
Modular reconfiguration of flexible
production systems using machine learning

and performance estimates

D. Scrimieri ∗ O. Adalat ∗ S. Afazov ∗∗ S. Ratchev ∗∗∗

∗Department of Computer Science, University of Bradford, Bradford,
BD7 1DP, UK (e-mail: {d.scrimieri,o.j.adalat}@bradford.ac.uk)
∗∗Department of Engineering, Nottingham Trent University,

Nottingham, NG11 8NS, UK (e-mail: shukri.afazov@ntu.ac.uk)
∗∗∗ Institute for Advanced Manufacturing, University of Nottingham,

Nottingham, NG8 1BB, UK (e-mail:
svetan.ratchev@nottingham.ac.uk)

Abstract: This paper presents an agent-based framework for reconfiguring modular assembly
systems using machine learning and system performance estimates based on previous
reconfigurations. During a reconfiguration, system integrators and engineers make changes to
the machine to meet new production requirements by increasing capacity or manufacturing
new product variants. The framework provides a method for automatically evaluating these
changes in terms of impact on the performance of the production system, and building a
knowledge base. Such knowledge is used to support future reconfigurations by recommending
changes that are likely to improve the performance based on previous reconfigurations. The
agent architecture of the framework has two levels, one for individual assembly stations and
one for the entire production line. Knowledge bases of changes are built and utilised at both
levels using machine learning and performance estimates. A prototype implementation of the
proposed framework has been evaluated on an assembly production system in an industrial
scenario. Preliminary results show that framework helps to reduce the time and resources
required to complete a system reconfiguration and reach the desired production objectives.

Copyright 2022 The Authors. This is an open access article under the CC BY-NC-ND license

Keywords: Reconfiguration, production systems, assembly, agents, machine learning.

1. INTRODUCTION

Modern markets are characterised by ever-changing prod-
uct requirements, shorter product life cycles and a large
number of product variants determined because of mass
customisation. Manufacturers must be able to respond to
dynamic markets quickly by adapting their existing equip-
ment for making new products and meeting new levels of
demand, as well as minimising disruptions. However, the
reconfiguration of equipment require a feasible plan, which
may involve a significant amount of resources and ap-
propriate knowledge and skills. Therefore, manufacturing
companies often prefer to buy new equipment and design
new production systems, as opposed to reusing existing
resources.

This paper presents an approach to capturing information
on system changes part of reconfigurations, together with
the corresponding performance impact, and producing
reusable knowledge that can guide engineers in future
reconfiguration scenarios. The knowledge is produced by a
machine learning technique based on a k-nearest neighbour
classification algorithm, which represents machine states in
adaptation contexts as points in a multidimensional space.
The proposed framework defines a multi-agent system in

which agents are deployed at two levels, at the level of
an individual station or for the entire production system,
collecting sensor data, building and utilising knowledge on
system adaptations. The framework has been applied to
an assembly system, but it is general and can be used
in other types of production systems. This research is
closely related to smart factories and the fourth industrial
revolution (Industry 4.0), in which machine data and
intelligence play a major role.

The advantage of our solution is that knowledge on recon-
figurations is captured automatically from machine data,
without the need for eliciting it from system integrators,
engineers or shop floor operators. Such knowledge is not
limited to a number of known cases, but it can be gen-
eralised and applied to similar cases in new production
scenarios with, for example, new product variants. The
multi-agent system is useful to learn and reconfigure both
locally, at the module or station level, and globally, at
the production system level. New agents can be deployed
when a module is added to the production system and the
knowledge generated on similar modules can be shared.

The rest of the paper is organised as follows. The rest
of this section reviews related research, limitations and

approaches. Section 2 presents the agent types of the
multi-agent architecture. Section 3 describes the process
of recording system changes. Section 4 introduces the
automated learning technique. Section 5 discusses an ex-
perimental evaluation on an assembly system. Section 6
contains some conclusions and future work.

