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Abstract

Liquid fluidization of mixtures of solid particles of spherical and cylindrical

shape has been numerically simulated. The simulations explicitly resolve the

solid–liquid interfaces by means of an immersed boundary method

implemented in a lattice-Boltzmann flow solver. A soft collision algorithm

deals with particle–particle contacts and close-range hydrodynamic interac-

tion. The systems studied have an overall solids volume fraction of 0.40, with

5%–35% of the overall solids volume contained in the cylinders. One focus of

the study is on the effect of the length over diameter aspect ratio (that has been

varied between 4–10) of the cylinders on the co-fluidization behaviour. The

average slip velocity of the cylinders only weakly depends on the fraction of

the cylinder volume in the solid particle mixture. The cylinders do stir the sys-

tem, with velocity fluctuation levels increasing if the number of cylinders rela-

tive to the number of spheres is increased. When co-fluidized, the taller

cylinders preferentially orient vertically, as they also do in cylinder-only

fluidization.
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1 | INTRODUCTION

Processing of dense fluid–solid mixtures is commonplace
in many industrial processes. For this reason, the fluid
dynamics of suspensions is a topic of considerable socie-
tal and economic relevance. Control over suspension
transport phenomena enables the design and optimiza-
tion of industrial processes. In light of this, considerable
research effort is directed towards developing computa-
tional methodologies for predicting the behaviour of
multiphase flow systems. The overarching challenge is
the multi-scale nature of multiphase flow that has a large
disparity in length scales. For fluid–solid systems—the

topic of this paper—length scales range from equipment
size (of the order of metres) to particle size (anywhere
between hundreds of nanometres and millimetres), not
to speak of the length-scales associated with the particle
surfaces (such as roughness). Capturing the full spectrum
of length scales (and associated time scales) in a compre-
hensive computer simulation is currently impossible and
will be so in the foreseeable future.

For this reason, computer simulations of industrial-
scale multiphase transport processes use closure models
to account for the effect particle-scale phenomena have
on macroscopic behaviour.[1] Such models involve
detailed notions as to how solid particles dynamically
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interact with the surrounding fluid. These notions have
been obtained through theory,[2] experiment,[3] as well as
simulation.[4] This paper further explores the latter
aspect: by performing detailed, particle-resolved, micro-
scopic simulations, we probe dynamic solid–liquid inter-
actions. We specifically (and explicitly) involve particle
shape in our work. Most of the models for solid–fluid
interactions are based on particles being spherical, or at
least sufficiently spherical, so as to apply what is known
as drag forces on single spheres and sphere assemblies.
We introduce cylindrical particles in the micro-scale sim-
ulations. This is because of the practical relevance of fibre
suspensions in, for instance, paper pulp processing or
biomass conversion. It is also because cylinders with cir-
cular cross-sections have only one aspect ratio (length
over diameter ℓ=d) so that particle shape effects are
controlled by only one dimensionless parameter.

The micro-scale simulations presented here are of flu-
idized systems in fully periodic, three-dimensional
domains with the particles freely moving under the influ-
ence of fluid flow, gravity, and particle–particle interac-
tions. We have performed such simulations previously
for spheres,[5] rigid cylinders,[6] and flexible cylinders[7]

with the aim of quantifying solid–fluid drag, (collisional)
stress, the evolution of particle microstructure, and (for
cylinders) the way they orient themselves relative to the
direction of gravity. In the current paper, we study mix-
tures of spheres and cylinders. This choice has been insti-
gated by previous experimental and computational
studies on the co-fluidization of cylinders.[8–11] In an
attempt to improve the fluidization behaviour of cylindri-
cal particles, they are mixed with particles of a (more)
spherical shape.

