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Abstract

a2-adrenoceptors, (a2A, a2B and «2C-subtypes), are Gi-coupled receptors. Central
activation of brain a2A and a2C-adrenoceptors is the main site for a2-agonist medi-
ated clinical responses in hypertension, ADHD, muscle spasm and ITU management
of sedation, reduction in opiate requirements, nausea and delirium. However, de-
spite having the same Gi-potency in functional assays, some a2-agonists also stim-
ulate Gs-responses whilst others do not. This was investigated. Agonist responses
to 49 different a-agonists were studied (CRE-gene transcription, cAMP, ERK1/2-
phosphorylation and binding affinity) in CHO cells stably expressing the human a2A,
a2B or a2C-adrenoceptor, enabling ligand intrinsic efficacy to be determined (bind-
ing K,/Gi-IC;,). Ligands with high intrinsic efficacy (e.g., brimonidine and moxoni-
dine at a2A) stimulated biphasic (Gi-Gs) concentration responses, however for ligands
with low intrinsic efficacy (e.g., naphazoline), responses were monophasic (Gi-only).
ERK1/2-phosphorylation responses appeared to be Gi-mediated. For Gs-mediated
responses to be observed, both a system with high receptor reserve and high ag-
onist intrinsic efficacy were required. From the Gi-mediated efficacy ratio, the de-
gree of Gs-coupling could be predicted. The clinical relevance and precise receptor
conformational changes that occur, given the structural diversity of compounds with
high intrinsic efficacy, remains to be determined. Comparison with al and B1/p2-
adrenoceptors demonstrated subclass affinity selectivity for some compounds (e.g.,
a2:dexmedetomidine, al:A61603) whilst e.g., oxymetazoline had high affinity for
both a2A and alA-subtypes, compared to all others. Some compounds had subclass
selectivity due to selective intrinsic efficacy (e.g., a2:brimonidine, al:methoxamine/
etilefrine). A detailed knowledge of these agonist characteristics is vital for improving

computer-based deep-learning and drug design.
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1 | INTRODUCTION

a2-adrenoceptors, comprising a2A, a2B and a2C-subtypes, are Gi-
coupled G-protein coupled receptors (GPCRs) expressed in heart,
blood vessels and kidney (important for blood pressure?), but also
on platelets and in brain.>® Clonidine, the prototypical a2-agonist
developed in 1962 as a nasal decongestant/topical vasoconstrictor,
caused unexpected bradycardia, hypotension and sedation (as noted
by the trial physician who allowed his secretary to administer herself
a few drops of nasal clonidine as she had a cold: she unexpectedly
fell asleep for 24h, and became bradycardic and hypotensive, but
fully recovered), leading to the development of centrally-acting a2-
agonist drugs.>* Now, central activation of a2-adrenoceptors is the
main target for a2-agonist antihypertensive drugs along with more
recent a2-adrenoceptor neurological and psychiatric modulation.®>”
Central a2-adrenoceptors include presynaptic autoreceptors, where
noradrenaline activation inhibits further noradrenaline release from
the same neuron, pre-synaptic heteroreceptors where noradrenaline
activation inhibits the release of other neurotransmitters, and post-
synaptic receptors.>>? After clonidine, further a2-agonists were de-
veloped with different properties, such as less lipophilic brimonidine
(UK14304) aiming to reduce blood brain barrier transmission and se-
dation.®! Brimonidine was also more efficacious, similar to adrena-
line and noradrenaline, while clonidine had partial agonist activity.}?3

In the brain, 90% of a2-adrenoceptors are a2A-adrenoceptors
(as measured by receptor number not mRNA) and are highly ex-
pressed throughout, including the prefrontal cortex and locus coe-
ruleus.®*% Many physiological and pharmacological functions, and
therefore targets for clinical a2-agonists, are through activation of
these a2A-adrenoceptors.>>'> As well as antihypertensive proper-
ties, a2-agonists are now used for sedation, to improve delirium, for
ADHD, help with panic and pain, and to minimse withdrawal symp-
toms from opioids, benzodiazepines, alcohol and nicotine.®