1.1 Background and related work

Reconfiguration processes are often largely human-driven,
primarily based on the experience of system integrators.
While there are methods and tools for solving specific
problems, these methods and tools are not integrated into
a general framework that can be used in a wide range of
scenarios. Despite the development of self-organising intel-
ligent systems that are able to perform logical adaptations
with some level of autonomy, there is not yet a full solution
to support the full reconfiguration process. A framework
comprising information models and automated learning
mechanisms to capture knowledge on reconfigurations is
required to support engineers. This paper aims to develop
such a framework.

Related work in this direction includes a capability-based
methodology for adaptation planning, with the objective
of developing tools for the rapid reconfiguration of pro-
duction systems (Järvenpää et al., 2016). However, this
methodology has only been applied in an academic re-
search environment and not yet in an industrial context.
Also, the computational processes associated with this
ontological approach are not investigated. Research on
the computational aspects, which are the focus of this
paper, includes experience-based learning techniques us-
ing classification algorithms for the adaptation of plug
and produce systems (Scrimieri et al., 2017). In plug
and produce systems, identification and configuration of
new devices is performed with minimal human inter-
vention. One particular objective of automated learning
in intelligent manufacturing systems is accelerating the
production ramp-up phase, as investigated by Scrimieri
et al. (2015). This paper further develops these automated
learning techniques and integrates them in a multi-agent
system. A reinforcement learning approach, guided by
human experts, for the production ramp-up problem is
presented by Doltsinis et al. (2018). The results of this last
work indicate, as anticipated, that an exploration strategy
guided by a human operator is more efficient than one
that is purely algorithmic. Reinforcement learning has also
been used for intelligent scheduling of reconfigurable flow
lines (Yang and Xu, 2021). The design of the components,
knowledge representation models and intelligent agents of
an automated learning system is presented by Scrimieri
et al. (2021), which this paper is based on.

Different manufacturing paradigms, together with physical
and logical enablers, have been introduced to facilitate
system changes (ElMaraghy, 2009). The paradigms include
flexible and reconfigurable manufacturing (ElMaraghy,
2006; Koren and Shpitalni, 2010), holonic and agent-based
manufacturing (see, for example, the ADACOR architec-
ture by Barbosa et al. (2015)) and evolvable assembly
systems (Chaplin et al., 2015). A review of reconfigurable
manufacturing systems is conducted by Bortolini et al.
(2018). An interesting research direction is the combina-

tion of machine and workforce reconfigurations (Hashemi-
Petroodi et al., 2021). Reviews of agent-based manufac-
turing are presented by Shen et al. (2006) and Leitão
et al. (2013). The contributions of holonic manufacturing
to Industry 4.0 are examined by Derigent et al. (2020).
Although agent-based and holonic manufacturing provide
clear benefits, in particular in terms of flexibility and
robustness, there are still barriers to their widespread
industrial adoption. The fact that there is no guarantee
on the operational performance of agent-based solutions
prevents them from being applied to real-time control
problems and is an obstacle to their acceptance by the
management of companies.

2. MULTI-AGENT ARCHITECTURE

The proposed framework is based on a multi-agent archi-
tecture, which includes the following types of agents:

• ER Agent: The Experience Recognition agent cap-
tures the changes being made by engineers during
reconfigurations, evaluates their impact on the system
performance and stores them in an experience base
(Section 3).

• LEARN Agent: The learning agent recommends ad-
justments based on the machine state received from
the ADAPT agent and the experience base. This
agent implements the machine learning algorithm de-
scribed in Section 4.

• ADAPT Agent: When invoked by the HMI Agent, the
adaptation agent captures the current machine state,
sends it to the LEARN agent and queries this agent
for recommended adjustments (Section 4).

• HMI Agent: The Human-Machine Interface agent
allows the user (the engineer or system integrator
making changes) to interact with the agent frame-
work during a reconfiguration. On user request, this
agent queries the ADAPT agent for a ranked list of
adjustments and presents these to the user.

