting aircraft 

component failure using imbalanced, textual, and log-based data. A hybrid model 

involves blending natural language processing techniques, and ensemble prediction is 

developed to tackle extreme imbalanced classification problem and forecast aircraft 

component failures. We utilize real-life aircraft Central Maintenance System (CMS) data 

 

         Figure 4-9. ROC for 4001HA               Figure 4-10.  ROC for 4000KS 

 

Figure 4-11. ROC for 5RV1        Figure 4-12.  ROC for 438HC 
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to develop a predictive maintenance model for predicting aircraft component replacement 

in advance to avoid unscheduled maintenance. A well-known natural language 

processing technique, the TF-IDF and Word2vec, are transformed for pattern 

identification and text vectorization. Then an ensemble random forest algorithm was 

successfully adapted for individual functional item prediction.  In predictive maintenance, 

we show how unscheduled maintenance can be mitigated using the proposed robust 

prognostic model. The model can flag off component replacement alerts within the 

desired define range. In evaluation, we suggest an evaluation criterion that combines the 

prognostics alerts with the precision and recall within a reasonable timeframe. We 

compare the performance of our proposed approach against state-of-the-art imbalanced 

learning techniques (SMOTE) in terms of  F1 score. The proposed approach is 

approximately 10% better than SMOTE. It was also found that the class imbalance 

problem can be overcome by searching for patterns in the minority class exclusively. 

Hence, the model classification performance is improved. Finally, even though the 

proposed method can predict more than 50% of unscheduled aircraft component failure, 

it did not go further to determine the root cause of the failure. Therefore, this work can be 

extended to enhancing aircraft failure diagnosis using proactive logging data. Future work 

will also aim to increase the model's performance by exploiting information from a variety 

of sources, such as sensors and other related variables. 
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CHAPTER 5: Proposed Ensemble and Hybrid Learning 

Techniques for Imbalanced Dataset 

This chapter presents new proposed techniques for handling extreme imbalanced 

classification problems based on ensemble-hybrid learning using heterogeneous 

datasets. Two new methods are proposed and implemented: Balanced Calibrated Hybrid 

Ensemble Technique (BACHE) algorithm and a hybrid soft mixed Gaussian processes 

with the expectation-maximization (EM) algorithm. The documentation of the proposed 

algorithm is presented as follows:  

 

5.1 Handling Imbalanced Data for Aircraft Predictive Maintenance 

using the BACHE Algorithm 

Developing a prognostic model to predict an asset's health condition is a maintenance 

strategy that increases asset availability and reliability through better maintenance 

scheduling. Therefore, developing reliable vehicle health predictive models is vital in the 

aerospace industry, especially considering a safety-critical system such as aircraft. 

However, one of the significant challenges faced in building reliable data-driven 

prognostic models is the imbalance dataset. Training machine-learning models using an 

imbalanced dataset causes classifiers to be biased towards the class with majority 

samples, resulting in poor predictive accuracy in data-driven models. This problem can 

become more challenging if the imbalance ratio is extreme. This paper develops a novel 

approach called Balanced Calibrated Hybrid Ensemble Technique (BACHE) to tackle the 

severe imbalanced classification problem. The proposed method involves the 

combination of hybrid data sampling and ensemble-based learning. It uses a cascading 

balanced approach to transfer a class imbalance problem into a sub-problem by 

decomposing the original problem into a set of subproblems, each characterized by a 

reduced imbalance ratio. Then uses a calibrated boosting with a cost-sensitive decision 

tree to enhance recognition of hard to learn patterns, which improves the prediction of 

the extreme minority class. BACHE is evaluated using a real-world aircraft dataset with 

rare component replacement instances. Also, a comparative experiment of the proposed 

approach with other similar existing methods is conducted. The performance metrics 

used are precision, recall, G-mean, and an area under the curve. The final results show 

that the proposed model outperforms other similar methods. Also, it can attain an 

excellent performance on large, extremely imbalanced datasets. 
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5.1.1 Introduction 

The technological growth in the aerospace industry and the continued advancement in 

data analytics have made the generation and analysis of large quantities of aircraft data 

more affordable. Therefore, this has caused a transformation in maintenance strategies 

by shifting from preventive maintenance to predictive maintenance. Research into the 

development of data-driven prognostic models for condition-based maintenance is 

gaining more attention [1,2]. However, researchers' major problems are the low 

representation of faulty asset behaviour, which results in an imbalanced dataset. The 

imbalanced data problem arises when the distribution of classes present in the dataset 

is not uniform, such that the total number of instances in one class far outnumber that of 

the other class [3]. The imbalance problem degrades the performance of the data-driven 

model, causing imprecise prognostics. The rapid flow of data from the industrial process 

has brought about an increasing research focus in big data analytics and its many 

applications in academics, industries, and government sectors [2,4,5]. Therefore, solving 

the imbalanced classification problem is necessary in order to build a high-performance 

predictive model. Research into this area is still an open issue [6–8], especially the data-

driven approaches [9].  

 The imbalanced classification problem is prevalent in many application domains. For 

Example,  in building predictive maintenance for aircraft, the historical data is often 

imbalanced because the record about systems and processes is mostly healthy with 

fewer failure records [10]. Similarly, in financial fraud detection, in most cases, illegal 

transactions are often rare compared to the majority of legitimate ones. The fraudulent 

minority transactions are more critical to predict accurately to avoid the consequence of 

the successful occurrence of fraud [11]. The application of imbalanced learning is also 

seen in clinical science for rare disease detection. The majority of the population is 

healthy, and the minority is infected [12]. In this case, predicting the minority becomes 

critical. Likewise, imbalance learning can be seen in the oil spillage detecting problem. 

Large images of an ocean captured by satellite may show a few images representing the 

oil spillage portion, and most of the images represent the non-spillage areas [13].  In such 

cases, the target is to predict the minority spillage portion of the ocean.  

In a situation where the ratio between classes is not significantly large, and the existing 

machine learning methods can adequately handle such an imbalanced problem. 

However,  in a situation where the ratio between classes in the dataset is extreme, say, 
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10000:1 [14], learning becomes more challenging because examples from the 

overwhelming class can be well-classified, whereas samples from the minority class can 

be misclassified. In the worst case, minority examples are treated as outliers or noise of 

the majority class and ignored or dropped during learning. The learning algorithm ends 

up generating a trivial classifier that classifies every example as the majority class. Other 

factors that can impact the classification algorithm's performance apart from the 

imbalance ratio are; the class's small disjunct, the noise, and the class 

overlapping[15,16].   

In this study, we consider the problem of an imbalanced dataset in the context of aircraft' 

predictive maintenance.  

 

Figure 5- 1 Types of Maintenance strategies 

Maintenance strategies have progressively developed over time, and the goal remains 

the same that is to preserve equipment. Recently, industries are becoming more aware 

of the advantages of applying advanced machine learning methods to enhance quality, 

process performance, and system uptime by maintaining overall equipment effectiveness 

(OEE). This development has brought more research attention to predictive maintenance 

modelling for heavy equipment monitoring [5,9,17].  

Maintenance can be categorized into two types: a time-based and conditioned base, as 

seen in Figure 5-1. In time-based, we have reactive maintenance, which involves fixing 
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after things have been broken down, and preventive maintenance involves keeping things 

from breaking. Reactive maintenance is quite expensive and time-consuming because 

no prior knowledge is available to plan effective maintenance. On the other hand, 

preventive maintenance allowed the pre-emptive measure to be taken before equipment 

failure, for example, by conducting repairs at fixed intervals regardless of the equipment 

condition. Advancement in technology has allowed the second category of maintenance, 

known as conditioned-based maintenance (CBM). CBM optimizes preventive activities 

based on the actual conditions of the asset. Predictive maintenance is a form of CBM 

where a predictive model is developed to forecast future failure using past failure records.  

This study considers the imbalanced dataset's problem in developing a data-driven 

prognostic model for predicting unplanned aircraft component failures. The study 

proposes a novel method that involves a unique fusion of two machine learning 

techniques (ensemble learning and cost-sensitive learning) to form a hybrid approach. In 

the proposed hybrid algorithm, we use a balance-cascading algorithm to cascade the 

majority class. Then the minority class is synthesized and boosted using a data 

expansion policy, which overcomes the extreme imbalance classification problems and 

reduces the computational cost for larger datasets compared to deep learning methods 

[18]. The ensemble process provides a unique classifier arrangement and cost sensitivity 

to each weak learner, which produces state-of-the-art performance.  

The contribution of this paper is as follows:  

One of the fundamental research questions that this implementation seeks to answer is 

can a class overlapping and small disjunct problem inherent in the extremely imbalanced 

ACMS dataset be overcome by using hybrid ensemble learning? A new algorithm known 

as Balanced Calibrated Hybrid Ensemble Technique (BACHE) is designed and 

implemented to answer the above question. The approach's novelty is found in the 

uniqueness of ensemble architecture that combines weak classifiers, which balanced the 

bias-variance tradeoff to improve minority class sample prediction. Cost-sensitive are 

defined in each weak classifier to improve the prediction of minority class samples.  

Another contribution is that the proposed approach's effectiveness is validated using a 

real-world dataset (the aircraft central maintenance system-CMS dataset). This is a 

distinctive contribution because of the dataset's heterogeneous nature, which is 

challenging to mine for predictive modelling.  
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The remainder of this paper is organized as follows: Section 5.1.2 provides related work. 

Section 5.1.3 presents the methodology. Section 5.1.4 discusses the results and model 

validation, and finally, we present our conclusion and future work in Section 5.1.5. 

5.1.2 Related Work 

This section gives an overview of imbalanced classification problems. Several research 

approaches have been conducted to solve the imbalanced classification problem, and 

some comprehensive reviews can be found in [19–21]. The solution to the imbalanced 

classification problem can be categorized into three main groups [20]. The data level, the 

algorithm level, and the hybrid approach, as seen in Figure 5-2. The data level approach 

involves resampling the dataset before presenting it as an input to the learning algorithm. 

The data level approach has gained a lot of research attention, especially the over-

sampling techniques, which involve increasing the minority class samples to have a 

balanced class. Some of the methods are based on oversampling are the Synthetic Over-

sampling Techniques (SMOTE) developed by Nitesh et al. [22]. Their technique creates 

new synthetic samples into the minority class to balance with the majority. Though, the 

SMOTE approach has widely addressed the imbalanced classification problem. 

However, SMOTE contains some drawbacks, such as class overlapping because it 

ignores adjacent samples when creating new synthetic points [23] and an 

overgeneralization problem. Hence, many advanced versions of SMOTE have been 

developed, such as SMOTE-Boost [24], which introduces new dynamic weighted 

synthetic data points in the minority class at each round of boosting steps to eliminate the 

overgeneralization problem. SMOTE-boost tries to solve these drawbacks of the main 

SMOTE by adding synthetic data points in each weak classifier of the easy-ensemble 

method [25]. Other versions are the Easy-SMOTE Algorithm [26], Borderline-SMOTE 

[27], and many more.  
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Figure 5- 2 The three existing categories of the State-of-the-art approach of the handling 

imbalance problem 

The algorithm level approach tackles the imbalanced learning problem by altering the 

learning algorithm to respond favourably to both classes during learning [20]. Cost-

sensitive learning is an algorithm-level approach. The cost-sensitive method is explored 

by defining the cost of misclassification for each class. Determining the cost of 

misclassification is challenging in the traditional classification algorithms (such as support 

vector machines, decision trees, and more) because the algorithms presume that all 

classification errors carry the same cost. Hence, they focus on minimizing the error rate 

and the percentage of a class's incorrect prediction, ignoring the difference between the 

misclassification errors. Therefore, cost-sensitive learning takes into consideration the 

different costs that vary by type of classification (true-positive, true-negative, false-

positive, false-negative) across all samples. The goal is to minimize the total cost, such 

as the G-mean score. From a business point of view, it is vital to determine the 

misclassification cost for each class. For instance, in aircraft maintenance, the cost of 

misclassifying the minority class (failure) has a higher impact on the business than the 

misclassifying majority class (healthy state). Hence, cost-sensitive learning is used to 

mitigate such problems [28]. Cost-Sensitive in Decision Tree algorithm (CS-DT) involves 

introducing cost into the decision tree algorithm for the algorithm to respond favourably 

to all classes during training[29]. Cost-sensitive learning is effective in classifying 

datasets with different imbalance distributions [28]. The changing misclassification costs 
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are best understood using the idea of a cost matrix. As seen in Table 5-1, a Cost 

sensitives learning can be binary or multi-class; in either case, it associates different 

misclassification costs to every prediction.    

Table 5- 1 Cost or Confusion Matrix 

 Actual Positives  Actual Negatives TP: True Positive  

TN: True Negative 

FP: False Positives 

FN: False Negative  

Predicted Positives TP (𝐶1,1) FP (𝐶1,−1) 

Predicted 

Negatives 

FN (𝐶−1,1) TN (𝐶−1,−1) 

 

Using the confusion matrix as shown in Table 5-1, the value (𝐶𝑖,𝑗 ) represents the cost of 

misclassifying a data point from its actual class (j) to a predicted class (i), 1 represents 

positive class, while -1 represents the negative class. Usually, the cost of correct 

prediction that is TP and TN should always be lower than the cost of misclassification 

error that is FN and FP, usually is set to zero. (𝐶𝑖,𝑖 ) is regarded as a negated error since 

the data point is predicted correctly. Cost-sensitive learning has widely been applied in 

imbalanced learning [28]; the challenge is learning the cost matrix. In some domains, it 

might be obvious because the consequence of misclassification can just be based on 

monetary value. However, in areas such as predictive maintenance for aircraft, the 

consequence of the misclassification of faults can be grave.  

The easiest way of defining the misclassification cost is to input it manually according to 

the domain expert advice or inversely calculate it based on class distribution [30–32]. The 

challenge of using a manual approach for calculating the cost of misclassification is that 

it is time-consuming and sometimes impractical. Another approach can be to fit the 

importance of features to adaptive equations [33], which involves incorporating second-

order information to enhance the prediction of the minority class. However, because of 

the peculiarity of the dataset used in this study, neither method is suitable. Hence, we 

define the misclassification cost from cost-sensitive algorithms' evaluation functions, 

using weighted Platt calibration to measure the cost sensitivity of the classification 

algorithm.  
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The imbalanced learning hybrid approach involves combining more than one method, 

either from data levels or algorithm-level techniques, to enhance prediction [34]. An 

example of the hybrid approach is ensemble learning. Ensemble learning involves 

enhancing prediction by using a combination of weak learners to form a strong learner. 

The major course of error in machine learning is the presence of noise, variance, and 

bias in the dataset. Ensemble classifiers are built to minimize these factors, which 

improves the stability and learning performance of machine learning algorithms. A study 

by Zhou et al. [35] shows a broad overview of why and how ensemble learning improves 

prediction performance. Diverse ensemble learning strategies that focus on imbalanced 

learning have been proposed in the literature.  For instance, Galar et al. [36] provide a 

broad overview of different combinations of multiple classifiers to improve predictive 

accuracy. The ensemble approach can either be constructed using boosting or bagging 

learning structures to optimize accuracy. The implementation of boosting learning can be 

found in AdaBoost [37], SMOTEBoost [38]. The bagging implementation that is bootstrap 

aggregating [39]  can be seen in SMOTEBagging [40].  

Combining ensemble learning with a data level approach (under-sampling or over-

sampling) to solve the imbalanced classification problem has led to several proposals in 

the literature, with positive results [41]. Although ensemble learning is known to enhance 

machine learning model performance [42], the arrangement of classifiers alone cannot 

solve the class imbalance problem. Hence, the ensemble approach needs to be explicitly 

designed for imbalanced learning to deal with imbalanced classification challenges. For 

example, The balance-cascading and easy-ensemble algorithms presented in the study 

by Liu et al. [14,43] use the under-sampling technique with an ensemble approach to train 

the weak learners and then combine the result to form a robust classifier. These 

algorithms use the under-sampling method because of its advantage of less training time.  

They then focus on tackling its disadvantage, which is a reduction of informative samples. 

Easy-ensemble involves resampling the majority class into several subsets, then training 

each subset using weak learners (such as AdaBoost [44]) while keeping the minority 

class constant. 

The result of each data subset will then be combined using majority voting. This approach 

has recoded positive results, which has led to more advances in this direction. An easy-

synthetic minority over-sampling technique (easy-SMT) was developed by Wu et al. [4]. 

Easy-SMT is an integrated ensemble-based method that uses a SMOTE-based over-



 

152 

 

sampling and under-sampling strategy to transfer imbalanced problems into an 

ensemble-based balance sub-problem. Using an easy-ensemble or balance-cascade 

algorithm to resample the dataset involves exploring the data samples ignored by the 

random under-sampling technique. However, both methods keep the minority class 

constant while training the subsets, creating computational costs if the data is large. 

Wankhade et al. [45] proposed a hybrid method to deal with an imbalance classification 

problem that addresses the above challenge. Their technique uses a combination of 

classification and clustering to enhance recognition of the rare class during learning. 

Likewise, Vluymnas et al. [46] proposed a hybrid method for solving the imbalanced 

problem, which combines a preprocessing and classification model. The results of both 

approaches show an improvement in predicting minority class. Another hybrid approach 

is developed by Le et al. [47] to predict bankruptcy. Their algorithm uses an over-sampling 

technique and cost-sensitive learning to handle imbalanced classification problems. The 

results show that the approach outperforms other existing methods in predicting 

bankruptcy, which is rare in the dataset used. Application of Imbalance learning has also 

been seen in rotating machinery; Yuyah et al. [7] show oversampling and future-leaning 

to handle imbalanced data in fault diagnosis. Different studies have also demonstrated 

how imbalanced data problems can be handled using deep learning [48,49].  

As highlighted above, most of the methods are validated on diverse individual datasets, 

making them domain-specific. Thus, the peculiarities of our dataset make it challenging 

to apply off-shelf techniques. Among the different approaches, the hybrid methods show 

effectiveness and robustness in handling the imbalance problem compared to other 

single methods. Thus, it motivated this study. Therefore, this study aims to advance the 

ensemble and hybrid approach by considering the challenge of extremely imbalanced 

classification problems in the big data domain. Also, our proposed method is inspired by 

two observations: first, the possibility of convergence of different boosting algorithms for 

an optimal solution heading to the direction of the gradient of the objective function, and 

the cost-insensitive predictor can then asymptotically minimize. Second, ensemble 

algorithms can perform shift decision threshold and calibration of probability estimation, 

which accounts for class imbalance [50].  

5.1.3 Methodology 

This section describes the methodology for this study.  
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5.1.3.1 Derivation of Cost-Sensitive Decision Tree Algorithm 

In the proposed approach cost-sensitive decision tree algorithm is used as a weak 

classifier.  

In machine learning, classification involves predicting the class of a given data point, say 

𝑦𝑖  of a dataset Ds, given their k features 𝑥𝑖   ∈   𝑅𝑘. Classification in predictive modelling 

is about approximating a mapping function f (·) that minimizes the expected value of some 

specified loss function 𝐿 (𝑦𝑖, 𝐹(𝑥)), to make a prediction 𝑐𝑖 of the class of each example 

using its input variables 𝑥𝑖 .  

𝑭̂ =   𝒂𝒓𝒈𝒎𝒂𝒙 
𝜸

𝑬𝒙,𝒚[𝑳(𝒚, 𝒇(𝒙))] ,                  (5- 1) 

    

where γ is the learning rate  

Similarly, as described by Hastie et al. [51], the gradient boosting methods uses a real 

value of  𝑦𝑖 ∈ 𝑅  and then seek an approximation of 𝐹̂(𝑥)  that minimize the average value 

of loss function on the training dataset, this is achieved by starting with a constant function 

𝐹0 (𝑥) and increment it greedily. 

𝑭𝟎 (𝒙) =  𝒂𝒓𝒈𝒎𝒂𝒙 
𝑭

∑ (𝑳(𝒚𝒊, 𝜸))𝒏
𝒊=𝟏                                       (5- 2)   

𝐹𝑚 (𝑥) =  𝐹(𝑥)𝑚−1 (𝑥) + 𝑎𝑟𝑔𝑚𝑎𝑥 
ℎ𝑚 ∈𝐻

[∑ (𝐿(𝑦𝑖, 𝐹(𝑥)𝑚−1 + ℎ𝑚 (𝑥𝑖) )
𝑛
𝑖=1 ]              (5- 3)     

ℎ𝑚 ∈ 𝐻 is the base learner function. 

To further minimize the problem, the steepest descent approach is used to transform (eq. 

5-1) as the gradient descent and take the derivatives with respect to 𝐹𝑖 for 𝑖 ∈ {1, …𝑚}  

 𝐹̂𝑚 (𝑥) =  𝐹̂(𝑥)𝑚−1 (𝑥) + 𝛾𝑚[∑ ∇𝐹(𝑥)𝑚−1 (𝐿(𝑦𝑖, 𝐹(𝑥)𝑚−1 + 𝐹(𝑥)𝑚−1 (𝑥𝑖) )
𝑛
𝑖=1 ]   

𝛾𝑚 =  𝑎𝑟𝑔𝑚𝑎𝑥 
𝛾

[∑ (𝐿(𝑦𝑖, 𝐹(𝑥)𝑚−1 − ∇𝐹(𝑥)𝑚−1 𝐿(𝑦𝑖, 𝐹(𝑥)𝑚−1 )
𝑛
𝑖=1 ]         (5- 4)          

To improve the quality of fit of each base learner function, we use the Friedman approach 

[52], 

considering 𝑚𝑡ℎ steps to fit a decision tree ℎ𝑚 (𝑥𝑖), and 𝑗𝑚 are the leaves nodes, we get  
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𝐹𝑚 (𝑥) =  𝐹(𝑥)𝑚−1 + ∑ 𝛾𝑗𝑚
𝑗𝑚
𝑗=1 1𝑅𝑗𝑚 (𝑥),   𝛾𝑗𝑚 = 𝑎𝑟𝑔𝑚𝑎𝑥 

𝛾
∑ 𝐿(𝑦𝑖, 𝐹(𝑥𝑖) +  𝛾 )

𝑛
𝑥𝑖 ∈ 𝑅𝑗𝑚 

  (5- 5) 

𝑗 , denotes the number of terminal leave notes in the tree, R is a real values. 

Gradient Boosting Tree Algorithm   

Input: the training set {(𝒙𝒊, 𝒚𝒊)}𝒊=𝟏     
𝒏 , a differentiable loss function   𝐿(𝑦𝑖, 𝐹(𝑥𝑖)) and number 

of iterations 𝑀. 

1. Initialize the model with a constant value 

 𝐹0 (𝑥) =  𝑎𝑟𝑔𝑚𝑎𝑥 
𝛾

∑ (𝐿(𝑦𝑖, 𝛾))
𝑛
𝑖=1         

2. For 𝑚 ∈ {1,…𝑀}:  

 a. compute  𝛾𝑚 = −[
𝛿𝐿(𝑦𝑖,𝐹(𝑥𝑖)) 

𝜕 𝐹(𝑥𝑖)
]; for i= 1,…M 

 b. Fit a base learner ℎ𝑚 (using CS-DT) 𝜕𝑚 𝑡𝑜 (𝑥𝑖,   𝛾𝑚𝑖
) for i =1,…n 

 c. compute multiplier 𝛾𝑚 using the following optimization function. 

 𝐹𝑚 (𝑥) =  𝐹(𝑥)𝑚−1 + ∑ 𝛾𝑗𝑚
𝑗𝑚
𝑗=1 1𝑅𝑗𝑚 (𝑥),   𝛾𝑗𝑚 = 𝑎𝑟𝑔𝑚𝑎𝑥 

𝛾
∑ 𝐿(𝑦𝑖, 𝐹(𝑥𝑖) +  𝛾 )

𝑛
𝑥𝑖 ∈ 𝑅𝑗𝑚 

  

 d. update the model 𝐹𝑚 (𝑥) =  𝐹(𝑥)𝑚−1 + 𝛾𝑚∇𝑚(𝑥) 

3. Output 𝐹𝑀 (𝑥) = 0 

Algorithm 1 forms the core component of our proposed approach. It is used as a weak 

classifier.  

5.1.3.2 Our proposed approach 

This study aims to enhance the learning algorithm's performance to improve True Positive 

Rate (TPR) and reduce False Positive Rate (TPR) while learning from the extremely 

imbalanced system log dataset. Therefore, we combine three machine-learning 

approaches to form a hybrid algorithm, which enhances the classification of an extremely 

imbalanced dataset.  
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Figure 5- 3 The Methodology of Imbalance learning using BACHE Algorithm 

The three approaches are the data level (under-sampling), ensemble learning, and cost-

sensitive learning to develop a novel imbalanced learning algorithm called the BACHE 

algorithm. In the under-sampling phase, a balance-cascading algorithm is used to reduce 

data from the majority class. The choice of the balance-cascading algorithm is because 

of its low computation cost and its effectiveness in utilizing the majority class samples 

ignored by random under-sampling techniques. The ensemble learner approach is 

chosen because of its strength in combining multiple weak learners to produce a 

robust classifier. The calibrated cost-sensitive is used to define the cost of 

misclassification in each weak learner's prediction, which helps in tackling problems 

where the costs of different types of erroneous predictions are not equal.  In the ensemble 

boosting phase, instead of using a standard decision tree, a cost of classification using a 

calibrated probability estimate is considered at each iteration by modifying the updating 
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rule with regards to the modified loss function. Likewise, instead of finding the best 

classifier, the problem is directed to focus on finding the best learning rate γ [53–55].  

Therefore, what makes a difference here is the tree structure and the model weight 

updating rule.  The BACHE algorithm works as follows; first, data preprocessing and 

feature engineering is conducted. After preprocessing the dataset and selecting the right 

features, the data is divided into two.  80% of the data is kept for model training and 20% 

for model testing. Then the dataset is divided into several subsets using a cascading 

balanced approach [56]. At every boosting integration step (selection with replacement), 

the samples of each subset are balanced to form Balanced Data (𝐷𝑖′𝑠). After the dividing 

and balancing process, each subset is trained using weak learners. The process 

continues for the number of defined iterations. At each iteration, the subset learns using 

a weak learner (𝐻𝑖𝑠) at the end of the ensemble process, the result of all the weak 

learners, is combined to get a hybrid ensemble classifier. The final model is then 

evaluated using new hold-out datasets. 

As seen in Figure 5-3, the proposed BACHE methodology explores both the majority 

class ( 𝑵) and Minority class (𝑷) in a supervised learning manner. The weak learners 𝐻𝑖𝑠 

are trained in sequence on a weighted version of the dataset using a cost-sensitive 

boosting algorithm. Considering N in the under-sampling process, if data point example 

say 𝒙𝒊̇ ∈ 𝑵 is correctly classified to be in 𝑵 it easier to infer that 𝒙𝒊 is reasonably redundant 

in 𝑁, given that we already have the outcome as 𝐻1 [57]. Therefore,  𝑥𝑖 will be removed 

from 𝑁. (That shows 𝑁 will be reduced after training each  𝐻𝑖 ).  Every 𝐻𝑖  deals with 

balanced sub-set  |𝑁𝑖| = |𝑃𝑖|, after processing all the subsets of the cascaded dataset, 

the outcome of  𝐻𝑖𝑠 is combined using a weighted majority vote.  

Elaborately, considering the majority class 𝑁 and minority class 𝑃, the length of iteration 

is  𝑆𝑖 and the length of each 𝑛 ∈ 𝑁 subset is defined as  𝑀  (we use an under-sampling 

technique to split 𝑁 into random subsets 𝑛1, 𝑛2, 𝑛3…𝑛𝑇  ∈  𝑁).  Then a subset of 𝑝 ∈ 𝑃  is 

combined with each 𝑛 ∈ 𝑁 to form a balanced sub-dataset (𝐷𝑖). These 𝐷𝑖𝑠 are trained 

using weak classifiers, which are later combined to form an optimized classifier. In each 

weak classifier, a cost-sensitive calibrating boosting algorithm is used.  Such as adaMEC 

[50], a score of the form (𝑥) ∈ [𝑃, 𝑁] is generated. 

A probability of x belonging to a positive class P is given as 𝑝𝑟𝑏(𝑦 = (1|𝑥)), 𝑥 will be 

assigned to a class with a minimized expected cost.  In other words, a data point 𝑥𝑖 will 



 

157 

 

be assign to positive class 𝑃 if and only if  𝑝𝑟𝑏(𝑦 = (1|𝑥))𝑐𝑣 >   𝑝𝑟𝑏(𝑦 = (−1|𝑥)) ↔

 𝑝𝑟𝑏(𝑦 = (1|𝑥)) >  
1

1+𝑐
. For example, using the imbalance learning cost matrix (see Table 

5-1)   

 𝑐 = [
0 1
𝑐 0

], c (𝑦𝑖) = {
𝑐   𝑖𝑓 𝑦𝑖 = 1
0  𝑖𝑓 𝑦𝑖 = −1

          (5- 6) 

Where  𝑝𝑟𝑏(𝑦 = (−1|𝑥)) = 1 − 𝑝𝑟𝑏(𝑦 = (1|𝑥)).  

Otherwise data point 𝑥𝑖  is assigned to the negative class N.  It is important to note that 

probability estimates are not always straightforward to obtain from a classifier's outputs 

[58]. Therefore, a generated score of the form (𝑥) is calibrated using platt scaling. The 

classification of the extreme minority is  accounted for in the calibration step as detailed 

in [58]. In the Platt calibration, it uses  
𝑃+1

𝑃+2
  for positive class and  

1

𝑁 +2
  for negative class, 

rather than 1 and 0 as the target probability estimation of the 𝑃 and N.  Therefore, in 

BACHE we aim to reduce the ensemble error rate by focusing on different positive class 

𝑃, as we want to model 𝑃 better to enhance detection of the extreme minority and also 

avoiding accuracy degradation for the negative class 𝑁.  The BACHE algorithm 

pseudocode is presented in algorithm 2. 
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The  Balanced Calibrated Hybrid Ensemble Technique (BACHE) Algorithm  

INPUT:     
                    Dataset: 𝐃 = {(𝒙𝒊, 𝒚𝒊)}𝒊=𝟏      

𝒏 with minority class 𝑷, majority class  𝑵  

                     and  𝑷 <  𝑵 .      
                    The number iteration or the number of subsets to be sampled from  
                     N: 𝑴 ,    

                     Imbalance Ratio 𝑰𝑹 =  
𝑷

𝑵
∗ 100  

                    The number of iterations to train the calibrating ensemble   𝑯𝒊: 𝒔𝒊    
𝒇𝒐𝒓 𝒊 =  𝟏 𝒕𝒐 𝑲 𝑫𝒐 ∶  
 
 

  𝒇 ← √
𝒏+

        𝒏−        

𝑴−𝟏
 ,    𝒇  is the FP-rate that 𝑯𝒊 should achieve. 

 Randomly sample a subset 𝑵𝒊 of 𝒏+ with replacement. 
   𝑵′ = (𝑰𝑹 > 𝟏. 𝟐𝟓 (𝑴𝟐  − 𝟏), 𝑲);   𝑷 = 𝑷 + 𝑷′ 

 𝒇𝒐𝒓 𝒊 =  𝟏 𝒕𝒐 𝒋 𝑫𝒐 ∶  
  Training Phase: 

 Split the data in training set 𝐷𝑡 and calibration set 𝐷𝑐 (for correcting distortion) 
  On 𝑫𝒕: 
   Train 𝑯𝒊 using   𝑷′  U  𝑵𝒊  .  

 𝑯𝒊  is obtained using Algorithm 1 with 𝑺𝒊 as weak classifier  
 𝒉𝒊,𝒋 and corresponding weight  𝜶𝒊,𝒋 .  

The ensemble shifted decision threshold is 𝜽𝒊    
  On  𝑫𝒄- calibrated boosting: 
   a. calculate score 𝑠(𝑥𝑖)= 

∑ ℎ𝑖,𝑗(𝑥𝑖)𝜏: =1

∑ 𝑎𝑖,𝑗
𝑠𝑖
𝜏=1

 ∈ [1,0]∀𝑥𝑖 ∈ 𝐷𝑐 

   b. calculate number of P and N in  𝐷𝑐; 
    find A,B s.t ∑ 𝑝𝑟𝑏(𝑦 = (1|𝑥𝑖) − 𝑦𝑖)

2
𝑖∈𝐷𝑐

 is minimized. 

    

Where 𝑝𝑟𝑏(𝑦 =  (1|𝑥) =  
1

1+𝑒𝐴𝑠(𝑥)+𝐵
  and 𝑦𝑖 =  {

𝑃+1

𝑃+2
 𝑖𝑓 𝑦𝑖=𝑝𝑜𝑠𝑖𝑡𝑖𝑣𝑒 

1

𝑁+1
  𝑖𝑓 𝑦𝑖=𝑛𝑒𝑔𝑎𝑡𝑖𝑣𝑒 

 

  Prediction Phase: 
   On new data-point (𝑥): 
    Calculate prior weight score 𝑠(𝑥) 
    Obtain prior weight probability estimate 𝑝𝑟𝑏𝑤 (𝑦 =  (1|𝑥) =

1

1+𝑒𝐴𝑠(𝑥)+𝐵
 ) 

    
Predict class H(𝑥𝑗) = 

𝑠𝑖𝑔𝑛
𝛾

 [𝑝𝑟𝑏𝑤 (𝑦 =  (1|𝑥) > 𝜽𝒋] 

    Adjust 𝜽𝒋 such that 𝑯𝒊𝒋𝒔 the false positive rate is 𝒇  

    Remove from 𝑵 all samples that are correctly classified by 𝑯𝒋 . 

OUTPUT ENSEMBLE: 
 

Return    𝑯𝒊(𝒙) =
𝒔𝒊𝒈𝒏

𝜸
 (∑ ∑ 𝜶

𝑺𝒊
𝒋=𝟏 𝒊,𝒋

𝑴
𝒊=𝟏 𝒉𝒊,𝒋 (𝒙) − ∑ 𝜽𝑴

𝒊=𝟏 𝒊
 ) 
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5.1.3.4 Experiment 

To validate the effectiveness of the proposed approach, we use the following datasets as 

input.  The first data is the data generated from the central maintenance system (log-

based CMS data), and the second data is the record of maintenance activities. The 

datasets are obtained from a fleet of long-range (A330) aircraft and A320 families. 

According to families, aircraft grouping is necessary because the data generated differ in 

properties and structure.  The designation routes were different for each family; some 

were mainly used for long-distance routes, while some were primarily used for short 

distances. From the A330 aircraft family, the total number of failure/warning messages 

after preprocessing is 389902, and the A320 family has a total of 890120. 

The main objective is to develop a predictive model to predict failure resulting in aircraft's 

unplanned repairs or components' replacement. Therefore, we choose target 

components identified by Functional Item Number (FIN). The representation of these 

components is extremely rare. The basic idea is to correctly detect the extreme minority 

class samples and the majority class samples during model classification.  