The aim of this paper is to provide a detailed look into
the liquid fluidization of mixtures of cylinders and spheres
through particle-resolved simulation. The focus is on
liquid–solid systems (rather than gas–solid) with a view to
our interest in bagasse (fibre-pulp biomass) processing.[12]

We are not only interested in average fluidization (i.e., slip)
velocities but also in particle velocity fluctuations as these
are relevant in applications that involve solid–liquid mass
transfer. The orientation of the cylinders relative to gravity
is another point of attention. In simulations of dense
cylinders-only fluidization, we noted a very strong prefer-
ence for vertical orientation of the cylinders,[7] in qualitative
agreement with experimental work.[13,14] The orientation
preference of cylinders might be a reason for their poor flu-
idization characteristics.

This paper has been organized as follows: the next
section defines the flow geometry and process conditions,
mostly in terms of dimensionless numbers. We then
briefly summarize the numerical procedures. They have

been documented in previous papers in full detail, the
novelty being that now we combine particles of spherical
and cylindrical shape in a single simulation. It then is
explained how the flow systems develop to a dynamically
steady state. Statistical analyses of data collected during
steady state are the core of Section 5. In this section, we
also compare co-fluidized systems with cylinder-only flu-
idization. The final section reiterates the main conclu-
sions of the work.

2 | FLOW SYSTEMS

The three-dimensional flow domains are rectangular,
with size nx �ny �nz, and have fully periodic boundary
conditions. They contain a Newtonian fluid that has den-
sity ρ and kinematic viscosity ν, and rigid solid particles
in the form of identical spheres and identical cylinders
with an overall solids volume fraction ⟨ϕ⟩. The spheres
have diameter a d, and the cylinders have a length ℓ and
a diameter d (i.e., their diameter is equal to the diameter
of the spheres). The main dependencies we will be inves-
tigating are the aspect ratio of the cylinders ℓ=d that has
been varied in the range of 4–10 and the solids volume
contained in the cylinders relative to the total solids vol-
ume that has been varied from ⟨ϕc⟩=⟨ϕ⟩ = 0.05–0.35
(with ⟨ϕc⟩ being the volume fraction of cylinders). All
solids have the same density ρp such that the density
ratio γ¼ ρp=ρ = 2.0; this is a value typical for a solid–
liquid system.

Gravity points in the negative z-direction: g¼�gez.
Since we have fully periodic boundary conditions, we
need to explicitly balance forces over the entire system.
This is achieved by compensating the net gravity acting
on the particles in the negative z-direction with a body
force f acting on the fluid in the positive z-direction
f ¼ ρ⟨ϕ⟩ γ�1ð Þgez.[5] Gravity and density ratio are com-
bined in the Archimedes number Ar¼ γ�1ð Þgd3=ν2 that
has been set at Ar¼ 864. The choice of using d as the
length scale in Ar is because this is the length scale
shared by all particles—spheres and cylinders—in the
simulations. The overall solids volume fraction in this
study has been fixed to ⟨ϕ⟩ = 0.40.

3 | NUMERICAL PROCEDURES

The fluid flow is solved by the means of the lattice-
Boltzmann (LB) method,[15] specifically the scheme pro-
posed by Somers.[16,17] It operates on a uniform cubic grid
with spacing Δ and evolves in time with a time step Δt.
The spatial resolution is such that d¼ 16Δ, and the
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temporal resolution is such that the viscous time scale
d2=ν¼ 6400Δt. Grid and time step convergence studies
have been discussed in previous work.[6] At Archimedes
numbers comparable as to the one in that paper, dif-
ferences in average hindered settling speeds between
d¼ 16Δ and d¼ 24Δ are within 1%.[6]

An immersed boundary method (IBM) has been used
to represent the surfaces of solid particles.[18] These sur-
faces are covered with marker points that have a nearest
neighbour spacing in the range of 0:5Δ – 0:7Δ. At the
marker points, the fluid is forced to the same velocity as
the velocity of the solid surface so as to achieve no-slip.
The force distribution over the solid surface of each
particle is integrated to determine the hydrodynamic
force and torque acting on the particle. Along with the
contact forces and their resulting torques (see below)
and net gravity, the hydrodynamic forces, and torques
are used to update the linear and rotational equations
of motion of each particle so as to determine their lin-
ear and angular velocity. Updating the orientation of
the particles makes use of quaternions.[19,20] Particle
updates as described above use the same time step Δt
as the LB updates.