The agents are deployed on two levels: a station level and
a system level. The agents of the station level are used for
reconfiguring individual modules or subsystems, whereas
the agents of the system level are used for reconfiguring
the entire production system. A subsystem is a group of
modules for assembly and checking a part. We study, in
particular, production systems performing quality checks
at various steps during the assembly process. Multiple
agents of the same type can be deployed on different
stations or at the system level. A station-level experience
base is created for each station, containing only the local
changes applied to that station, whereas a system level
experience base is created for the whole system, containing
both the local changes applied to each station and the
global changes applied to the system. The agents of the
station level work independently in each station.

3. EXPERIENCE RECOGNITION

Experience recognition (ER) is the process of recording
the adjustments made during a system reconfiguration
and evaluating their effect on the system performance.
An adjustment is an atomic change (i.e. consisting of
an individual operation) such as updating pick-and-place

points, pressure of grippers, speed of conveyor belt, cam
angles or pallet geometry. While some adjustments can
be made and recorded through software, others require
physical operations and their details must be entered man-
ually in the system. A KPI (Key Performance Indicator)
must be defined in the framework in order to measure
the performance of the production system and evaluate
the impact of adjustments. A KPI is typically defined in
terms of part quality of throughput. Sensor data from,
e.g., quality inspection is used to calculate the KPI. When
new sensor data is available, a state event is generated.
The state events are stored in an event base, which can be
queried by the ER agent.

When an adjustment is performed, the framework gener-
ates an adjustment event. These events contain the details
of the adjustment, including the parameter and compo-
nent affected and the associated value. Events are seri-
alised into XML format and transmitted using a publish-
subscribe mechanism. The ER agent subscribes to adjust-
ments events in order to be informed when changes are
made and to capture them. When the ER agent receives
an adjustment event, it queries the event base for the state
events generated by the machine before and after the ad-
justment. The ER agent then constructs a representation
of the machine state before the adjustment by using the
latest events generated before the adjustment. Similarly,
the ER agent constructs a representation of the state of
the machine after the adjustment. A machine state is
represented by a list of machine parameters and variables
being monitored. The ER agent then calculates the KPI
on both machine states and uses this information to create
an experience instance in the experience base.

Experience can also be captured in adjustment sessions.
A “start adjustment session” event signals that a series of
adjustments is beginning. When the ER agent receives this
event, it captures the current machine state and calculates
the KPI. Then, it records all the adjustment events being
generated until it receives an “end adjustment session”
event signalling the end of the series of adjustments. At
that point, the ER agent captures the state of the machine
again, calculates the KPI and uses this information to
create an experience instance. Note that the effect of an
adjustment is not immediately visible after the adjustment
and it may be necessary to wait for some parts to be
assembled before capturing the new machine state and
calculating the resulting KPI.

4. AUTOMATED LEARNING

When invoked by the HMI agent during a reconfiguration,
the ADAPT agent captures the current machine state,
sends it to the LEARN agent and queries this agent for
recommended adjustments. The LEARN agent generates
a ranked list of adjustments that are applicable to the
given machine state (also called adaptation context in the
following, when referring to the machine state before a
change). The ranked list is then presented to the user
through the HMI Agent. The adjustments are found by
searching the experience base and their rankings are cal-
culated based on the similarity of the adaptation contexts
and the effectiveness of the adjustments in the experience
base. Similarity of adaptation contexts is measured using

?
K=3 K=5

Fig. 1. kNN algorithm: The point to classify is indicated by
‘?’. The possible classes are: ‘blue triangles’, ‘orange
squares’ and ‘yellow circles’

a distance function calculated on multidimensional points
representing machine states, constructed from sensor data
and configuration parameters. The effectiveness of a past
adjustment is measured by the KPI calculated on the
machine state after the change.

The adjustments that were applied in the most similar
contexts and that produced the best results are placed
at the top of the list. The rationale is that an effective
adjustment in a similar context is likely to produce a
positive result. The first adjustment of the list is therefore
the one recommended by the LEARN agent. The list
may contain a large number of adjustments, depending on
the accumulated experience and the number of possible
adjustments. The adjustments with the lowest rankings
could be filtered out. However, it may be useful to provide
even the adjustments with the lowest rankings, so that the
user can avoid them.