Apart from the high skewness in the dataset, the raw data has many challenges that 

require preprocessing, such as data incompleteness, lack of behaviours and trends, 

containing null values, lacking the features of interest, and containing noise. Therefore, 

we follow the data knowledge discovery approach [62]. We preprocessed the data and 

transformed it into a suitable format for machine learning. After that, we carry out 

the Feature Engineering (FE) process. FE is the integral and critical step of the machine 

learning process because the model's performance output depends on the quality of data 

and the right features selected (see chapter 2).  After the preprocessing and feature 

engineering phase. The data is divided into two: For training and for testing the model. 

The data was split into training and testing divided into 70/30 (from January 2011 to 

September 2016) and validation data from October 2016 to April 2018 (without known 

label).  

 The following requirements are considered in the design and develop the imbalance-

learning framework.  

1. Features obtained from the raw CMS dataset should adequately represent the 

component replaced.  
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2. The baseline learning algorithm and classifier should be suitable for large imbalanced 

datasets.  

3. The model performance evaluation metrics should be suitable for an imbalance 

scenario.  

4. Prognostic alert requirements: - Predictive model should flag up alerts for maintenance 

needs (component replacement), not more than ten and not less than two flight cycles 

before failure point. The window period is to avoid early replacement of a component, 

which will mean underutilizing resources and not too close to failure to give adequate 

room to prepare for maintenance.  

5. Model should achieve more than 60% precision, recall more than 50%, or G-mean of 

greater than 50%. 

From the dataset, we selected a few aircraft components for validation. The Electronic 

control unit/ Electronic engine unit (4000KS), High-pressure bleed valve (4000HA), 

pressure regulating valve (4001HA), Satellite data unit (5RV1), Flow control valve 

(11HB), Avionics equipment ventilation computer(10HQ), Air traffic service unit (1TX1) 

and Flow control valve (8HB). The selection is based on descriptive analysis, which 

shows the percentage of each component replaced over the period under consideration. 

We select the components with the highest number of replacements. We clustered the 

dataset (failure/ warning message) according to every specific component under 

consideration, then in each of the clusters, the targeted unplanned component 

replacements are labelled as a positive class (representing the minority class-P). 

Simultaneously, all the failure/warning messages before each replacement are labelled 

as the negative class (representing the majority class-N).  In each cluster, since the data 

is sequential in terms of date-time and flight circles, we group the data into windows using 

date-time and flight cycles; a window size of 30 aircraft flight cycles was used. The choice 

of window size is based on the domain of expert advice.  

Our experiment aims to compare the performance of state-of-the-art ensemble boosting 

methods for imbalanced learning with our proposed approach. Therefore, the following 

experiment was set up to evaluate the proposed BACHE algorithm's performance on 

aircraft rare unplanned failure prediction problems.  
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Balance Bagging (BB): This is an ensemble learning method. It uses a bagging 

approach with an additional capability to balance the training dataset at the fitting time. 

During training, the parameter can be turned for the best results. Therefore, BB is 

considered our baseline method since our algorithm is based on the ensemble learning 

approach and focuses on tackling extremely rare failure problems in aircraft systems. The 

hyper-parameters are 

Base_estimator=None,n_estimators=10,max_samples=1.0,max_features=1.0,bootstrap

=True,bootstrap_features=False,oob_score=False,warm_start=False,n_jobs=None,ran

dom_state=None,verbose=0. 

SMOTE-Random Forest (SMT-RF): This method combines an imbalance learning 

algorithm with an ensemble algorithm. The minority class is first resampled using the 

SMOTE technique, and then the ensemble-RF approach is used as the classifier. The 

Random Forest algorithm is implemented using the following hyperparameters: 

learning_rate = 0.1, Max_depth =10, Subsample = 50, Colsample = 0.3, n_estimator= 10 

XGBoost (eXtreme Gradient Boosting): XGBoost is an ensembled learning based 

algorithm, ensembled are contructed from decision trees, trees are added using boosting 

approach (one at a time to the enseble as fit for classification) [63]. XGBoost Scikit_Learn 

API was used with the following hyperparameters: learning_rate = 0.1, Max_depth =10, 

Subsample = 50, Colsample = 0.3, n_estimator= 10.  

Cost-Sensitive C4.5 Algorithm: This ensemble-based algorithm builds decision trees 

from a set of training data [64]; the trees are used for classification. C4.5 algorithm is 

implemented using the following hyperparameters: learning_rate = 0.1, Max_depth =10, 

Subsample = 50, Colsample = 0.3, n_estimator= 10. 

Balance calibrated Hybrid Ensemble Technique (BACHE): The proposed approach. 

Experiment Running Environments:  

Programing langege : Python  

Machine learning Editor: Sublime and Jupyter notebook 

Major Packages: Pandas, Scikit-learn, Keras, TensorFlow, sciPy and more.  

Running the experiments with multiple seeds will ensure the approach is not sensitive to 

different start conditions. Some of the sensitivity to initial conditions could be that the 

failure distribution can substantially differ between the training and validation datasets, 
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which will likely negatively affect model training. To mitigate that, stratified samples and 

random seed can be used so that the proportions of the dependent variable are similar 

in training, testing and validation dataset. In the implementation, each algorithm was run 

five times with the same hyperparameter for each target event using five random seeds 

then the average is obtained. 

5.1.4 Results and Discussion  

This experiment investigates the proposed approach's performance against the existing 

ensemble learning algorithms (Balance Bagging as baseline) and hybrid imbalance 

learning algorithms (SMOTE + Random Forest). The choice of the baseline algorithms is 

to enable us to assess the proposed method's performance, which uses a cost-sensitive 

decision tree as a weak classifier and then employs an ensemble approach to get a hybrid 

algorithm (BACHE) as a solution to the extremely imbalanced classification problem. 

 

Figure 5- 4 Comparing  BACHE against other Algorithms 
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Table 5- 2 Experimental Result using data from a fleet of A330 and A320 Aircraft family 

Dataset 

(TFIN) 

IR% Balance Bagging (baseline) SMT +RF BACHE 

  Precision Recall G-mean Precision Recall G-mean Precision Recall G-mean 

A330 (Long Range) Family 

4000K

S 

0.004

3 

0.75 0.50 0.60 0.81 0.65 0.72 0.85 0.78 0.81 

4000H

A 

0.004

7 

0.81 0.56 0.67 0.85 0.73 0.79 0.92 0.80 0.86 

5RV1 0.004

4 

0.80 0.55 0.66 0.83 0.68 0.75 0.89 0.79 0.83 

A320 (Short Aisle) Family 

11HB 0.002

8 

0.75 0.53 0.63 0.77 0.70 0.73 0.89 0.83 0.82 

10HQ 0.003

1 

0.82 0.54 0.67 0.84 0.71 0.77 0.92 0.81 0.87 

1TX1 0.002

1 

0.78 0.50 0.62 0.80 0.65 0.72 0.84 0.80 0.81 

*TFIN:-Target Functional Item Number, IR:- Imbalance Ratio, SMT:- SMOTE, RF:- Random Forest, BACHE:- Balanced Calibrated 

Hybrid Ensemble Technique.  

Tables 5-2 and Figure 5-5 present the experiment results. It can be observed that in all 

cases, the proposed BACHE algorithm outperforms the two algorithms in terms of recall 

and G-mean. The G-man's superior performance indicates the trade-off between 

recognition in both classes, which is also a good classification effect for imbalanced 

datasets. Similarly, the high precision suggests that the false positive rate is low, and the 

high recall score indicates that the BACHE algorithm is sensitive to the minority class. 

Furthermore, Figure 5-6 shows how BACHE records a significant percentage reduction 

in false positives compared to other methods. Although, the positive class (the minority 

class) is extremely rare. However, the BACHE algorithm is robust to skewed distribution 

by achieving a better result.  

It is also important to note that our goal is to achieve a G-mean score of greater than 50% 

as part of the target requirement for this, which is the mean average of detecting 

extremely rare failure from the log-based dataset. The higher G-mean score for the 

BACHE algorithm shows that the model can distinguish the failure patterns leading to 

unexpected component replacement.  
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We also evaluate the proposed method's effectiveness in terms of false-positive and true-

positive rates, considering the different aircraft families' datasets.  

        

Figure 5- 5 The average overall performance of each algorithm on the two aircraft 

families (A330 and A320) 

Figure 5-5 shows the average FPR and TPR for each algorithm in both A330 and A320 

aircraft families. BACHE averagely achieved a better (low) false-positive rate compared 

to the closest SMOTE+RF. In the A330 family, a balanced bagging algorithm has a 

predictive performance in terms of FPR of 69%, SMOTE+RF has 35% and BACHE  15%. 

Comparing BACHE with closes SMOTE+RF, it is clear to see that there is a significant 

improvement of about 20%. Similarly, in the A320 family, the FPR for balance bagging is 

47%, SMOTE+RF is 34%, and BACHE is 19%, showing an improvement of about 15%. 

The result validates the superior performance of BACHE in different aircraft families in 

the fleet.  

Furthermore, another evaluation is the ROC curve reading, which shows that even 

though there is a significant percentage of false-positive rate (approximately 15%), the 

absolute probability is reasonably small.  
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Figure 5- 6 (a) is the Confusion Matric of BACHE prediction, and (b) the ROC-Curve 

shows the performance of the three algorithms considered in this study using data from 

the A330 aircraft family 

Figure 5-7 shows that the BACHE algorithm predicted 5 out of 8 unplanned failures, 

leading to the aircraft's pressure regulating valve replacement (FIN_4000HA). This 

prediction includes 10 flight cycles in advance. It can be observed that the model detected 

and predicts approximately 70% of extreme failure, which is a reasonable specificity, 

especially for aircraft maintenance. The area under the curve is 0.91. This shows that the 

BACHE algorithm can predict more than 90% of the probability of an observation 

belonging to each class in the A330 aircraft family.  

 

(a) 
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(b) 

Figure 5- 7 (a) is the Confusion Matric of BACHE prediction, and  (b) ROC-Curve shows 

the performance of the three algorithms considered in this study using data from the 

A320 aircraft family 

Figure 5-8 shows the predictive performance of BACHE on the A320 aircraft family. The 

result indicates that the BACHE algorithm predicted 12 out of 14 unplanned failures, 

leading to the aircraft flow control valve (FIN_11HB). The area under the curve is 0.87. 

The BACHE algorithm can predict more than 85% probabilities of an observation 

belonging to each class in the A320 aircraft family.  

We presented a confusion matrix and ROC for target functional items 4000HA and 11HB 

because the prediction performance is at the same range for other components in each 

aircraft family.  We considered the remaining components from the A330 family, the 

electronic control unit/ electronic engine unit (4000KS), the satellite data unit (5RV1).  The 

A320 family are the avionics equipment ventilation computer (10HQ), and the air traffic 

service unit (1TX1).  
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Also, it can be observed that the imbalanced ratio has an impact on performance. For 

instance, looking at Table 5-2 in cases where the IR is low, we obtain a lower G-mean 

compared to the ones with higher IR. For instance, in the A320 family, 1TX1 has the 

lowest IR of 0.21% and a G-mean score of 0.81, Compared to 10HQ with the highest IR 

of 0.31% and G-mean score of 0.87. Similar performance can be seen in the A330 family, 

where 4000KS has the lowest IR of 0.43% and the G-mean score is 0.81 compared to 

400HA with the highest IR of 0.47% and G-mean score of 0.86.  Despite the extremely 

imbalanced ratio in all the cases considered, our proposed algorithm still achieved better 

performance compared to other similar algorithms. 

 Another data factor that can impact the algorithm is the class small disjunct. Small 

disjunct arises when data in the same class is represented with different clusters (within 

class imbalance). The less represented small sub-clusters can further worsen 

classification performance degradation in an extreme imbalance dataset. We handled the 

challenge of class small disjunct problems intrinsically in the BACHE algorithm by 

clustering each class independently to identify clusters in each class. We subsequently 

oversampled sub-clusters in each class so that clusters in each class are balanced before 

the classification step.    

One of the objectives of this study is the performance optimization of an imbalance 

learning algorithm.  Evolution of the proposed BACHE against other similar algorithm was 

performed, the result displayed in Figure 5-9. Running each algorithm for classification of 

individual component failure.  The result indicates that balance bagging has the fastest 

training time (averagely 20 seconds), with the XGBoost algorithm having the worst 

training time (averagely 60 seconds). In contrast to the Proposed BACHE algorithm, 

which has an average training time of 50 seconds.  Although Balance bagging and 

Random Forest (RF) show less computation time than BACHE, as observed, the 

difference is less than 20 seconds for balanced bagging and less than 10 seconds for the 

random forest. On the other hand, BACHE performed better in precision, recall and G-

mean (see table 2).  Mis-classifying an example from the majority class as an example 

from the minority class is called a false-positive. False-positive is often not desired but 

less critical than classifying an instance from the minority class as belonging to the 

majority class, known as a false-negative. In the context of this study, false-negative 

means misclassifying fault as healthy, very critical as it can lead to equipment damage. 

In this study, false-positive means misclassifying a healthy component as a faulty 
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component. This can result in the extra cost of maintenance checking. BACHE high 

precision indicates a less number of False Positives, and high recall means fewer False 

Negatives.  

 

Figure 5- 8 Comparing running time between the BACHE algorithm against other 

ensemble-based algorithms 

 

G-mean is a metric that measures the balance between classification performances on 

both the majority and minority classes. G-mean measures the root of the product of class-

wise sensitivity; it attempts to maximise each class's accuracy and keeps the accuracy 

balanced.  It is a performance metric that correlates both. A low G-Mean indicates poor 

performance in the classification of the positive cases even if the negative cases are 

correctly classified as such. This measure is important in the avoidance of overfitting the 

negative class and underfitting the positive class. The algorithm can classify samples 

from both minority and majority classes which is shown in higher G-mean for BACHE 

compared to others. 

5.1.5 Conclusion 

In this paper, a novel imbalance-learning algorithm is proposed and developed; we 

develop a model for predicting aircraft component replacement using real-world test 

cases from the log-based central maintenance system data. The new 

imbalance algorithm is based on the Balance-Calibrated Hybrid Ensemble Technique 
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(BACHE). It is designed to handle extremely imbalanced classification problems. It 

focuses on improving the detection of a rare failure in the aircraft maintenance predictive 

models. The experiment showed that the BACHE algorithm has a better performance 

than other similar ensemble and imbalanced learning techniques. The novel approach 

also achieved a significant level of improvement in the reduction of false-positive and 

false-negative rates, which is one of the targets of this study.  The results showed that 

the model could predict aircraft component replacement within the defined range; this 

contribution can enhance predictive maintenance in fleet reliability analysis.  The model, 

when validated, can be used for predictive aircraft maintenance to improve the efficiency 

of the component replacement prognostic model. In the future, we hope to develop this 

work further by looking at the effect of class overlapping in the process of over-sampling 

the minority class in the imbalanced learning context. We also hope to explore the 

applicability in an online heterogeneous dataset.  
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5.2 Aircraft Predictive Maintenance Modeling using a Hybrid Imbalance 

Learning Approach 

The continued development of the industrial internet of things (IIoT) has caused an 

increase in industrial datasets' availability. The massive availability of assets 

operational datasets has prompted more research interest in the area of condition-

based maintenance towards the API-led integration for assets predictive maintenance 

modelling. The large data generated by industrial processes inherently comes along 

with different analytical challenges. Data imbalance is one of such problems that exist 

in datasets. It affects the performance of machine learning algorithms, which yields 

imprecise predictions. This paper proposes an advanced approach to handling 

imbalance classification problems in equipment heterogeneous datasets. The 

technique is based on a hybrid of soft mixed Gaussian processes with the EM method 

to improve the prediction of the minority class during learning.  The algorithm is then 

used to develop a prognostic model for predicting aircraft component replacement. 

We validate the feasibility and effectiveness of our approach using real-time aircraft 

operation and maintenance datasets. The dataset spans over seven years.  Our 

approach shows better performance compared to other similar methods. 

5.2.1 Introduction 

The recent advancement in industrial technology, known as the fourth industrial 

revolution, has broken the barriers between the physical and digital worlds. The 

technological revolution involves the integration of technologies such as the Internet 

of Things (IoT), the application of artificial intelligence (AI), the Application 

Programming Interface (API), and machine learning in the industrial process to 

enhance productivity. This collective force has brought an increase in the generation 

and availability of industrial datasets. Businesses are leveraging the large available 

datasets generated by the modern industrial system to make a more informed 

decisions.  

One such application area is the vehicle’ predictive maintenance, instead of relying on 

average life statistics. It uses direct condition monitoring data to forecast or estimate 

upcoming maintenance based on historical knowledge. Predictive maintenance has a 

comparative advantage in almost all industries compared to other forms of 

maintenance strategies. Application of equipment prognostics is vital, especially in a 
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domain where the system's criticality or component may affect health and safety, such 

as aircraft health monitoring, nuclear industries, and many more.  

The increasing availability of datasets also comes along with more analytical 

challenges, which raises the necessity of applying an advanced algorithm to harness 

knowledge for better-informed decisions. This necessity is highlighted in equipment' 

predictive maintenance, where the monitoring system is expected to provide accurate 

prognostic alerts in advance to plan for maintenance ahead of time to avoid 

unexpected failure. One of the analytical challenges that inherently comes with raw 

asset operational datasets and affects data-driven predictive models' performance is 

the data imbalance problem. The data Imbalance problem is a well-known problem in 

machine learning and data mining communities [1]. Most real-world applications face 

a common problem because industrial processes are designed to function normally 

with few faults recorded. Data imbalance occurs in industrial datasets due to a rare 

event failure compared to the healthy state of the monitoring system. 

Rare failure occurs due to the infrequent occurrence of some unexpected equipment 

break down, causing unplanned maintenance. For example, in aircraft scheduled 

maintenance strategy, the failure that occurs between scheduled maintenance-

defined time intervals is rare. Still, their impact on business can be grave [2,3].  

Therefore, rare failures are often more critical to predict because their occurrence 

could negatively impact society or business [4]. The majority of the data generated 

from the aircraft central maintenance system is highly characterised by a healthy 

majority and a faulty minority (represents the rare failures).  

Furthermore, an extreme data imbalance problem is a scenario where a dataset 

contains a high representation of samples in one class than other classes present in 

a dataset. Learning from an extremely imbalanced dataset is quite challenging for 

traditional machine learning algorithms, which often leads to undesired prediction 

outcomes.  The class Imbalance problem has been shown to degrade predictive 

modelling performance, causing imprecise prediction [5]. In a situation where the 

imbalance ratio is extreme, the learning algorithm may sometimes consider the 

minority class as an outlier or noise and drop them, resulting in bias learning from one 

class [6].  
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The class imbalance problem has recently drawn significant research attention. A lot 

of techniques and approaches for handling imbalance problems have been proposed 

in the literature. The majority of these techniques are based on the nature (distribution) 

of the dataset or its application domain. Although Imbalance learning has been 

extensively researched [7][1], open literature lacks a unified solution to handling the 

imbalanced dataset for predictive maintenance modelling, especially in the aerospace 

domain, particularly aircraft central maintenance system dataset. Hence, it is still an 

open area of research.  

Therefore, this paper proposed a hybrid technique to overcome the extreme imbalance 

problem in heterogeneous datasets. The proposed approach comprises the 

integration of boosting with divide and merge strategy and Mixed Gaussian Process 

(MPG). The technique is designed to enhance predictive maintenance modelling for 

aerospace applications. The focus is on enhancing the prediction of the minority class 

in the process of developing an aircraft components failure prognostic model.  

This paper presents the following contributions. 

1. A proposed hybrid technique for improving the prediction of the minority class in the 

imbalanced dataset is designed and implemented. 

2. A predictive model for predicting component replacement is developed to improve 

predictive maintenance in aerospace. 

3. The model is validated on real-time aircraft operational and maintenance dataset.  

5.2.2 Related Work  

Many approaches and methods for handling imbalanced datasets in the process of 

developing data-driven predictive modelling have been proposed in the literature. A 

comprehensive review of the existing methods can be found in [4,8,9]. The methods 

can be summarised into three main categories: 1. Data level approach:- It involves 

resampling the dataset before presenting it as input to the learning algorithm, and this 

can be achieved in different ways, some of which are under-sampling (that is, 

randomly taking out some samples from the majority class to balance with the minority 
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class). Over-sampling (involves adding more samples to the minority class to adjust 

with the majority class). A hybrid of Under-sampling and Over-sampling is possible.  

The algorithm level approach involves modifying the learning algorithm to respond 

favourably to both classes during learning. A typical example is cost-sensitive learning. 

The weight of classification is defined for each class; for example, a higher weight can 

be set for a minority class so that during learning, the algorithm will focus more on the 

minority class improving its prediction.  

Another approach is the ensemble and hybrid methods; this approach involves the 

combination of two or more approaches to improve the predictive performance of the 

machine learning model.  

 The aforementioned approaches have their pros and cons. For instance, in the data 

under-sampling methods, since samples are reduced from the majority class, it makes 

it prone to losing informative data points, which could be used in defining a decision 

boundary during learning. Similarly, in the oversampling approach, since artificial 

synthetic data points are created, this can lead to generalisation, and the original 

structure of the dataset is altered, which can affect the output of the model. Likewise, 

In the algorithm level, cost-sensitive methods, defining the cost of misclassification for 

each class is quite challenging.  Therefore, because of our dataset's peculiarity and 

the application domain, none of the out-of-box existing solutions was suitable. 

5.2.2.1 Machine Learning  

Machine learning is grouped into different types: supervised learning, unsupervised 

learning, semi-supervised learning, active learning, and reinforcement learning. The 

use of more than one type of learning is referred to as hybrid learning. In this study, 

we use classification, supervised learning, and clustering, which is unsupervised 

learning, hence the hybrid.  In supervised learning, the algorithm builds a mathematical 

model from a dataset that contains input and known output (labels). The conventional 

approaches are classification and regression. In the case of unsupervised learning, 

the algorithm builds a mathematical model from the dataset that contains only input 

variables without labels. Unsupervised learning is mostly used to find structures in the 

dataset, such as grouping or clustering[10].   
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Many machine learning algorithms exist; their application depends on the nature and 

type of dataset and the problem at hand. For example, Support Vector Machine (SVM) 

and Decision Tree (DT) algorithms can be used for classification in supervised 

learning. Likewise,  K-means, Gaussian process algorithm can be used for clustering 

in unsupervised learning. Combining more than one weak classifier to form a robust 

classifier to achieve a better result is known as ensemble learning [11][12]. Many 

recent machine learning approaches have been designed based on ensemble 

learning to deal with various categories and dimensions of data imbalance challenges. 

Also, in many application domains [13], the most common ensemble learning 

techniques are bagging and boosting [14].  

 

Figure 5- 9 Machine Learning Hybrid Framework for enhancing class prediction 

 

Figure 5-8 shows the Machine Learning Hybrid Framework for enhancing class 

prediction. The framework is based on the hybrid approach. It combines supervised 
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and unsupervised machine learning methods to improve the prediction of the minority 

class. 

5.2.2.2. Mixed Gaussian Process Methods  

A study presented by Vandaplas et al. [15] and  Fong et al. [16] shows that the 

clustering method, which is based on learning a mixture of Gaussians, involves 

collecting a mix of k component distribution to form a mixture distribution function.  

𝑓 (𝑥) = ∑ 𝛼𝑘𝑓𝑘 (𝑥)
𝑘
𝑘=1          (5- 7) 

𝛼𝑘 is the mixing weight for the Ith component in the construction of Gaussians 

distribution  𝑓(𝑥). K is the number of component distribution 

The dataset used in this study is multi-variant, and some variables' distribution is 

unknown. We use the Expected Maximisation algorithm (EM) to minimise a likelihood 

function by iterating and guessing the distribution until convergence. K-means 

algorithm groups data using a hard clustering approach with no overlapping of 

clusters. (Point belongs to a cluster, or it does not belong to) While the EM algorithm 

computes the probability that it belongs to a cluster, which is referred to as soft 

clustering [17][18]. Figure 5-9 shows the clustering method based on learning a mixed 

of Gaussians. 
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Figure 5- 10 Clustering method based on learning a mixed of Gaussians [16] 

 

μi: is the mean; that is centre of the mass 

σ2: is the variance; that is spread of the mass 

Given an unknown observation of  𝐱𝟏, 𝐱𝟐, 𝐱𝟑, … 𝐱𝐧 

1. Start with two randomly placed Gaussians ( 𝛍𝟏, 𝛅𝟏
𝟐  ),  

      ( 𝛍𝟐 , 𝛅𝟐
𝟐  ) in the space  

2.  E- Step: 

 For each point: 𝐏(𝟏|𝐱𝐢) = does it look like it came 

                  from 1? 

3. M-step: 

 Adjust ( 𝛍𝟏, 𝛅𝟏
𝟐  )  and ( 𝛍𝟐 , 𝛅𝟐

𝟐  ) to fit points, assign 

                   to them  

4. Loop until convergence  

Figure 5- 11 EM algorithm 1 
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5.2.3 Methodology  

Our proposed approach is similar to the hybrid method algorithm proposed by 

VanderPlas et al. [15]. However, our approach differs in the base learning algorithm. 

Instead of using hard K-means for clustering, we use a soft Mixed Gaussian Process 

with EM (MGP-EM).  

The MGP-EM approach helps in computing the probability of points belonging to the 

cluster, which deals with an in-between point to avoid ambiguity problems in 

clustering. The proposed method is designed to overcome the problem of class-

overlapping or small-size samples, which is difficult for the classifier to learn, hence 

improving the prediction of a minority class. It is also to handle the problem of over-

sampling using K-means clustering, which is sensitive to outliers and noise and unable 

to handle more massive datasets. Putting the data into lagging windows and 

bootstrapping helps in the learning phase by keeping the statistics, which avoids 

processing the whole dataset; instead, it keeps only the statistics of each window's 

outcome.  

Bagging-based (i.e., divide and merge) improves model performance, increases 

detection rate (True Positive), and reduces the false positive. The mixed Gaussian 

process is used as a based learner in the Boosting step.  
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Figure 5- 12 The Architecture of the proposed approach 

We performed cross-validation during the training phase to avoid model over-fitting 

problems. We classify the model using the proposed hybrid method, using a cluster-

based –Mixed Gaussian Process, as weak learners. The result of MGP-EM is then 

combined with the Ensemble bagging method using the random forest as a based 

learner. 
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STEP 1: Input the Imbalanced Dataset D =  𝑥𝜖 {𝑥1, 𝑥2,   .  .  .  𝑥𝑛  } 

STEP 2: Divide the Data in Windows 𝑊1,𝑊2 …  𝑊𝑛 

STEP 3: Initialisation 𝑥1  = 1/𝑛 

STEP 4: Then Mixed Gaussian Process (EM) is used as a base learner in the 

boosting =  𝛼𝑘𝑓𝑘 (𝑥) and adjust weight 

STEP 5: Calculate the True Positive and False Positive Rate  

STEP 6: Iterate Until the end of windows 

STEP 7: return final hypothesis 𝐻(𝑥) =  ∑ 𝛼𝑘𝑓𝑘 
𝑘
𝑘=1 (𝑥) 

STEP 8: END 

Figure 5- 13 Hybrid Algorithm 2 

5.2.4. Experimental Setup  

To validate the effectiveness of the proposed approach. The experiment uses a 

dataset obtained from a fleet of commercial aircraft, which has been recorded for over 

seven years. The data is a recorded component failure recoded as a log by aircraft 

cental maintenance computers. The data is heterogeneous, meaning it comes from 

different aircraft sub-systems, and it contains numerical, textual, and symbolic. 

As a first step, the data is preprocessed and transformed for machine learning 

because to make use of the log-based dataset for developing a predictive model, and 

the log needs to be filtered and interpreted and predictive feature extracted. 

 The data is then divided into two using the event date. Data from 2011 to 2015 is used 

for training the model and from 2016 to 2018 for testing the model.   
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In the experiment, we investigate the performance of the proposed method against 

existing ensemble learning methods.  

We measured the performance of the model using precision, recall, F1-score.  

We presented the experimental results in Table 5-3. In the experiment, we select out 

of many the aircraft components identified by Functional Item Number (FIN) that are 

replaced due to an unplanned breakdown. We focused on the aircraft component with 

the highest number of replacements in the dataset. The components considered are 

4000KS - Electronic Control Unit,  4000HA - High-Pressure Bleed Valve,  4001HA – 

Pressure Regulating Valve, 5RV1 – Satellite Data unit. 

5.2.5. Result and Discussion  

As seen in Table 5-3, The proposed method's result is compared against the baseline  

Table 5- 3 The result showing the performance of the proposed Framework 

 Ensemble method -Random Forest 

(Baseline) 

Proposed Hybrid Approach  

Components 4000KS 4000HA 4001HA 5RV1 4000KS 4000HA 4001HA 5RV1 

Precision 0.77 0.70 0.71 0.79 0.94 0.90 0.92 0.96 

Recall 0.60 0.59 0.60 0.63 0.85 0.80 0.82 0.89 

F1-Score 0.67 0.64 0.65 0.70 0.89 0.85 0.87 0.93 

AUC 0.60 0.65 0.66 0.72 0.90 0.86 0.88 0.95 

IR 0.0031 0.0024 0.0028 0.0039 0.0031 0.0024 0.0028 0.0039 

 

algorithm, which is the Random Forest algorithm (RF). The result shows that our 

approach outperformed the baseline method both in precisions and recall. Similarly, 

the F1-score indicates that the proposed approach is able to detect both classes with 

less bias. The high recall score shows that the proposed approach is able to detect 

the minority class better, which is our class of interest (the rare faults). However,  the 
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model includes some points of the majority (false negatives). This can be considered 

acceptable in this context, as we are more interested in reducing the false-positive rate 

than a false negative. It can also be observed that the imbalance ratio has an effect 

on the result. In the cases with higher IR, the model is able to learn better, while in the 

cases with lower performance, the performance is dropped. Despite the extreme 

imbalance ratio in all the cases considered, the proposed method was able to predict 

more than 80% of the rare equipment failure. The result also shows the effectiveness 

of the model in handling extreme class imbalance problems in big data. 

5.2.6 Conclusion 

This paper proposes a hybrid framework for data-driven predictive maintenance. We 

focus on enhancing the prediction of the minority class in the data Imbalance 

classification problem. The data imbalance problem is a data analytics challenge that 

degrades the performance of data-driven predictive models. Our approach is based 

on a hybrid ensemble method, which improves the prediction of the minority class 

during learning.  The proposed MGP-EM approach helps in computing the probability 

of points belonging to the cluster, which deals with an in-between point to avoid 

ambiguity problems in clustering. The proposed method overcomes the problem of 

class-overlapping or small-size samples, which is difficult for the classifier to learn, 

hence improving the prediction of a minority class. It also overcomes the problem of 

over-sampling using K-means clustering, which is sensitive to outliers and noise and 

unable to handle more massive datasets. In the feature, we will try to improve the 

aircraft's predictive model performance by including other aircraft-related datasets 

such as environmental and weather data. We will also work on improving the detection 

of extreme minorities in a multi-class context by applying the deep-learning approach.  
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CHAPTER 6: Deep Learning Approach for Rare Failure Prediction 

This chapter presents a new deep-learning technique for handling extreme rare failure predictions. 

Two new proposed methods are implemented: A novel approach based on combining two deep 

learning techniques, auto-encoder (AE) and Bidirectional Gated Recurrent Unit (BGRU) networks. 

A loss function is derived for deep neural networks, enabling the deep learning algorithms to respond 

favourably to minority and majority groups. The derived loss function is implemented using a 

rescaled-LSTM. The chapter is organised as follows: 

6.1 A Rare Failure Detection Model for Aircraft Predictive 

Maintenance Using a Deep Hybrid Learning Approach 

The Aircraft Central Maintenance System (ACMS) log records are a potential data source for 

developing data-driven predictive models, which can unlock several benefits for the aircraft health 

monitoring system and condition-based maintenance. However, developing data-driven models 

using ACMS data faces many challenges, such as the low representation of failure behaviour related 

to target component failure, creating a skewed distribution in the datasets. The rare representation 

of failure results in what is known as an imbalanced classification problem in machine learning. 

Training any traditional machine learning algorithm with an extremely imbalanced dataset can cause 

biases in a model. Thus, this study presents novel deep learning techniques based on the auto-

encoder (AE) and Bidirectional Gated Recurrent Unit (BGRU) networks to handle extremely rare 

failure prediction in aircraft' predictive maintenance modelling. AE is modified and trained to detect 

rare failures, and the result from AE. is fed into the convolutional neural network and bidirectional 

gated recurrent unit CNN-BGRU network to predict the next occurrence of failure. This hybrid 

approach helps in addressing the imbalance problem during model training. The effectiveness of 

the proposed method is evaluated using real-world test cases of log-based warning and failure 

messages obtained from the ACMS fleet database and maintenance history records. The AE-CNN-

BGRU model is compared with other similar deep learning methods. The results show improved 

performance with 25% better precision, 14% recall, and 3% G-mean. It also indicates robustness in 

predicting rare failure within a defined, useful period. 
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6.1.1  Introduction  

It is important to note that this study is an extension of work presented in the 4th IFAC Workshop 

on Advanced Maintenance Engineering, Services and Technologies (AMEST 2020) [1].   

Unscheduled aircraft maintenance can cause flight cancellation or delay due to the unavailability of 

spares at the failure location. It can result in unwanted downtime, which increases the airlines' 

operational costs. Reducing the number of unscheduled maintenance activities through predictive 

modelling is an excellent initiative for airlines; it reduces maintenance costs and increases fleet 

availability. According to Airbus [2], by 2025, unscheduled aircraft grounding for fault repairs could 

cease due to data analytics and operational experience. Aircraft health monitoring and Predictive 

maintenance could enhance the elimination of unscheduled groundings of aircraft by systematically 

scheduling maintenance intervals more regularly to avoid Aircraft on Ground (AOGs) and the 

associated operational interruptions[3] [2]. A good predictive model could tell which aircraft parts 

need schedule checks and those that don't need it but achieving such maintenance accuracy 

necessities experience and the right technology [2]. 

The recent advancement in artificial intelligence (AI) and other related technologies such as the 

Internet of Things (IoT), machine learning, and symbolic reasoning is causing a paradigm shift in 

every aspect of human life, including manufacturing, transportation, energy, advertisement. 

Aerospace is one of the industries that has mostly been transformed through the application of AI 

technologies. Mainly aircraft maintenance is rapidly leveraging AI to develop predictive maintenance 

towards "aircraft smart-maintenance". The advancement towards smart maintenance solutions is a 

situation where the machine learning algorithms are trained to predict failure and provide possible 

actions based on the predicted failure. The conditioned-based predictive maintenance provides 

cost-saving over time-based preventive maintenance Burijs et al.[4] as maintenance is done based 

on the condition of the component, not time-based as in preventive maintenance. The large amount 

of data generated from IoT devices installed in aircraft to monitor various components' health 

conditions combined with data analytics through machine learning can significantly improve aircraft 

maintenance activities.  
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Applying correct data analytics and training machine learning algorithms with a vast amount of data 

can reveal underlying patterns and trends that are not visible to humans. The information discovered 

can support proactive decision-making, such as recommending the best maintenance actions. 