Abroad range of a2-agonists exist with different pharmacological
and physicochemical properties and clinical uses. Dexmedetomidine
is one of the most potent a2-agonists to date'” and is increasingly
used in intensive care. It is used to sedate people requiring pro-
longed ventilation, induce short-term sedation for procedures, as an
adjunct to reduce doses of other sedatives (where a particular bene-
fit is its lack of respiratory depression), reduce opiate consumption,
reduce nausea and reduce delirium often seen post-operatively and
in intensive care patients.'®*®% It also has potential to help with de-
lirium, agitation and induce sedation in the palliative care setting.'?
Furthermore, dexmedetomidine acts through endogenous sleep
pathways,20 mimicking natural sleep and has a unique window for
inducing “arousal” or “cooperative” sedation, enabling neurosurgery
to be undertaken in awake patients.'®2! Clonidine and guanfacine
are used in ADHD patients and avoid the hypertensive and cardio-
vascular risks of the traditional stimulants methylphenidate and am-
phetamine.” Tizanidine helps spasticity, muscle spasm and muscle
cramps.16 Bromonidine and oxymetazoline are still used as topical
vasoconstrictors in rosacea?? and brimonidine for glaucoma where

it reduces aqueous humor production whilst increasing its outflow.!!

The remaining 10% of brain «a2-adrenoceptors are a2C-
adrenoceptors and appear particularly prevalent in the striatum and
hippocampus.14 The expression and effects of the a2B-adrenocep-
tors appear very minor in brain.

a2-adrenoceptors have been extensively studied. The origi-
nal studies were restricted to using different tissue preparations
- human platelet, colonic adenocarcinoma or rat cortex for a2A,
neonatal rat lung for «2B and opossum kidney for a2C; e.g.,2>2° in-
troducing problems of species variation. Other studies have shown
that a2-adrenoceptors couple to both Gi and Gs-proteins and thus
have a biphasic agonist concentration response - cAMP inhibition
at low agonist concentrations followed by cAMP stimulation at high
agonist concentrations.'726-%2 However, for reasons unknown, only
some compounds activate Gs-stimulated cAMP while other com-
pounds of similar Gi-potency have no stimulatory response‘33

Agonist drugs (and all drugs) have 2 important properties - af-
finity (ability to bind to a receptor) and intrinsic efficacy (ability to
induce a response®*~¥: a neutral antagonist having zero efficacy and
thus only affinity to measure). An identical concentration response
may result from a compound with high affinity and lower intrinsic ef-
ficacy, or a compound with low affinity but greater intrinsic efficacy.
This property of intrinsic efficacy, as well as affinity may affect the

selectivity of compounds®>38

and underpin some the pharmacologi-
cal heterogeneity seen between agonists.

This study measured the Gi and Gs-coupled agonist responses
and binding affinity of a wide range of a-agonists in CHO cells
expressing the human o2A, a2B or a2C-adrenoceptor and inves-
tigated, then uncovered, the reason why some agonists induce
Gs-stimulation whilst others do not. Furthermore, as these mea-
surements were determined using exactly the same technique in
human 1 and p2-adrenoceptors and al-adrenoceptors,® this study
provides a data set of the affinity, intrinsic efficacy and selectivity of
ligands across the 8 most commonly targeted human adrenoceptors,

measured under identical conditions.