The process carried out to determine which adjustment
to perform in one adaptation context can be framed as a
classification problem. The objective of this problem is to
learn how to identify the class of an instance based on a set
of examples. The learning system receives in input some
examples (training set) and produces a program (classifier)
that is able to infer the class of instances that are not in the
training set. In our reconfiguration problem, the instances
to classify are the adaptation contexts in which the user
queries the learning system, the classes are the possible
adjustments and the training set is given by the experience
instances in the experience base.

The reconfiguration problem is, however, more complex
than a typical classification. The set of possible adjust-
ments depends on the specific context. In general, there
are preconditions associated with an adjustment, indicat-
ing if the adjustment is applicable or not. For example,
adjustments related to devices not currently connected are
clearly not applicable. In addition, we do not want only to
identify what type of adjustment is the best, but also how
to make it, that is, the values of associated parameters.
For example, if the recommended adjustment is “increase
the pressure of cylinders”, we need to know what the new
pressure should be. In the rest of this section, we will show
how to determine both adjustment types and values.

4.1 Experience base search

The search in the experience base is based on a variant
of the k-nearest neighbour classification algorithm (kNN).
Adaptation contexts are represented by points in a multi-

dimensional space and their similarity is captured by a
distance function. In kNN, given a point x to classify,
the k nearest points to x are located and the class to
assign to x is chosen among the neighbours’ classes by
applying a voting scheme. A simple voting scheme consists
of assigning the most common class among the neighbours,
as illustrated in Figure 1. If k = 3 (solid line circle) the
most common class is ‘blue triangles’. If k = 5 (dashed
line circle) the most common class is ‘orange squares’.
The class of an adaptation context is the adjustment being
applied in it.

Adaptation contexts can be defined by numerical or cate-
gorical attributes. The value of an attribute can be unde-
fined if, for example, the module or sensor that produces
it is not present or is faulty. Hence, we use a heterogeneous
Euclidean-overlap metric (HEOM) (Wilson and Martinez,
1997):

d(x,x′) =

√√√√ n∑
i=1

wi(di(x,x′))2,

where:

• x and x′ are two n-dimensional points,
• wi ∈ [0, 1] is the weight assigned to attribute i, and
• di(x,x

′) ∈ [0, 1] is the distance between x and x′ on
attribute i, defined as:

di(x,x
′) =

 1 xi or x′i is unknown,
overlap(xi,x

′
i) attribute i is nominal,

rndiffi(xi,x
′
i) otherwise.

The function overlap gives 0 if its arguments are the
same, otherwise 1. The function rndiffi (range normalised
difference) is defined as:

rndiffi(x, y) =
|x− y|

maxi−mini
,

where maxi and mini are, respectively, the maximum and
minimum values observed in the training set for attribute
i.

In the generation of the rankings, we consider not only
the similarity between adaptation contexts, but also the
system performance obtained by the adjustments in the
experience base. The performance is measured by the KPI
of the machine state after the adjustment. An experience
instance has the form (x, adj,x′), where:

• adj = (t, v) is an adjustment of type t and value v
• x is the machine state before adj
• x′ is the machine state after adj

Let

• E = (x, adj,x′) be an experience instance,
• y be an adaptation context,
• d be a HEOM, and
• f be a KPI.

The similarity-performance function edf (Scrimieri et al.,

2015) is defined as:

edf (E,y) =

d(x,y)

f(x′)
if f(x′) 6= 0

∞ otherwise.

The smaller the value of edf (E,y), the better adj is antici-
pated to be in y.