Therefore, well-develop machine algorithms are needed to harness relevant information from big 

data. As Artificial Intelligence (AI) and related technologies continue to advance, data becomes 

more available with a less challenging acquisition, storage, and processing methods. However, 

newer analytical challenges are emerging. One unique challenge is the extremely rare event 

prediction, which is when events are infrequent, causing the generated data to be imbalanced, 

meaning there are significantly fewer data in one class compared to other classes. Training a 

traditional machine learning algorithm with a skewed dataset has been shown to degrade the 

resulting model's performance [4]. Therefore, to develop a robust machine learning model for 

predictive maintenance, it is vital to address imbalanced data before training (data level approach) 

or to train the model (algorithm level approach).  

The challenge traditional machine learning algorithms face with the extremely imbalanced dataset 

is that they are built on the assumption that the data distribution is always balanced, and the cost of 

misclassification is the same for all classes [5]. In reality, that assumption is untrue because there 

are some domains where the data is highly imbalanced, and the cost of misclassification is high. An 

example of such a domain is log data generated by the aircraft central maintenance system known 

as ACMS data. ACMS data is imbalanced because aircraft component failure rarely occurs during 

regular flight operations due to robust safety measures. The generated ACMS data will exhibit 

skewness, where the majority of data represents the healthy state, and the minority represents 

failure. Apart from the extremely imbalanced problem, ACMS data poses several analytical issues, 

such as irregular patterns and trends. In this case, the standard machine learning algorithm and 

feature selection or extraction methods become less effective for highly imbalanced data [6]. 

Training machine learning algorithms with imbalanced data has been shown to degrade data-driven 

models' performance, causing unreliable prognostics [7], [8].  

There have been recent improvements in predictive modelling research from both academic and 

industrial perspectives. [9]. The predictive maintenance modelling approach can be summarised 

into physics-based, knowledge-based, data-driven-based, and hybrid-based approaches. The 

physics-based approach focuses on the equipment degradation process, and it requires an 
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understanding of the components' underlying physical failure mechanisms [10]. The physics-based 

modelling approach's application can be seen in [11], [12], where a digital model of equipment is 

created to enable the Digital Twin (D.T.) concept in predictive maintenance applications. DT is the 

concept where multi-physics modelling, together with data-driven analytics. GE has developed an 

intelligent  IoT-based monitoring and diagnostics platform based on DT to predict physical asset 

future [13]. The advantage of this approach is it is applicable even if the dataset is scarce.  

Another approach to predictive maintenance modelling is knowledge-based or expert system 

modelling. This approach involves a combination of domain expert knowledge and computational 

intelligence techniques. It stores information from domain experts, and rulesets are defined based 

on the knowledge base for interpretation [14]. The knowledge-based approach has been applied for 

predictive aircraft maintenance [15], [16]. The authors develop a framework and design 

methodology for the development of knowledge-based condition monitoring systems. In practice, 

knowledge-based approaches are more useful for a small and simple system. Its application in a 

large and complex system is quite challenging and, in some cases, impractical because domain 

experts need to continually update the rules in the event of any upgrades or changes, which is 

cumbersome. 

The data-driven approach involves learning systems behaviour directly from already collected 

historical operational data to predict the future of a system's state or identify and match similar 

patterns in the dataset to infer Remaining Useful Life (RUL) or other insights. The data-driven 

modelling methods can be grouped into Artificial Intelligence (AI) based, statistical modelling 

methods, and sequential pattern mining modelling methods [17]. AI methods include machine 

learning, Bayesian methods, and deep learning methods. AI-based methods have been widely used 

for developing predictive maintenance models in different industries. Çinar et al. [19] provided a 

detailed survey on recent applications of AI in Predictive Maintenance. The hybrid approach 

includes a combination of two or more techniques for estimation to improve accuracy.  Improving 

accuracy in rare failure prediction requires a robust hybrid approach. In recent times, deep learning 

(DL) models have been shown to produce state-of-art performance when trained with large datasets 

[18], [19] because of their capability of combining feature extraction with learning. The advances in 

machine learning research, especially using deep neural networks to learn more complex temporal 

features, make DL suitable for a large log-based dataset.  Other work has shown the effectiveness 
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of DL models in handling extremely imbalanced datasets, especially using log-based ACMS 

datasets to develop aircraft predictive maintenance models [9].  

In this study, a data-driven model is proposed for rare failure prediction. The model consists of deep 

neural networks, the auto-encoder to detect failures and bidirectional gated recurrent unit (BGRU) 

networks combined with Convolutional Neural Networks (CNN) to learn the co-relationships 

between variables, enhancing the prediction of rare failure. The model's effectiveness is evaluated 

using real-world log-based ACMS time series data. The proposed model will help mitigate the effects 

of unscheduled aircraft maintenance, producing systematic conditioned-based predictive 

maintenance, a step towards a smart-aircraft maintenance system. 

The remainder of this paper is structured as follows. Section 6.1.2 discusses the related work. 

Section 6.1.3 provides a methodology that shows a detailed architecture of the auto-encoder, CNN, 

and BGRU. Section 6.1.4 presents the experimental setup and case study. The experimental result 

is presented and discussed in section 6.1.5. Finally, section 6.1.6 presents the conclusion and 

further work.  

6.1.2 Related Work 

Deep learning is a branch of machine learning consisting of numerous processing layers that learn 

data representations at multiple levels of abstraction using artificial neural networks (ANN). Deep 

learning models have vastly enhanced the state-of-the-art performance of models in a variety of 

disciplines, including large-scale data processing and image identification, and many more [7]. The 

success has been attributed to an increase in the availability of data,  hardware, and software 

improvements, many breakthroughs in algorithm development that speed up training and other data 

generalisations [20]. Despite the advances, little work has been done to investigate the effect of 

extremely imbalanced, class overlapping, and small class disjunct on the networks architectures. 

Many researchers have agreed that the subject of imbalanced data with deep learning is 

understudied [21]–[24]. In deep learning, the ANNs are trained to find complex structures in a 

dataset by using a back-propagation algorithm. The algorithm calculates errors made by the model 

during training, and the models' weights are updated in proportion to the error. The drawback of this 

learning method is that examples from both classes are treated the same. In that situation where 
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the data is imbalanced, the model will be adapted more to the majority class than the minority class, 

which can affect the performance of the models [20]. 

The majority of the deep learning methods for imbalanced classification have depended on 

integrating either resampling or cost-sensitive into the deep learning process.  For instance, 

Hensman et al. [25]  use random oversampling techniques to balance the data then train the 

balanced data using CNN. Similarly, Lee et al. [26] use random undersampling to balance the 

dataset for the purpose of pretraining CNN. The use of dynamic sampling to adjust the sampling 

rate according to the class size for training  CNN was proposed by Pouyanfar et al. [27]. Buda et al. 

[24] investigate the effect of random oversampling, random undersampling and two-face learning 

across many imbalanced datasets on deep neural networks. The literature review [20], [28] reveals 

that most of the proposed deep learning resampling approaches for imbalanced problems use 

image datasets and CNN architecture. The need to Investigate the effect of imbalanced on other 

deep learning architectures and to use time-series is still lacking.  

On the other hand, several studies have focused on applying cost-sensitive strategies to solve the 

problem of imbalanced classification, which entails changing the deep learning process to favour 

both classes during model training. For example, Khan SH et al. [29] proposed a cost-sensitive deep 

neural network that can automatically learn robust feature representations for both the majority and 

minority classes. Also, Zhang et al.  [30] propose cost-sensitive deep belief networks, and Wang H 

et al. [31] propose a cost-sensitive deep learning approach to predict hospital readmission. Also, 

the use of loss function to control biases has been shown in Wang S et al. [6]. The authors proposed 

a novel loss function called mean false error and its improved version mean squared false error for 

learning from an imbalanced dataset. Similarly, a new loss function called Focal loss was proposed 

by Lin et al. [32] for dense object detection in image classification. The focal loss was proposed to 

specifically handle the challenge of extreme data imbalances commonly faced in object detection 

problems, where the foreground samples usually outnumber the background samples. Normally, 

this type of problem is mostly solved using the one-stage detection approach or two-stage detection. 

The two-stage detection usually performs at the cost of computation time compared to one-stage. 

Lin et al. [32] study focused on determining how the one-stage approach with fast computation time 

can achieve a state-of-the-art performance compared to the two-stage. Their study discovered that 

the main cause of performance degradation in one-stage detection is the imbalanced data problem. 
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The overwhelming background samples create imbalance, causing the majority class to account for 

most of the overall loss. To address that challenge, Lin et al. [8]. Proposed a loss function known 

as the focal loss (FL) which was derived from a normal binary cross-entropy loss. The FL is 

expressed as follows; 

Focal Loss FL(𝒑,𝒕) = − (1 − (𝒑𝒕)) 
𝜸𝒍𝒐𝒈

𝟏𝟎
 (𝒑𝒕)      (6- 1) 

The new FL tries to reduce the impact that the majority of samples have on the loss by multiplying 

the cross-entropy loss with a modulating factor − (1 − (𝑝𝑡)) 
𝛾 Where the hyperparameter γ ≥ 0 

adjusts the learning rate, the negative samples are downweighed. Their implementation shows that 

using one-stage detection with focal loss by selecting the right learning rate outperformed the two-

stage approach. The implantation method was only compared with cross-entropy and tested for 

imbalance problems in objection detection.  The focal loss was later tested in image classification 

by K Nemoto et al. [33].  The authors use CNN architecture then compare the performance of focal 

loss and cross-entropy loss for image classification. The open literature lacks a study investigating 

the focal loss's effectiveness on time-series systems log-based datasets, particularly the ACMS 

dataset.   

The identification and prediction of rare failures is an active research subject that has sparked the 

creation of a variety of methodologies [34]. Asset rare failure prediction is a critical issue that has 

been approached within various contexts, such as machine learning and statistics [17]. System log 

data has widely been used to develop rare failure predictive models in different domains. For 

example, deep learning has been used to predict rare IT software failures using a log-based dataset 

[35]. Panagiotis et al. [36] developed a failure event model using post-flight records. The authors 

formulated the model as a regression problem to approximate the risk of a target event's occurrence, 

using multiple instance learning schemes. Sipos et al. [37] developed a data-driven approach based 

on multiple-instance learning for predicting equipment failures. Evgeny [10] developed a data-driven 

rare failure prediction model using event matching for aerospace applications.  As seen in the 

previous study by Maren et al. [1], one of the approaches to identifying and predicting rare failure is 

using an anomaly detection approach, which is framed in the form of unsupervised machine 

learning, where the data is divided and labelled as negative and positive samples. In the case of 

using an autoencoder, each class is treated separately, the negatively labelled sample's low 

dimensional features are extracted from higher dimension data using any feature extraction 
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processes. Then rare failures are detected and predicted based on the reconstruction error. Most 

of the well-known traditional or typical data reduction and fault detection methods are the Principal 

Component Analysis (PCA), Partial Least Square (PLS), and Independent Component Analysis 

(ICA). These methods use different ways to reduce data dimensionality, and they have achieved a 

varying degree of success on different data distributions [38]. However, they have fundamental 

limitations to the non-linear features since they rely on linear techniques. Kernel tricks have been 

developed to convert the non-linear raw data into linear data, and examples are the KPCA [38] and 

KICA [39]. However, they require high computational power due to kernel function, especially if the 

data is large.  

Deep learning (DL) has recently proven superior performance in many areas, such as image 

classification. Also, it has widely been used in the finance sector for the analysis of time-series 

data[9]. DL can also be utilised for predictive maintenance. The system installed to monitor an 

asset's state generates an extensive amount of time-series data. Therefore, deep learning 

algorithms are trained using time-series data to find patterns to predict failures.  Recent 

developments in deep learning have made it easy for deep, complex artificial neural networks to 

automatically extract features from the original dataset (dimension reduction) during training 

[40][41]. The Auto-encoder (AE) [42] is an example of a deep neural network algorithm that has 

been successfully implemented for fault detection and prediction. However, it needs larger data 

samples and a longer processing time to achieve higher performance [43]. Advances have been 

made to tackle slightly rare event predictions, especially in the aerospace domain, using machine 

learning approaches [44][45]. Deep learning models have also been developed for rare event 

predictions. For example, Wu et al.[18] developed a weighted deep representation learning model 

for imbalanced fault diagnosis in cyber-physical systems. Their model is composed of Long 

Recurrent Convolutional LSTM model with a sampling policy. Also,  Khanh et al.[19] developed a 

dynamic predictive maintenance framework based on sensor measurements. Changchang et al. 

[46] combine multiple DL algorithms for prognostic and health management of aircraft. In fact, 

Burnaev et al. [47] pointed out that many aircraft predictive maintenance solutions are built on basic 

threshold settings that detect trivial errors on specific components. On the other hand, the threshold-

setting strategy is prone to producing high false-positive rates, which lowers model confidence.  
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Although the approaches mentioned above have successfully handled normal fault detection and 

prediction, there was a limited study about the application of deep learning models for extremely 

rare failure prediction, especially for predictive aircraft maintenance using the ACMS dataset. Also, 

developing a robust predictive model for costly rare aircraft component failure using a large log-

based dataset is quite challenging because many components work together and influence each 

other's lifetime. Another challenge is the heterogeneous nature of the ACMS log data, including 

symbolic sequence, numeric time series, categorical variables, and unstructured text.  

Therefore, our approach focuses on extremely rare failure prediction using log-based aircraft central 

maintenance system (ACMS) data. Secondly, the work also concentrates on applying a hybrid of 

deep learning techniques for performance optimisation.  The proposed model integrates AE with 

BGRU and CNN to detect and predict extreme aircraft component replacement. The hybrid method 

is designed to address the challenge of irregular patterns and trends caused by skewed data 

distributaries, hence enhancing the prediction of rare failures.   

6.1.3. Methodology 

6.1.3.1 Autoencoder and Bidirectional Gated Recurrent Unit Network Architecture 

This section presents auto-encoder, bidirectional gated recurrent unit network architecture and how 

these architectures are integrated to achieve better performance on large log-based, multivariate, 

non-linear, and time-series datasets.  

 The Autoencoder (AE) [48], [49] is a specific type of multi-layer feedforward neural network where 

the input is the same as the output neurons. AE aims to learn the original data's internal 

representation by compressing the input into a lower-dimensional space called latent-space 

representation (see Figure 6-1). It then uses the compressed representation to reconstruct the 

output while minimising the error for the input data. Training is done using a back-propagation 

algorithm with respect to the loss function. AE comprises three components: Encoder X, latent-

space P, and Decoder Y. The encoder compresses the input and produces the latent representation. 

The decoder then reconstructs the input only using this latent representation. An encoder with more 

than one hidden layer is called a deep auto-encoder. 

The encoding and decoding process can be represented using the equation as follows: 
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 𝒑𝒊 = 𝒇( 𝒘𝒑.  𝒙𝒊 +  𝒃𝒕)         (6- 2) 

 𝒚𝒊 = 𝒈( 𝒘𝒚.  𝒑𝒊 +  𝒃𝒕)         (6- 3) 

Where f(.) and g(.) are the sigmoid functions,  𝑤𝑖 represents the weights and  𝑏𝑖 represents biases. 

The following minimised loss function is used to train the model: 

𝑳(𝑿, 𝒀) =  
𝟏

𝟐𝐧
∑ ‖ 𝒙𝒊 −  𝒚𝒊‖

𝟐𝒏
𝒊           (6- 4) 

Where  𝑥𝑖 represent the observed value,  𝑦𝑖 represent predicted values, and n represent the total 

number of predicted values. 

Equation (6-3) helps in checking the validity of the resulting underlying feature P. 

 

Figure 6- 1 Auto-Encoder Architecture [49] 

Figure 6-1 shows a more detailed visualisation of an auto-encoder architecture. First, the input data 

passes through the encoder, a fully connected Artificial Neural Network (ANN), to produce the 

middle code layer. The decoder, which has a mirrored ANN structure, will produce the output using 

the middle coded layer. The goal is to get an output identical to the input. Creating many encoder 

layers and decoder layers will enable the AE to represent a more complex input data distribution. 

6.1.3.2 The Bidirectional Gated Recurrent Unit  

A Bidirectional Gated Recurrent Unit (BGRU) is a recurrent neural network that has successfully 

been used to solve time series sequential data problems because of its bidirectional learning 
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approach, which enhance learning of temporal patterns in the time series data [50]. Each BGRU 

block contains a cell that stores information. Each block is made up of a reset and update gate, and 

the cells help tackle the vanishing gradient problem Janusz et al. [51]. The reset gate determines 

how to combine new input with previous memory, while the update gate defines how much of the 

previous memory to retain, BGRU comprises two GRU blocks. The input data is fed into the two 

networks, the feedforward and feedback with respect to time, and both of them are connected to 

one output layer [52]. The gates in bidirectional GRU are designed to store information longer in 

both forward and backward directions, providing better performance than feedforward networks. 

The bidirectional approach provides the capability of using both the past context and future context 

in a sequence. BGRU can be expressed as: 

𝒉𝒕 = [𝒉𝒕,⃑⃑⃑⃑  ⃑  𝒉𝒕
⃖⃑⃑⃑⃑]            (6- 5) 

  

𝑤ℎ𝑒𝑟𝑒 ℎ𝑡,⃑⃑ ⃑⃑   𝑖𝑠 𝑡ℎ𝑒 𝑓𝑒𝑒𝑑𝑓𝑜𝑤𝑎𝑟𝑑  𝑎𝑛𝑑 ℎ𝑡
⃖⃑ ⃑⃑  𝑡ℎ𝑒 𝑏𝑎𝑐𝑘𝑤𝑎𝑟𝑑 𝑏𝑙𝑜𝑐𝑘 

The final output layer at time t is: 

𝒚𝒕 =  𝝈(𝑾𝒚𝒉𝒕 + 𝒃𝒚)           (6- 6) 

   

Where 𝜎 is the activation function 𝑊𝑦 is the weight, and  𝑏𝑦 is the bias vector.  
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Figure 6- 2 BGRU architecture with forwarding and backward GRU layers 

 

As seen in Figures 6-2 and 6-3, each of the GRU blocks is made up of four components. Input vector 

𝑥𝐼 with corresponding weights and bias, reset gate 𝑟𝐼 with corresponding weight and bias 𝑊𝑟,𝑈𝑟 , 𝑏𝑟, 

update gate 𝑧𝐼 with corresponding weight and bias 𝑊𝑧,𝑈𝑧 , 𝑏𝑧 , and out vector ℎ𝑡    with its weight and 

bias 𝑊ℎ,𝑈ℎ, 𝑏ℎ. Fully gated unit is represented as follows:  

Initially, for t = 0, the output vector is ℎ0 = 0 

𝒛𝒕 =  𝝈𝒈 (𝑾𝒛𝒙𝒕 + 𝑼𝒛𝒉𝒕−𝟏 + 𝒃𝒛)        (6- 7) 

𝑟𝑡 =  𝜎𝑔 (𝑊𝑟𝑥𝑡 + 𝑈𝑟ℎ𝑡−1 + 𝑏𝑟)       (6- 8) 

𝒉𝒕 = 𝒛𝒕 𝒉𝒕−𝟏+ (1 - 𝒛𝒕) ⊗ ∅ 𝒉 (𝑾𝒉𝒙𝒕+𝑼𝒉 (𝒓𝒕 ⊗ 𝒉𝒕−𝟏 ) + 𝒃𝒉)           (6- 9)

  

Were ⊗ is the Hadamard product. W, U, b are parameter matrices and vectors. σg  and   ∅ ℎ  are 

the activation functions, 𝜎𝑔  is a sigmoid function and ∅ h a hyperbolic tangent 
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Figure 6- 3 A GRU block with an update and reset gate, sigmoid and hyperbolic tangent 

The BGRU section of the model is designed as follows. First, the BGRU cells are constructed so 

that the result of feedforward is computed (𝐹𝑡) and the feedback propagation (𝐵𝑡) are merged at the 

first BGRU layer. Four different methods can merge the outcome, concatenation (default), 

summation, multiplication, and average.  In this study, we will compare the performance of each 

merging method. The merging is represented as follows  

𝑶𝒕
𝟏 = 𝒄𝒐𝒏𝒄𝒂𝒕 ((𝑭𝒕

⃑⃑⃑⃑ ), (𝑩𝒕
⃖⃑ ⃑⃑⃑))         (6- 10) 

Such that(𝐹𝑡
⃑⃑  ⃑) = ( ℎ1

⃑⃑⃑⃑  , ℎ2
⃑⃑⃑⃑  , ℎ3

⃑⃑⃑⃑  , …, ℎ𝑡
⃑⃑  ⃑) 

And (𝐵𝑡
⃖⃑⃑⃑⃑) = ( ℎ𝑡

⃖⃑ ⃑⃑ , ℎ𝑡+1
⃖⃑ ⃑⃑ ⃑⃑ ⃑⃑ ⃑, ℎ𝑡+2

⃖⃑ ⃑⃑ ⃑⃑ ⃑⃑ ⃑, ℎ𝑡+3
⃖⃑ ⃑⃑ ⃑⃑ ⃑⃑ ⃑, …ℎ𝑛

⃖⃑ ⃑⃑⃑,) 

 Second, a fully connected layer is used to multiply the BGRU network's output with its weight and 

bias. Then a SoftMax regression layer makes a prediction using input from the fully connected layer. 

A weighted classification layer is used to compute the weighted cross-entropy loss function for 

prediction score and training target, which helps tackle the imbalanced classification problem. The 

following loss is used 

(𝒑,𝒕) = − (1 − (𝒑𝒕)) 
𝜸𝒍𝒐𝒈𝟐 (𝒑𝒕) * 𝜽𝒊          (6- 11)  
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Where (𝑝,𝑡) represent the estimated probability of each class, and 𝛾 ≥ 0 is the discount factor 

parameter that can be tuned for best estimation and  𝜃𝑖 is the logic weight of each class 

Table 6- 1 Proposed BGRU Architecture 

 

 

6.1.3.3 The convolutional neural networks  

The use of deep learning approaches to process time-series data has recently been shown to 

produce improved results [53]. One of the deep learning approaches that have been widely used is 

convolutional neural networks (CNN). CNN's popularity is attributed to its capability to read, process, 

and extract the most important features of two-dimensional data, contributing to its performance 

improvement, especially for image classification [54][55]. Such data can be transformed to suit CNN 

in a scenario where the input data are not images [56]. Time series data is one of those data 

structures that can be transformed for CNN applications. Figure 6-4 shows a time-series dataset of 

length M and width N, where the length is the number of timesteps in the data, and the width is the 

number of variables in a multivariate time series. In transforming the times series data for CNN 

[57][58], a 1D convolutional kernel would be of the same width (number of variables). The kernel 

will then move top to down performing convolutions until the end of the series. The time series 

elements covered at a given time (window) are multiplied by the convolutional kernel elements. The 
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multiplication result is added, and a non-linear activation function is applied to the value. The 

resulting value becomes an element of the next new filtered series. The kernel then moves forward 

to produce the next value. Max-pooling is applied to each of the filtered series of vectors. The 

vector's largest value is chosen, which is used as an input to a regular, fully connected layer. 

 

 

Figure 6- 4  CNN structure for Time Series Data 

In designing the structure of BGRU with CNN, there is no out of the box or defined rule of thumb 

approach. Standard artificial neural network structure usually consists of an input layer, one or more 

hidden layers, and an output layer. To obtain an optimal result, the number of hidden layers and 

neurons used depends on the individual problem, and it is often a trial and error process. The most 

common approach is the use of K-fold cross-validation, as seen in [59]–[61]. However, for 

evaluation, some k number of nodes need to be defined, which can be obtained by a simple formula, 

  𝑴𝒌 =
𝑴𝒔

𝜶(𝑴𝒊+𝑴𝟎)
             (6- 12) 

where  𝑀𝑠 is the total number of samples in the training data, 𝑀𝑖  𝑎𝑛𝑑 𝑀0 are a number of input and 

output neurons, respectively, and 𝛼 is the scaling factor. For example, if 𝛼 is set between two to ten, 

it means we can calculate eight different numbers to feed into the validation process to obtain an 

optimal result. The number of parameters to train is computed as equation 6-5 to 6-11, the number 
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of inputs in the first layer equals the defined window size, and the number of folds to use in the 

cross-validation. The subsequent layers have a number of outputs of the previous layer as input. A 

simulation is conducted, and the training and testing error is plotted over the number of neurons in 

the hidden layer.  The number of neurons is chosen that minimises the test error while keeping an 

eye on overfitting. Because the problem is formulated as binary classification and the data is 

extremely imbalanced, we use a modified loss function (equation 6-10), and SoftMax as the final 

activation function.  

6.1.3.4 Proposed Method 

Our objective is to develop a model that will detect and also predict rare extreme failure from the 

large log-based dataset. As seen in Figure 6-5, the basic idea is to separate the prediction of rare 

failure from its detection. Therefore, the proposed model employs two stages, detecting rare failure 

using auto-encoder and predicting the next occurrences of that failure using BGRU and CNN 

architectures.  

The choice of the BGRU in the design is to capture a long dependency bidirectionally ( forward and 

backwards) to enable effective learning. The rationale behind the choice of method is based on the 

nature of the dataset (i.e. heterogeneous and time series in nature). Usually, time-series datasets 

are mainly trained using recurrent neural networks (RNN); the challenge with RNN's is that they 

suffer from vanishing gradient problems and has a short-term memory. Varnishing gradient problem 

arises when training a deep multi-layer RNN (feedforward network) with a gradient-based learning 

approach and back-propagation. In the process, the weight of each ANN is updated in proportion to 

the partial derivatives of the error function with respect to weight in each iteration. The problem 

arises when useful gradient information is unable to propagate from the out layer back to the input 

layer of the model. In order to solve the vernishing gradient problem in RNN, the gated recurrent 

unit (GRU) networks were developed to capture long time dependencies in the sequence learning 

and to handle the gradient vanishing problem through the use of modified hidden layers or gates.  

Convolutional Neural Network (CNN) uses a process known as convolution when determining a 

relationship between available variables in the dataset [20]. For example, in convolutional learning, 

given two functions f and g, the convolution integral expresses how the shape of one function is 

modified by the other. Traditionally, CNN's were designed to process multi-dimensional data, such 
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as image classification, not to account for sequential dependencies like in RNNs, LSTMs or GRUs 

[62]. Therefore, The key benefit of adding  CNN layers for sequential learning is its ability to use 

filters bank [63] to compute dilations between each cell, also referred to as "dilated convolution", 

which in turn allows the network layers in CNN to understand better the relationships between the 

different variables in the dataset, generating improved results.  

The dataset is extremely imbalanced; that is, the imbalanced ratio between the positively labelled 

and negatively labelled data is less than 5% of the total. In such an extremely rare problem, 

traditional deep learning algorithms are overwhelmed by the majority class, producing bias result in 

detriment to the minority class [42], [64]. Therefore, we proposed AE-CNN-BGRU to handle the 

problem differently. The framework of the proposed model is shown in Figure 6-5. At the detection 

stage, the first AE model is used to detect rare failures using reconstruction errors. The data is 

divided into positive labelled (rare minority class) and negatively labelled (majority class). The AE 

model is then trained with only negatively labelled data (𝑋−𝑣𝑒) by feeding the encoder layer of AE 

with the original negatively labelled data. The latent code, which represents a compresses feature, 

is extracted in the middle layer. The decoder layers will then reconstruct the original data using 

compressed latent code as input. After the encode-decode process, a reconstruction error is known, 

which also shows the highest error that is later used for threshold setting. Since the AE model is 

first trained using negatively labelled data when the data is combined (𝑋𝑡) and fed into the AE model. 

An anomaly can easily be detected because any data point coming from the negatively labelled 

class is expected to have a low error, and if coming from a positive class, the error will be higher.  

The low error is because it is coming from the same data used to train the first section AE model 

(as seen in the detection phase of Figure 6-5). On the other hand, when a new data point is from a 

positively labelled class, it is expected to have a higher reconstruction error score, which will be an 

anomaly.   
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Figure 6- 5 An integrated AE, BGRU, and CNN networks for rare fault detection and prediction 

For example, when a datapoint  𝒙𝒕 is fed into the AE model, it will be classified as a fault if the 

reconstruction error exceeds a defined threshold; otherwise, it will be classified as no-fault. Once 

the faults are identified, the resulting compressed data is then fed into the next section of the 

framework, which is the AE-BGRU or AE-CNN-BGRU model for the failure prediction. The input 

data to the prediction model is the learned latent representation of the original dataset. To determine 

a threshold that offers the best result. We construct a function that iterates through a loop using 

precision and recall until the desired threshold is obtained. 

6.1.4 Case Study and Experimental Setup 

The fundamental research question of interest is whether AE-BGRU or AE-CNN-BGRU, with explicit 

failure detection and additional training capability, can outperform the normal unidirectional deep 

learning time-series methods on an extremely imbalanced dataset. Another important question is, 

can model performance for rare failure prediction be improved if learning is done in two directions 

(feedforward and feedback propagation). Also, how different does the architecture of deep learning 

models treat the input data?  We conduct a series of experiments to investigate the above questions 

and report the result. The experiment is set up to verify the performance of our proposed approach 

in handling the rare occurrences of failure. Therefore, we use the log-based aircraft central 

maintenance system data, which comprises aircraft failure and warning messages. The following 

experiment was conducted. 
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1. To investigate whether the proposed AE-BGRU model has a performance advantage over the 

normal GRU model in predicting rare aircraft component failure.  

2. To investigate if additional layers of training in the AE-CNN-BGRU model architecture can 

improve model performance. 

3. To investigate if training the proposed model using an extremely imbalanced dataset in a 

bidirectional way (forward and backwards) can improve model performance.   

4. To provide a deep learning architecture performance analysis for the rare failure prediction via 

the Log-based ACMS dataset.  

We categorise the modelling approach into two, binary class and multi-class.  In the first scenario, 

we modelled it as a multi-class classification problem that predicts all the targeted component 

failures at the same time. Secondly, we modelled it as a binary classification problem that is 

predicting individual functional item 

6.1.4.1 Dataset  

This study uses over eight years' worth of data recorded from more than 60 aircraft. The dataset is 

collected from two databases. The first database is the Aircraft Central Maintenance System 

(ACMS) data, which comprises error messages from BIT (built-in test) equipment (that is, aircraft 

fault report records) and the flight deck effects (FDE). These messages are generated at different 

stages of flight phases (take-off, cruise, and landing). The second database is the record of aircraft 

maintenance activities (i.e. the comprehensive description of all recorded aircraft maintenance 

activities). The dataset is obtained from a fleet comprised of A330 and A320 aircraft.  Some 

components are identified by functional item Number (FIN) chosen for validation. The target 

components are chosen based on their high practical value and an adequate number of known 

failure cases. The other consideration for the choice of the component is those that are replaced 

due to unscheduled. Figure 6-6 shows an example of the ACMS dataset. 
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Figure 6- 6 Example of the real  ACMS dataset. Sensitive data elements have been masked 

Data from the year 2011 to 2016 is used for training, while the remaining data from 2016 to 2018 is 

used for testing.  The targeted LRU's from the A330 aircraft family are 4000KS - Electronic Control 

Unit/ Electronic Engine Unit, 4000HA – Pressure Bleed Valve, and 438HC – Trim Air Valve. From 

A320 are 11HB – Flow control valve, 10HQ - Avionics equipment ventilation computer, 1TX1 - Air 

traffic service unit. 

6.1.4.2 Sensitivity analysis for BGRU Merge Modes 

Sensitivity analysis was carried out to determine the best merging mode that can be used to 

integrate the outcomes of the BGRU layers for the proposed model. As shown in Figure 6-7, plotting 

loss against epoch, the line plot is created to compare the four merge modes (summation, 

concatenation, multiplication and average). A time-series data of size 10000 was generated and 

trained, using a loss shown in equation (6-1) and running the BGRU networks for 200 epochs. The 
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result indicates that concatenation (the green line) is the best merge mode because it has lower 

loss values.  

 

 

Figure 6- 7 Comparing BGRU Merge Modes. The figure shows the analysis to determine the merging mode 

that can be used for the BGRU layers in the proposed AE-CNN-BGRU model. The target is to choose the 

best merging method (i.e. with lower error).  

Further analysis was carried out to determine the effect of bidirectional networks as compared to 

unidirectional ones. Three network architectures were set up for the analysis, two unidirectional (the 

forward and the backwards networks) and the bidirectional network. The result is shown in  Figure 

6-8; as observed, the GRU forward and GRU backwards shows a similar pattern, while 

BGRU_concat (green) shows a better loss (low errors). The comparison result indicates that BGRU 

can add performance improvement, not just merely reversing the input sequence. 

epochs 

Loss 
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Figure 6- 8 Comparing GRU with BGRU 

6.1.5  Result and Discussion  

A study is conducted to determine if training the model using an imbalanced dataset, using 

bidirectional models, can improve the minority class's detection. Two bidirectional models were 

considered, the AE-BGRU and the AE-CNN-BGRU models, and compared with GRU (baseline), 

the result is shown in Table 6-1. As before, the models are validated using data from two families of 

aircraft (A330 and A320); in the A330 and A320 aircraft family, the size of the training dataset is 

360575 389829 respectively. The target is to predict the replacement of aircraft LRU identified by 

their functional identification numbers (FINs). The validation result is based on the validation 

(testing) data, and the size is dependent on the number of patterns related to each target 

component. The targeted number of failure for each component are 4000KS =11, 4000HA =13, 

438HC = 9, 11HB=6, 10HQ =8 and 1TX1 =15.  

As observed, the proposed models show superior performance compared to baseline. Considering 

the A330 dataset and training the proposed algorithms to predict each component's failure, it can 

be observed that after validation. The result for predicting failure of 4000KS (the aircraft electronic 

engine unit) using the AE-BGRU model records a precision of 72%, recall of 61%, g-mean 67%, 

and a false-positive rate of 0.091%. AE-CNN-BGRU model achieves a precision of 90%, recall of 

epochs 

Loss 



 

215 

 

66%, g-mean of 77%, and a false positive rate of 0.011%. Compared to normal GRU with a precision 

of 60%, recall 0.55%, g-mean 53%, and a false-positive rate of 0.005. A similar result is seen for the 

other components, the 4000HA (pressure bleed valve) and the 438HC (trim air valve).  

When using data from the A320 aircraft family, the results also indicate superior performance for 

the proposed AE-BGRU and AE-CNN-BGRU models as compared to unidirectional GRU.  The 

result for predicting the failure of 11HB (Flow control valve) indicates that AE-CNN-BGRU achieved 

a precision of 66%, recall 59%, g-mean 67%, and a false-positive rate of 0.019% compared to GRU 

with a precision of 61%, recall 51% g-mean 49% and false positive rate of 0.005. Similar 

performance is seen for other components, the 10HQ - Avionics equipment ventilation computer 

and 1TX1 - Air traffic service unit.  