2 | METHODS

2.1 | Materials

All compounds, together with the supplier and catalogue number
are given in alphabetical order in Supplementary Data Table S1.
SH-rauwolscine (a stereoisomer of yohimbine), SH-CGP12177,
Microscint 20 and Ultima Gold XR scintillation fluid were from
PerkinElmer (Buckinghamshire, UK). Foetal calf serum was from
Gibco (Thermo-Fisher), Lipofectamine and OPTIMEM were from
Life Technologies, Thermo-Fisher, Massachusetts USA. All other
cell culture reagents were from Sigma Chemicals (Poole, Dorset,
UK). Even though they are the same compound, brimonidine and
UK14304 were purchased from different suppliers so are reported
separately throughout. Medetomidine (racemate) and the active iso-
mer dexmedetomidine were also purchased separately so reported
separately.
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2.2 | Celllines and cell culture

CHO-K1 (RIDD: CVCL_0214) stably transfected with a CRE-SPAP
reporter gene and the human «2A-adrenoceptor (CHO-a2A),
human a2B-adrenoceptor (CHO-a2B) or human a2C-adrenoceptor
(CHO-02C) were used*® as were lines expressing the same CRE-
SPAP reporter and human B1-adrenoceptor (CHO-1) or human p2-
adrenoceptor (CHO—B2,38). The parental cell line, which expresses
the CRE-SPAP reporter but no transfected receptor, and from which
these lines were generated, was also used. All cells were grown in
Dulbecco's modified Eagle's medium nutrient mix F12 (DMEM/F12)
containing 10% foetal calf serum and 2mM L-glutamine in a 37°C
humidified 5% CO,: 95% air atmosphere. Cells were always grown
in the absence of any antibiotics. Mycoplasma contamination has in-
termittently been monitored within the laboratory (negative) but cell

lines were not tested routinely with each experiment.

2.3 | CRE-SPAP gene transcription

CRE-SPAP production was measured as in.4 Briefly, cells were
grown to confluence in clear 96-well plates in 100pL DMEM/F12
containing 10% fetal calf serum and 2mM L-glutamine, and serum-
starved with serum free media (sfm, DMEM/F12 containing 2mM L-
glutamine) 24 h before experimentation. Where used, pertussis toxin
(PTX 100ng/mL) was added to this sfm and thus the cells received
24 h treatment with PTX. On the experiment day, the sfm was re-
moved and replaced with 100puL sfm or 100puL sfm containing an-
tagonist at the final required concentration. Agonist in 10 L (diluted
in sfm) was then added to each well and the plates incubated at 37°C
for 10 min, followed by 10 pM addition of forskolin (final well concen-
tration 3 pM) and cells incubated for 5 h at 37°C (5% CO,). After 5 h,
all drugs and media were removed, 40 uL sfm was added to each well
and the cells incubated for a further hour at 37°C before being incu-
bated at 65°C for 30 min (to destroy any endogenous phosphatases),
cooled to 37°C, 100pL 5mM pNPP in diethanolamine buffer added
to each well and incubated at 37°C until the yellow color developed

before being read on a Dynatech MRX plate reader at 405 nm.

2.4 | °H-cAMP accumulation

Cells were grown to confluence in 48-well clear plates. Cells were
pre-labeled by incubation with 2 pCi/mL 3H-adenine (0.5 mL per
well) for 2 h at 37°C (5% CO,). The 3H-adenine was removed, each
well washed by the addition and removal of 1 mL sfm, then 0.5 mL
sfm containing 100 M IBMX added to each well. Agonist in 5 pL (di-
luted in sfm) was added to triplicate wells and incubated for 10 min
at 37°C. Where used, forskolin (10 uM) was then added to the wells,
and plates incubated for 5 h at 37°C (5% CO,). The reaction was
terminated by the addition of 50 uL concentrated HCI per well, the
plates were then frozen, thawed and SH-cAMP separated from other
3H-nucleotides by Dowex and alumina column chromatography,
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with each column being corrected for efficiency by comparison with