Procedure 1 rank-adjustments

Input: experience instances E1, . . . , En (k ≤ n), adapta-
tion context y, HEOM d, KPI f

Output: ranked list of adjustments
for all 1 ≤ i ≤ n do

calculate edf (E,y)
end for
sort E1, . . . , En by edf (E,y)

{Eσ1
, . . . , Eσk

are now the k nearest neighbours in
sorted order}
for all 1 ≤ i ≤ k do

calculate w(Eσi
)

end for
let t1, . . . , tm be the adjustment types in
Eσ1

, . . . , Eσk
(m ≤ k)

for all 1 ≤ j ≤ m do
let E′i = (xi, adji,x

′
i) ∈ {Eσ1

, . . . , Eσk
} be the

experience instances such that adji = (tj , vi)
w sumj ←

∑
i w(E′i)

v̄j ←
∑
i viw(E′i)

w sumj

end for
sort (t1, v̄1), . . . , (tm, v̄m) in descending order of w sumj

4.2 Voting and ranking

Let y be an adaptation context to be classified, d a distance
function and f a KPI. There are two cases to consider:

k = 1 The experience instances are sorted by edf (E,y), in
ascending order, to produce a ranked list of adjustments
for y. The first experience instance in the list (the
one with the smallest value of edf (E,y)) contains the
recommended adjustment type and value.

k > 1 This is described in Procedure 1. Let E1, . . . , Ek be
the k experience instances having the smallest values of
edf (E,y), in ascending order. A class must be selected
among those of these k nearest neighbours. To this
end, a voting scheme is applied. Note that selecting the
most common class among the neighbours may not be
a good scheme, because this class is likely to be the
most frequent in the training set. One method is to
assign different weights to the neighbours, based on their
respective distances from the point to be classified. In
our solution, we use edf to calculate the weights. This
way, both the distance of a neighbour and the impact
of its associated adjustment on the performance of the
system are considered. We define the weight w(Ei) of
Ei as follows:

w(Ei) =
edf (Ek,y)− edf (Ei,y)

edf (Ek,y)− edf (E1,y)

The instances E1, . . . , Ek are grouped by class. For
each class, the weights of its instances are summed
up. The recommended adjustment type is represented
by the class having the largest sum of weights. For
an adjustment type t, the instances among E1, . . . , Ek
having class t are selected. If numerical, the adjustment
value is calculated as the weighted mean of all the

adjustments values of these selected instances. The
values w(Ei) are used as weights. Further adjustments
can be proposed similarly by considering the other
classes in descending order of sum of weights.

5. EXPERIMENTAL EVALUATION

The proposed framework was evaluated on a production
system for the assembly of injection pens. This system is
made up of various pick-and-place and inspection modules.
The pick-and-place modules are used for rotating and
moving parts, and putting them together. The inspection
modules are used for checking the presence and correct
position of parts on pallets, and the quality of the finished
product in terms of correct dimensions and assembly. Fig-
ure 2 shows a picture of the machine. If a finished product
has passed all the checks, then it is accepted, otherwise it
is rejected. Bad parts are not reworked because the process
would not be cost-effective. Therefore, maximising the
number of good parts is indispensable for this production
system.

A conveyor system is used to transport pallets holding the
parts from station to station. An injection pen consists of
three parts: a body, a tank and a cap. When fed into the
line, each pallet holds the parts for assembling 3 injection
pens and, at the end of the process, holds the finished
products. Each pick-and-place module operates 3 grippers,
one for each pen to assemble. The assembly machine
is cam-driven and consists of 7 modules performing the
following operations:

(1) Check the presence of the parts on the pallet;
(2) Pick-and-place tanks into bodies;
(3) Check that tanks have been inserted correctly into

bodies;
(4) Pick-and-place caps onto bodies;
(5) Check that caps have been inserted correctly onto

bodies;
(6) Reverse pens;
(7) Check reversal.

The sequence of operations is linear.

The aim of the experiment was to evaluate how the self-
learning framework can aid engineers in system reconfigu-
rations. This was done by adapting the production system
for the manufacture of a product variant with some minor
differences compared to the original product, in terms of
physical and geometrical characteristics. The adaptation
involved making some mechanical changes, in particular
changing some of the grippers. All the affected parameters
in grippers and inspection devices had to be adjusted
(e.g. position and dimensions of the parts, opening and
closing angles of the grippers, pressure of the grippers).
Although the product variant was not much different to
the original one, such reconfiguration process could be
laborious as assembly operations must be very precise and
require repeatable positioning.