Table 6- 2  Aircraft A330 and A320 rare failure prediction of individual LRU's using ACMS dataset 

Aircraft ACMS Dataset 

   GRU (Baseline) AE-BGRU AE-CNN-BGRU 

 LRU's IR P R GM FPR P R GM FNR P R GM FNR 

 A330-

Family 

4000KS 0.0043 0.60 0.55 0.53 0.005 0.720 0.61 0.67 0.00091 0.909 0.66 0.778 0.00011 

4000HA 0.0047 0.41 0.40 0.41 0.008 0.538 0.538 0.632 0.00127 0.769 0.768 0.769 0.000638 

438HC 0.0044 0.54 0.51 0.53 0.006 0.666 0.600 0.632 0.00083 0.88 0.610 0.730 0.00027 

A320 

Family 

11HB 0.0028 0.62 0.51 0.49 0.005 0.660 0.58 0.624 0.00019 0.66 0.59 0.671 0.00019 

10HQ 0.0031 0.60 0.51 0.55 0.006 0.625 0.49 0.55 0.00028 0.75 0.66 0.707 0.000191 

1TX1 0.0064 0.66 0.52 0.58 0.007 0.866 0.764 0.814 0.00029 0.85 0.741 0.860 0.000193 

** LRU's represents an aircraft line replacement unit. P is precision, R is recall, GM is g-mean, FPR is a false positive rate. 

In the six FINs considered, the proposed models significantly improve the false-positive rate, which 

is very important for any predictive maintenance model acceptability. Also, the AE-CNN-BGRU 

model shows an overall improvement of 25% in precision, 14% in recall, and 2% in G-mean. 

6.1.5.1 Measuring the Success Rate of the Proposed Models Using A330 Aircraft  

Figure 6-9 shows the ROC curve for the proposed models AE-BGRU and the AE-CNN-BGRU. The 

ROC curve for the AE-CNN-BGRU model (Figure 6-9 (b)) shows AUC= 0.822  indicates that there 
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is an 82.2% chance that the model will be able to distinguish between positive classes (component 

failure) and negative class (non-failure). In contrast, Figure 6-9 (a) shows the ROC curve for the AE-

BGRU model with AUC = 0.737, which indicates that the model has a 73.7% chance of 

distinguishing between classes. 

  

(a)            (b) 

Figure 6- 9 ROC curve for FIN_4000KS prediction using (a)  AE-BGRU and (b) AE-CNN-BGRU 

models 

Also, to measure the model success rate in predicting extremely rare failure, a confusion matrix was 

plotted for both proposed models. Figure 6-10 shows a confusion matrix for predicting the failure of 

the electronic engine unit (FIN_4000KS). Figure 6-10(a) AE-BGRU model predicted eight failures 

correctly out of the eleven true failures, and Figure 6-10(b) shows that the AE-CNN-BGRU model 

predicted ten out of eleven. This prediction includes 10 flight legs in advance. It can also be observed 

that the AE-CNN-BGRU model predicts approximately 94% of extremely rare failure of components, 

which is a reasonable specificity, especially for aircraft maintenance acceptability.  
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               (a)                                                       (b) 

Figure 6- 10 Confusion matrix for FIN_4000KS using (a) AE-BGRU and (b)AE-CNN-BGRU model 

As seen in Figure 6-11(a), AE-BGRU predicted 7 out of 13 and Figure 6-11(b) AE-CNN-BGRU 10 

out of 13 unplanned replacement of pressure bleed valve (FIN_4000HA) failures. This prediction 

includes 10 flight legs in advance, and it can also be observed that the AE-CNN-BGRU model shows 

superior performance. A similar performance is observed for other components tested. The general 

result indicated that the proposed AE-CNN-BGRU model detected and predicted approximately 

80% of extremely rare failures, which is a reasonable specificity, especially for aircraft maintenance.  

 

                 (a)                                                 (b) 

 

Figure 6- 11 Confusion matrix for FIN_4000HA using AE-BGRU and AE-CNN-BGRU model 
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6.1.5.2 Measuring the success rate of the proposed models using A320 Aircraft 

Figure 6-12 shows the ROC curve for the proposed models AE-BGRU and the AE-CNN-BGRU. The 

ROC curve for the AE-CNN-BGRU model (Figure 6-12 (b)) shows AUC= 0.864, which indicates that 

there is an 86.4% probability that the model will be able to distinguish between positive class 

(component failure) and negative class (non-failure). In contrast, Figure 6-12 (a) shows the ROC 

curve for the AE-BGRU model with AUC = 0.817, which indicates that the model has an 81.7% 

probability of distinguishing between classes. The result indicated that AE-CNN-BGRU has an 8% 

better classification performance compared to AE-BGRU 

 

 

(a)                                                        (b) 

Figure 6- 12 ROC curve for predicting 11HB using  (a)AE-BGRU and (b) AE-CNN-BGRU 

As seen in Figure 6-13(a), AE-BGRU predicted 4 out of 6 and Figure 6-13 (b) AE-CNN-BGRU 4 out 

of 6 unplanned replacement of pressure bleed valve (FIN_11HB). This prediction includes 10 flight 

legs in advance. A similar performance is observed for other components tested. The general result 

indicated that the proposed AE-CNN-BGRU model detected and predicts approximately 50% of 

extremely rare failures.  
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(a)                                                                (b) 

 

Figure 6- 13 Confusion matrix for FIN_11HB using AE-BGRU and AE-CNN-BGRU model 

Although both models predicted 50% of the failure, it can be observed that the AE-CNN-BGRU 

model shows superior performance in terms of recall. A good recall indicates that the model has a 

good potential measure of correctly identifying true positives. 

6.1.5.3 Sensitivity of AE-CNN-BGRU model to design parameters  

Additional analysis was carried out to determine if adding CNN layers to the AE-BGRU network 

could improve performance. After the implantation, the result indicated that there was performance 

improvement as shown in Table 6-2, Figures 6-9 to 6-3 . The AE-CNN- BGRU model performance 

improvement can be accounted to the following factors. First, in training time-series dataset, 

especially using BGRU or LSTM. Such networks account for the sequential dependency in a 

situation where a correlation exists between the variables in the given dataset (a process known as 

autocorrelation); during training, a normal GRU/LSTM network would treat all the variables as 

independent, excluding any relationship that exist between both observed and latent variables. 

Whereas CNN uses a process known as convolution when determining a relationship between 

available variables in the dataset [20]. For example, in convolutional learning, given two functions f 

and g, the convolution integral expresses how the shape of one function is modified by the other. 
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Traditionally, CNN's were designed to process multi-dimensional data, such as in image 

classification, not to account for sequential dependencies like in RNNs, LSTMs or GRUs [62]. 

Therefore, The key benefit of adding  CNN layers for sequential learning is its ability to use filters 

bank [63] to compute dilations between each cell, also referred to as "dilated convolution", which in 

turn allows the network layers in CNN to understand better the relationships between the different 

variables in the dataset, generating improved results.  

6.1.5.4 Sensitivity of the models to the imbalanced ratio  

A sensitivity analysis was carried out for the imbalanced ratio on the designed network architecture 

and the input data. As observed in Table 6-2 the six case considered have different imbalanced 

ration (400KS=0.0043, 4000HA=0.0047,438HC = 0.0044, 11HB =0.0028, 10HQ = 0.0031, 1TX1 = 

0.0064 ). The components differed not only in the imbalanced ratio but also in distributions and 

failure patterns. As seen in Figure 6-14, It can be observed that the novel model (AE-CNN-GRBU) 

show a significant reduction in the false-negative rate as compared to others, indicating it is robust 

to different conditions of the dataset. Also, it is observed that the imbalance ratio impacts the false-

negative rate for the test components from the A330 aircraft family (4000KS - Electronic Control 

Unit/ Electronic Engine Unit, 4000HA – Pressure Bleed Valve, and 438HC – Trim Air Valve).  For 

example, 4000HA with the highest imbalance ratio of 0.0047 has a false negative rate of about 

0.000639 compared to 4000KS with the lowest imbalanced ratio and false-negative rate of 0.00011. 

the analysis for A320 (11HB – Flow control valve, 10HQ - Avionics equipment ventilation computer, 

1TX1 - Air traffic service unit) show insignificant changes to the imbalance ratio in terms of false-

negative rate.   
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Figure 6- 14 Sensitivity analysis of Imbalanced ration against False Negative Rate 

6.1.6 Conclusion and Future Work 

This paper proposes a novel technique that can narrow down the volume of logs of aircraft warning 

and failure messages recorded by the central maintenance system into a small set of important and 

most relevant logs. The reduced log is then used to develop a model for aircraft’ predictive 

maintenance, focusing on extremely rare failure predictions. The proposed model integrates an 

auto-encoder with bidirectional gated recurrent networks, which complement each other to generate 

accurate link failure/warning messages related to aircraft LRU removal and help identify irregular 

patterns and trends. The auto-encoder performs the detection of the rare failures, while the BGRU 

networks (with CNN) perform the prediction. The proposed technique is evaluated using real-world 

aircraft central maintenance system (ACMS) data. The evaluation results indicate that the AE-CNN-

BGRU model can effectively handle irregular patterns and trends, mitigating the imbalanced 

classification problem. Comparing AE-CNN-BGRU with other similar deep learning methods, the 

proposed approach shows superior performance with 25% better precision, 14% in the recall, and 

3% in g-mean. The results also indicate the model effectiveness in predicting component failure 

within a defined useful period that aids in minimising operational disruption. The superior 

performance indicates that the AE-CNN-BGRU model networks are able to capture the underlying 
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temporal structure better by traversing the input data in a bidirectional manner (feedforward and 

feedback) while making the prediction. The performance improvement of AE-CNN-BGRU against 

the unidirectional GRU is understandable for certain types of data, such as in-text classification and 

prediction of text-to-words in sequence-to-sequence learning.  However, it was not clear whether 

training extremely imbalanced, time-series data using a bidirectional approach would improve model 

performance as there may not be sufficiently definite temporal contexts and observable in-text 

sequence examples. Our results have clarified this question, showing that AE-CNN-BGRU 

outperforms normal GRU in the context of predicting rare failure in log-based aircraft ACMS 

datasets. 

Further studies will be conducted on other architectures of AE-CNN-BGRU, such as transforming 

the time series into graphical representation using recurrence plots. The resulting images can be 

trained using CNN-BGRU for likely performance optimisation. Also, other aircraft data can be added 

to ACMS to enhance model training.  
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6.2 Rare Failure Prediction Using an Integrated Auto-encoder and 

Bidirectional Gated Recurrent Unit Network 

This section is about a paper presented at a conference (IFAC-PapersOnLine 53.3 (2020): 276-282. 

DOI: 10.1016/j.ifacol.2020.11.045), which is expanded for journal publishing in section 6.1. 

Aircraft fault detection and prediction is a critical element of preventing failures, reducing 

maintenance costs, and increasing fleet availability. This paper considers the problem of rare failure 

prediction in the context of aircraft' predictive maintenance. It presents a novel approach to 

predicting extremely rare failures, based on combining two deep learning techniques, auto-encoder 

(AE) and Bidirectional Gated Recurrent Unit (BGRU) network. AE is modified and trained to detect 

rare failure, and the result from AE is fed into the BGRU to predict the next occurrence of failure. 

The applicability of the proposed approach is evaluated using real-world test cases of log-based 

warning and failure messages obtained from the aircraft central maintenance system fleet database 

and the records of maintenance history. The proposed AE-BGRU model is compared with other 

similar deep learning methods. The proposed approach is 25% better in precision, 14% in recall, 

and 3% in G-mean. The result also shows robustness in predicting failure within a defined useful 

period. 

6.2.1.  Introduction  

Fault detection, diagnosis, and prognosis (FDDP) have a huge potential to improve aircraft 

operational reliability and availability since the main aim of FDDP is to minimize losses while 

ensuring the safety of equipment and reducing the risk of unplanned breakdowns [1]. FDDP involves 

detecting the occurrence of fault as early as possible, classifying the fault type accurately, and 

predicting the next occurrences of such a fault. FDDP models are designed to detect anomalies of 

critical components by analyzing historical data to provide actionable alerts to the operators [2]. The 

operational and maintenance datasets generated in modern aircraft have become much larger as 

both the number of samples and the dimensionality have increased. Hence, implementing traditional 

physics-based and knowledge-based approaches for such types of data is quite challenging [3]. 

Also, finding abnormal patterns in large log-based data is extremely challenging due to the complex 

non-linear relationships among the components, processes, and sub-systems [4]. Due to the robust 

aircraft safety measures, unplanned breakdowns rarely occur during stable operation, but it is 
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always high if it does occur the cost.  Unplanned aircraft component failures' rare occurrence creates 

skewness or imbalanced distribution in the generated dataset [2,3]. Learning from the imbalanced 

data has been shown to degrade data-driven models' performance, causing unreliable prognostics 

[5,6]. There are many approaches to handling imbalance classification problems, but their 

application is highly tied to the application domain [7]. Therefore, in this study, we focus on tackling 

the imbalanced classification problem in the context of aircraft predictive maintenance modelling. 

Many studies have been conducted to modelling log-based data for predictive maintenance with 

varying levels of success [8]. Classical statistical predictive models have shown to be ineffective in 

handling imbalance classification in large log-based datasets because of the extreme rarity of some 

failures, complex hierarchical structure of the nomenclature of the failure type,  the temporal features 

and the complex correlations of multivariate variables [8]. However, the recent advances in machine 

learning research, especially the capability of using deep neural networks to learn more complex 

temporal features, make it suitable for the large log-based dataset.  

The remainder of this paper is structured as follows. Section 6.2.2 discusses the related work of this 

study. Section 6.2.3 provides a detailed architecture of the auto-encoder and BGRU. Section 6.2.4 

shows the detailed architecture of the proposed deep learning hybrid method, which involves the 

integration of auto-encoder with BGRU. It further presents the experimental setup and the input data 

for the proposed model. The experimental result is presented and discussed in section 6.2.5. Finally, 

section 6.2.6 presents the conclusion and further work  

6.2.2. Related Work 

Rare failure detection and prediction is an active research field that has motivated the development 

of diverse methods. It is a fascinating and critical issue that has been approached within various 

contexts by research areas, such as machine learning and statistics [9]. Most of the approaches are 

specific to the application domain and the nature of datasets used as input. One of the approaches 

to identifying and predicting rare failures is to use a supervised machine learning approach, which 

can be framed in the form of anomaly detection, where the data is divided and labelled as negative 

and positive samples. The low dimensional features of the negatively labelled sample are extracted 

from higher dimension data using any of the feature extraction processes. Then rare failures are 

detected and predicted based on the reconstruction error. Most of the well known traditional or 

typical feature reduction and fault detection methods are the Principal Component Analysis (PCA), 
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Partial Lease Square (PLS), and Independent Component Analysis (ICA). These methods use 

different ways to reduce data dimensionality, and they have achieved a varying degree of success 

on different data distributions. However, they have fundamental limitations to the non-linear features 

since they rely on linear techniques. Kernel tricks have been developed to help in converting the 

non-linear row data into linear data; examples are the KPCA [10] and KICA [11]. However, they 

require high computational power due to kernel function, especially if the data is large.  

Although the approaches mentioned above have successfully handled normal fault detection and 

prediction, most of them still perform poorly when the target failures are extremely rare. Hence 

special techniques are needed to handle such cases.   Some advances have been made to tackle 

rare event prediction, especially in aerospace domain predictive maintenance applications. For 

example, rare failure prediction using aircraft operational data can be seen in [12,13].  There are 

many existing approaches in the literature; some are suitable for solving failure detection and 

prediction in specific types of equipment. However, the particularities of our data limit us from using 

off the shelf approaches. Our approach differs from the aforementioned approaches in many 

aspects. We focus on predicting extremely rare failures using log-based aircraft central maintenance 

system data. The application of a hybrid deep learning technique that combines auto-encoder with 

bidirectional gated recurrent neural network model is proposed and developed for detecting and 

predicting extreme aircraft component replacement. The hybrid method will address the challenge 

of irregular patterns and trends caused by skew data distributaries, which will enhance the prediction 

of rare failures.   

6.2.3. Autoencoder and Bidirectional Gated Recurrent Unit Network Architecture  

This section presents auto-encoder and bidirectional gated recurrent unit network architecture and 

how these architectures are integrated to achieve better performance on large log-based, 

multivariate, non-linear, and time-series dataset.  

6.2.3.1 Auto-encoder Architecture 

Auto-encoder (AE) is a specific type of multilayer feedforward neural network that utilizes the back-

propagation learning algorithm with respect to the loss function where the input is the same as the 

output neurons [14,15]. AE aims to learn the internal representation of the original data by 

compressing the input into a lower-dimensional space code, also called the latent-space 
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representation, as shown in Figure  6-16. It then uses the compress representation to reconstruct 

the output while minimizing the error for the input data. Basically, AE comprises three components: 

Encoder X, latent-space P, and Decoder Y. The encoder compresses the input and produces the 

latent representation. The decoder then reconstructs the input only using the latent representation. 

An encoder with more than one hidden layer is called a deep auto-encoder. 

The encoding and decoding process can be represented using the equation as follows. 

 𝑝𝑖 = 𝑓( 𝑤𝑝.  𝑥𝑖 +  𝑏𝑡)          (6- 13)  

 𝑦𝑖 = 𝑔( 𝑤𝑦.  𝑝𝑖 +  𝑏𝑡)          (6- 14) 

Where f(.) and g(.) are the sigmoid functions,   𝑤𝑖 represents the weights and  𝑏𝑖 represents biases. 

The following minimized loss function is used to train the model. 

𝐿(𝑋, 𝑌) =  
1

2n
∑ ‖ 𝑥𝑖 −  𝑦𝑖‖

2𝑛
𝑖           (6- 15) 

Where  𝑥𝑖 represent the observed value,  𝑦𝑖 represent predicted values, and n represent the total 

number of predicted values. 

Equation (6-13) helps in checking the validity of the resulting underlying feature P. 

 

Figure 6- 15 Auto-Encoder Architecture[15] 

Figure 6-15 shows a more detailed visualization of an auto-encoder architecture. First, the input 

data passes through the encoder, which is a fully-connected Artificial Neural Network (ANN), to 

produce the middle code layer. Then the decoder, which has a similar ANN structure, will produce 

the output only using the middle code layer. The goal is to get an output identical to the input. 
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Creating many encoder layers and decoder layers will enable the AE to represent a more complex 

input data distribution. 

6.2.3.2 Bidirectional Gated Recurrent Unit Network Architecture 

A Bidirectional Gated Recurrent Unit (BGRU) is a recurrent neural network that is successfully used 

to solve time series sequential data problems [16]. Each BGRU block contains a cell that stores 

information. Each block is made up of a reset and update gate, and the cells help tackle the 

vanishing gradient problem. The reset gate determines how to combine new input with previous 

memory, while the update gate defines how much of the previous memory to keep around. BGRU 

comprises two GRU blocks. The input data is fed into the two networks, the feedforward and 

feedback with respect to time, and both of them are connected to one output layer [17]. The gates 

in bidirectional GRU are designed to store information longer in both directions, providing better 

performance than feedforward networks. This provided a capability to use both the past and future 

contexts in a sequence. BGRU can be expressed as  

ℎ𝑡 = [ℎ𝑡,⃑⃑ ⃑⃑   ℎ𝑡
⃖⃑ ⃑⃑ ]            (6- 16) 

   

 𝑤ℎ𝑒𝑟𝑒 ℎ𝑡,⃑⃑ ⃑⃑   𝑖𝑠 𝑡ℎ𝑒 𝑓𝑒𝑒𝑑𝑓𝑜𝑤𝑎𝑟𝑑  𝑎𝑛𝑑 ℎ𝑡
⃖⃑ ⃑⃑  𝑡ℎ𝑒 𝑏𝑎𝑐𝑘𝑤𝑎𝑟𝑑 𝑏𝑙𝑜𝑐𝑘 

The final output layer at time t is  

𝑦𝑡 =  𝜎(𝑊𝑦ℎ𝑡 + 𝑏𝑦)         (6- 17)  
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Where 𝜎 is the activation function 𝑊𝑦 is the weight, 𝑎𝑛𝑑 𝑏𝑦 is the bias vector. 

 

Figure 6- 16 BGRU architecture with forward and backward GRU layers 

As seen in Figure 6-17 expanded in  Figure 6-18, each of the GRU blocks is made up of four 

components. Input vector 𝑥𝐼 with corresponding weights and bias, reset gate 𝑟𝐼 with corresponding 

weight and bias 𝑊𝑟,𝑈𝑟 , 𝑏𝑟, update gate 𝑧𝐼 with corresponding weight and bias 𝑊𝑧,𝑈𝑧 , 𝑏𝑧 , and out 

vector ℎ𝑡    with its weight and bias 𝑊ℎ,𝑈ℎ, 𝑏ℎ. Fully gated unit is represented as follows  

Initially, for t = 0, the output vector is ℎ0 = 0 

𝑧𝑡 =  𝜎𝑔 (𝑊𝑧𝑥𝑡 + 𝑈𝑧ℎ𝑡−1 + 𝑏𝑧)                                        (6- 18)

   

𝑟𝑡 =  𝜎𝑔 (𝑊𝑟𝑥𝑡 + 𝑈𝑟ℎ𝑡−1 + 𝑏𝑟)                                            (6- 19)

   

ℎ𝑡 = 𝑧𝑡 ℎ𝑡−1+ (1 - 𝑧𝑡) ⊗ ∅ ℎ (𝑊ℎ𝑥𝑡+𝑈ℎ (𝑟𝑡 ⊗ ℎ𝑡−1 ) + 𝑏ℎ)                                        (6- 20)

  

Were ⊗ is the Hadamard product. W, U, b are parameter matrices and vector.  𝜎𝑔 𝑎𝑛𝑑 ∅ℎ  are the 

activation functions, 𝜎𝑔 𝑖𝑠 𝑎 𝑠𝑖𝑔𝑚𝑜𝑎𝑖𝑑 𝑓𝑢𝑐𝑡𝑖𝑜𝑛 𝑎𝑛𝑑 ∅ℎ 𝑎 ℎ𝑦𝑝𝑒𝑟𝑏𝑜𝑙𝑖𝑐 𝑡𝑎𝑛𝑔𝑒𝑛𝑡. 
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Figure 6- 17 Shows a GRU block (See Figure 6-17) with an update and reset gate, sigmoid and 

hyperbolic tangent 

6.2.4. Proposed Model 

6.2.4.1. AE-BGRU Network 

Our objective is to develop a model that detects and predicts extremely rare failures from the large 

log-based dataset for practical aircraft predictive maintenance. The basic idea is to separate the 

rare failure detection problem from the prediction problem. Therefore, the proposed model employs 

two stages, detecting rare failure using auto-encoder and predicting the next occurrences of the 

detected failure in the next-N- step using BGRU.  

The dataset is extremely imbalanced. The imbalanced ratio between the positively labelled and 

negatively labelled data is less than 5%. Deep learning techniques are limited because of the 

overwhelming majority class in such an extremely rare failure problem. This scenario affects the 

predictive models' accuracy in general and the normal dropout, and batch normalization is 

ineffective in extremely imbalanced problem scenarios [3,18]. Also, the use of under-sampling and 

over-sampling methods to balance the dataset is not suitable for the type of dataset considered in 

this study because, apart from its limitation of low accuracy, it is also not practical to alter the original 

structure of the data, as the target is to learn the exact patterns that lead to such failures. Therefore, 

we proposed AE-BGRU to handle the problem differently. The structure of the proposed model is 

shown in Figure  6-19.  
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Figure 6- 18 A structure of the integrated auto-encoder and bidirectional gated recurrent unit 

networks for rare fault detection and prediction 

 

We, first of all, use AE to detect the rare failure using reconstruction errors. We divide the data into 

positive labelled (rare class) and negatively labelled (majority class). As seen in Figure 6-19, the 

first section of AE trained with only negatively labelled data 𝑋−𝑣𝑒 in the process of training, the 

highest reconstruction error is determined and then used as the threshold for the AE-BGRU Model. 

The AE is trained by feeding the encoder layer with the original negatively labelled data, and its 

latent feature is extracted in the middle latent code layer. Then the decoder layers try to reconstruct 

the original using compressed latent features as input. In the encode-decode process, a 

reconstruction error is determined. Since the AE model is learned using negatively labelled data, 

any new data point at the AE-BGRU model can easily be detected. Any example from the same 

negatively labelled class is expected to have low error since it has the same distribution. However, 

when a new data point from a positively labelled class is encountered, it is expected to have a higher 

reconstruction error score.  For example, an observation say  𝑥𝑡  𝜖 𝑋𝑡 will be classified as a fault if 

the reconstruction error exceeds the normal else, it will be classified as no-fault. Once the faults are 

discovered, the resulting data is seamlessly fed into the BGRU section of the AE-BGRU model for 

the failure prediction. The input data to the BGRU model is sequential; it includes the data before 

detecting the first fault, composite with the time delay, and the false positive of the AE.   
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The BGRU section of the model is designed as follows. First, the BGRU cells are constructed so 

that the result of feedforward is computed (𝐹𝑡) and the feedback propagation (𝐵𝑡) are merged at the 

first BGRU layer. Four different methods can be used to merge the outcome, concatenation 

(default), summation, multiplication, and average. The merging is  represented as follows  

𝑂𝑡
1 = 𝑐𝑜𝑛𝑐𝑎𝑡 ((𝐹𝑡

⃑⃑  ⃑), (𝐵𝑡
⃖⃑⃑⃑⃑))          (6- 21) 

    

Such that(𝐹𝑡
⃑⃑  ⃑) = ( ℎ1

⃑⃑⃑⃑  , ℎ2
⃑⃑⃑⃑  , ℎ3

⃑⃑⃑⃑  , …, ℎ𝑡
⃑⃑  ⃑) 

And (𝐵𝑡
⃖⃑⃑⃑⃑) = ( ℎ𝑡

⃖⃑ ⃑⃑ , ℎ𝑡+1
⃖⃑ ⃑⃑ ⃑⃑ ⃑⃑ ⃑, ℎ𝑡+2

⃖⃑ ⃑⃑ ⃑⃑ ⃑⃑ ⃑, ℎ𝑡+3
⃖⃑ ⃑⃑ ⃑⃑ ⃑⃑ ⃑, …ℎ𝑛

⃖⃑ ⃑⃑⃑,) 

 Second, a fully connected layer is used to multiply the BGRU network's output with its weight and 

bias. Then a softmax regression layer makes a prediction using input from the fully connected layer. 

A weighted classification layer is used in the BGRU to compute the weighted cross-entropy loss 

function [19]  for prediction score and training target, which tackles the imbalanced classification 

problem. The following loss is used,  

H(𝑝,𝑡) = −∑(1 − (𝑝𝑥)) 
𝛾𝑙𝑜𝑔2 (𝑡𝑥)  ∗  𝜃𝑖              (6- 22) 

Where H(𝑝,𝑡) represent the estimated probability of each class, p is the target distribution, and t is 

approximating the target distribution.   𝛾 ≥ 0 is the discount factor parameter that can be tuned for 

best estimation and  𝜃𝑖 is the logic weight of each class. 

6.2.4.1 Case Study and Experimental Setup 

In this paper, we have evaluated the detection and prediction of individual aircraft component 

replacement. The experiment is set up to verify the performance of our proposed approach in 

handling the rare occurrences of failure compared to the state of the art, deep learning approaches 

for rare event predictions. The fundamental research question of interest is then whether AE-BGRU, 

with explicit failure detection and additional training capability, can outperform the normal 

unidirectional deep learning time-series methods on an extremely imbalanced dataset. Another 

important question is can model performance for rare failure prediction be improved if learning is 

done in two directions (feedforward and feedback propagation). Also, how different do the 

architecture of deep learning models treat the input data?  To investigate the above questions, we 
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conduct a series of experiments and report the result.  We categorize the modelling approach into 

two; binary class and multi-class.  In the first scenario, we modelled it as a multi-class classification 

problem that predicts all the targeted component failures at the same time. Secondly, we modelled 

it as a binary classification problem that predicts individual functional items. In both cases, the 

prediction is to consider 10 flight legs in advance and not later than two legs to failure. 

6.2.4.2 Dataset 

This study uses over eight years' worth of data. The datasets are collected from two databases. The 

first database is the Aircraft Central Maintenance System (CMS) data, which comprises error 

messages from BIT (built-in test) equipment (that is, aircraft fault report records) and the flight deck 

effects (FDE). These messages are generated at different stages of flight phases (take-off, cruise, 

and landing). The second database is the logs of aircraft maintenance activities (i.e. the 

comprehensive description of all recorded aircraft maintenance activities). The dataset used in this 

study is obtained from a fleet of long-range (A330) aircraft. We choose a target functional item 

Number (FIN) of high practical value with an adequate number of known failure cases. We consider 

three specific components that are replaced due to unscheduled maintenance and study their failure 

behaviours. The behavioural patterns are then used to build a predictive model for predicting 

replacement. Data from the year 2011 to 2016 is used for training, while the reaming from 2016 to 

2018 is used for testing.  The targeted Line-replacement Unit (LRU's) from A330 –long-range (LR) 

aircraft family are 4000KS - Electronic Control Unit/ Electronic Engine Unit, 4000HA – Pressure 

Bleed Valve, and 438HC – Trim Air Valve. 

6.2.5 Result and Discussion  

Binary Classification approach- predicting individual FI's 

Result based on performance comparison with basic deep learning approaches for time series and 

rare event predictions. 
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Table 6- 3 Aircraft A330 rare failure prediction of individual LRU's using CMS dataset 

 Precision Recall G-mean 

LSTM 4000KS = 0.69 

4000HA = 0.72 

438HC =0.77 

4000KS =0.72 

4000HA = 0.70 

438HC =0.69 

4000KS =0.68 

4000HA = 0.70 

438HC = 0.63 

GRU 4000KS =0.63 

4000HA = 0.69 

438HC = 0.67 

4000KS = 0.82 

4000HA = 0.65 

438HC = 0.61 

4000KS =0.65 

4000HA = 0.62 

438HC = 0.62 

AE-BGRU 4000KS = 0.92 

4000HA = 0.87 

438HC = 0.88 

4000KS =0.89 

4000HA = 0.81 

438HC = 0.80 

4000KS =0.66 

4000HA =0.63 

438HC = 0.65 

 

We have investigated if training of an imbalanced dataset in two-direction can improve model 

performance. As seen in Table 6-2, the proposed model shows the superior performance when 

comparing the proposed AE-BGRU model and the normal GRU and LSTM in predicting rare 

replacement of aircraft LRU replacements. For the three FIN, the AE-BGRU model shows 

approximately an overall improvement of 25% in precision, 14% in a recall, and 2% in G-mean. 
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Figure 6- 19 Confusion matrix on test prediction for FIN_4000KS using a reconstruction error 

threshold of 0.4 

 

Figure 6-20 shows that AE-BGRU predicted 6 out of 7 unplanned electronic engine unit 

(FIN_4000KS) replacements. This prediction includes 10 flight legs in advance, and it can also be 

observed that the model detected and predicts approximately 85% of extremely rare failures, which 

is a reasonable specificity, especially for aircraft maintenance.  
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Figure 6- 20 Confusion matrix on test prediction for FIN_4000HA using a reconstruction error 

threshold of 0.4 

 

Figure 6-21 shows that AE-BGRU predicted 7 out of 9 unplanned replacement of pressure bleed 

valve (FIN_4000HA) failures. This prediction includes 10 flight legs in advance, and it can also be 

observed that the model detected and predicts approximately 80% of extremely rare failures, which 

is a reasonable specificity, especially for aircraft maintenance.  

6.2.5.1 General Discussion:  

The AE-BGRU model shows an overall improvement of 25% precision, 14% recall, and 2% G-mean 

for the three FIN considered. The superior performance indicates that AE-BGRU model networks 

are able to capture the underlying temporal structure better by traversing the input data twice 

(feedforward and feedback) in making the prediction.  Furthermore, performance improvement of 

AE-BGRU against the normal is understandable for certain types of data, such as in-text 

classification and prediction of text-words in a sequence to sequence learning.  However, it was not 
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clear whether training extreme imbalanced, numerical, time-series data using a bidirectional 

approach would improve model performance as there might not exist some definite temporal 

contexts and observable in-text sequence learning. Therefore, our results show that AE-BGRU 

outperformed normal GRU and LSTM even in the context of predicting rare failure in log-based 

aircraft CMS datasets. 

6.2.6. Conclusion and Future Work 

This paper proposes a novel technique, AE-BGRU, that can narrow down the volume of logs of 

aircraft warning or failure messages into a small set of important and most relevant logs. AE-BGRU 

uses the integration of auto-encoder with bidirectional gated recurrent networks, which complement 

each other to generate accurate link failure/warning messages in relation to aircraft LRU removal. 

The auto-encoder helps in training the model with only negatively labelled data to detect rare faults 

using the reconstruction error as a threshold. The output of AE is used as input to the BGRU network 

to predict the occurrence of those faults in the Next-N-step. We have implemented this technique 

and applied it to the problem of rare failure detection and prediction. Our evaluation indicates that 

AE-BGRU can effectively find the important log messages that hold direct links to aircraft LRU failure 

causes, leading to replacement. We demonstrate the concepts, design, and evaluation results using 

real-world aircraft central maintenance system log-based data. Comparing AE-BGRU with other 

similar deep learning methods, the proposed approach is 25% better in precision, 14% in recall, and 

3% in G-mean. The result also shows robustness in predicting failure within a defined useful period. 

Further studies will be conducted on other architectures of AE-CNN-BGRU to improve prediction 

performance on the aircraft log-based dataset to achieve predictive maintenance.  
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6.3 Rescaled-LSTM for Predicting Aircraft Component Replacement Under 

Imbalanced Dataset Constraint 
 

Deep learning approaches are continuously achieving state-of-the-art performance in aerospace 

predictive maintenance modelling. However, the data imbalance distribution issue is still a 

challenge. It causes performance degradation in predictive models, resulting in unreliable 

prognostics, which prevents predictive models from being widely deployed in real-time aircraft 

systems. The imbalanced classification problem arises when the distribution of the classes present 

in the datasets is not uniform, such that the total number of instances in a class is significantly lower 

than those belonging to the other classes. It becomes more challenging when the imbalance ratio 

is extreme. This paper proposes a deep learning approach using re-scaled Long Short Term 

Memory (LSTM) modelling for predicting aircraft component replacement under imbalanced dataset 

constraints. The new approach modifies each class's prediction using a re-scale weighted cross-

entropy loss, which controls the majority classes' weight to have less contribution to the total loss. 

The method effectively discounts the effect of misclassification in the imbalanced dataset. It also 

trains the neural networks faster, reduces over-fitting and makes a better prediction. The results 

show that the proposed approach is feasible and efficient, achieving high performance and 

robustness via skewed aircraft central maintenance datasets. 

6.3.1 Introduction  

The technological growth in the aerospace industry and the continued advancement in data 

analytics have made the generation and analysis of large quantities of aircraft data more affordable. 