The final element of the simulation procedure is colli-
sion handling. The IBM marker points are also instru-
mental in this respect. If two marker points on two
different particles get into close proximity, a contact force
between them is activated. The contact force has two ele-
ments: (1) a linear elastic repulsive force that mimics
direct (solid–solid) contact between particles and (2) a
force that depends on the relative velocity between the
marker points that mimics lubrication. The expressions
for the contact force have been given in full detail in
previous work.[6] The contact force coefficients used in
that paper are identical to the ones used in the current
paper.

4 | SET-UP OF SIMULATIONS

The particles are placed in a non-overlapping manner in
the nx �ny �nz fully periodic flow domain. The default
domain size is 15d �15d �30d. Domain size effects have
been assessed previously[6] and also in this paper for one
case that had a domain of volume 12d �12d �24d and con-
tained ℓ=d = 10 cylinders. These are the tallest cylinders
studied for which domain size effects are expected to be
most critical. Initially, fluid and particles are at rest.

Examples of the way the systems develop are illus-
trated in Figures 1 and 2. Figure 1 shows the time
series of the Reynolds number per particle type,

defined as Re¼ ⟨uz⟩�⟨upz⟩j jde
ν with ⟨uz⟩ the volume-averaged

superficial fluid velocity in the z-direction, ⟨upz⟩ the vol-
ume-averaged particle velocity in the z-direction, and de
the equivalent particle diameter (de ¼ d for the spheres

and de ¼ d
ffiffiffiffiffiffiffiffiffiffi
3
2ℓ=d

3

q
for the cylinders). In Figure 1, we dis-

tinguish between the Reynolds numbers of spheres and cyl-
inders. In the top panel of Figure 1, the fluctuations of the
Reynolds number of the cylinders are much larger than
those of the spheres, simply because there are many more
spheres than cylinders (4899 spheres and 21 cylinders). The
spheres quickly establish a (dynamically) steady value for
their Reynolds number. Reaching a dynamically steady
Reynolds number takes much longer for the cylinders. The
reason for the latter is illustrated in the top row panels of
Figure 2 that show instantaneous realizations of particle

configurations for ⟨ϕc⟩=⟨ϕ⟩ = 0.05. The cylinders need
time to orient themselves and to spread evenly over the
flow domain. For instance, as shown in Figure 2, at

tν=d2 ¼ 3:13 the cylinders tend to prefer to be on one side

of the domain. After tν=d2 ≈ 20, the cylinder Reynolds
number fluctuates around a stable value.

Figure 2 also shows examples of how a system with
⟨ϕc⟩=⟨ϕ⟩ = 0.35 was initialized. As can be seen in Figure 1,
this results, for the cylinders, in very strong Reynolds
number fluctuations at the start of the simulation.

FIGURE 1 Time series of Re based on the slip velocity

between fluid and particles for cylinders and spheres as indicated.

The cylinders have an aspect ratio ℓ=d¼ 8. Top panel: 5% of solids

volume is in the cylinders (⟨ϕc⟩=⟨ϕ⟩ = 0.05) and bottom panel:

⟨ϕc⟩=⟨ϕ⟩ = 0.35
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In order to have sufficient data for meaningful statis-
tical analysis over a quasi-steady time window, all simu-
lations reported have run until at least to td2=ν¼ 35.

5 | RESULTS

After the time series, such as the ones in Figure 1, indi-
cate that a dynamically steady state has set in, we use
data collected over the remainder of the simulation time
to perform statistical analyses. The Reynolds number
data in Figure 1 is an average over the flow volume as a
function of time. Also, averaging over time provides dou-
ble averaged (time and volume) Reynolds numbers.
These are presented in Figure 3 for all cases considered.
As for cylinder-only fluidization,[6] the Reynolds number
increases with an increasing aspect ratio ℓ=d. It is quite
remarkable to see that the Reynolds number of the cylin-
ders (top panel of Figure 3) does not significantly depend
on the relative amount of cylinder volume, expressed as
⟨ϕc⟩=⟨ϕ⟩. For ℓ=d<10, these constant levels of Re, and

thus the cylinder slip velocities, are slightly higher than
for fluidization of cylinders only at an overall solids vol-
ume fraction of ⟨ϕ⟩ = 0.40 (indicated by the dashed lines
in Figure 3 that are data from previous works[6,7]).