The experiment was organised as follows. First, the system
was reconfigured by 4 engineers individually. During this
phase the framework was used to capture the changes
being made by the engineers and to build experience,
but not to recommend changes. An experience base of
adjustments was built by the ER agent at the system

Fig. 2. Production system for the assembly of injection
pens

0

5

10

15

20

25

30

35

Eng1 Eng2 Eng3 Eng4

N
o

. c
h

an
ge

s Unranked
changes

Other ranked
changes

First-ranked
changes

Fig. 3. Types of changes applied by the engineers of the
group that used the framework

level. The original state of the machine was restored after
each engineer completed the process. Then, the system was
reconfigured by 4 other engineers individually using the
framework with the experience base built in the previous
phase. The engineers of the two groups had comparable
experience and skills, and did not communicate during
the experiment. The number of adjustments performed
by the two groups for completing the process and the
average levels of system performance reached at the end
were compared.

The performance of the system was characterised in terms
of quality of the finished product. The number of good
parts out of the total number of parts assembled in a batch
was used as KPI. The value of this KPI was updated every
time the quality of an assembled part was checked. The
number of parts produced by each engineer between two
consecutive adjustments was fixed and it was equal to 6.
The current KPI value was visible to the engineers to allow
them to evaluate the result of their actions. The engineers
were expected to obtain a target KPI value of 0.98 in
order for the reconfiguration process to be considered
complete. After 25 steps, the first group (that did not
use the framework) reached an average KPI of 0.8, while
the second group (that used the framework) reached an
average KPI of 0.95. Further adjustments were required
for all engineers except one to complete the process. To
reach the target KPI, the 4 engineers of the group that
did not use the framework made respectively 30, 33, 36
and 37 adjustments, whereas the 4 engineers of the group
that used the framework made respectively 25, 29, 29 and
31 adjustments.

Figure 3 shows the number of times that the engineers of
the second group applied the following types of changes:
1) the adjustment recommended by the ADAPT agent
(i.e. the first-ranked adjustment), 2) a different adjustment
ranked by the ADAPT agent, 3) any other adjustment not
ranked by the ADAPT agent. The engineers followed the
recommendations of the ADAPT agent most of the times.
Only in a few cases did they choose another adjustment
among those suggested, and in very few cases a different
one. They decided not to apply any of the suggested
adjustments when they thought that those changes were
not useful or safe in that context, that they had already
applied them (successfully or not), or that they could get
better results with different changes.

The evaluation suggests that the use of the proposed
framework to rank and recommend changes allows engi-
neers to perform system reconfigurations in fewer steps
and thus in a shorter period of time.

6. CONCLUSION

An agent-based framework with an automated method
for learning from experience captured on an assembly
production system has been presented. The experimental
evaluation indicates that the framework can effectively
support engineers in the selection of suitable adjustments
during a reconfiguration. The framework can be applied
to other production systems by specifying the attributes
of the machine states, adjustment types and KPI.

The accuracy of the technique depends on the similarity-
performance function, and thus on the distance and KPI
functions. The use of a distance function is based on
the assumption that the more similar two states are, the
more likely an adjustment has the same effect on them.
To refine the similarity-performance function, attributes
should be weighted dynamically based on their relevance
in the selection of a certain adjustment.

FUNDING

This work was supported by the SURE Research Projects
Fund of the University of Bradford and the European
Commission [grant agreement n. 314762].

REFERENCES

Barbosa, J., Leitão, P., Adam, E., and Trentesaux, D.
(2015). Dynamic self-organization in holonic multi-
agent manufacturing systems: The ADACOR evolu-
tion. Computers in Industry, 66, 99–111. doi:
https://doi.org/10.1016/j.compind.2014.10.011.