This has caused a transformation in maintenance strategies, such as shifting from preventive 

maintenance to predictive maintenance. Research into developing data-driven prognostic models 

for condition-based maintenance is gaining more attention [1,2]. However, one of the major 

problems researchers face is the low representation of faulty asset behaviour, which results in an 

imbalanced classification problem [3]. This problem arises when the distribution of classes present 

in the dataset is not uniform, such that the total number of instances in one class far outnumber that 

of the other class. This degrades the performance of the data-driven model, causing imprecise 

prognostics. Therefore, solving this problem is still an open issue[4–6]. The imbalanced 

classification problem is prevalent in many application domains. For example, in aircraft' predictive 
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maintenance, the historical data is often imbalanced because the aircraft component replaced due 

to unscheduled maintenance is most time rare in the overall maintenance records database [7]. The 

data-imbalanced problem can also be seen in financial fraud. The illegitimate transactions are rare 

compared to legitimate ones. It is critical to detect the rare or minority class examples because 

failure to detect any fraud the consequence can be grave [8]. Similarly, imbalance learning has 

application in clinical science for the diagnostic of rare diseases. In most cases, the infected 

population is rare compared to a healthy population [9]. Likewise, in detecting oil spillage in the 

ocean, images obtained by satellite may show a few images representing the oil spillage portion, 

while most of the images representing the non-spillage areas and the interest are to identify the 

minority [10], and much more application domain. 

Several research approaches have been conducted to solve the imbalanced classification problem. 

Some comprehensive reviews about the imbalance problem can be found in [11–13]. The 

Imbalanced classification problem's solution can be categorised into three main approaches: the 

data level, the algorithm level, and the hybrid approach (see Figure  6-22. The data level approach 

involves re-sampling the dataset before presenting it as an input to the learning algorithm. The 

algorithm level approach tackles the imbalanced learning problem by changing the learning 

algorithm to respond favourably to both classes during learning[12]. In contrast, the hybrid combines 

two or more to achieve better performance. 

 

Figure 6- 21 The three ways of the handling imbalance problem 

6.3.1.2 Deep learning – LSTM Architecture 

Long Short Term Memory (LSTM) network is a special kind of recurrent neural network capable of 

learning long-term and short-term dependencies. They are used to model time-series or sequence-

dependent variables, such as machine failure records, electricity consumption, stock market price, 

and so on. LSTM was first introduced by [14], specifically designed to overcome the recurrent neural 
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network's long-term dependency problem. The networks work pretty well on a variety of problems 

and are widely used recently.  

  

 

Figure 6- 22 Structure of LSTM Network 

 

From Figure 6-23, on the left-hand side, we have a new sequence value 𝑥𝑡 which combine with the 

output from the previous cell ℎ𝑡−1. The initial step for the combination input in the new cell is for it to 

be dense using 𝑡𝑎𝑛ℎ layer. The second derivative of 𝑇𝑎𝑛ℎ activation function can be sustained for 

a long-range before descending to zero. Therefore, it is suitable for handling the challenge of 

vanishing gradient. Secondly, the input data is passed through the input gate layer using a sigmoid 

activation function, whose output is joined by dense layer input. The input gate filters out any 

unwanted element of the input vector. The sigmoid function is a gate function for the three gates – 

the input, output and forget. It outputs values between 0 and 1. It either allowed flow or disallowed 

the flow of information throughout the gates. Finally, the output gate determines which values are 

actually allowed as output from the cell ht.  
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6.3.1.3 The main contribution  

Therefore, this paper's contribution is in the development of a data-driven deep learning predictive 

model to predict aircraft component replacement under imbalanced data constraints. Second, we 

conducted a comparative experiment to find a loss function suitable for handling an imbalanced 

dataset.  A new approach is proposed to integrate the re-scaled weight loss function into the LSTM 

model to optimise classification in the imbalanced dataset.  The model is evaluated on real-life 

Aircraft Central Maintenance (CMS) datasets and proves its robustness.  

The main advantage of our proposed deep learning approach over other state-of-the-art neural 

network techniques for imbalanced classification are:  

a. Our approach supports the efficient learning of temporal dependencies, and it can handle non-

linearity and volatility dynamics features in time-series datasets, which improve the performance of 

prediction.  

b. The new approach presents a unique way of changing loss function with respect to weights and 

a unique arrangement of LSTM networks. The new strategy dynamically regulates the combined 

weight to produce a merged predicting result. The LSTM model weights are combined at each time 

step adaptively and recursively by using both the errors of past predictions and discarded weight at 

the forget gate layer.  

c. The proposed approach is computationally efficient because it uses a simple optimisation method 

while finding and combining model weights.    

6.3.2 Related Work 

This section provides research work that has used the LSTM neural network to address imbalanced 

classification, focusing on aircraft' predictive maintenance. Many research efforts have been made 

in deep learning to address the imbalanced classification problem. The majority of the work still falls 

under the three categories of handling an imbalanced dataset (data level, algorithm level, and hybrid 

approach). The difference is in the implementation of those approaches on a neural network. For 

example, [15] show the effects of an imbalanced classification problem as a course of slow 

convergence in the neural network backpropagation algorithm. The authors present a modified 

technique for calculating a direction in weight-space, decreasing the error for each class, thus 
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addressing the imbalanced problem. Furthermore, [16] show how cost-sensitive can be 

implemented in neural networks by modifying the backpropagation learning algorithm for multi-

layered feed-forward neural networks.  

[17] shows the effect of data sampling and threshold-moving in training cost-sensitive neural 

networks. The authors use manoeuvred threshold toward the minority classes such that examples 

with higher costs become harder to misclassify, hence getting better prediction. [18] this study 

provides a general review of existing deep learning techniques for addressing class imbalanced 

data. Other works that have shown how imbalanced classification can be handled in training neural 

networks are [19–23].  [24] shows the use of LSTM to predict multiple site fatigue damage prediction 

of aircraft lap joints.  [25] proposes a weighted deep representation learning model for imbalanced 

fault diagnosis in Cyber-Physical Systems, which uses under-sampling to balance the dataset and 

then design a weighted loss to optimised prediction. However, the use of random under-sampling 

to balance the dataset can be prone to losing informative data points as it is with any random under-

sampling approaches.  [26] presented a method of handling imbalanced data using neural networks. 

The method is designed to learn the embedding using a novel objective function, called triple-

header cross-entropy, and they test it to detect acoustic event problems.  

 Despite these advances to solve the data imbalance problem in a neural network, the open 

literature lacks an exhaustive unified solution to generally handle predictive modelling. In fact, many 

researchers agree that the subject of deep learning with imbalanced data is understudied. Hence, 

it is still an open area of research. 

6.3.3 Problem Formulation 

We focus on the deep neural network approach to address the data imbalance problem during the 

training.  

To deal with the aforementioned challenge, we use an algorithm level approach to handling the 

imbalanced classification problem. We modify the LSTM network by re-scaling the loss function to 

be robust and efficient in handling hard to learn examples (examples from minority class).  This also 

enhances the computational efficiency of LSTM, reduce overfitting, reduce false positive and false 

negative rate.    
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Deep learning LSTM has been widely used in the analysis of time series datasets, image 

classification, natural language processing, time series,  and many more [27–30]. However, apart 

from the challenge of imbalanced classification, many challenges arise when the network becomes 

deep. Such that their convergence becomes slow. The deep LSTM network is prone to the vanishing 

gradient and gradient exploding (where gradients slowly disappear as we back-propagate across 

multiple network layers). This makes training very difficult, although this can be mitigated if gradient 

clipping is properly set. The other challenge is that it cannot easily be stacked into the depth network 

layers because the saturated activation function used makes the gradient decay over layers; thus, 

accuracy can easily fall.  

6.3.3.1.Proposed method: Re-scaling cross-entropy loss  

In machine learning or optimisation in general, a loss function can be defined using cross-entropy 

(CE). CE is mostly used to quantify a variance between two probability distributions. Considering a 

binary classification that involves classifying data into two possible classes, say 0 and 1. The model 

can predict an output of the form 𝑦𝑥 ∈ {0,1} given the input vector 𝑥. For example, given training 

instance with label 𝑦3 out of possible labels 𝑦1, 𝑦2, and 𝑦3. The ideal distribution for this case will be 

Prb(𝑦1) = 0.0, Prb(𝑦2) = 0.0 and Prb(𝑦3) = 1.0, which can be interpreted as the given training 

instance has the 0% probability of being a class 𝑦1 and class 𝑦2 and 100% probability of being a 

class 𝑦3. But if a machine-learning algorithm predicts probability distribution as follows: Prb(𝑦1) = 

0.05, Prb((𝑦2) = 0.15 and Prb(𝑦3) = 0.8, in this case, the CE will determine how close is the predicted 

distribution to the true distribution using 𝐻(𝑝, 𝑡) = −∑𝑝(𝑥)𝑙𝑜𝑔𝑡(𝑥)  Where 𝑝 is the wanted probability 

and 𝑡 the actual probability. 

Logistic function 𝑔(ℎ) =
1

1+𝑒−2𝛽ℎ
                (6- 23) 

Is used to model the probability of each given input. Where a probability of getting an output 

 𝑦 =  1 is given as 𝑡𝑦=1 = 𝑦̇  ≡  𝑔(𝑤. 𝑥) =1
(1 + 𝑒−𝑤.𝑥)⁄                                                   (6- 24)

     

where the vector of weight 𝑤 is optimised through stochastic gradient descent while the probability 

of getting an output 
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 𝑦 = 0 is  𝑡𝑦=0 = 1 − 𝑦̇                    (6- 25) 

    

The true probabilities can be written as 

 (𝑝, 𝑥) = {
𝑝𝑦=1 = 𝑦 

𝑝𝑦=0 = 1 − 𝑦         (6- 26)  

let 𝑝 ∈ {𝑦, 1 − 𝑦} and 𝑡 ∈ {𝑦̂, 1 − 𝑦̂}  we can use cross-entropy to measure dissimilarity between 𝑝 

and 𝑞  such that  

𝐻(𝑝, 𝑡) =  −∑ 𝑝𝑖𝑙𝑜𝑔𝑡𝑖𝑖  = − 𝑦 𝑙𝑜𝑔𝑦̂ – (1 − 𝑦) log (1 − 𝑦̂} )        (6- 27)  

to compute the loss function, we take the cumulative average of all the cross entropies. For instance, 

if 𝑁 is the total number of data points with each sample index by =  1, . . . , 𝑁 . then the loss function 

is given by 

 𝑲(𝒘) =
𝟏

𝑵 
 ∑ 𝑯(𝒑𝒏, 𝒕𝒏)

𝑵
𝒏=𝟏                   (6- 28) 

= −
1

𝑁
∑ [𝑦𝑛𝑙𝑜𝑔𝑦̂𝑛 + (1 − 𝑦𝑛)log (1 − 𝑦̂𝑛)]

𝑁
𝑛=1            (6- 29) 

Where 𝑦̂𝑛  ≡ 𝑔(𝑤. 𝑥𝑛) = 1
1 + 𝑒−𝑤.𝑥𝑛⁄  with 𝑔(𝑧) as the logic function.  

The cross-entropy method is a Monte Carlo method for optimisation and sampling importance in 

class distributions [31]. The minimisation cross-entropy methods have been used to optimise the 

rare event's prediction, as shown in [32]. Therefore, we can also optimise the cross-entropy method 

for imbalanced datasets by building on this approach. The cross-entropy method approximates the 

optimal importance sampling estimator iteratively as follows:  

1. Draw a sample from a probability distribution.  

2. Minimise the cross-entropy between this distribution and a target distribution to produce a better 

sample in the next iteration.  

 Therefore, to minimise the cross-entropy between distribution, we use estimation via class 

importance sampling and Kullback–Leibler (KL) divergence [33], which measure how one 

probability distribution differs from a second.  
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Therefore, considering the general problem of estimating the quantity.  

Focal loss 𝜏 =  ℶ𝜇[𝐻(𝑥)] =  ∫𝐻(𝑥)𝑓(𝑥, 𝜇)𝑑𝑥           (6- 30) 

Where H is the performance function, and 𝑓(𝑥, 𝜇) is a member of some parametric family of 

distribution. To estimate using importance sampling from (Eq 6-29) to get. 

𝜏 =  
1

𝑛
 ∑ 𝐻(𝑥)

𝑓(𝑥𝑖,𝜇)

𝑔(𝑥𝑖)

𝑛
𝑖=1          (6- 31)  

Where 𝑥𝑖 , … , 𝑥𝑛 is a random sampling from 𝑔 for 𝐻+ then the optimal density is given by 

  𝑔∗ =
𝐻(𝑥)𝑓(𝑥, 𝜇)

𝜏⁄ ,         (6- 32)  

However, this depends on the known 𝜏.  The goal of cross-entropy is to approximate the optimal 

probability distribution by adaptively choosing the number of the parametric that are closes  to the 

optimal probability distribution  𝑔∗ Using KL. 

Cross-entropy loss is widely used because of its classification strength, that even easily classifiable 

examples (majority class data points) result in a significant loss [15]. During model training, the 

overall total error cost representing the majority samples negatively impacts the minority class 

samples because most of the majority class's losses will dominate the gradient, producing an 

undesired result. Therefore, to handle such challenges, [34] proposed modifying the normal CE loss 

function that down-weight samples from the majority samples. They contribute less to the total loss 

and focus more on the hard ones (the minority class). The archived that by introducing a term (1 − 

(𝑝𝑡) 
𝛾 in to the normal CE which controls biasness in the overall cost and enhance learning from 

hard to learn examples. A general way of formulating Focal Loss -FL is:   

(𝑝,𝑡) = −(1 − (𝑝𝑡) 
𝛾log(𝑝𝑡)          (6- 33)  

Where (𝑝,𝑡) represent the estimated probability of each class, and 𝛾 ≥ 0 is the discount factor 

parameter that can be tuned for the best estimation. Therefore, to further improve the prediction of 

the minority class in the extreme imbalanced datasets, we modify the focal loss function further by 

re-scaling and multiplying logics to weight to have:  

RFL(𝑝,𝑡) = − (1 − (𝑝𝑡)) 
𝛾𝑙𝑜𝑔2 (𝑝𝑡) * 𝜃𝑖                         (6- 34) 
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Where 𝜃𝑖  is the logic weight of each class. 

Using (eq 6-33) during training, weights are transformed from class weight to weight per example, 

and this increases the strength of predicting minority class samples.   

6.3.4 Methodology 

This section integrates a process of handling imbalanced fault prognostics and diagnostics into the 

traditional process of developing predictive models. The methodology comprises three stages data 

pre-processing, model training and model evaluation, as seen in Figure 6-24. The raw data is 

transformed into the right format for machine learning in the pre-processing data stage. We replace 

null values with zero; missing values in the data are ignored. Remove unwanted columns. The next 

step was transforming the time series data into a machine learning format to use machine learning 

for time-series prediction. The problem needs to be reframed as an unsupervised or supervised 

learning problem. This study frames the problem as supervised learning: having a pair of input-

output structures. We divide the data into standard segments using a sliding window.  

 

Figure 6- 23 Flow of the R-LSTM Implementation 

In the modelling stage, feature engineering is taken care of since we are using a deep learning 

approach. A novel modification of loss function in LSTM is presented, which incorporates multiple 

predictions from a set of individual neural networks. The network layers are integrated to determine 

the output data, reducing variance in the Imbalanced dataset and optimising prediction.  

6.3.5 Experiments and Evaluations 

In this study, two experiments are conducted as follows: 

1. To compare the performance of existing loss functions with the proposed loss function.  
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This experiment is set up to compare the performance of our approach with the existing loss 

functions. We compare binary classification and multiclass loss functions with the proposed loss 

function for extreme imbalanced classification. In this experiment, a dataset is created using a 

machine learning sci-kit learn function make circles with a random number of samples, noise and 

varying imbalanced ratio.  

2. Compare our approach with existing methods of handling imbalanced classification problems and 

basic deep learning approaches for time-series predictions.  

This experiment is set up to verify our proposed approach in handling imbalanced datasets 

compared to the state of the art approaches.  

Dataset: This study uses over eight years' worth of data. The datasets are collected from two 

databases. The first database is the Aircraft Central Maintenance System (CMS) data, which 

comprises error messages from BIT (built-in test) equipment (that is, aircraft fault report(s) record) 

and the flight deck effect (FDE). These failures and warning messages are generated at different 

flight phases (take-off, cruise, and landing). The second database is the logs of aircraft maintenance 

activities (the comprehensive description of all aircraft maintenances recorded over time). The 

dataset is obtained from a fleet of aircraft. There are two families of aircraft in the long-range (A330) 

and the short aisle aircraft (A320). In each family, we target three components or functional items 

that are replaced due to unscheduled maintenance and study their failure behaviours. The 

behavioural patterns are then used to build a predictive model to predict their replacement. Data 

from the year 2011 to 2016 is used for training, while the reaming from 2018 to 2018 is used for 

testing. 

Therefore, using the extremely imbalanced aircraft CMS dataset. We choose one approach from 

each of the categories of methods of handling imbalanced classification problems. SMOTE is 

chosen from the data-level approach, and the cost-sensitive ensemble method is chosen from the 

algorithm level approaches. We also evaluated the performance of our approach against the basic 

deep learning approaches for time-series predictions.  

6.3.5.1  Parameter Setting  

Discount factor 𝜸 = 0.5 
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The loss functions considered are; 

Binary classification loss functions:  Binary cross-entropy, Focal loss, Hinge loss. 

Multiclass classification loss functions: Kullback Leibler divergence loss and sparse cross-

entropy.  

Proposed loss function: Re-scale weighted cross-entropy loss 

The targeted aircraft Line-replaceable Unit (LRU): Line-replaceable unit is a component of an 

aircraft that is designed to be replaced easily at an aircraft line maintenance location in the event of 

failure [35].  We choose LRU of high practical value with an adequate number of known failure 

cases, identified by Functional Item Number (FIN).  A330 –aircraft family: 4000KS - Electronic 

engine unit, 4000HA - High-pressure bleed valve, 5RV1 – Satellite data unit. A320- aircraft family: 

11HB- Flow control valve, 10HQ - Avionics equipment ventilation computer, 1TX1 – Air traffic 

service unit. 

6.3.5.3 Experimental Results 

I. Comparing the proposed loss against Binary classification loss functions. 

6.3.6 General Discussion on the Proposed Loss Function Against the Existing Binary and 

Multiclass Classification Loss Functions 

We have proposed a loss function by re-scaling cross-entropy loss to handle the majority class's 

overwhelming gradient against the minority class. The proposed loss is expected to improve model 

performance in predicting rare component failure in complex systems. Figures 6-25, 6-26, 6-27, 6-

28 and 6-29 present the comparative performance of the existing loss functions, that is, binary 

cross-entropy loss, focal loss, hinge loss, sparse cross-entropy and Kullback eligible divergence 

loss, respectively, with varying imbalance ratios. The proposed weighted re-scaled loss function is 

shown in Figure 6-30. We tested the loss functions via artificial imbalanced datasets using LSTM 

networks. Our target is to inform the best loss function to be used to classify an extreme imbalanced 

dataset. Therefore, in the experiment, varying imbalanced ratios (IR) were considered. We consider 

three cases (50%IR as balanced data, 20%IR and 5%IR imbalanced). In the case of 50%IR, since 

the data is not imbalanced, it shows that most classification methods can work well with this case. 

In the case of 20%IR, some of the imbalanced classification methods are cable of handling it; hence 
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performance improvement is understood for certain types of data in a sequence to sequence 

learning. However, it was not clear whether training extreme imbalanced of less than 5%IR, 

numerical, time-series data using re-scale weighted loss approach would improve model 

performance as there might not exist some definite temporal contexts and observable in-text 

sequence learning. 

 

 

 

Figure 6- 24 Training the LSTM network with different imbalance ratio using focal loss 

 

 

Figure 6- 25 Training the LSTM network with different imbalance ration using normal binary cross-

entropy loss 
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Figure 6- 26 Training the LSTM network with different imbalance ration using hinge loss 

 

II. Comparing the proposed loss against multiclass-classification loss functions. 

 

 

Figure 6- 27 Training the LSTM network with different imbalance ration using sparse cross-entropy 
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Figure 6- 28 Training the LSTM network with different imbalance ration using Kullback Leibler 

divergence loss 

 

III. Proposed loss function: Re-scale weighted cross-entropy loss. 

As observed in Figure 6-25 to 6-29, the balanced case that is 50%IR, the overall loss is 

approximately 0.1 in all the considered existing loss functions. Compared with the proposed method 

in Figure 6-30, the result is that as the training epoch size increases, the loss decreases rapidly, 

approaching zero. Observing the case of the imbalanced ratio of 20%IR, using the binary cross-

entropy in Figure 6-25, it converges with an error of 0.21, focal loss in Figure 6-26 converges with 

an error of 0.1, hinge loss in Figure 6-27 with an error of 0.2, sparse cross-entropy in Figure 6-28 

with an error of 0.21. Kullback Leibler divergence loss in Figure 6-29 with an error of 0.21. 

Comparing the case of 20% imbalanced ration performance with the proposed method in Figure 6-

30 shows that it converges with an error of 0.05, which is far lesser than the closes focal loss with 

an error of 0.1, which indicates better performance.  

Considering the extreme case where the imbalance ratio is 5%IR between classes, the results show 

that the existing loss function with worse error is the Kullback Leibler divergence loss in Figure 6-

29, which converges with an error of 0.36. Simultaneously, the best is the focal loss function in 

Figure 6-28, with an error of  0.28. To compare with our approach in Figure 6-30, which converges 

with an error of 0.15. This indicates that our approach is feasible and efficient, achieving high 

performance and robustness via extreme imbalanced datasets.  In summary, re-scaling weighted 

cross-entropy loss performs better than the existing binary and multiclass loss functions. Figure 6-
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31 shows the overall model performance, and it achieved more than 80% accuracy on training and 

over 70% on the testing dataset. 

 

 

Figure 6- 29 Training the LSTM network with different imbalance ration using re-scaled loss 

function for imbalanced classification 

 

 

Figure 6- 30  Overall model performance using Rescaled –LSTM networks 

 

6.3.6.1 Performance of the proposed method on aircraft central maintenance dataset.  

We have proposed a re-scale LSTM network model that models the extreme imbalanced dataset 

to predict aircraft component removal. The challenge in predicting extreme rare component failure 

(which make up the imbalanced classification problem) is during model training, the overall total 
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error cost representing the majority samples to have a negative impact on the minority class 

samples because most of the losses from the majority class will dominate the gradient, hence 

producing low-performance model. Therefore, we attempt to solve that problem by using a re-scale 

weighted loss function to control the overwhelming gradient from the majority class.  Hence, 

producing better model accuracy. 

Table 6-4 shows the results of our proposed approach compared with the state-of-the-art approach 

of handling imbalanced datasets. For comparison, we consider SMOTE from the data level 

approach and the ensemble cost-sensitive method from the algorithm level approach.  The dataset 

used in this study is obtained from a fleet of aircraft; in the fleet, there are two aircraft families in the 

long-range (A330) and the short aisle aircraft (A320). In each family, we target three components 

that are replaced due to an unplanned breakdown. We study their failure behaviours and then use 

those behavioural patterns to build a predictive model to predict their future replacement. Modelling 

the problem as a binary classification, we predict each component replacement separately. The 

imbalanced ratio is extreme in each case because such replacements are rare in the dataset. We 

evaluate the model using precision, recall and the Geometric Mean. The choice of performance 

matrices is due to their effectiveness in evaluating imbalanced classification models.  

 

Table 6- 4 Result based on performance comparison with state-of-the-art methods for imbalance 

learning 

 

 

SMOTE Ensemble + CS R-LSTM 

A330-aircraft family 

Comp. 

IR 
% Precision Recall 

G-
mean Precision Recall 

G-
mean Precision Recall 

 
 
G-mean 

4000HA 0.47 0.87 0.65 0.74 0.88 0.75 0.80 0.96 0.85 0.92 

4000KS 0.43 0.81 0.63 0.70 0.81 0.69 0.74 0.93 0.89 0.85 

5RV1 0.44 0.80 0.64 0.71 0.83 0.70 0.76 0.92 0.89 0.91 

A320- aircraft family 

11HB 0.28 0.75 0.65 0.69 0.82 0.73 0.77 0.90 0.86 0.88 

10HQ 0.31 0.83 0.60 0.70 0.89 0.74 0.80 0.92 0.87 0.89 

1TX1 0.64 0.88 0.66 0.76 0.91 0.85 0.87 0.95 0.88 0.91 

 It can be observed from the results that in each of the considered cases, the proposed model 

outperformed others in both G-mean score and recall. We can observe that even though the 
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imbalance ratio for all cases considered is less than 1%, the model recall is more than 80%. This 

show the model robustness in handling extreme imbalanced classification problem. The G-mean is 

more than 80% in all cases, showing that the model can better reduce the false-positive rate.   

We also experimented with confirming that the proposed approach is superior to other deep learning 

approaches for time-series predictions. We modelled the problem as time series, binary 

classification problem. For this reason, we, first, transform the data into a suitable format for deep 

learning. The experimental results are evaluated on the log-based aircraft CMS dataset. The result 

shows that the proposed method performed better in predicting each LRU replacement.  

Table 6- 5 Result based on performance comparison with basic deep learning approaches for time-

series predictions 

   RNN LSTM R-LSTM 

A330-aircraft family 

Comp.  

IR 
% Precision Recall 

G-
mean Precision Recall 

G-
mean Precision Recall 

 
 

G-mean 

4000HA 0.47 0.80 0.61 0.69 0.83 0.61 0.71 0.96 0.85  0.92 

4000KS 0.43 0.68 0.51 0.57 0.81 0.59 0.68 0.93 0.89  0.85 

5RV1 0.44 0.68 0.52 0.58 0.82 0.60 0.70 0.92 0.89  0.91 

A320- aircraft family 

11HB 0.28 0.70 0.51 0.59 0.69 0.53 0.59 0.90 0.86  0.88 

10HQ 0.31 0.78 0.57 0.66 0.72 0.58 0.64 0.92 0.87  0.89 

1TX1 0.64 0.82 0.60 0.70 0.80 0.66 0.72 0.95 0.88  0.91 

 

Table 6-5 summarises the experiment results comparing the existing methods (RNN and normal 

LSTM) to the proposed rescaled-LSTM networks. The result depicts that the proposed method is 

superior in both recall and precision. This indicates that its suitability for a time series prediction.  

6.3.7 Conclusion and Future Work 

This paper has identified an imbalanced dataset as the main challenge for performance degradation 

in developing aircraft predictive maintenance models. A proposed re-scale loss function has been 

introduced into the LSTM networks to focus on hard-to-learn examples from the minority class. This 

will address the class imbalance problem in aircraft component replacement predictive models. The 

experimental result indicates that R-LSTM has a better performance than other similar imbalance 

learning techniques. We also achieved a significant level of improvement in the reduction of false-
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positive and false-negative rates. In the future, we hope to develop this work further by looking at 

the effect of class overlapping in the process of over-sampling the minority class in the imbalanced 

learning context. We will also look at improving model performance by analysing the model internal 

structure to predict more accurately component replacement in the desired time window in advance 

-before failure to carry out actionable maintenance. 
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CHAPTER 7: Application of Deep Reinforcement Learning for 

Extremely Rare Failure Prediction in Aircraft Maintenance  

This chapter presents the implementation of deep reinforcement learning for the classification of an 

imbalanced dataset. In this approach, the problem is formulated as a Markov-decision process 

framework and solved using the deep reinforcement learning (e.g. deep Q-learning networks) 

techniques. 

The use of aircraft operational logs to predict potential failure that may lead to disruption poses many 

challenges and has yet to be fully explored. Given that aircraft are high-integrity assets, failures are 

extremely rare, and hence the distribution of relevant data containing prior indicators will be highly 

skewed to the normal (healthy) case. This will present a significant challenge in using data-driven 

techniques because the model will be biased to the heavily weighted no-fault outcomes.  This paper 

presents a novel approach for predicting unscheduled aircraft maintenance action based on deep 

reinforcement learning techniques. The algorithm transforms the rare failure prediction problem into 

a sequential decision-making process optimised using a reward system that penalises proposed 

predictions that result in a false diagnosis and preferentially favours predictions that result in the 

right diagnosis. A log data from the aircraft central maintenance system is used for model validation; 

the data is directly associated with the physical health aspects of the aircraft components. The 

influence of extremely rare failure prediction on the proposed method is analyzed.  The new 

approach was compared with existing cost-sensitive and oversampling methods, and performance 

was evaluated based on G-mean and false-positives rates.  The proposed approach shows the 

superior performance of 20.3% improvement in G-mean and 97% reduction in false-positive rate.  
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7.1 Introduction 

In recent times, the concept of predictive maintenance has continued to advance, especially in a 

complex system such as an aircraft. Predictive maintenance is designed to monitor in-service 

equipment's health condition and forecast maintenance needs. It provides a cost-benefit compared 

to time-based approaches such as preventive maintenance because maintenance is carried out only 

when needed [1]. As the popularity of predictive maintenance models increases in the aviation 

industry, one of the critical challenges is dealing with unplanned failures, i.e. rarely reported events. 

In other words, the challenge of learning from an extremely imbalanced dataset using standard 

machine learning algorithms.  

Furthermore, using the data from operational equipment logs to develop predictive models poses 

many challenges that have not yet been fully explored, as logs are mainly used for anomaly detection 

and debugging failure. The logs generated in complex systems such as aircraft are mostly 

multivariate time series (multiple interrelated streams of data are recorded simultaneously). This 

type of data is commonly recorded from several monitoring systems, such as the condition-based 

or sensors, collected over time. They may, therefore, be regarded as complex multivariate time-

series data. Given that aircraft are high-integrity assets, failures are extremely rare, and hence the 

distribution of relevant data containing prior indicators will be highly skewed to the normal (healthy) 

case. This will present a significant challenge in using data-driven techniques to ‘learning’ 

relationships/patterns that depict fault scenarios since the model will be biased to the heavily 

weighted no-fault outcomes. 

Some of the characteristics of a system log that cause a challenge in predictive modelling are: 

(i) Heterogeneous in nature containing symbolic sequences, numeric time-series, 

categorical variables and unstructured text. It is a non-trivial task to translate free-

text log messages into meaningful features.  

(ii) System log volume can be large in complex systems, which poses computational 

challenges.  

(iii) Having a rare occurrence of failure results in a lack of enough information to 

anticipate certain specific families of faults.  

Thus, this study investigates the use of aircraft operational log-based data to develop a predictive 

model for rare failure prediction in aircraft. Also, to determine which variables are likely to indicate 
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the target failures. An issue of predictive maintenance lies in the rigid nature of data (data changing 

over time). If correct parameters are not built-in, it can risk incorrect forecasts and erroneous ‘fault’ 

messages. For instance, based on historical behaviour, if a maintenance operator forecasts that a 

component will fail within 100 flights, they might schedule removal to prevent operation failure. 

However, upon removal, the part may test as no fault found (NFF), costing the operator unnecessary 

time and money. Therefore, developing a robust predictive model is necessary, especially for safety-

critical equipment such as aircraft. 

In order to make use of log-based data to develop a robust predictive maintenance model, generally, 

the first step is to interpret the logs, filter out a large amount of noise (that is, data irrelevant to the 

set goal) and extract predictive features. Also, the known failure cases need to be collected for 

learning and evaluation. The problem needs to be transformed into an appropriate learning scenario, 

and a performance measure that reflects real-world needs must be determined. Figure 7-1 shows 

the proposed process of discovering knowledge from raw data. The raw heterogeneous and 

multivariate data collected from different sources is stored in a database. The raw data usually 

contains many analytical challenges requiring pre-processing, such as data incompleteness, lack of 

example behaviours and trends, missing or null values, lack of exact features of interest, and noise. 

Data pre-processing and transformation (into a suitable format for machine learning) occurs in Stage 

2  of Figure 7-1. A feature engineering (FE) process is carried out at stage three; it helps collect 

relevant features related to the desired goal. FE is the integral and critical step of the machine 

learning process because the quality of data and the right features contribute majorly to a predictive 

model’s performance.  After the pre-processing and FE phase, the data is divided into training and 

validation. Stage four is where the machine learning algorithm for pattern recognition or classification 

is trained using the training data. The model is then evaluated at stage five. The outcome can then 

give insightful knowledge for more informed decision making.  
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Figure 7- 1 Basic  Data Knowledge Discovery Process 

The pre-processed dataset usually has a skewed distribution in a rare failure prediction problem. 

For example, in the ACMS dataset, the non-failure represent negatively labelled samples, and the 

failure represent positively labelled samples. The negative samples far outnumber the positively 

labelled, causing the data to be highly imbalanced.  The disproportion between classes can be very 

low (e.g. 5% or less). Various solutions for the slight rare failure problem (say proportions of 40:60 

to 30:70) have been suggested in the literature. However, in a situation where the imbalance ratio 

is extreme, say less than or equal to 5%,  the problem becomes more challenging to handle [2][3]. 

In such a scenario, the standard approaches for normal failure prediction (such as statistical 

approaches, traditional machine learning algorithms and associated rules) become limited [4–6]. 

The reason is that most normal failure patterns are similar to each other and are substantially 

represented. 

In contrast, rare failure is typically one-of-a-kind, and hence it becomes difficult to learn temporal 

patterns using traditional machine learning approaches. That is why many aircraft predictive 

maintenance models are based on simple “threshold” monitoring rules capable of detecting only 

simple faults and, consequently, having high false-positive rates (FPR) [7]. Hence, it is vital to 

provide an accurate prediction of failures and, at the same time, have a very low FPR. That can 

improve the effectiveness of the aircraft health monitoring systems and, in turn, enhance the 

availability of the aircraft. 

This study considers the case of developing a model to predict unplanned failure and replacement 

of aircraft components. The dataset used contains extremely rare failures of the target component. 

The imbalance ratio for each target component is less than 3% of the total dataset, making it difficult 
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to develop a predictive model effectively using the existing traditional machine learning approaches. 

Therefore, this study aims to show the applicability of deep reinforcement learning for training an 

extremely rare failure predictive model instead of the widely used machine learning or deep learning 

methods for slightly rare failure predictions. The proposed model is trained using a real-world aircraft 

central maintenance system (ACMS) dataset. 

 The proposed approach considers the problem of extremely rare event prediction from a 

reinforcement learning point of view. The problem is formulated as a Markov sequential decision-

making process and solved by combining reinforcement learning with deep neural networks. The 

approach enables the model to remember a long sequence of failure patterns. The reward function 

is specifically constructed to counter agent bias towards the majority class during model training. 

Figure 7-2 shows the interaction between the elements of reinforcement learning. Here, the agent-

classifier takes action in an environment; transition through the time series ACMS dataset is 

considered an environment in the proposed approach. A reward is returned based on the action 

taken (classify pattern as fault or non-fault) at a given state.  