The lower panel of Figure 3 indicates that the spheres
slightly slow down if the solids volume contained in the
cylinders increases. That effect does not exhibit a clear
trend in terms of the aspect ratio of the cylinders the
sphere is mixed with.

Figure 3 might suggest that (at least up to ⟨ϕc⟩=⟨ϕ⟩¼
0.35) the cylinders hardly interact with one another
given that their average speed is independent of

⟨ϕc⟩=⟨ϕ⟩. As we see in Figure 4, however, there is a

marked effect of ⟨ϕc⟩=⟨ϕ⟩ on the fluctuating velocity
of the cylinders. The Reynolds number, associated with

the particle velocity fluctuations, is defined as Rerms,α ¼
de

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
upα� ⟨upα⟩
� �2q

=ν where α indicates the coordinate

direction. The time average involved in determining
Rerms,α is over a time window after the flow system has
become dynamically steady.

FIGURE 2 Instantaneous realizations of particles: spheres and cylinders with ℓ=d¼ 8. Top row: 5% of the solids volume is in the

cylinders and bottom row: 35% of the solids volume is in the cylinders. From left to right tν=d2 ¼ 0, 1:56, 3:13, 36:7. The spheres have been

made semi-transparent to allow us to see (most of) the cylinders
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There are a few observations to be made in Figure 4.
(1) Velocity fluctuation levels in vertical as well as in hor-
izontal direction increase with the length of the cylinders.
(2) Vertical velocity fluctuations of the cylinders as well
as of the spheres increase with increasing ⟨ϕc⟩=⟨ϕ⟩.

(3) Horizontal velocity fluctuations do not show a consis-
tent trend with ⟨ϕc⟩=⟨ϕ⟩. (4) Velocity fluctuations in the
vertical direction are systematically stronger than in the
horizontal direction. (5) The velocity fluctuations of the
spheres barely depend on the aspect ratio of the cylinder
they are mixed with.

The increasing vertical fluctuation levels with increas-
ing ⟨ϕc⟩=⟨ϕ⟩ imply that the cylinders tend to agitate the
system (fluid, spheres, and cylinders). Why this only
shows in the vertical direction is not directly clear. The
fluidization velocity fluctuations are stronger in the direc-
tion of gravity than in the lateral direction; this concept
has earlier been established for fluidization of spheres[5]

and of cylinders[6,7] separately and now thus also for mix-
tures of spheres and cylinders.

Figures 3 and 4 contain additional data points for a
domain smaller than the default domain for the case with
⟨ϕc⟩=⟨ϕ⟩ = 0.05 and ℓ=d¼ 10 (see Section 4 for the
respective domain sizes). It can be observed that there
are only marginal differences between the results
obtained in the two domains. Given that this condition is
for the tallest cylinders, we are confident that, overall,
the results presented do not depend significantly on our
choice of domain size.

Relative motion between fluid and cylinders is not
only the result of linear velocities, but also of angular
velocities of the cylinders. In order to estimate the rela-
tive strength of the rotational fluid–solid slip of the cyl-
inders, we determine a root-mean-square rotational

Reynolds number Rerot ¼ de

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ω2
p2þω2

p3

� �r
ℓ
2=ν with ωp2

and ωp3 angular velocities about principal axes 2 and
3 (principal axis 1 being the centre line) of the cylinder.
The results in Figure 5 show that Rerot is comparable to
Rerms of the horizontal linear velocities (lower panel of
Figure 4) and significantly smaller than Rerms of the verti-
cal linear velocities. Interestingly, Rerot only weakly
depends on ℓ=d, at least for ⟨ϕc⟩=⟨ϕ⟩≤ 0:15. Since Rerot is
proportional to ℓ, this implies higher rotation rates for
shorter cylinders.