Bortolini, M., Galizia, F.G., and Mora, C. (2018). Recon-
figurable manufacturing systems: Literature review and
research trend. Journal of Manufacturing Systems, 49,
93–106. doi:https://doi.org/10.1016/j.jmsy.2018.09.005.

Chaplin, J., Bakker, O., de Silva, L., Sanderson, D., Kelly,
E., Logan, B., and Ratchev, S. (2015). Evolvable assem-
bly systems: A distributed architecture for intelligent
manufacturing. IFAC-PapersOnLine, 48(3), 2065–2070.
15th IFAC Symposium onInformation Control Problems
in Manufacturing.

Derigent, W., Cardin, O., and Trentesaux, D. (2020).
Industry 4.0: contributions of holonic manufacturing

control architectures and future challenges. Journal
of Intelligent Manufacturing. doi:10.1007/s10845-020-
01532-x.

Doltsinis, S., Ferreira, P., and Lohse, N. (2018). A sym-
biotic human-machine learning approach for production
ramp-up. IEEE Transactions on Human-Machine Sys-
tems, 48(3), 229–240.

ElMaraghy, H.A. (2006). Flexible and reconfigurable man-
ufacturing systems paradigms. International Journal of
Flexible Manufacturing Systems, 17, 261–276.

ElMaraghy, H.A. (2009). Changing and evolving prod-
ucts and systems – models and enablers. In H.A.
ElMaraghy (ed.), Changeable and Reconfigurable Manu-
facturing Systems, 25–45. Springer London, London.

Hashemi-Petroodi, S.E., Dolgui, A., Kovalev, S., Kovalyov,
M.Y., and Thevenin, S. (2021). Workforce reconfigu-
ration strategies in manufacturing systems: a state of
the art. International Journal of Production Research,
59(22), 6721–6744. doi:10.1080/00207543.2020.1823028.

Järvenpää, E., Siltala, N., and Lanz, M. (2016). Formal
resource and capability descriptions supporting rapid
reconfiguration of assembly systems. In 2016 IEEE In-
ternational Symposium on Assembly and Manufacturing
(ISAM), 120–125.

Koren, Y. and Shpitalni, M. (2010). Design of
reconfigurable manufacturing systems. Journal
of Manufacturing Systems, 29(4), 130–141. doi:
https://doi.org/10.1016/j.jmsy.2011.01.001.

Leitão, P., Mař́ık, V., and Vrba, P. (2013). Past, present,
and future of industrial agent applications. IEEE Trans-
actions on Industrial Informatics, 9(4), 2360–2372.

Scrimieri, D., Oates, R., and Ratchev, S. (2015). Learning
and reuse of engineering ramp-up strategies for modular
assembly systems. Journal of Intelligent Manufacturing,
26, 1063–1076. doi:10.1007/s10845-013-0839-6.

Scrimieri, D., Afazov, S.M., and Ratchev, S.M. (2021).
Design of a self-learning multi-agent framework for the
adaptation of modular production systems. The Inter-
national Journal of Advanced Manufacturing Technol-
ogy, 115(5), 1745–1761. doi:10.1007/s00170-021-07028-
z.

Scrimieri, D., Antzoulatos, N., Castro, E., and Ratchev,
S.M. (2017). Automated experience-based learning for
plug and produce assembly systems. International
Journal of Production Research, 55(13), 3674–3685. doi:
10.1080/00207543.2016.1207817.

Shen, W., Hao, Q., Yoon, H.J., and Norrie, D.H. (2006).
Applications of agent-based systems in intelligent man-
ufacturing: An updated review. Advanced Engineering
Informatics, 20(4), 415–431.

Wilson, D.R. and Martinez, T.R. (1997). Improved het-
erogeneous distance functions. Journal of Artificial In-
telligence Research, 6, 1–34.

Yang, S. and Xu, Z. (2021). Intelligent scheduling and
reconfiguration via deep reinforcement learning in smart
manufacturing. International Journal of Production
Research. doi:10.1080/00207543.2021.1943037.