 

Figure 7- 2 Visual representation of iterative feedback loop of actions, states, and rewards in 

reinforcement learning 

Rationale: DRL algorithms were traditionally designed for performance optimisation with very large 

input space [8]. Therefore, exploring the application of DRL approaches for complex systems large 

log-based datasets can significantly benefit the predictive maintenance, especially that data is 

continually increasing in dimension [9]. The rationale for the proposed method is to explore the 

applicability of deep reinforcement learning for extremely rare prediction problems, purposely for 

performance optimisation in complex systems predictive maintenance models, to minimize 

downtime and increase the utilization rate of the vehicles or components. The motivation for the 

possible performance improvement in the proposed algorithm is the combination of the convolutions 
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in deep neural networks that enhance learning relationships between variables in the dataset. Also,  

the reward function, which helps to counter bias during model training and prioritised experience 

replay memory, which instead of uniformly sampling transactions from replay memory, employs a 

prioritised approach that also entails replaying the important transactions more frequently. Hence, 

optimising the learning process. Also, DRL uses a reward function to optimise future rewards, in 

contrast to a machine learning (regression or classification) model that predicts the probability of 

future outcomes. Therefore, it can be assumed that deep reinforcement learning methods are ideally 

best for imbalanced classification problems because of its learning mechanism and specific learning 

environment and reward function. 

This paper presents a novel approach using deep reinforcement learning techniques to predict 

unplanned aircraft maintenance actions using data from operational flight logs and maintenance 

report information. The approach first identifies relevant temporal patterns that correspond to each 

component failure. It then transforms the problem into a sequential decision-making process that is 

optimized using deep reinforcement learning algorithms utilizing a reward system that penalizes 

proposed predictions leading to a false diagnosis and preferentially favours predictions that lead to 

a correct diagnosis. The failure messages in the ACMS data is directly associated with physical 

health aspects of the vehicle, asset or component (such as pressure, vibration, temperature, 

acoustics, viscosity, flow rate data). The patterns that are input to the algorithm represent the history 

state of the components, and they are labelled as failure or non-failures. The reward function is 

specifically constructed to counter agent bias towards the majority class during model training. The 

strategy allows adequate handling of extremely imbalanced problems in predictive maintenance 

modelling. The influence of extremely rare failure prediction on the proposed deep reinforcement 

learning models is analyzed. 

The main contributions of this paper are as follows:   

1. To show a novel application of deep reinforcement learning to predict extremely rare failure 

problems in complex aircraft systems. The new deep reinforcement learning approach is 

designed to capture the patterns of extremely rare component failures adequately.  The 

model is trained to predict aircraft component replacement well in advance of failure. The 

technique includes designing and developing an environment for the state-action, a reward 
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function for rewarding agent-classifier actions, and the unique arrangement of a deep neural 

network architecture for policy optimization.  

2.  The new method is validated using a real-world aircraft central maintenance system 

dataset. Exploring the ACMS dataset for developing a predictive maintenance model is a 

significant contribution because of its heterogeneous nature, challenging to analyze.  

The rest of this paper is organized as follows. Section 7.2 provides related work. Section 7.3 

presents the proposed new method and its implementation. Section 7.4 presents the case study. 

Section 7.5 shows the results and discussion, and the conclusion is presented in section 7.6.  

7.2 Related Work 

One of the design goals of predictive maintenance is to avoid unexpected failures by monitoring the 

vehicle condition and providing failure alerts well in advance. Predictive maintenance models are 

developed to forecast when likely the vehicle will fail, so that maintenance can be systematically 

scheduled to occur way in advance before the failure point. Predictive maintenance can be modelled 

in physics-based, knowledge-based, and data-driven-based [10]. Physics-based modelling can be 

defined as a simplified mathematical description of a system or process to assist calculations and 

predictions [11]. The prediction is based on a mathematical equation inside the mode; therefore, it 

uses a limited amount of data compared to other methods. However, the physics-based model is 

challenging to create and implement, especially for complex systems, because it is sensitive to the 

system's design and material properties. Also, enough component information and a good 

knowledge of the failure mechanism is highly required to formulate the model.   

The knowledge-based model, also known as the expert system, uses defined rules or fuzzy logic to 

solve complex problems. The rules are set based on the knowledge of a domain expert. Converting 

domain knowledge to a set of rules is challenging, requiring another prognostics technique. Also, 

the set of rules needs to be updated anytime there is any system update. This process can be 

cumbersome and sometimes impractical, especially in a complex system with many components 

and processes.  

 The data-driven approach involves training machine learning algorithms using large historical 

datasets to learn a system behaviour model automatically. A data-driven approach is easy to 

implement, flexible, adaptable with a low cost of implementation. However, large historical data 

representing failure is needed, and getting such data is always challenging. However, the 
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advancement in technology data is increasingly available, making it more appealing to use a data-

driven approach for developing predictive maintenance models in complex systems. To the 

optimised performance of predictive modelling, the hybrid of the two or three approaches can be 

explored [12], which is one of the focuses of this study.  

7.2.1 Rare Event prediction  

The challenge of predicting rare events has been around for some time and is still an ongoing 

research area [1]. Many solutions have been proposed in the literature, especially related to the 

maintenance of heavy industrial equipment and other domains that require rare event prediction. 

The existing solutions are primarily found in statistical methods and machine learning methods. 

Examples of statistical methods are the extreme value theory or extreme value analysis (EVA) 

[13,14] and the peak over threshold (POT) methods [15]. These methods deal with extreme deviation 

from the mean of a probability distribution in a dataset [16,17]. Statistical methods draw population 

inferences from a sample, whereas machine learning finds generalizable predictive patterns [18]. 

Machine learning approaches are desirable in this study because they are particularly helpful when 

harnessing knowledge from large heterogeneous datasets. They are more effective and efficient 

compared to other data mining and analysis methods.  

Machine learning approaches are divided basically into supervised, unsupervised, and 

reinforcement learning. Other hybrid learnings are semi-supervised, self-supervised and multi-

instance learning. Supervised learning techniques involve learning or inferring using labelled training 

datasets. An example of supervised learning is seen in building a model for rare event prediction 

based on labelled data (the training set) [19]. One of the strongest advantages of supervised 

methods is that they can easily be validated, but the training data must be labelled. 

On the other hand, unsupervised learning involves developing models using unlabelled datasets; 

this is mainly used for problems such as anomaly detection, deviation detection, outlier analysis, 

and exception mining. These methods analyse each event one after another to determine how 

similar or dissimilar they are to the majority. Their success depends on the choice of parameters, 

such as similarity measures and dimension weighting. Therefore, because the dataset used in this 

study has defined labels, the supervised machine learning approach is considered. 

Furthermore, rare event prediction can also be modelled using association rules (knowledge-based). 

However, this approach is more effective for a small and simple system [20], not the large 
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heterogeneous datasets studied here. The use of associative rules for a large and complex system 

is quite challenging and, in some cases, impractical because domain experts need to continually 

update the rules in the event of any upgrades or changes, which is time-consuming and cumbersome 

[21][22]. Another potential approach is reinforcement learning which can be considered from a 

sequential learning point of view. In this type of learning, an agent takes the best actions sequentially 

in a particular environment in order to maximise cumulative rewards [23]. The current study focuses 

on the deep reinforcement learning approach. 

Why is deep reinforcement learning considered for extremely rare event prediction instead of the 

standard deep learning or machine learning approach? It is a legitimate question, and the answer is 

subjective. Existing machine learning algorithms can handle the data imbalance problem in diverse 

dimensions depending on the type of dataset. However, considering that a situation where the target 

events are extremely rare, those methods become limited [3,4,24]. For instance, an imbalanced 

classification problem can be handled at the data level either by under-sampling the majority 

(negatively labelled) samples to balance with the minority class (positively labelled) or over-sample 

the minority class by creating more synthetic samples. Then the model can be trained using any 

existing machine learning algorithm. In this case of under-sampling, if the imbalance ratio is 

say1:200, in a total of a million records, about 0.5% will remain in the positively labelled dataset. 

After under-sampling, a total of approximately 1% of the original dataset will be left. The standard 

machine learning algorithms (such as Support Vector Machine, Decision Tree or Random Forest) 

can be used to train the model with data of this size. However, the potential information in the 

remaining ~99% of data left out will not be utilized, producing a low-sensitivity model [25].  

Another approach could be to over-sample the minority class, then use machine learning to train the 

model. This approach has the drawback of increasing the likelihood of overfitting since it replicates 

the minority class examples. The Synthetic Minority Oversampling Technique (SMOTE) [26] has 

been developed to mitigate overfitting in random oversampling by taking a subset of data from the 

minority class as an example and then creating new synthetic similar instances. However, SMOTE 

has the drawback of not considering neighbouring examples from other classes when generating 

synthetic samples. That can cause overlapping of classes and can also introduce additional noise 

into the training data. SMOTE is also ineffective in high dimensional data, as argued by Lusa et al. 

[27]. In recent times, many solutions have been proposed to correct the drawbacks of SMOTE[28–
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30] and other novel solutions which are specific to either the application domain or dataset in 

question, as presented by Alberto et al. [25].   

Furthermore, another approach is to transform the dataset and then uses deep learning methods to 

train the model. Recent examples of time-series-based deep learning models have been proved to 

provide state-of-the-art performance in handling slightly rare event prediction problems. For 

example, the combination of an Auto-encoder with LSTM or GRU deep neural networks has been 

shown in Maren et al. [31]  and Di et al.[32]. Although these models have continued to improve over 

time, the challenge of handling an extremely imbalanced dataset, or extremely rare event prediction, 

remains an area that requires continuous improvement. For instance, model performance 

degradation is seen in training deep neural networks with an imbalanced dataset. Deep learning 

methods are affected by a highly imbalanced dataset because the overall total error cost 

representing the majority samples impacts the minority class samples by overwhelming the gradient 

responsible for updating the model’s weights. Hence creating a biased model that will produce a 

high FPR [31,33].  Therefore, the open literature lacks a unified solution to handling extreme 

imbalance classification problems, especially for large heterogeneous ACMS datasets. Hence, this 

study seeks to provide a solution to an extreme imbalance problem using a deep reinforcement 

learning (DRL) approach.  The solution aims to optimise the data-driven model's performance by 

avoiding biases and reducing the false positive rate.  

7.2.2 Deep reinforcement learning for predictive model 

 

The integration of deep learning with reinforcement learning, known as  DRL, to optimise model 

performance is gaining more research attention, and it is producing state-of-the-art solutions [34]. 

For instance, the integration of deep learning and reinforcement learning has led to the emergence 

of a novel technique called the deep Q-network (DQN)[3,23,35]. DRL has made the application of 

reinforcement learning attractive in different domains. One such domain is in developing predictive 

maintenance models for complex systems. A detailed survey on deep reinforcement learning and 

its applications can be found in a study by Kia et al. [23]. The DRL application can be seen in robotics 

and gaming [30][31], where different techniques are used to achieve the desired results. Also, in 

communication and networking [36], detecting and predicting failure notes in the network and cyber 

security[37] for detecting fraudulent events in the system. In the financial sector, DRL is used for 
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solving complex business problems [38][39] and for inventory management and resource allocation 

[40]. Others are in medicine [41],  engineering and manufacturing [42][43].  

Recently, the application of DRL for equipment maintenance is gaining more research attention. A 

study by Knowles et al. [44] has shown how to integrate reinforcement learning into condition-based 

maintenance. Rocchetta et al. [45] developed a framework based on DQN to optimise power grid 

equipment's operation and maintenance. Both approaches are based on Markov Decision Process 

(MDP) and DRL. The applicability of deep reinforcement learning for equipment health indicator 

learning is also shown in a study by Chi Zhang et al. [46]. However, the open literature lacks any 

exhaustive study that shows how extremely rare event prediction in complex systems can be 

modelled using deep reinforcement learning approaches, which our study seeks to fill.   

The current study is motivated by the fact that exploring the application of  DRL methods for real-

world problems, such as rare equipment failure prediction, for potential performance optimization 

opportunities. In data classification problems, DRL has served better in removing noise from data 

and learning hard temporal features, improving predictive models' performance [16]. Lin et al. [3]  

pointed out that deep reinforcement learning methods are ideal for imbalanced classification 

problems because of their learning mechanism and specific training environment and the control of 

the learning process using reward function. DRL uses a reward function to optimize future rewards, 

in contrast to a machine learning (regression or classification) model that predicts future outcomes 

probability.  

The DRL framework can be constructed by combining a deep neural network and reinforcement 

learning. That can be seen in  Q(λ)-learning [47], where the reward function can give a high reward 

or a penalty for an action taken by the agent-classifier on a positively labelled class (minority). With 

more attention given to the minority class, the algorithm can respond favourably to both classes 

during learning, hence enhancing the resulting model's effectiveness.  

As demonstrated by this review of the open literature, research on the application of deep 

reinforcement learning for extreme rare event prediction in complex systems is limited.  Thus, this 

paper demonstrates the application of deep reinforcement learning in aircraft predictive maintenance 

modelling, focusing on developing a model to predict extremely rare failure using a heterogeneous 

log-based ACMS dataset.  
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7.3 Methodology 

7.3.1 Description of reinforcement learning based on the Markov Decision Process  

 

In reinforcement learning and Markov Decision Process (MDP), the agent interacts with an 

environment ℰ  sequentially over a discrete-time step 𝑡. The agent takes action 𝑎𝑡 at time 𝑡 after 

observing the state 𝑠𝑡. Based on the agent’s action 𝑎𝑡, reward 𝑟𝑡 is returned. The process can be 

represented as a 7-tuple of 𝑴 = (𝑺,𝑨, 𝑷,𝑹, 𝒔𝟎, 𝜸, 𝑻), where S is the set of states. A is the set of 

actions. P is the transition probability distribution represented as (𝑃: 𝑆𝐴𝑆 → 𝑅+).  R is the reward 

function, represented as  𝑅: 𝑆𝐴 → 𝑅 and  𝑅+ a returned immediate reward received after transitioning 

from state 𝑠 to next state 𝑠′, due to action a. 𝑠0 is the initial state distribution defined as 𝑠0: 𝑆 → 𝑅+.  

γ is the discount factor 𝛾 ∈ [0,1], a lower discount factor motivates the decision-maker to favour 

taking actions early rather than postponing them indefinitely. T is the transitional probability 

distribution.  

Once the MDP is defined, the target is to have an agent that can determine, at state 𝑠𝑡, which best 

next action to take in order to maximize the reward 𝑟𝑡. A gradient descent function can be used to 

maximize the reward based on a defined policy 𝜋𝜃. For example, the agent takes an action 𝑦̂𝑡 ∈ 𝐴 

with respect to the optimal policy 𝜋(𝑦̂𝑡|𝑠𝑡): 𝑆𝐴 → 𝑅+  and observed reward 𝑟𝑡 for that action. The 

cumulative discount sum of the rewards is the objective function optimized by the policy 𝜋𝜃. The 

optimal policy is created using a value function, which is a defined estimated value related to each 

state. The value function can either be a V-function [48], which estimates the value for each state, 

or the Q-function [48], which estimates the value for each pair of state-action 𝑄(𝑠, 𝑎). The basic 

transaction of Q-learning keep a lookup table, in contrast to the deep Q-networks which leverages 

the use of replay memory to store trajectory transactions and the stored interaction are fetched from 

the replay memory in mini-batches to train the deep neural networks [8]. In other words, deep Q-

learning fits the Q-function with deep neural networks.   

MDP based models are used for planning future action and rewards. Methods of solving 

reinforcement problems based on planning are either model-based or model-free. The model-based 

technique is when transitional probability  𝑇 and reward  𝑅 are known. In this case, the optimization 

process can learn from T and R. The model-free approach is when T and R are unknown. In that 

case, the optimization process will directly learn the best policy without knowing T and R using trial-
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and-errors learners [49]. In our implementation, we adapt a State Action Reward State Action 

(SARSA) learning and Deep Q-network (DQN) methods [50][47] which are based on a model-based 

reinforcement learning approach. SARSA is an on-policy model meaning the agent gets the optimal 

policy and uses it to act, while Q-learning is off-policy because it estimates the reward for future 

action and appends a value to the new state without using any greedy policy [50]. 

7.3.2 Formulation of Rare Failure Prediction Framework Based on Markov Decision Process 

To formulate the DRL-based rare failure prediction approach using the log-based ACMS dataset. 

The problem is considered as a sequence-to-sequence learning process, where the agent serves 

as a classifier. The agent receives patterns proceeding with each failure sequentially and classifies 

each pattern as either failure or non-failure. The environment then returns a reward based on the 

agent's action. A positive reward is returned if the agent makes a correct classification; otherwise, a 

negative reward is returned. In the process, the agent will learn optimal behaviour from the 

environment and subsequently improve the agent classification accuracy.  

Assume the training dataset is  

𝐷 =  {[(𝑥1,1, 𝑥1,2 …𝑥1,𝑛), (𝑦1)], [((𝑥2,1, 𝑥2,2 …𝑥2,𝑛), (𝑦2))] , … , [((𝑥m,1, 𝑥m,2 …𝑥m,𝑛), (𝑦n))] } ,  

Where 𝑥𝑖,𝑗 is the failure pattern and 𝑦𝑖s the labels. 

Table 7-1 shows the sample of the data and the interaction. The training dataset contains n-number 

of features and their corresponding labels. To transform the data for the DRL application pattern 

related to each target event with its corresponding labels is considered as state 𝑆. At every given 

state, the agent-classifier takes action by considering patterns related to each event as inputs and 

then performing a classification action 𝑎 at time 𝑡. Based on the action taken, a reward 𝑟𝑡 is returned. 

At the end of each trajectory, a cumulative reward 𝑅𝑡 is returned, and the transaction is recorded in 

a replay buffer.  
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Table 7- 1 Representation of interaction of the agent with the environment 

n-Features Labels Agent classifier 

 x1 x2 x3 xn yi - 

The pattern of 

event 1 

St at ← 𝑟t 

The pattern of 

event 2 

St+1 at+1 ←rt+1 

… … … … 

The pattern of 

event n 

St+n at+n ←Rn 

  

A window is defined using the flight leg, and the end of each window is considered a trajectory. The 

agent-classifier can learn which action is favourable at a future given state by taking action and 

receiving a returned reward. During the training, because of the rarity of target events, the trained 

Q-network will favour the majority class more than the minority (also referred to as the data 

imbalance problem). A reward function is defined to control the biases during learning by assigning 

different rewards for various classes present. That will handle the challenge of the extreme 

imbalance in the dataset. 

In order to train the model on the ACMS dataset, the following DRL model parameters are defined 

as follows. 

 Observation Space (S): contains all variables the agent-classifier needs to consider before 

classifying a data point as either positive or negative.  For the problem under consideration, the 

agent is expected to see all the pattern variables before making a decision. The intuition here is at 

each given time-step, the agent-classifier is expected to consider the previous, present and future 

patterns before updating its weight. At the start of the training, the agent-classifier receives the first 

pattern as a sequence of failure/warning messages. The order of sequence is maintained so as not 

to alter the pattern leading to equipment maintenance. The input is in the form of a 3D array 

(Samples, Time Steps, and Features) 
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Action Space (A): The agent classifier takes action once it has assessed the environment. In our 

case, the action is binary 𝐴 = {1,−1} classified as positive or negative corresponding to the labels 

in the training dataset.  

Reward (R): Represented as 𝑟𝑡 , the reward is returned based on the action taken by the agent 

classifier on the environment. If the agent predicts the given pattern correctly as positive, a high 

reward will be returned. If it misclassifies, a penalty is given in the form of a negative value. To 

improve the prediction of the minority class, at each time step, a reward function is defined so that 

a higher reward is returned for the correct classification of the minority class and larger penalties for 

misclassification. This helps the agent-classifiers to become less biased towards the majority class. 

The reward values are chosen using the imbalance ratio defined in equation 1. 

𝑟𝑡 = 

{
 

 
𝜆𝜌 ,           𝑎𝑡 = 𝑦𝑡  𝑤ℎ𝑒𝑟𝑒 𝑠𝑡 ∈  𝐷𝑁

− 𝜆𝜌 ,          𝑎𝑡 ≠ 𝑦𝑡    𝑤ℎ𝑒𝑟𝑒 𝑠𝑡 ∈   𝐷𝑁

1 ,             𝑎𝑡 = 𝑦𝑡  𝑤ℎ𝑒𝑟𝑒 𝑠𝑡  ∈  𝐷𝑝

−1,       𝑎𝑡 ≠ 𝑦𝑡  𝑤ℎ𝑒𝑟𝑒 𝑠𝑡   ∈  𝐷𝑃           

            (7- 1) 

        

where 𝜌 = 
𝐷𝑃

𝐷𝑁
,     𝐷𝑁 is the given number of majority class elements and 𝐷𝑃 the given number of 

minority class elements. 𝜆 is a trade-off parameter that allows the control of the composite to be 

between speed and accuracy. Where 𝜆 ∈ [0,1]. The range of the grid search for the parameter 

lambda (λ) is define in the range [0,1]. The dynamic adjustment of the reward function 

hyperparameters is achieved by the use of a defined function. The function is designed as part of 

the reward, it allows a user to specify the upper and lower values for the lambda (λ)  for the model 

to test. The model iterate and measures the best value of lambda (λ). 

Transition probability distribution dynamics (T): is the probability of transitioning from one state St to 

another state 𝑠𝑡+1 in a single step, 𝑝(𝑠𝑡+1|𝑠𝑡 , 𝑎𝑡). In our case, it is deterministic the agent classifier 

moves from a current state 𝑠𝑡 to the next state 𝑠𝑡+1 in the sequence of patterns in the dataset.   

Discount factor (𝜸) : The factor 𝛾 ∈ [0,1], is the weight of importance of future rewards. The discount 

factor needs to be defined carefully since we are considering a sequence to sequence approach 

where a successive pattern can be related. 
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Exploration rate: The rate 𝜀 = [0,1]. It is important to explore as much of the state-action space as 

possible to achieve optimal policy. Therefore, we choose the e-greedy approach[51]. 

Episode (𝒆): is the transaction trajectory of all the states that came from the initial state to the terminal 

state. In this solution, an episode defines as when an agent classifier reaches the end of the window.   

Policy (𝝅𝜽): is a function that receives a sample as input and then returns the probabilities of the 

label, represented as the mapping function 𝜋: 𝑠 → 𝐴 where 𝜋𝜃(𝑠𝑡) denotes the action 𝑎𝑡 performed 

by an agent at state 𝑠𝑡. In an MDP, the sequence of (s, a, r) in an episode forms a policy trajectory. 

End of every episode, a total cumulative reward is returned from the environment.  

𝐺𝑡  =  ∑ 𝛾𝑡𝑟𝑡+1
𝑇−1
𝑡=0               (7- 2) 

       

The goal of every RL algorithm is to find an optimal policy 𝜋∗ Which attains the maximum expected 

return from all states. A policy is an agent-classifier behaviour action, and it specifies what action to 

take at each step. The stochastic policy is expressed as  

𝜋(𝑎|𝑠) = 𝑃(𝐴𝑡 = 𝑞, 𝑆𝑡 = 𝑠)          (7- 3) 

     

Where π(a│s) is the probability of taking action 𝑎 in a state 𝑠 under a policy 𝜋 

Experience replay memory:  replay memory is used in moderating the effect of the imbalance 

problem. The replay memory is split equally into sub-memories between classes. After the split, then 

each corresponding class will be appended in its memory instead of overwriting the minority sample 

with the overwhelming majority. This approach will ensure that when samples are randomly fetched 

from memory to train the agent, it will balance all the training dataset classes.   

7.3.3. implementation of reinforcement learning for extremely rare failure prediction 

 

As seen in Figure 7-3, a defined reward function (equation1) is used to provide a known reward for 

each action at every step. The dataset represents the environment where the agent-classifier takes 

an action 𝑎 at a given state 𝑠 (see Table 7-1), and based on the action taken, a reward is returned. 

The DQN addresses the fundamental instability problem of using a functional approximation in 

reinforcement learning (RL) by using two techniques: experience replay memory and target 
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networks(𝜃). Experience replay memory stores transitions of the form Q(st, at, st+1, rt+1) in a replay 

buffer. This enables the agent-classifier to sample from and train on previously observed data. Not 

only does this massively reduce the number of interactions needed with the environment, but 

batches of experience can be sampled, reducing the variance of learning updates. Furthermore, the 

temporal correlations that can adversely affect RL algorithms are avoided by sampling uniformly 

from a large memory. Finally, from a practical perspective, batches of data can be efficiently 

processed in parallel by modern hardware, increasing throughput.  

The original DQN algorithm used uniform sampling [52]. However, a later study shows that 

prioritizing samples based on eligibility trace [53] is more effective for learning. Q-learning seeks to 

find the best action to take for any finite MDP, given the current state. The Q-learning algorithm 

learns a policy that maximises a cumulative reward under a specific state-action pair Q(s, a). 

Therefore, within a given trajectory, the algorithm will perform a series of actions to obtain a 

maximum total reward.  

 

Figure 7- 3 Deep Reinforcement Learning for rare event prediction 

I. Deep Reinforcement Learning optimal policy: An optimal policy is an integral part of the proposed 

DRL algorithm. Basically, in reinforcement learning, a policy is responsible for choosing an action 

from a given state. Therefore, an optimal policy chooses the best action from a state. Choosing the 

best policy is the goal of every reinforcement learning algorithm.  In the proposed approach, unlike 

normal reinforcement learning, the agent-classifier receives an environment state as input 

represented by a training sample and then performs an action (classification) under the control of a 
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policy. DRL-based classification policymaking aims to learn the classification policy that maximizes 

the total reward during the entire training period. 

Finding an optimal policy in Q-learning, a value function is needed, and to calculate the value 

function a total cumulative reward (𝐺𝑡) is required. To find 𝐺𝑡 a sum of rewards for every action is 

needed that is 

  𝑟𝑡+1 + 𝑟𝑡+2  +  𝑟𝑡+3 … =  ∑𝑅𝑡 = 𝐺𝑡  =  ∑ 𝛾𝑡𝑟𝑡+1
𝑇−1
𝑡=0          (7- 4) 

     

Where T is the Trajectory.  

A value function is a function that follows a policy for each step to estimate the expected future 

reward, expressed as  

𝑉(𝑠) = 𝔼[𝐺𝑡|𝑆𝑡 = 𝑠]              (7- 5) 

        

There are two types of value functions; the state-value function (see equation 6) determines an 

agent's goodness in a given state. The action-value function (equation 7) determines how good it is 

to perform a given action in a given state.   

𝑉𝜋(𝑠)
= 𝔼𝜋[𝐺𝑡|𝑆𝑡 = 𝑠]           (7- 6) 

the state-value function                                 

𝑞(𝑠,𝑎)  = 𝔼𝜋[𝐺𝑡|𝑆𝑡 = 𝑠, 𝐴𝑡=𝑎]           (7- 7) 

the action-value function                                                 

An optimal policy  𝜋∗ is the maximum expected reward for each state express as  

𝜋∗(𝑎|𝑠) = max
𝜋

𝑄𝜋(𝑠, 𝑎)              (7- 8) 

         

The next step is to find a method to predict possible future rewards, but the challenge is that possible 

actions at future time-steps are unknown. Since the Bellman equation helps in calculating Q* at each 

time step, it gives a way to determine the optimal policy.  Therefore, the Bellman equation[54] is 
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used to drive the optimal policy, which incorporates the possible actions' probability at future time-

steps.  

    𝑉(𝑠)= 𝔼[𝑅′ + 𝛾𝑉(𝑆′)|𝑆𝑡 = 𝑆]         (7- 9) 

       

Where 𝑆𝑡+1 𝑜𝑟 𝑆
′ 𝑖𝑠 𝑡ℎ𝑒 𝑁𝑒𝑥𝑡 𝑠𝑡𝑎𝑡𝑒   and  𝑆𝑡 𝑜𝑟 𝑆 𝑖𝑠 𝑡ℎ𝑒 𝐶𝑢𝑟𝑟𝑒𝑛𝑡 𝑠𝑡𝑎𝑡𝑒. Equation 7-9 is the Value 

Function of current state = Immediate reward + value function of the next state. The Bellman for the 

action-value function becomes.  

  𝑄𝜋(𝑠, 𝑎) =  𝑅𝑠
𝑎 + 𝛾 ∑ 𝑃𝑠𝑠′

𝑎
𝑠′∈𝑆 𝑉𝜋𝑆′         (7- 10) 

       

More detail on Bellman's expression for state-value and action-value function is explained by David 

Silver [55]. 

Substituting equation (7-9) in (7-10) to get     

  𝑄𝜋(𝑠, 𝑎)     =  𝑅𝑠
𝑎 + 𝛾 ∑ 𝑃𝑠𝑠′

𝑎
𝑠′∈𝑆 ∑ 𝜋(𝑎′|𝑠)𝑄𝜋((𝑠

′, 𝑎′))𝑎′∈𝐴           (7- 11) 

    

As we can infer from equation 11, the optimal policy π* is to take the best action at each given state 

defined by 𝑄(𝑠, 𝑎). Therefore, the optimal Q-function becomes  

𝑄𝜋∗
(𝑠, 𝑎) =   {𝑅𝑠

𝑎 +  𝛾 ∑ 𝑃(𝑠′|𝑠, 𝑎)𝑄𝜋∗
(𝑠′, 𝑎′)𝑠′ }𝑎

𝑚𝑎𝑥          (7- 12) 

      

Where 𝜋∗ is the optimal policy mapping sequence of states to action,  𝑄𝜋∗
 is the optimal Q-function 

of the optimal policy.  

In Q-learning, the Q-function is implemented as a table of states and actions pair, and then the 

values are updated iteratively as the agent accumulates knowledge. A linear approximation function 

for updating the weight can be sufficient if the simple environment to work with is relatively small. 

However, if the action space is of high dimension, the number of transactions to store gets more 

complex, then the use of a non-linear approximation approach such as deep neural networks 

becomes an option. 
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 Deep neural network function-approximation with respect to its weights 𝜃, is referred to as a deep 

Q-network. The weights 𝜃𝑖𝑠 are used to approximate the value function across the whole state-action 

space. The interaction data ( 𝑠, 𝑎, 𝑟, 𝑠′) are stored in a priority experience replay buffer (PER). The 

classifier agent will then randomly sample a mini-batch from the PER and perform stochastic 

gradient descent on the Q-network by minimizing a loss function. 

𝐿𝑖(𝜃𝑖) =  ∑   (𝑦𝑖 − 𝑄(𝑠, 𝑎, 𝑠′))2
(𝑠,𝑎,𝑟, 𝑠′)∈(𝑃𝐸𝑅)           (7- 13) 

   

 

Where  𝑦𝑖 = 

{
 
 

 
 

𝑟                  𝑤ℎ𝑒𝑛  𝑓𝑎𝑖𝑙𝑢𝑟𝑒 𝑖𝑠 𝑡𝑟𝑢𝑒
.
.
.
.

𝑟 +  𝛾 𝑚𝑎𝑥
𝑎′ 𝑄(𝑠′, 𝑎′; 𝜃𝑖−1)   𝑤ℎ𝑒𝑛  𝑓𝑎𝑖𝑙𝑢𝑟𝑒 𝑖𝑠 𝑓𝑎𝑙𝑠𝑒 

    

 

Differentiating the loss function (equation 13) with respect to the weights 𝜃𝑖  we get   

∇𝜃𝑖𝐿𝑖(𝜃𝑖) = ∑  [𝑦𝑖 − 𝑄(𝑠, 𝑎; 𝜃𝑖)∇𝜃𝑖𝑄(𝑠, 𝑎; 𝜃𝑖)](𝑠,𝑎,𝑟,𝑠′,)∈𝑃𝐸𝑅         (7- 14) 

    

A Q(λ)-learning [43] is used to improve the algorithm learning process. In the process, SARSA 

learning is combined with eligibility trace [53] and incorporated into Q-learning to give a more general 

method that learns efficiently using time-series data. The eligibility trace considers a temporal history 

of the transaction (𝑠, 𝑎, 𝑟), since we are using function approximation instead of a Q lookup table to 

estimate Q-values, a trace is considered for each component of the weight 𝜃. The update is done 

as follows. 

𝑄𝑡+1 = 𝑄𝑡(𝑠, 𝑎) + 𝛼Δ𝑡𝑒𝑡(𝑠, 𝑎; 𝜃)         (7- 15) 

        

𝜃𝑖 = 𝜃𝑖−1 + 𝛼∆𝑒𝑖                (7- 16) 
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Where ∆𝑖= 𝑦𝑖 − 𝑄(𝑠, 𝑎; 𝜃𝑖) is the SARSA error,  and 𝑒𝑖 = 
𝛾𝜆𝑒𝑖+Δ𝑄(𝑠,𝑎;𝜃𝑖)

Δ𝜃𝑖
  is the eligibility value. 

  II. Deep Q -learning with Prioritized Experience Replay (PER): In the normal Q-learning or DQN, 

the max operator uses the same value for both action selection and action evaluation[35]. This is 

likely to result in the selections that lead to over-optimistic estimation. Hado et al.[35] proposed 

double deep reinforcement learning (DDQN). The DDQN is designed to reduce over-estimation by 

decomposing the max operator in the target network into action selection and action evaluation. 

DDQN reduces the problem of over-estimation using two value functions by randomly assigning 

each experience to update one of the two value functions. That there are two sets of weight 𝜃 𝑎𝑛𝑑 𝜃′ 

for every update, one set of weights is used to determine its value.  

𝑄𝑑(𝑠, 𝑎) =  𝑟𝑡 + 𝛾𝑄(𝑠′,   𝑠, 𝑎; 𝜃𝑎′
𝑚𝑎𝑥 ); 𝜃′        (7- 17) 

     

Similarly, SARSA learning is a stochastic way of using the value of the action elected by an agent 

in the next step instead of using max as in Q-learning. 

𝑄(𝑠, 𝑎) ← 𝑄(𝑠, 𝑎) + 𝛼[𝑟 + 𝛾𝑄(𝑠′, 𝑎′) − 𝑄(𝑠, 𝑎)]       (7- 18) 

    

Therefore, double deep SARSA can be derived by substituting equations (15) in (17)   to get 

𝑄𝑡+1(𝑠, 𝑎) = 𝑄𝑡(𝑠, 𝑎) +  𝛼[Δ𝑡𝑒𝑡(𝑠, 𝑎; 𝜃); 𝜃′]              (7- 19) 

    

The use of experience replay memory to store observed transactions provides capabilities for 

reinforcement learning agent-classifier to remember past transaction experiences [56]. In the normal 

experience replay approach, the transactions are from time-to-time uniformly sampled from the 

buffer to update the network without considering any significance of the weight  𝜃 with respect to the 

policy 𝜋∗(in the DQN method, the policy is obtained implicitly by calculating a 𝑄 𝜃(𝑠, 𝑎) function, 

where the parameter 𝜃 measures the goodness of the given state-action with respect to policy). 

However, in a prioritized experience replay (PER) approach, the algorithm weighs the samples so 

that “important” ones are drawn more frequently for training[57]. The important samples are then 

played more frequently, which neglects the problem with strong correlations between consecutive 
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samples. This technique improves the performance of the algorithm.  Therefore, we adopted PER 

with double deep SARSA learning and DDQN learning as a building block for our proposed 

framework for predicting rare failures in the aircraft maintenance system, as seen in (algorithm 1) 

and  (algorithm 2). 