FIGURE 3 Time and volume average slip velocity Reynolds

number as a function ⟨ϕc⟩=⟨ϕ⟩ (the fraction of solids volume

contained in cylinders relative to the total solids volume) for

various aspect ratios of the cylinders ℓ=d as indicated. Top panel:

Reynolds number for the cylinders and bottom panel: Reynolds

number for the spheres. The dashed horizontal lines in the top

panel indicate Re for cylinder-only fluidization at ⟨ϕ⟩¼ 0:40[6,7] for

(from top to bottom) ℓ=d = 10, 8, 6, and 4, respectively. The blue

symbol is for a smaller domain size (see text)

FIGURE 4 Time and volume average Reynolds number

associated with particle velocity fluctuations (Rerms) as a function

⟨ϕc⟩=⟨ϕ⟩. Cases with various ℓ=d as indicated. Black symbols relate

to cylinders’ velocity fluctuations, whereas red symbols relate to

spheres’ velocity fluctuations. The blue and green symbols are for a

smaller domain. Top panel: fluctuations in vertical direction and

bottom: fluctuations in the horizontal direction

FIGURE 5 Time and volume average Reynolds number

associated with cylinder rotation fluctuations Rerot (definition, see

text) as a function ⟨ϕc⟩=⟨ϕ⟩. Cases with various ℓ=d as indicated
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In dense fluidized cylinder-only suspensions, tall cyl-
inders prefer to orient vertically.[7,13] The shorter the cyl-
inders or the lower the solids volume fraction, the
weaker this preferential orientation becomes.[6] In that
light, it is relevant to investigate the orientation prefer-
ence of cylinders when co-fluidized with spheres. Cylin-
der orientation has been quantified by the distribution of
the angle φ between the centre line of the cylinder and
the vertical direction; φ¼ 0 is vertical, φ¼ π=2 horizon-
tal. An isotropic distribution of orientations has a
φ-distribution according to sinφ. Figure 6 shows the ori-
entation angle distributions for all cases considered in
this paper. Comparison between the sinφ distribution
and the simulated distributions teaches us that in all
these cases, the cylinders tend to be fluidized with the

small angles being over-represented and the large angles
under-represented. This effect is strongest for the tallest
(ℓ=d = 10) cylinders and weakest for the (shortest) ℓ=d = 4
cylinders. For ℓ=d = 10, it is surprising that the prefer-
ence for small angles with the vertical is observed to be
approximately of the same extent over the entire range of
⟨ϕc⟩=⟨ϕ⟩ investigated. One could expect that the presence
of spheres would randomize the cylinder orientation so
that the more spheres (i.e., the lower ⟨ϕc⟩=⟨ϕ⟩), the more
isotropic the φ distribution. In Figure 6, this effect can be
identified for ℓ=d≤ 8, but not for ℓ=d = 10.

It is meaningful to compare co-fluidization of
sphere-cylinder mixtures with the fluidization of only
cylinders. Results from simulations of the latter systems
have been previously published.[6,7] The comparison

FIGURE 6 Probability density functions (pdfs) of the angle φ of the cylinders with the vertical for simulations with (from left to right)

decreasing ℓ=d and (from top to bottom) decreasing ⟨ϕc⟩=⟨ϕ⟩. Symbols are simulation results, and the red curve is sinφ
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is shown in Figure 7 in terms of orientation angle distri-
butions with a focus on the co-fluidized systems with
⟨ϕc⟩=⟨ϕ⟩ = 0.25 that have an overall solids volume frac-
tion of ⟨ϕ⟩¼ 0:40. We compare these results with—on
one side—only-cylinder simulations with ⟨ϕ⟩¼ 0:40,

and—on the other side—only-cylinder simulations with
⟨ϕ⟩¼ 0:10, the latter because this is equal to ⟨ϕc⟩ of the
co-fluidized cases.