Algorithm 1: Double Deep SARSA- Learning  

Input: Training Data   𝑫 = {[(𝒙𝟏,𝟏, 𝒙𝟏,𝟐 …𝒙𝟏,𝒏), (𝒚𝟏)],… , [((𝒙𝒎,𝟏, 𝒙𝒎,𝟐 …𝒙𝒎,𝒏), (𝒚𝒏))] }  

(Episode Number k, step-size n, replay period K, Size N and exponents 𝛼, 𝛽 𝑎𝑛𝑑 

budget T, PER =H) 

Initialize replay memory 𝐻 (H=𝜙, Δ = 0, 𝑝1 = 1) 

 Initialize action-value Function Q with random weight 𝜃, e= 0 

Initialize Environment  𝜀 (observe 𝑠0, 𝑎𝑛𝑑 𝑐ℎ𝑜𝑜𝑠𝑒 𝐴𝑜~𝜋𝜃(𝑠0)) 

For k=1 to K do  

 Training data d 

Initialize state 𝑠0 = 𝑥0 

  For t=1 to T do 

  Observe (𝑠𝑡, 𝑅𝑡 , 𝛾𝑡),  𝑎𝑡 = 𝜋𝜃(𝑠𝑡) 

  Store transaction (𝑠𝑡,𝑎𝑡, 𝛾𝑡, 𝑠
′
𝑡) in H with maximal priority 𝑝𝑡 =

𝑚𝑎𝑥
𝑖

< 𝑡𝑝𝑖 

  IF 𝑡 ≡ 0 𝑚𝑜𝑑 𝑘 𝑡ℎ𝑒𝑛 

   For j=1 to k do 

    
Sample transaction 𝑗 ~𝑝(𝑗) =

𝑝𝑗
∝

∑ 𝑝𝑖
∝

𝑖
 

    
Compute importance: sampling weight 𝜃𝑗 =

(𝑁.𝑝(𝑗))
−𝛽

𝜃𝑖𝑖
𝑚𝑎𝑥  

    
Set 𝑦𝑖 = {

𝑟𝑗 ,                                            𝑙𝑎𝑏𝑒𝑙𝑗  = 𝑇𝑟𝑢𝑒

𝑟𝑗 +  𝛼[∆𝑗  𝑒𝑗 (𝑠, 𝑎; 𝜃); 𝜃′], 𝑎𝑛𝑑 𝑙𝑎𝑏𝑒𝑙𝑗 = 𝐹𝑎𝑙𝑠𝑒
 

Perform gradient descent on L(𝜃) w.r.t 𝜃: 

𝐿𝑖(𝜃𝑗) =  ∑ (𝑦𝑗 − 𝑄(𝑠𝑗 , 𝑎𝑗 , 𝑠
′
𝑗;  𝜃𝑗); 𝜃𝑗

′)
2

(𝑠,𝑎,𝑟, 𝑠′)∈𝐻

 

Update the transaction priority 𝑝𝑗 ← |Δ𝑗| 

Accumulate weight change and traces. 

   End For loop 
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   Update weights 𝜃𝑖 

Copy weight into the target network 𝑄𝑇𝑎𝑟𝑔𝑒𝑡 ←  𝜃 

  End IF 

  Choose Action 𝐴𝑡~𝜋𝜃(𝑠𝑡) 

 End For loop 

 If window size = w, break  

End For Loop 

 

 

Algorithm 2: Double Deep Q-Network 

Input: Training Data  𝐃 = {[(𝒙𝟏,𝟏, 𝒙𝟏,𝟐 …𝒙𝟏,𝒏), (𝒚𝟏)],… , [((𝒙𝒎,𝟏, 𝒙𝒎,𝟐 …𝒙𝒎,𝒏), (𝒚𝒏))] }  

(Episode Number k, step-size n, replay period K, Size N and exponents 𝛼, 𝛽 𝑎𝑛𝑑 

budget T, PER =H) 

Initialize replay memory 𝐻 (H=𝜙, Δ = 0, 𝑝1 = 1) 

 Initialize action-value Function Q with random weight 𝜃, e= 0 

Initialize Environment  𝜀 (observe 𝑠0, 𝑎𝑛𝑑 𝑐ℎ𝑜𝑜𝑠𝑒 𝐴𝑜~𝜋𝜃(𝑠0)) 

For k=1 to K do  

 Training data d 

Initialize state 𝑠0 = 𝑥0 

  For t=1 to T do 

  Observe (𝑠𝑡, 𝑅𝑡 , 𝛾𝑡),  𝑎𝑡 = 𝜋𝜃(𝑠𝑡) 

  Store transaction (𝑠𝑡,𝑎𝑡, 𝛾𝑡, 𝑠
′
𝑡) in H with maximal priority 𝑝𝑡 =

𝑚𝑎𝑥
𝑖

< 𝑡𝑝𝑖 

  IF 𝑡 ≡ 0 𝑚𝑜𝑑 𝑘 𝑡ℎ𝑒𝑛 

   For j=1 to k do 

    
Sample transaction 𝑗 ~𝑝(𝑗) =

𝑝𝑗
∝

∑ 𝑝𝑖
∝

𝑖
 

    
Compute importance: sampling weight 𝜃𝑗 =

(𝑁.𝑝(𝑗))
−𝛽

𝜃𝑖𝑖
𝑚𝑎𝑥  

    
Set 𝑦𝑖 = {

𝑟𝑗 ,                                            𝑙𝑎𝑏𝑒𝑙𝑗  = 𝑇𝑟𝑢𝑒

𝑟𝑗 +  𝛾  𝑄(𝑠𝑗+1, 𝑎
′; 𝜃)𝑎

𝑚𝑎𝑥 , 𝑎𝑛𝑑 𝑙𝑎𝑏𝑒𝑙𝑗 = 𝐹𝑎𝑙𝑠𝑒
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Perform gradient descent on L(𝜃) w.r.t 𝜃: 

𝐿𝑖(𝜃𝑗) =  ∑ (𝑦𝑗 − 𝑄(𝑠𝑗 , 𝑎𝑗 , 𝑠
′
𝑗;  𝜃𝑗); 𝜃𝑗

′)
2

(𝑠,𝑎,𝑟, 𝑠′)∈𝐻

 

Update the transaction priority 𝑝𝑗 ← |Δ𝑗| 

Accumulate weight change and traces. 

   End For loop 

   Update weights 𝜃𝑖 

Copy weight into the target network 𝑄𝑇𝑎𝑟𝑔𝑒𝑡 ←  𝜃 

  End IF 

  Choose Action 𝐴𝑡~𝜋𝜃(𝑠𝑡) 

 End For loop 

 If window size = w, break  

End For Loop 

       

 

7.4 Experiment  

An experiment is set up to investigate the application of different deep reinforcement learning (DRL) 

architectures for the extreme rare failure prediction problem. The transformed DRL framework's 

implementation is based on the proposed DDSARSA and DDQN for extremely rare failure prediction. 

The implementation is based on the following.  

I. DQN (Baseline): This is a normal deep Q-Network that uses a neural network to approximate a 

state-value function in a Q-learning framework. The baseline uses a standard experience replay 

memory.  

II. DDQN+PER: In this implementation, we use the proposed double deep Q-learning with Prioritized 

Experience Replay memory to predict rare event failures in aircraft predictive maintenance 

modelling. The aim is to investigate the effectiveness of using DDQN+PER (see algorithm 2) by 

evaluating the effect of the overestimation problem and efficiency of the model in handling the 

extreme imbalanced data.  
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III. DDSARSA+PER: In this implementation, we use a DDSARSA with Prioritized Experience Replay 

memory to predict rare event failure in aircraft predictive maintenance modelling. The aim is to 

investigate the effectiveness of using double deep SARSA learning with PER (see algorithm 1) by 

evaluating the effects of PER and eligibility trace during learning and the model's efficiency in 

handling the extreme imbalanced problem. 

IV. To investigate the proposed deep reinforcement learning approach's performance compared to 

other existing rare failure prediction methods. Two methods were considered: the Cost-Sensitive 

method [31] and SMOTE with random forest[58]. The cost-sensitive method is an existing technique 

that modifies the loss function in Long Short Term Memory (LSTM) networks. The algorithm 

responds favourably to both classes during learning. The method is designed to handle rare failure 

prediction in time series datasets as implemented in previous work [31]. SMOTE+RF is a technique 

that balances the dataset using the Synthetic Minority Oversampling Technique (SMOTE) before 

presenting it as an input to the learning algorithm (Random Forests). The method is designed to 

handle extreme imbalanced classification problems [58]. AE-BGRU [59]  is a strategy for predicting 

rare failure that uses a rescaled loss function in a hybrid deep network architecture known as the 

auto-encoder bidirectional gated recurrent network (AE-BGRU) model.  

7.4.2 Description of the network architectures 

 

There are two core approaches to data-driven maintenance, each geared towards different 

connected capabilities of aircraft or components. The network architecture consists of convolutional 

layers (CNN) and long-short team memory (LSTM) layers, which enhances the learning of the 

temporal dependency in the sequential data. A dense layer is also used to minimize the effect of 

overfitting, as seen in Table 7-2. The number of hidden layers and architecture design differ 

depending on the aircraft family dataset structure. For instance, an A320 aircraft will not transmit the 

same operational data level as the A320; hence, each dataset's learning strategies are different. 
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Table 7- 2 Deep Network Network  Architecture 

 

Values  Layers  

 Sequential  

filters =32, kernel =3, activation = ReLU Convolution 2D 

 MaxPooling 

Unit =32, dropout =0.2, activation = ReLU LSTM 

Unit = 1, activation =sigmoid Dense (Fully-connected) 

 

Where ReLU returns X if the value is positive else, it returns zero. Max-pooling is added after the 

convolutional layer reduces the feature map that is generated by the convolution operation. Max-

pooling also helps in selecting only important information, which removes weak activation 

information hence avoiding overfitting problems. LSTM layer is added to correlated information from 

the past with current combined with the convolutional layer helps to learn better correlations between 

variables. The dense layer, also referred to as fully connected, is added as the last layer it is used 

to make the final decision based on the input from the LSTM layer.  

7.5 Results and Discussion 

For each target event, each algorithm was run five times with the same hyperparameter for 200 

epochs using five random seeds. The Q-function is approximated using deep neural networks.  

7.5.1 Results  

 

The first investigation performed was to verify the applicability and effectiveness of using 

DDSARSA+PER and the Deep Q-network for rare failure prediction. As seen in Table 7-3, these 

investigations' results are compared with a baseline method DQN (deep Q-Network). The result 

indicates that DDSARSA+PER and DDQN+PER can effectively be applied for rare failure prediction 

or data Imbalanced classification. It can generally be observed that the two novel implementations 

show significant improvement in terms of model performance. Although there is a delay in the 



 

293 

 

training time, there is a significant reduction in both the FPR and FNR, which is very important for 

aircraft maintenance applications. The impact of eligibility trace positively impacts the new 

algorithms by reinforcing entire sequences of actions from a single experience, contributing to the 

improved performance in the proposed algorithms. 

 

Table 7- 3 Shows  DDSARSA learning with PER and DDQN with PER for rare failure prediction. 

Aircraft ACMS Dataset 

   DQN (Baseline) DDQN+PER DDSARSA+PER 

 LRU ρ G-mean FPR FNR G-mean FPR FNR G-mean FPR FNR 

 A330-

Family 

4000KS 0.0043 0.77 0.0023 0.021 0.85 0.0015 0.004 0.94 0.00023 0.0100 

4001HA 0.0047 0.79 0.0021 0.018 0.86 0.0013 0.003 0.97 0.00023 0.0800 

5RV1 0.0044 0.78 0.0020 0.017 0.84 0.0017 0.004 0.95 0.00012 0.0111 

A320 

Family 

11HB 0.0028 0.71 0.0025 0.023 0.82 0.0014 0.0011 0.90 0.00009 0.0000 

10HQ 0.0031 0.75 0.0021 0.019 0.84 0.0011 0.0125 0.93 0.00009 0.0000 

1TX1 0.0064 0.80 0.0020 0.018 0.89 0.0010 0.011 0.98 0.00002 0.0001 

 

  

(a)        (b) 
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Figure 7- 4 Summary of the model  performance in terms of  G-Mean ( data from A330 aircraft family, 

for component  4001HA) (a) double Deep SARSA (b)  Double Deep Q_Network with prioritized 

experience replay memory model 

 

 

(a)      (b) 

Figure 7- 5 Summary of   model performance in terms of G-Mean data  ( A320 aircraft family for the 

component 1TX1) (a) double Deep SARSA (b)  Double Deep Q_Network with prioritized experience 

replay memory model 

Figures 7-4  and 7-5 show the classifier-agent performance over the validation dataset for both A330 

and A320 aircraft, respectively. The model is trained for up to 200 epochs, rewarded with the 

parameter ρ as seen in Table 7-3, and a learning rate of 0.01. Figure 7-4(a) shows the performance 

of the DDSARSA+PER model, and it can be observed that the agent learns slowly between 0- 25 

epochs for validation. After 25 epochs, the performance increases steadily and normalizes at 0.7g-

mean for validation. Similar performance is seen in Figure 7-4(b), which shows the performance of 

DDQN+PER, the model learns slowly up to 15 epochs, and the performance increases steadily, 

achieving 0.65g-mean for validation. The model's performance on A320 aircraft is seen in Figures 

7-5(a) and 7-5(b); as observed, the DDSARSA+PER model shows better G-mean performance than 

DDQN+PER. 

It is important to note that the choice of hyper-parameter λ and the imbalance ratio ρ significantly 

impact the model’s overall performance because they can cause the agent to learn a sub-optimal 

policy. When the value of λ is large, the model converges quicker at the G-mean's expense, and 
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when the value is small, the model converges slower with better performance. DDSARSA+PER only 

gives better performance at a certain value of λ based on the structure and complexity (i.e. the length 

of the sequence pattern for each failure) on the dataset in question. Adjusting and keeping the 

reward function’s parameter lambda (λ) static impacts the algorithm's performance. Therefore, to 

improve learning on the proposed approach, we performed a grid search in each training phase to 

dynamically adjust the hyper-parameters reward function (λ) based on the use-case imbalance ratio 

ρ. The parameter lambda (λ) is define in the range [0,1] 

7.5.1.1 Model sensitivity analysis  

 

Figures 7-6 and 7-7 illustrate model performance results based on the recall and FPR for training 

and validation on the A330 and A320 aircraft families. From each dataset family, one component 

was picked. A330's 4001HA (high-pressure bleed valve) and A320's 1TX1 (air traffic control unit).  

 

(a) 
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(b) 

Figure 7- 6 Summary of the model performance in terms of false-positive rate ( data from A330 

aircraft family for the component  4001HA) (a) double Deep SARSA (b)  Double Deep Q_Network 

with prioritized experience replay memory model. 

The result of training the DDSARSA+PER algorithm using the A330 dataset is shown in Figure 7-

6(a). the result indicates that it takes roughly 150 epochs to reach 0.85 recall for the validation data, 

with a consistent FPR of about 0.00023 during the validation period. As observed, DDSARSA shows 

a more robust training capability than the DDQN+PER in 7-6(b) with an FPR of 0.0013 and validation 

recall of 0.76.  
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(a) 

 

 (b) 

Figure 7- 7 Summary of the model performance in terms of false-positive rate ( data from A320 

aircraft family for the component  1TX1) (a) double Deep SARSA (b) Double Deep Q_Network with 

prioritized experience replay memory model. 

The model validation for both the DDSARSA+PER and DDQN+PER methods utilising the A320 

aircraft family dataset is shown in Figure 7-7. Figure 7-7(a) demonstrates how the DDSARSA+PER 

model, with a validation score of 0.85 recall and an FPR of 0.00002, converges quicker after 100 

epochs and shows a better training capability than the DDQN+PER with a validation score of 0.80 
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recall and an FPR of 0.011. It is worth noting that the models in both implementations (DDSARSA 

and DDQN) had a low false-positive rate for all test situations. However, DDSARSA+PER, on the 

other hand, offers the advantage of faster convergence and robustness in handling extremely 

imbalanced problems, as shown in g-mean and FPR scores.  

Furthermore, false alarms in equipment predictive maintenance might result in increased 

maintenance expenditures due to unnecessary checks. It may also lower the level of trust in the 

equipment prognostics system. As a result, the goal is to keep FPR and FNR as low as possible 

while maintaining a solid G-mean. The proposed approach (DDSARSA+PER) and other existing 

imbalance learning methods (Cost-sensitive ensemble and random forest with SMOTE ) are 

compared in terms of False Positive Rate (FPR), as shown in Figure 7-8.  

 

Figure 7- 8 Performance Analysis in terms of False Positive Rate (FPR) between the proposed 

algorithm other existing state-of-the-earth imbalance learning methods 

In terms of FPR, the proposed method (DDSARSA+PER) outperformed both the algorithm level 

(cost-sensitive learning) [31] and the data level (Random Forest with Synthetic oversampling)[58]  

methods. Figure 7-8 shows that the FPR for the DDSARSA+PER is less than 0.001 in all situations 

studied, while cost-sensitive approaches have FPRs ranging from 0.11 to 0.26, and SMOTE+RF 

methods have FPRs ranging from 0.13 to 0.3. In terms of G-mean and FPR, the overall result 

demonstrates that the Cost-Sensitive approach and the SMOTE+RF method perform similarly on 

both datasets (A330 and A320 aircraft).  
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5.1.2 Model Validation in Predicting Failure Within a given Range 

 

Further research was conducted to establish the model's ability to anticipate aircraft component 

failure within the specified time frame, such as the ability to predict a number of flights ahead of 

failure. It is critical to make predictions within a realistic time frame, not too far ahead of the failure 

point to prevent wasting resources, and not too near to the failure point to allow enough time to plan 

maintenance. As a result, ten to two flights prior to a failure point is considered a reasonable period 

for raising an alert.  

Figure 7-9 depicts a graphical picture of the timeframe that leads to failure. Point zero denotes the 

actual failure point, whereas points less than zero (negative) denote flights prior to the failure and 

points larger than zero (positive) denote flights following the failure. The following requirements were 

considered when using the DDSARSA+PER model and ACMS testing data (representing data from 

previous flights without labels) to make predictions: any failure alert that arrives earlier than -10 is 

considered too early, and any failure alert that arrives later than -2 flights before the actual failure 

point (zero) is considered too late prediction.  

 

 

 

 

 

 

The predicted results are displayed in Figure 7-10. Each point represents the difference between 

the time of actual maintenance action and its predicted time (prediction residual). The residual error 

between two and ten  (shown by the red lines) are true positives; that is, the model predicted 

component replacement within the desired range. Those above ten indicate the prediction came too 

early, and those below two indicate the model predicted maintenance too late. Residual error at 

point zero naturally represents the points for which maintenance and prediction were simultaneous, 

and negative values show a very late prediction.  

Max prediction period  Alert   Failure Point 

-10 -2 0 2 
10 

True Positives 

Flights before failure Next flights after failure Figure 7- 9 Flight cycles before ( indicated with nagive sign)  and after failure 
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It can be seen that the majority of the failure alerts for the component 4000KS (electronic engine 

unit) are within the target range. Only three alerts came too early, and one alert was predicted very 

late. For the component 4001HA (pressure regulating valve), three alerts are predicted too early, 

and two are predicted late, with two at precisely on the failure leg (zero), and two were predicted 

very late (below zero). Likewise, for the component 5RV1 (satellite data unit), the model predicted 

most of the failures within the target range.  Similar performance is seen in the A320 aircraft family, 

with the model predicting a majority of failures for 11HB (the flow control valve), 10HQ (avionics 

equipment ventilation computer), and the 1TX1 (air traffic service unit) within the target range.  

 

Figure 7- 10 Validation of Proposed Model against actual maintenance record 

In conclusion, based on the prediction score in Figure 7-10, the proposed DDSARSA+PER model 

can forecast approximately 90% of aircraft component replacements within a specific range, i.e. not 

more than ten flights and not fewer than two flights to failure.  

 The number of failure cases classified is shown in Figures 7-11 (a) and 7-11 (b). The proposed 

model's confusion matrix was created using one component from the A330 and A320 datasets. As 

shown in Figure 7-11(a), the DDSARSA+PER model successfully predicted 9 out of 11 unplanned 

electronic engine unit failures (4000KS from the A330 dataset). Figure 7-11(b) shows the model 

predicted 6 out of 7 flow control valve failures (11HB from the A320 dataset).  
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(a)                                                               (b) 

 

Figure 7- 11 (a) 4000KS - Electronic Control Unit/ Electronic Engine Unit  (b)11HB  - Flow Contol 

Valve 

 

7.5.1.3 Model of Comparative Analysis 

The comparative analysis between the proposed method (DDSARSA+PER ) and existing imbalance 

learning methods (cost-sensitive and SMOTE) and previously implemented method the autoencoder 

with bidirectional gated recurrent unit (AE-BGRU) network [59]. It can be observed that despite the 

extreme imbalance ratio in all the cases considered for both the A330 and A320 datasets, the 

proposed method performs much better in terms of G-mean and FPR. For example, considering 

4000KS with the lowest imbalance of 0.0043, it can be observed that the G-mean for 

DDSARSA+PER is 94% while that of cost-sensitive is 74%, SMOTE+RF is 70% and 66%. A similar 

performance is seen for other components, with a higher imbalance ratio compared to 4000KS. This 

clearly shows performance supremacy for the DDSARSA+PER model in predicting rare failure. 

The performance improvement in the deep reinforcement learning implementation, especially the 

DDSARSA+PER model, comes from a number of different factors such as the reward function, which 

optimize future rewards, in contrast to a machine learning model that predicts the probability of future 

outcomes (classification using an ensemble method and the synthetic minority oversampling 



 

302 

 

techniques with random forest). Secondly, the use of PER, which, instead of uniformly sampling 

transactions from replay memory, employs a prioritized approach. This also entails the replay of the 

important transactions more frequently and hence learns more effectively.  

Table 7- 4 The performance of the proposed reinforcement learning approach with other existing 

rare failure prediction methods 

 

 7.5.2 Discussion 

 

The main aim of this study is to investigate the applicability of deep reinforcement learning 

techniques for training an extremely rare failure predictive model instead of the widely used machine 

learning or deep learning methods for slightly imbalanced datasets. Two algorithms (the DDSARSA 

and the DDQN) are designed and implemented.  The implementation results show that the 

application of deep reinforcement learning for extremely rare failure prediction is viable, and the 

constructed algorithm shows superior performance as compared with baseline DQN. Also, it was 

observed that the proposed DDSARSA+PER algorithm shows better learning as compared to 

DDQN+PER. Then  DDSARSA+PER  was compared with existing imbalanced learning methods, 

and performance was evaluated based on G-mean and false-negative rates.  As indicated in Table 

5, the average prediction rate for all six components was calculated,  in comparison to the cost-

sensitive LSTM approach with 0.79 g-mean and 0.019 FPR, SMOTE+RF with 0.71 g-mean and 

0.022 FPR, and autoencoder with a bidirectional gated unit network with 0.67 g-mean and 0.0026 

   DDSARSA + PER Cost-Sensitive (LSTM)  SMOTE+RF   AE-BGRU 

 Component ρ G-

mean 

FPR FNR G-

mean 

FPR FNR G-

mean 

FPR FNR G-

Mean 

FPR FNR 

 A330 

Family 

4000KS 0.0043 0.94 0.00023 0.0100 0.74 0.026 0.103 0.70 0.024 0.022 0.66 0.0083 0.3800 

4001HA 0.0047 0.97 0.00023 0.0800 0.80 0.014 0.111 0.74 0.021 0.024 0.63 0.0013 0.4615 

5RV1 0.0044 0.95 0.00012 0.0111 0.76 0.023 0.106 0.71 0.023 0.022 0.65 0.0008 0.4000 

(A320) 

Family 

11HB 0.0028 0.90 0.00009 0.0000 0.77 0.022 0.101 0.69 0.030 0.023 0.62 0.0019 0.5555 

10HQ 0.0031 0.93 0.00009 0.0000 0.80 0.019 0.104 0.70 0.028 0.022 0.65 0.0028 0.5454 

1TX1 0.0064 0.98 0.00002 0.0001 0.87 0.011 0.101 0.76 0.013 0.017 0.81 0.0002 0.2352 

Average prediction score 0.95 0.00013 0.0168 0.79 0.0192 0.1043 0.71 0.023 0.021 0.67 0.0025 0.4296 
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FPR, the proposed DDSARSA showed superior performance with an overall 0.95 g-mean score and 

an average of 0.0005 FPR. 

Calculating the percentage increase in G-mean scores from the highest g-mean, the Cost-Sensitive 

(LSTM) model, which is 0.79, to the highest g-mean, DDSARSA+PER, which is 0.95, the result 

shows that DDSARSA exhibits a 20.3% g-mean improvement. In addition, when computing the 

percentage drop, the suggested model reduces FPR by roughly 97.3684 % by using the lowest FPR, 

which is 0.019 to 0.0005.  

The overall observation shows that the Cost-Sensitive method and the oversampling (SMOTE+RF) 

method perform relatively the same on both datasets (A330 and A320 aircraft) in terms of G-mean 

and FPR. What accounts for the significant performance improvement in DDSARSA are basically 

the combination of the convolutions in deep neural networks which enhance learning relationships 

between variables in the dataset,  the reward function which helps to counter bias during model 

training and the use of prioritised experience replay memory, instead of uniformly sampling 

transactions from replay memory, employs a prioritised approach; this also entails replaying the 

important transactions more frequently, optimising the learning process. Also, DRL uses a reward 

function to optimise future rewards, in contrast to a machine learning (regression or classification) 

model that predicts the probability of future outcomes. Therefore, it can be concluded that deep 

reinforcement learning methods are ideally best for imbalanced classification problems because of 

their learning mechanism and specific learning environment and reward function. The PER and 

eligibility trace also contributed to the performance impact. The impact of eligibility trace positively 

impacts the new algorithms by reinforcing entire sequences of actions from a single experience, 

contributing to the improved performance in the proposed algorithms.  

The impact of false alarms FNR - the proportion of "healthy" components classified as failures in 

equipment’ predictive maintenance can result in higher maintenance costs due to unnecessary 

checks. Also,  FPR - the proportion of faulty components classified as non-faulty or when the model 

fails to predict failure can result in equipment damage or huge loss.  A high FPR score or FNR score 

might potentially lower the level of trust in the equipment prognostics system. As a result, the goal 

is to bring both FNR and FPR down to an acceptable level. This implies the model should accurately 

identify fewer false alarms, lowering total operational costs and increasing vehicle availability and 

reliability. As shown in Figure 7-8 in comparing the proposed model to existing approaches, the 
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proposed  DDSARASA+PER model shows a lower false-negative rate. The usage of a double deep 

neural network is the main disadvantage of DDSARSA+PER, which increases training time but can 

be compensated for by a high detection rate. This study will impact research towards mitigating 

unscheduled maintenance for systematic schedule maintenance. 

7.6. Conclusion 

In this study, a novel technique for predicting extremely rare failure is proposed and implemented. 

The new technique is based on a deep reinforcement learning approach. Two algorithms are 

constructed, the double deep Q-Network with prioritized experience replay memory and the double 

deep state-action-reward-state-action with prioritized experience replay memory. The effectiveness 

of the new approach is validated using a real-world aircraft central maintenance log-based dataset. 

The result shows that the application of deep reinforcement learning for extremely rare failure 

prediction is viable. It also indicates that the proposed double deep state-action-reward-state-action 

with prioritized experience replay memory model can effectively predict component failure in both 

the A330 and A320 aircraft families with low false-positive and false-negative rates. The result 

means that unscheduled maintenance can be reduced in the aircraft fleet at the same time 

decreasing the cost of maintenance operations.  

The work can be extended by carrying out further experimentation to determine the impact of high 

imbalanced on other deep reinforcement learning. Parameters such as changing the network 

architecture, an additional variable can be introduced into the deep neural network to keep track of 

the physical state and check for inconsistency with the physical laws to improve accuracy. Also, 

future work can consider enhancing performance optimization using other deep reinforcement 

learning algorithms. An ablation study will be carried out to assess the impact of eligibility trace and 

prioritise experience replay memory individually. More aircraft data sources - such as quick access 

recorder (QAR) Data, Performance Reports (PR), and Maintenance Tech Logs data can be 

integrated into the analysis.   
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CHAPTER 8: General Discussion  

This chapter presents a general discussion about the methods implemented in this thesis. The 

methods focus majorly on detecting and predicting rare component failure in the aircraft 

maintenance system. Predicting rare failure in a complex system such as aircraft is challenging due 

to the nature of the process and the complex structure of aircraft datasets. Also, finding abnormal 

patterns in large log-based data is highly challenging due to the complex nonlinear relationships 

among the components, processes, and subsystems. The difficulty in predicting rare events in 

complex systems is that the event has varying intrinsic data characteristics such as distributions and 

irregular failure patterns, class-overlapping, small-class disjunct, which can impact the type of 

algorithm used to train the model.  Predicting component failure is a critical problem in the aerospace 

industry because of its impact on business. As reported by airlines, a single unexpected component 

failure has a high negative impact on the business as compared to planned or scheduled 

replacement. Therefore, even a small percentage in reducing unplanned failure can significantly 

benefit the airlines. In this study, the minority class represents the unplanned component failures, 

which are extremely rare in the overall ACMS dataset. Hence, four different approaches for 

predicting extremely rare failure, handling class overlapping, and small class disjunct are proposed 

and implemented. 

In order to develop an effective predictive maintenance model for complex systems such as aircraft, 

accurate data and robust machine learning methods are necessary. For instance, in developing a 

predictive model for aircraft component failures using ACMS data, where the intrinsic properties of 

each failure vary, the integration of multiple algorithms in the prediction system is essential to assist 

in handling the various characteristics of components failures. Figure 8-1 shows how the proposed 

algorithms implemented in this thesis can be used to improve failure prediction in the predictive 

maintenance system. First, step 1 involves feeding the prediction system with ACMS data (log-

based) obtained from the same family of aircraft in the fleet. The input data will then be filtered to 

obtain only relevant patterns related to the target components. Then using the filtered data as input 

at step 2, all the algorithms will be trained and assessed to find the best model for that component. 

The algorithm with the best score will be accepted at step 3. Then at step 4, the resulting model can 

then be used to forecast the occurrences of similar failures. For example, the BACHE algorithm is 

good at managing severely imbalaced with class overlapping problems when it comes to predicting 

flow control valve valve failure. In this scenario, the BACHE algorithm will be ideal for predicting such 
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failures.After training  all the algorithms using the patterns and assessed for the best score. The best 

algorithm will heuristically marked for forecasting such failures in the future. The process will be the 

same for all target failure instances. Four distinct data-driven algorithms for rare failure detection are 

proposed and implemented in this study. The solutions focus on tackling data challenges such as 

pre-processing, extremely imbalanced classification challenges, class-overlapping, and small class 

disjunct problems. 

 

 

Figure 8- 1 The rare event prediction process 

Furthermore, the proposed solution can give a generic solution that can be used in a variety of 

application domains when dealing with an imbalanced dataset, particularly when the data contains 

high imbalance ratios, class overlapping, and small class disjunct difficulties. The findings of the 

study can be applied to the creation of robust and high-performance predictive maintenance systems 

in a variety of industries.  

The four algorithms are developed to respond to data abnormalities discussed in Chapter 2, and 

research gaps detailed in Chapter 3. The proposed implementations are summarised as follows:  

8.1. A hybrid algorithm for pattern extraction  

Patterns represent large groups of log messages which are important in performing analysis, such 

as event prediction or anomaly detection. Extracting patterns in large log messages from 

heterogeneous sources without any prior information is quite challenging. As a result, an algorithm 

is proposed for extracting patterns from ACMS data for rare event prediction in the predictive 
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maintenance model. The approach combines time frequency-inverse document frequency (TF-IDF) 

and word vectorisation techniques used in natural language processing. A random forest technique 

is used to train the patterns. The main takeaway from this implementation is that the proposed 

methodology outperforms other similar methods in terms of pattern categorization accuracy for all 

the target components considered. The proposed method was compared with the closes imbalanced 

technique known as the Synthetic Minority Oversampling Technique -SMOTE (Figure 4-2). The new 

approach shows increased precision, recall, and F1-score performance. The overall score indicates 

that the new approach can averagely reduce 10% false positives and false negatives rates (see 

chapter 4).   

What accounted for the performance improvement is the uniqueness of extracting the patterns and 

the oversampling techniques. In the new approach, related patterns are first placed closer together 

based on the corpus of relationships, which help in filtering out unrelated ones, making the algorithm 

learn better.  Also, during model training, the proposed algorithm checks for patterns that regularly 

occur together, resulting in the component replacement (positively labelled). Then it randomly 

creates a possible combination of all the positively labelled patterns related to the individual target 

component, producing more new patterns for the minority class. This is done to increase the instance 

of the minority class patterns related to each replacement, which balances the training dataset to 

improve the detection of the rare minority samples. The combination and creation of new patterns 

are achieved through bootstrapping approach [1]. In contrast, the SMOTE algorithm randomly 

creates synthetic points by duplicating examples from the minority class to balance the class 

distribution before fitting a model. SMOTE usually creates synthetic examples without considering 

the borderline examples from the majority class, which can create an ambiguous example resulting 

in the class overlapping problem, leading to the model performance reduction.  

The proposed algorithm's impact on the predictive maintenance model is as follows: Unplanned 

component failure is a major issue in the aerospace industry because of its financial implications. 

When compared to scheduled maintenance, the expenses of unscheduled maintenance are typically 

higher. As a result, every company strives to reduce these unplanned costs as much as feasible. 

Reduced unscheduled maintenance by even a small proportion can impact industries and 

businesses like airlines and MROs. Therefore, having a learning system that can correctly forecast 

infrequent failure can improve the prediction of aircraft component failure. As shown in Table 4.1 in 

Chapter 4, the results show the average prediction for various components (each FIN has different 
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failure patterns, imbalanced ratios, and distribution). The True Positive Rate was estimated to be 

around 75%. (i.e. the percentage of positive examples that are correctly classified is 75%). In 

addition, approximately an overall 25% false-negative rate was recorded (which means the 25% of 

positive examples were misclassified). Although the results demonstrate an improvement in 

recognising rare failure, there is a significant rate of false-negative and false-positive, which is 

identified as the drawback of the proposed approach. Misclassifying a component's non-failure as a 

failure (false-negative) can result in higher maintenance costs, which is undesirable but less harmful 

than misclassifying a fault as a non-fault (false positive), which can result in equipment damage. As 

a result, more optimised methods are still necessary for such failures.   

8.2.  The Balanced Calibrated Hybrid Ensemble Technique  

One of the fundamental research questions that this implementation seeks to answer is can a class 

overlapping and small disjunct problem inherent in the ACMS dataset be overcome by using hybrid 

ensemble learning? A new Balanced Calibrated Hybrid Ensemble Technique (BACHE) algorithm 

was presented to answer the above-mentioned question. The goal of the algorithm's development 

is to investigate how effective an ensemble-based method is in handling class overlapping and class 

disjunct problems in severely imbalanced datasets [2]. Ensemble learning is a methodology where 

multiple machine learning models are trained to solve the same problem, and the output of the 

learner is combined to get improved performance. The method tries to improve the machine learning 

classifier's performance by combining the decision of other classifiers, known as weak learners 

[3][4][2]. The proposed strategy tackle class overlapping concerns by splitting the data into subsets 

and treating each subset individually before merging the results. It employs a cascade balanced 

technique to decompose a class imbalance problem into a set of subproblems, each with a lower 

and manageable imbalance. Then, for each weak learner in each subset, a calibrated boosting with 

a cost-sensitive decision tree is utilised to recognise hard-to-learner patterns while avoiding the class 

overlapping and small class disjunct problem, improving the prediction of the extreme minority class. 

The approach's novelty is in the design's uniqueness as well as the fusing of the weak ensemble 

classifier. A cost-sensitive is utilised in each weak classifier to improve the prediction of minority 

class samples. The proposed approach is compared against existing ensemble learning algorithms 

(Balance Bagging) and hybrid imbalance learning algorithms (SMOTE + Random Forest). The 

baseline technique was chosen because of its design similarity to the proposed method. The 

proposed BACHE employs a heterogeneous cost-sensitive decision tree as a weak classifier, 
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followed by an ensemble technique to create a hybrid algorithm (BACHE) as presented in Chapter 

5. Balance bagging, on the other hand, prioritises oversampling each subset of data before fitting it 

with a weaker classifier [5]. In partitioning the training dataset, both approaches use boosting 

methods.  

The main observation from the proposed approach is that the new method shows superior perforce 

in terms of Precision, Recall and the G-mean as compared to baseline balance bagging (see section 

5.4.4). The new BACHE algorithm outperforms the baseline Balance-bagging approach for a variety 

of reasons, including the use of a calibrated cost-sensitive decision tree in BACHE' weak learners 

rather than oversampling each subset as in balanced bagging. The inclusion of cost-sensitive in the 

weaker learners, which is applied to all subsets, reduced the imbalance ratio, assisting in 

overcoming the difficulty of class overlaps. Furthermore, because the data was divided into subsets 

using the bootstrapping method, a subset could contain zero samples of the minority class, making 

the weak learners not to perform well by themselves either because they have a high bias or high 

variance. Hence, using an ensemble of classifiers helps tackle the challenge of the bias-variance 

tradeoff present in a single classifier. Also, the use of homogeneous boosting allows the BACHE 

algorithm to learn multiple input data distributions while simultaneously controlling high bias and 

variance (bias-variance trade-off), thereby becoming more robust. As a result, the ensemble 

classifier's performance is improved (Figure 5.3). BACHE's impact on predictive maintenance is that 

it has an overall false-negative rate of around 18% (Figure 5.5), compared to the prior 

implementation [6], which had an FNR of 20%, suggesting an 8% reduction in false negatives. The 

decrease in both false-negative and false-positive can decrease unscheduled maintenance, which 

leads to a decrease in overall system failure.  

8.3. Mixed Gaussian Process with Expected Maximisation Algorithm  

A study was carried out in the search for an optimisation technique for tackling the class overlapping 

and class disjunct problem, with a focus on aircraft predictive maintenance modelling utilising ACMS 

data. A cluster-based resampling method was suggested based on the Mix Gaussian Process with 

Expected Maximisation (MGP-EM).  

Maximum likelihood estimation (MLE) estimates the parameters of an assumed probability 

distribution for a given dataset by searching across probability distributions and their parameters[7]. 

This is achieved by maximising a likelihood function to make the observed data most probable [19]. 
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Maximum likelihood becomes useful if there exist variables that interact with those present in the 

dataset but were hidden or not observed, known as latent variables [19]. An expected maximisation 

algorithm is an algorithm that is capable of performing maximum likelihood estimation in the 

presence of latent variables. A mixture model is a model that is made up of a combination of many 

probability distribution functions, while a Mixed Gaussian process model is a mixture model that 

uses a variety of many normal distributions and needs estimation for mean and variance for each. 

The motivation for this study is because a different process generates the variables in the ACMS 

dataset, the examples belonging to each process have a normal probability distribution, but the 

combined data is overlapped as seen in Figure 2-12  (that is, the distributions for the joined data are 

similar enough that it is not obvious to which distribution a given an example may belong) making it 

difficult for the machine learning classifier. 

The influence of MGP-EM on a severely imbalanced dataset with a class-overlapping problem is 

investigated in this work. The proposed approach identifies and groups the data according to their 

similarity to avoid creating small disjuncts in the learned hypothesis. The rationale behind 

implementing the MGPEM-based strategy is to, in the process of learning, compute explicitly the 

probability of points belonging to each cluster, which deals with an in-between point and avoids 

ambiguity problems in clustering. The proposed method is designed to overcome the problem of 

class-overlapping and small disjunct in the concept-learning, which is difficult for the classifier to 

learn, hence improving the prediction of a minority class.  

In order to understand the effectiveness of the proposed approach in handling the class overlapping, 

the algorithm was trained using data that contains the ACMS data and the performance of the model 

measured in terms of Precision, Recall, F1-score, and ROC curve. The model shows an average 

performance of 90% precision and 80% recall, meaning the classifier's 90% true positive predictions 

(component replacement) are truly correct. The 89% AUC means the model has an 89% chance to 

distinguish between positive and negative, showing effeteness in handling class overlapping 

problems in an extremely imbalanced dataset.  

8.4. Autoencoder Convolutional Neural Network -Bidirectional Gated Recurrent Unit 

Approach.  

As pointed out in Chapter 3, deep learning is a branch of machine learning that consists of numerous 

processing layers that learn data representations at multiple levels of abstraction using artificial 
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neural networks (ANN). Deep learning models have considerably improved state-of-the-art 

performance in several domains, such as data processing with high dimensionality, image detection, 

and so on [7]. The ANNs are trained to find complex structures in a dataset by using a 

backpropagation algorithm. The algorithm calculates errors made by the model during training, and 

the models' weights are updated in proportion to the error. The drawback of this learning method is 

that examples from both classes are treated the same. In that situation where the data is imbalanced 

and has overlapping challenges, the model will be adapted more to the majority class than the 

minority class, and difficult to learn from the overlap region, which can affect the performance of the 

models.  

 In chapter 6, a new deep learning-based method for predictive maintenance on ACMS data was 

proposed. The rationale behind the proposed method is to study the impact of highly imbalanced 

data with class overlapping using deep neural networks architectures. Also, to explore handling 

extremely imbalanced and class overlapping using the cost-sensitivity method in deep neural 

networks, which involves modifying the deep learning algorithm to favour both classes during model 

training.  

As a result, using the ACMS dataset, a study was conducted to explore the influence of loss function 

on various deep learning architectures. Furthermore, the study proposed an improved loss function 

called rescale focal loss (RFL) to deal with the extremely imbalanced problem, while a new deep 

neural network architecture was created to deal with small class disjunct and class-overlapping 

problems that are inherent in the ACMS data. The following is the new derived RFL:  

RFL(𝑝,𝑡) = − (1 − (𝑝𝑡)) 
𝛾𝑙𝑜𝑔10 (𝑝𝑡) * 𝜃𝑖        (8- 1) 

 Where 𝜃𝑖  is the logic weight of each class,  (𝑝,𝑡)) represent the estimated probability of each class,  

and 𝛾≥0 is the discount factor parameter that can be tuned for the best estimation. 

The RFL is derived for deep neural networks, enabling the deep learning algorithms to respond 

favourably to both minority and majority groups and discount the small class disjunct during training. 

The new approach presents a unique way of changing loss function with respect to weights and a 

unique arrangement of neural networks; it also dynamically regulates the combined weight to 

produce a merged predicting result. The first experiment was conducted to test the effectiveness of 

the rescaled focal loss against other loss functions such as focal loss, Kullback Leibler divergence 
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loss, hinge loss, cross-entropy loss. In order to maintain consistency in testing the RFL, an LSTM 

architecture was used, and the discount factor was set at γ = 0.5. the result indicated that RFL shows 

improved performance, especially for extreme imbalance cases as compared to other loss functions 

(chapter 6). It was observed that multiplying logic to the weight of each class in the RFL accounted 

for the performance improvement.  

Second, an additional experiment was set out to determine the impact of an extremely imbalanced 

dataset on the various deep neural networks architectures. Also, in the implementation, an 

investigation was carried out to ascertain the impact of the rescaled loss function in conjunction with 

various network design architectures. The following network architecture ware considered, the deep 

bidirectional neural networks as compared to the unidirectional feedforward deep networks. A new 

network architecture was proposed known as the auto-encoder bidirectional gated recurrent network 

(AE-BGRU) to learn the relationships between variables in the ACMS data in the process overcome 

the challenge of class overlapping. The rationale behind the choice of method is based on the nature 

of the ACMS dataset (which is time-series based). Usually, time-series datasets are mainly trained 

using recurrent neural networks (RNN); the challenge with RNN's is that they suffer from vanishing 

gradient problems and has a short-term memory. Varnishing gradient problem arises when training 

a deep multi-layer RNN (feedforward network) with a gradient-based learning approach and 

backpropagation. In the process, the weight of each ANN is updated in proportion to the partial 

derivatives of the error function with respect to weight in each iteration [8]. The problem arises when 

useful gradient information is unable to propagate from the out layer back to the input layer of the 

model. In order to solve the vanishing gradient problem in RNN, the long-short term memory (LSTM) 

and gated recurrent unit (GRU) networks were developed to capture long time dependencies in the 

sequence learning and to handle the gradient vanishing problem through the use of modified hidden 

layers or gates, the elaborate explanation about the architecture of gated recurrent networks has 

been presented in Maren et al. [9] and Buda et al. [10]. This study did not investigate the impact of 

the vanishing gradient problem in RNN on the ACMS data. Instead, its focus is on exploring the 

effectiveness of RFL and extremely imbalanced datasets on the gated neural networks 

architectures, such as the GRU, which has been shown to handle the vanishing gradient problems 

intrinsically during training [11].    

 Due to the nature of the ACMS data (i.e., heterogeneous and time series in nature), time-series 

deep learning networks are chosen as baseline methods for the experiment. The following network 
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architectures were considered unidirectional LSTM and GRU. Then a proposed network architecture 

utilizes the benefits of autoencoder (AE), Bidirectional gated recurrent unit (BGRU), and 

Convolutional neural networks (CNN) for effective learning., In the study, a unique network structure 

was explicitly designed and implemented for the imbalanced classification of ACMS data. In the 

network architecture, the core blocks are made up of BGRU, and each block contains a cell that 

stores information, the blocks comprise a reset and update gate, and the cells help in tackling the 

vanishing gradient problem, as shown in Janusz et al. [12].  The reset gate determines how to 

combine new input with previous memory, while the update gate defines how much of the previous 

memory to retain. BGR Units comprise two blocks. The input data is fed into the two networks, the 

feedforward, and feedback with respect to time, and both of them are connected to one output layer. 

The gates in bidirectional GRU are designed to store information longer in forward and backward 

directions, providing both the past and future context in a sequence, which enhances the learning 

relationship between variables, resulting in the model performance enhancement. The novel AE-

BGRU network is designed to employ the RFL to minimise bias, the AE to detect failures, and the 

BGRU to forecast outcomes. The AE-BGRU model was trained using the imbalanced ACMS 

dataset. The suggested AE-BGRU architecture was compared against current algorithms such as a 

normal LSTM and BGRU (which uses a normal binary cross-entropy as a loss function). To ensure 

uniformity, the number of network layers in each architecture was kept constant.  

The following conclusion was obtained as a result of the experiment: the AE-BGRU model performs 

better in terms of precision and recall, as shown in Table 6.3. In comparison to LSTM and GRU, the 

AE-BGRU model improves precision and recall by 25% and 14%, respectively. The new redesigned 

architecture and the loss function employed in AE-BGRU have resulted in improved performance. 

The following factors contribute to AE- BGRU's enhanced performance. An autoencoder helps in 

compressing the input variables into a reduced dimension space. The reduced latent variables with 

more promising features are used to train BGRU networks rather than the whole data. The latent 

variables are in the reduced form of the original data and make the AE-BGRU learn better with the 

reduced data. Moreso, because AE-BGRU uses a bidirectional learning approach, the input data is 

fed into the networks in two directions, the feedforward and feedback with respect to time, connected 

to one output layer. The gates in bidirectional GRU provide two ways to learn longer relationships 

between independent variables than the unidirectional feedforward networks that enhance the 
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overall model performance. RFL helps control the bias, which improves the model's performance 

compared to the normal  GRU and LSTM networks. 

More study was carried out to investigate if adding CNN layers to the AE-BGRU network could aid 

in the learning of better correlations between variables. The results showed that performance had 

improved after the implantation. The following factors are attributed to the improved performance of 

the AE-CNN-BGRU model. First, if there is a correlation between the variables in a dataset (a 

process known as autocorrelation), BGRU or LSTM Networks account for the sequential 

dependency, and the networks treat all the variables as independent, ignoring any relationship that 

exists between both observed and latent variables. Whereas CNN uses a process known as 

convolution when determining a relationship between available variables in the dataset [11]. For 

example, in convolutional learning, given two functions f and g, the convolution integral expresses 

how the shape of one function is modified by the other. Traditionally, CNNs were built to analyse 

multi-dimensional data, such as image classification, rather than account for sequential 

dependencies, as RNNs, LSTMs, and GRUs do [13]. The ability to use filters bank [14] to compute 

dilations between each cell, also known as "dilated convolution," is a key benefit of adding CNN 

layers for sequential learning. This allows the network layers in CNN to understand better the 

relationships between the different variables in the dataset, resulting in improved results. Finally, a  

challenge was encountered during the model training in the implementation. The AE-CNN-BGRU  

takes a mini-batch of the samples as input, and given that the dataset has an extreme imbalanced 

ratio, the batch samples are likely to contain fewer or non-samples from the positive class 

(component failure), the model will end up learning majority patterns of the negative class alone after 

running for some few epochs, most of the losses from the majority class will dominate the gradient; 

hence the learning algorithm would simply generate a trivial classifier that classifies every example 

as the majority class (Negative). The challenge was handled by using the weighted loss. After each 

mini-batch, the weights are updated in proposition to the number of samples in each class.  

8.5. Deep Reinforcement Learning for predictive Maintenance Modelling 

Deep reinforcement learning has been widely employed in a variety of applications, including but 

not limited to healthcare, computer vision, video games, natural language processing, finance, and 

education[15]. Despite the great potential benefits of deep reinforcement learning for increasing 

machine learning model performance, not much work was found in the open literature to explore its 
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applicability for handling imbalanced classification in a time series dataset. Specifically the use of 

the ACMS dataset to train DRL algorithms for forecasting failures. As a result, a study was conducted 

to investigate if deep reinforcement learning can anticipate extremely rare events in aircraft 

predictive maintenance models. A proposed imbalanced learning algorithm based on the deep 

reinforcement learning approach is presented in Chapter 7. The proposed method investigates if 

deep reinforcement learning can be used to forecast exceedingly rare events, namely for predictive 

maintenance modelling. 

Two new algorithms were designed, the Double Deep SARSA with a prioritized experience replay 

memory (DDSARSA+PER )  and the double deep Q-network with experience replay memory (DDQN 

+ PER). The result of the implementation shows that the application of deep reinforcement learning 

for extremely rare failure prediction is viable. Also, it was observed that the proposed algorithm 

outperformed the baseline DQN algorithm. Further analysis shows that DDSARSA performed better 

than DDQN using the ACMS data. DDSARSA was then further compared with previous 

implementations, the data-level resampling approach [6] presented in chapters 4 and 5, and cost-

sensitive approaches in chapters 6 [16][17]. The overall results show that DDSARSA outperformed 

other approaches in terms of False Negative Rate (FNR) and False Positive Rate (FPR). The overall 

results show that DDSARSA outperformed other approaches in terms of False Negative Rate (FNR) 

and False Positive Rate (FPR). The average FNR for the DDSARSA+PER is approximately 0.05%, 

compared to that of cost-sensitive methods, which is approximately 15% FNR, and that of the data 

level method (SMOTE+RF), which is approximately 18%.  

In contrast to a machine learning (regression or classification) model that predicts the probability of 

future outcomes, DRL utilises a reward function to optimise future rewards. The combination of the 

reward function, which helps to counter bias during model training, and the use of prioritised 

experience replay memory, which, instead of uniformly sampling transactions from replay memory, 

employs a prioritised approach; this also entails replaying the important transactions more 

frequently, which optimises the learning process, accounts for the significant performance 

improvement in DDSARSA. Deep neural networks' convolutions also aid in the learning of 

relationships between variables in the transactions. The improvement in performance was also aided 

by the eligibility trace. The influence of eligibility trace benefits the new algorithms by reinforcing 

complete sequences of actions from a single experience, which contributes to the proposed 

algorithms' increased performance. Because of their learning mechanism, specialised learning 
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environment, and reward function, deep reinforcement learning systems can be claimed to be the 

best for imbalanced classification issues. 

The proposed algorithm's impact on predictive maintenance: False alarms (FPR) in predictive 

maintenance systems can result in higher maintenance costs owing to unnecessary tests, whereas 

false positive (FPR) indicate that the model failed to forecast failure. A high FPR or FNR might 

potentially lower the level of trust in the equipment prognostics system. As a result, the goal is to 

bring both FNR and FPR down to an acceptable level. This implies the model will accurately identify 

fewer false alarms, lowering total operational costs and increasing vehicle availability and reliability. 

Figure 7-11 shows that the proposed DDSARASA model has a lower false-positive rate than existing 

techniques, implying that incorporating the DDSARSA model into the predictive maintenance system 

will anticipate infrequent failure with fewer false positives false negatives. The proposed  DDSARSA  

key drawback is the use of a double deep neural network, which increases training time. 

Finally, this research does not just propose a solution to the imbalance problem in aircraft 

maintenance by identifying gaps in the chosen sector or focusing primarily on the AIRMES project 

alone. It also provides a generic strategy for dealing with an unbalanced dataset in a range of 

application domains, especially when faced with the challenges of severe imbalance ratios, class 

overlapping, and small class disjunct. As a result, the findings of the study can be used to develop 

reliable and high-performance modelling in a number of industries.  
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CHAPTER 9: Conclusions and Further Research 

This study provides four new data-driven predictive model techniques based on advanced 

imbalanced classification algorithms. An aircraft central maintenance system (ACMS) dataset and 

its accompanying maintenance records were utilised to validate the proposed algorithms. The 

proposed approaches concentrate on resolving some of the data irregularities identified in the ACMS 

data, such as an extreme data imbalance problem, irregular patterns and trends, class overlapping, 

and small class disjunct, which are major bottlenecks for traditional machine learning algorithms. 

The research's overall finding indicates that an advanced method for handling extremely imbalanced 

problems using the log-based ACMS datasets is viable for developing robust data-driven predictive 

maintenance models. Deep reinforcement learning (DRL) strategies, specifically the proposed deep 

reinforcement learning (the DDSARSA+PER model), outperform other methods in terms of false-

positive rates when compared to the four implementations. The validation result suggests that the 

DDSARSA+PER model is capable of predicting around 90% of aircraft component replacements 

with a 0.005 false-positive rate in both A330 and A320 aircraft families studied in this research. When 

compared to machine learning algorithms that estimate the probability of future outcomes, the DRL 

algorithm performs better because of various characteristics, such as the reward function, which 

optimises future rewards. Second, instead of evenly sampling transactions from replay memory, 

prioritised experience replay memory adopts a prioritised approach; this also means replaying the 

essential transactions more frequently, optimising the learning process.  

9.1 Addressing the Research Aim and Objectives 

The research aim is to develop a data-driven predictive model for aerospace applications using 

advanced imbalanced classification algorithms. The aim is achieved by fulfilling the following 

objectives. 

Objective 1:- To carry out a comprehensive literature review on the application of data analytics in 

aerospace, machine learning techniques and then investigate approaches and effects of imbalance 

problems in developing predictive modelling. To find the existing work and gaps and understand the 

shortcomings and underpin the countermeasures to be designed.  
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Evidence:- In chapter 3 and the review of related work sections of technical chapters (chapter 4 to 

7), a review of imbalanced learning, application of data analytics in aerospace (including machine 

learning techniques) concentrating on the effects of rare failure prediction in aircraft maintenance 

was undertaken and presented. A review of the open literature supports the need for a more 

advanced method to deal with the current and future issues of handling severely imbalanced 

datasets with class overlapping and small class disjunct problems, particularly in aircraft 

maintenance modelling. In chapters 2, 3, 4, 5, and 7, the drawbacks of existing machine learning 

methods for addressing rare failure prediction or imbalanced classification problems and other 

research gaps were highlighted.  

Objective 2:- To carry out data Pre-processing to quantify and understand various distribution and 

complexities inherent in the log-based aircraft ACMS datasets. 

Evidence: In chapter 2, an exploratory data analysis is presented, which quantifies and explains 

various distribution and complexities inherent in the log-based aircraft ACMS datasets. In order to 

use log-based data to develop a robust data-driven predictive model, the first step is to interpret the 

logs, filter out a large amount of noise (that is, data irrelevant to the set goal) and extract predictive 

features. Also, the known failure cases need to be collected for learning and evaluation. The problem 

needs to be transformed into an appropriate learning scenario, and a performance measure that 

reflects real-world needs must be determined. The challenge in predicting rare failure using log-

based time-series data is that the data distribution has irregular patterns and trends, affecting the 

learning of temporal features. Existing methods for handling slightly imbalanced datasets are 

understandable for certain types of data, such as image classification. However, it was unclear 

whether training extremely imbalanced, time-series data using the existing approach would improve 

model performance. Therefore, an important task that was carried out for this objective is to carry 

out exploratory data analysis and develop a novel algorithm to handle the pattern mining and 

transformation of the ACMS dataset for predictive modelling. The exploratory data analysis helps to 

see that the log messages (failure warnings) hold direct links to aircraft LRU failure, leading to 

replacement. It was also discovered that the target components are infrequent, causing the data to 

be imbalanced and overlapped.  

Objective 3:- To design and develop a dynamic and robust Imbalance classification algorithm using 

machine learning, deep learning and deep reinforcement learning (DRL) strategies that will handle 
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extreme class imbalance, class overlapping and class disjunct in both binary and multi-class 

scenarios. 

Evidence:- In chapters 4, 5, 6, and 7, four unique algorithms based on pattern recognition, ensemble 

learning for managing class overlapping and rare minority problems, deep learning, and deep 

reinforcement learning-based models are proposed and implemented.  

Objective 4:- To develop an aircraft predictive maintenance model and test it using the different 

testing datasets to establish its adaptability to various challenges. 

Evidence:-  Objective 3 and 4 works simultaneously. Therefore, implementing the four proposed 

algorithms for predictive maintenance modelling, handling the extremely imbalanced classification 

problem is performed inherently. The dataset used for training and testing the algorithms is collected 

from a fleet of sixty civil aircraft. The data comprises two databases: the operational failure log 

obtained from the aircraft central maintenance system (ACMS) and its corresponding maintenance 

records usually recorded by maintenance engineers (ground truth data). The two datasets are 

integrated and grouped according to the aircraft family. The two available aircraft families in the 

datasets are the A330 (22 aircraft) and (the A320 38 aircraft). Some components that are replaced 

due to unplanned maintenance are selected for validation in each family. The dataset has a data 

imbalance problem because of the rare representation of the target components, which the proposed 

technique seeks to address. After transforming the dataset in objective 2, the data was divided into 

two; 80% for model training while 20% for model testing.  Chapters 4, 5, 6 and 7  present the 

algorithms for extremely imbalanced classification and aircraft’ predictive maintenance model.  

Objective 5:- To validate the model using ground truth data in order to ascertain its accuracy and 

performance.  

Evidence:- validation was carried out using ground truth data available to ensure the quality of our 

proposed data-driven predictive model. The ground truth data is an actual maintenance record 

carried out by aircraft maintenance engineers. The models' predictive result was validated against 

the actual ground truth data (real failure leading to component replacement). These types of failures 

are infrequent, making the dataset highly imbalanced.  Further analysis was performed to 

demonstrate the model's performance for predicting aircraft component failure within the desired 

time range, e.g. ability to predict a number of flights in advance of failure. It is important to make 
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predictions within a reasonable period, not too far before the failure point (to avoid underutilising 

resources) and not too close to a failure point (to allow sufficient time to prepare maintenance action). 

Therefore, a reasonable prognostic period is taken between ten and two flights before a failure point 

(-not greater than ten flights and not less than two flights to failure). 

9.2 Contribution to Knowledge  

In the course of this research, a significant contribution to knowledge is recorded. This research has 

so far made the following contributions to knowledge. 

1. This research has reviewed the literature that addresses the imbalanced learning problem 

across the academic and industrial sectors to understand the current research directions in 

predictive maintenance. The review of the literature contributes to knowledge by establishing 

familiarity with an understanding of current research in data analytics as it relates to aircraft’ 

predictive maintenance. The review also confirms that the continued growth and availability of data 

on large-scale, increases more analytical challenges, such as the extremely imbalanced 

classification problem, class overlapping and other challenges related to class distribution that can 

cause performance degradation in machine learning models.  

2. Expletory data analysis: The ACMS data analysis improved knowledge of variables by 

extracting averages, mean values, identifying trends by displaying data in graphs such as scatter 

plots and histograms, and discovering errors-outliers and missing values in the data. This 

information can be beneficial for future research and other studies that use comparable datasets.  

3. Design and Implement an Algorithm for pattern identification and transformation: 

Developing a predictive maintenance model to predict unplanned failure of aircraft components 

using an imbalanced, heterogeneous and system log-based dataset is one of the significant 

contributions of this research. The dataset used contains extremely rare failures of the target 

component. A well-known natural language processing technique, the TF-IDF and vectorization are 

transformed and integrated for pattern identification and text vectorisation. Then an ensemble-based 

random forest algorithm was successfully adapted for individual functional item prediction. The 

algorithm can be used for pattern identification and classification in log-based datasets. 

4. Developed an optimisation of ensemble learning-based algorithm for rare failure 

prediction: Another significant contribution is developing novel imbalanced learning implementation 
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based on ensemble learning to handle the challenge of class overlapping. The new algorithm 

focuses on improving the detection of a rare failure in the log-based dataset. In addition, a hybrid 

framework for data-driven predictive maintenance was also proposed. The framework is based on 

a hybrid-ensemble method, which improves the prediction of the minority class during learning.  The 

proposed Mix Gaussian Process with Expectation-maximization (MGP-EM) based algorithm 

computes the probability of points belonging to the cluster, which deals with an in-between point to 

avoid ambiguity problems in clustering. The proposed method overcomes the problem of class-

overlapping or small-size samples, which is difficult for the classifier to learn, hence improving the 

prediction of a minority class. It also overcomes the problem of over-sampling in K-means clustering, 

which is sensitive to outliers and noise and unable to handle more massive datasets. The algorithms 

are robust and provide a high-performance solution for handling data imbalance problems, focusing 

on extreme imbalance ratio and irregular distribution (class drifting) in binary and multi-class 

contexts. 

5. Developed a new approach for handling imbalanced datasets using a deep learning 

method. Training deep neural networks with an extremely imbalanced dataset, the overall total error 

cost representing the majority class usually overwhelms the minority by dominating the model's 

gradient, producing a bias model. A new method is proposed to address model biases in deep neural 

networks. The solution involves rescaling the loss function to respond favourably to the minority 

class during model training. The proposed techniques try to mitigate model biases using a derived 

re-scale loss function in neural networks. The re-scale loss controls the majority class's weights to 

balance with the weight of the minority class, hence enabling the model to respond favourably to 

both classes. The approach is tested using LSTM networks. Another deep learning implementation 

based on Autoencoder and bidirectional gated neural network (AE-CNN-BGRU) was proposed. The 

proposed approach first narrows down the volume of aircraft warning or failure messages into a 

small set of important and most relevant logs. It generates accurate link failure/warning messages 

in relation to aircraft LRU removals. The auto-encoder first trains the model with only negatively 

labelled data to detect rare faults using the reconstruction error threshold. The output of AE is used 

as input to the BGRU networks to predict those faults in Next-N-step. The evaluation indicates that 

AE-BGRU can effectively find the important log messages that hold direct links to aircraft LRU failure 

causes, leading to replacement.  
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6. Developed an imbalanced learning algorithm using a deep reinforcement learning 

approach for predicting extremely rare failure problems in complex aircraft systems.  

The new deep reinforcement learning approach is designed to capture the patterns of extremely rare 

component failures adequately.  The model is trained to predict aircraft component replacement well 

in advance of failure. The technique includes designing and developing an environment for the state-

action, a reward function for rewarding agent-classifier actions, and the unique arrangement of a 

deep neural network architecture for policy optimization. The new method is validated using a real-

world aircraft central maintenance system dataset. Exploring the ACMS dataset for developing a 

predictive maintenance model is a significant contribution because of its heterogeneous nature, 

challenging to analyse. 

9.3 Intellectual Contribution and Impact 

This research proposes novel methods and algorithms for rare failure prediction based on Machine 

Learning (ML), Ensemble learning, Deep Learning (DL), and Deep Reinforcement Learning (DRL), 

which provide new approaches to solving extremely imbalanced classification problems for rare 

failure event prediction in aircraft maintenance using aircraft operational log-based heterogeneous 

time-series dataset which is lacking in the literature.  

This study also focuses on developing a predictive model for predicting aircraft component 

replacement with a unique capability of given prognostic alerts within a defined window. The model, 

when validated, can be integrated into the aircraft predictive maintenance system. Hence, reducing 

operational disruptions reduces the average delay time and improves aircraft utilisation, which will 

provide a cost-benefit to airlines. 

Furthermore, this research has both industrial and academic impacts. The academic impact of this 

research comes through paper publications.  

List publication can be found in: https://orcid.org/0000-0003-2094-5370 
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This research will also create an impact within the industry by contributing towards replacing 

unscheduled maintenance with systematic scheduled maintenance. This will help avoid aircraft 

operations disruption, reduce the average delay time and improve aircraft utilisation. In addition, the 

research does not only propose a solution for the imbalance problem in aerospace maintenance by 

identifying the gaps in the selected domain or focusing on the European AIRMES project alone. It 

also provides a generic solution, which could be implemented in different application domains faced 

with the imbalanced dataset - concentrates on the challenge of extreme imbalance ratio in the time-

series big-data context. Therefore, the research outcome can generally be used in diverse industries 

to develop robust predictive maintenance modelling. 
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9.4 Limitation  

One of the limitations of this study is only ACMS data and from one fleet is used for the validation. 

9.5 Future Work  

Several areas for further research have been identified at the course of this study, presented as 

follows: 

1. This work can also be extended further by looking at the effect of class overlapping in the process 

of over-sampling the minority. 

2.. In the future, we hope to develop this work further by looking at the effect of class overlapping in 

the process of over-sampling the minority class in the imbalanced learning context. We will also look 

at improving model performance by analysing the internal model structure to predict component 

replacement in the desired time window in advance -before failure to carry out actionable 

maintenance. Also, the BACHE algorithm can be developed as a python library to analyse severe 

imbalances in log-based datasets. 

 3. Further studies can be conducted on other architectures of AE-CNN-BGRU, such as transforming 

the time series into graphical representation using recurrence plots. The resulting images can be 

trained using CNN-BGRU for likely performance optimisation. Also, other aircraft data can be added 

to ACMS to enhance model training. 

4.  In the DRL approach, the work can be extended by carrying out further experimentation to 

determine the impact of high imbalanced on other deep reinforcement learning. Parameters such as 

changing the network architecture, an additional variable can be introduced into the deep neural 

network to keep track of the physical state and check for inconsistency with the physical laws to 

improve accuracy. Also, future work can consider enhancing performance optimization using other 

deep reinforcement learning algorithms. An ablation study will be carried out to assess the impact 

of eligibility trace and prioritise experience replay memory individually. More aircraft data sources - 

such as quick access recorder (QAR) Data, Performance Reports (PR), and Maintenance Tech Logs 

data can be integrated into the analysis.  .   
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Appendices 1: Data Cleaning Process 

[LR/SA]_ACMS_EXTRACT_FROM20060101_TO20160930.xlsx 

LR = A330 and SA = A320 

Maintenance data - SA & LR.xlsx 

- In each file, the non-useful columns are removed for the proposed algorithms and merged 

both files into one by inserting the Maintenance data inside the ACMS messages.  

- first two types of mistake correct: 

1 FICTIVE FLIGHTS: When LEG N has the same ARRIVAL_AIRPORT as the 

DEPARTURE_AIRPORT of LEG N+2 (and are close in time). This implies that LEG N+1 lands where 

it takes off -> Inconsistent. If lines containing LEG N and N+2 are consecutive, or if there are some 

in-between lines with no DEPARTURE_AIRPORT  and ARRIVAL_AIRPORT, the fictive LEG is 

removed (and the ACMS data, if there are, for LEG N+1 have their LEG updated to the previous or 

next LEG, depending on the closest EVENT_DATE). 

2 SAME FLIGHTS: When LEG N and N+1 have the same DEPARTURE_AIRPORT and 

ARRIVAL_AIRPORT, and when their EVENT_DATEs are close enough in time,  the two LEGs are 

considered as one as the same and merge them. This merge is only performed if the last line having 

LEG N and complete DEPARTURE_AIRPORT and ARRIVAL_AIRPORT, and the first line having 

LEG N+1 and complete DEPARTURE_AIRPORT and ARRIVAL_AIRPORT, are consecutive or 

contain in-between lines having neither DEPARTURE_AIRPORT nor ARRIVAL_AIRPORT 

information. 

- Then care about having consistent information between EVENT_DATA and 

LEG_OF_OCCURENCE: 

 For an inputFile sorted by increasing EVENT_DATE, then LEG_OF_OCCURENCE, this 

script checks that the LEGs are increasing. If not, there is an inconsistency between dates and 

LEGs. The EVENT_DATE is modified in order the LEGs to be also increasing when it is sorted by 

EVENT_DATE. 
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- The cleansed files (one for LR, one for SA) are called 

[LR/SA]_Datamergedgroupebytail_final.xls and contain corrected data, separated by tail (each tail 

has its own sheet), and is sorted by increasing EVENT_DATE and LEG_OF_OCCURENCE. 

- Remark:  the EVENT_DATE column is not taken in the ACMS data file because there is a 

bugg for flights landing the day after they took off. Instead, the FIRST_TRANSMISSION_DATE is 

considered. This means the information found in the EVENT_DATE column of our cleansed data 

files, for ACMS data lines, is actually the FIRST_TRANSMISSION_DATE. 

 

Appendices 2: Project Codes  

All the codes related to the projected can be found in an a GitHub 

https://github.com/dangutdavid/phd_codes_pdm. The data can be obtained based on request to 

email address: Maren.dangut@cranfield.ac.uk. 

 

SMOTE with Random Forest Implementation  

 

https://github.com/dangutdavid/phd_codes_pdm
mailto:Maren.dangut@cranfield.ac.uk
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