As we see in Figure 7, the ⟨ϕ⟩¼ 0:40 cases with only
cylinders have a strong (very strong for ℓ=d = 10)

FIGURE 7 Probability density functions (pdfs) of the angle φ of the cylinders with the vertical for simulations with (from left to right)

decreasing ℓ=d. Top row: co-fluidized systems with ⟨ϕc⟩=⟨ϕ⟩ = 0.25 (and ⟨ϕ⟩¼ 0:40). Middle row: cylinders only with ⟨ϕ⟩¼ 0:40.[7] Bottom

row: cylinders only with ⟨ϕ⟩¼ 0:10.[7] Symbols are simulation results, and the red curve is sinφ

FIGURE 8 Instantaneous realizations of cylinder-only fluidization (from left to right) with ⟨ϕ⟩¼ 0:40, co-fluidization with ⟨ϕc⟩=⟨ϕ⟩
= 0.25 and ⟨ϕ⟩¼ 0:40, and cylinder-only fluidization with ⟨ϕ⟩¼ 0:10. In all three cases, ℓ=d¼ 10
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preference for vertical orientation; the cases with ⟨ϕ⟩¼
0:10 are to a fair approximation, isotropic. The co-
fluidized cases are in between these two “extremes”.
Given the isotropy of spheres, one could have expected
the co-fluidized cases to be closer to the isotropic
(⟨ϕ⟩¼ 0:10) cases. The opposite is true: at least for
ℓ=d<10, the co-fluidized angle distributions are much
closer to the ⟨ϕ⟩¼ 0:40 cylinder-only distributions than
to the ⟨ϕ⟩¼ 0:10 cylinder-only distributions. Apparently,
the interstitial spheres play a role in communicating
the preference for the smaller orientation angles
among the co-fluidized cylinders. Figure 8 provides
anecdotal evidence for the distributions for ℓ=d¼ 10, as
shown in Figure 7, and some qualitative insight into how
the cylinders orient themselves.

6 | CONCLUSIONS

This paper reports on particle-resolved simulations of co-
fluidization of cylinders and spheres with all solids hav-
ing the same density. The solid–fluid density ratio γ¼ 2 is
representative of liquid–solid systems. The flow systems
are tri-periodic, mimicking a small sample in a much
larger fluidized bed away from walls or internal struc-
tures. Results have mostly been presented in statistical
form—as averages and distributions—from data collected
over a period of steady fluidization. All cases considered
have the same Archimedes number and the same overall
solids volume fraction. The dependencies investigated
were the aspect ratio of the cylinders and the amount of
volume contained in the cylinders, keeping the overall
solids volume constant.

The average superficial slip velocity of cylinders of equal
length appears to be independent of the amount of cylinder
volume present, while longer cylinders have higher slip
velocities than shorter ones. The latter is simply because,
under the conditions, we investigated that the net gravity
force is higher on longer cylinders. The strength of the
velocity fluctuations of the cylinders in the vertical direction
does positively correlate with the relative amount of cylin-
der volume. As for other fluidized systems, horizontal parti-
cle velocity fluctuations are significantly weaker than their
vertical counterparts. Cylinder rotation contributes non-
negligibly to slip (relative velocity) between fluid and solids.

In all cases considered in this study, the cylinders dis-
play a preference for orienting themselves with a rela-
tively small angle with the vertical direction. This effect
is more pronounced for longer cylinders. The distribution
of angles is not a pronounced function of the relative
numbers of cylinders, which is remarkable.

In order to progress in this line of research, first and
foremost, there is a need for experimental data, not only
for validation of the simulations but also for guidance of

the simulations. It should be noted that in this paper, we
only explored a relatively small part of the very large
parameter space of co-fluidization. We have kept the
overall volume fraction, Archimedes number, and
solid–liquid density ratio constant and have spheres
and cylinders with the same density and same diameter.
Guidance from experiments and practical applications
is needed to be able to zoom in on relevant regions of
the parameter space. However, the paper has demon-
strated the feasibility of detailed simulations of co-
fluidizing systems and the type of information that can
be extracted from them.
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