14C-cAMP recovery as previously described.3®

2.5 | ERK1/2-phosphorylation

Extracellular-signal-regulated kinases (ERK1/2) activation was
measured using a Surefire Alphascreen pERK1/2 kit. Cells were
grown to confluence in 96-well clear plates and double serum
starved by washing the cells twice with 100 uL sfm before incu-
batingin a further (third) 100 uL sfm for 24 h. Agonists in 20 pL sfm
were added to the well (wells contained about 80 pL after some
evaporation over 24 h, thus approximately a 1:5 dilution) and
incubated for 2-4 min (at 37°C). Reagents were then removed,
20 pL lysis buffer added to each well and ERK1/2-phosphorylation
measured using the Alphascreen kit as per manufacturer's in-
structions. After a minimum of 2 h in the dark, the plates were
read on an EnVision plate reader using standard Alphascreen
settings. Basal and maximum ERK1/2-phosphorylation (as deter-
mined by 10 uM PDBu, Phorbol 12,13-dibutyrate) was measured

in each plate.

2.6 | 3H-rauwolscine (yohimbine) whole cell binding

The affinity of the agonists was assessed using the whole cell
binding and is identical to that used to determine the affinity of
agonists at the ocl-adrenoceptors39 and [S-adrenoceptors.38 Cells
were grown to confluence in white-sided 96-well plates. Media
was removed from each well and 100 uL ligand (diluted in sfm to
twice their final concentration) added to triplicate wells, followed
immediately by the addition of 100pL 3H-rauwolscine (diluted in
sfm) and incubated for 2 h at 37°C (5% CO,, humidified atmos-
phere). The media and all drugs were then removed from the wells,
the cells washed twice by the addition and removed of 2x200uL
4°C PBS. Cells were inspected under a light microscope to ensure
they were still adherent after the wash, and 100pL Microscint
20 was then added to each well. Total binding and non-specific
binding (determined by the presence of 10 pM RX821002) was
defined in every plate. Radioligand concentrations were deter-
mined from taking the average of triplicate 50 pL samples of each
3H-rauwolscine concentration used and counted on a PerkinElmer

TriCarb Scintillation counter.

2.7 | Dataanalysis
2.71 | Functional experiments—One-site
concentration responses curves

Many agonist responses were best described by a one-site sigmoidal
agonist concentration-response curve. These were fitted to the data
using the following equation with Graphpad Prism 7:
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Emax x [A]

R = ,
esponse oot [A]

where Emax is the maximal response, [A] is the agonist concentration
and EC, is the concentration of agonist that produces 50% of the
maximal response.

2.7.2 | Functional experiments—Two-site
concentration responses curves

Many concentration response curves clearly contained two compo-
nents - an inhibitory response followed by a stimulatory response,

thus a two-site analysis was performed using the following equation:

Response = Basal + (FK — Basal) [1 - [A] ] + S [ [A] ]
([A] +1Cs0) |~ ™| (JA] +ECx0) |’

where basal is the response in the absence of agonist, FK is the re-
sponse to a fixed concentration of forskolin, [A] is the concentration of
agonist, IC. is the concentration of agonist that inhibits 50% of the re-
sponse to forskolin (Gi-coupled response), EC., is the concentration of
agonist that caused a half maximal stimulation (Gs-coupled response)
and Sy, is the maximum stimulation of this Gs-coupled-component.

2.7.3 | Functional experiments—Calculation of
antagonist K values from a parallel shift

Antagonist K, values were calculated from the parallel shift of the
agonist concentration responses in the presence of a fixed concen-

tration of antagonist using the following equation:

DR=1+E
Ko’

where DR (dose ratio) is the ratio of the agonist concentration required
to stimulate an identical response in the presence and absence of a
fixed concentration of antagonist [B].

In experiments where three different fixed concentrations of the
same antagonist were used, Schild plots were constructed using the
following equation:

Log(DR — 1) = log[B] — log (Kp).
A straight line was fitted to the points and a slope of 1 indicates
competitive antagonism.42
2.74 | Calculation of agonist K, from 3H-

rauwolscine whole cell competition binding

In all cases where a K value is stated, increasing concentrations of

agonist fully inhibited the specific binding of 3H-rauwolscine (unless

otherwise annotated in the tables). The following equation was then
fitted to the data using Graphpad Prism 7 and the IC,, was determined

as the concentration required to inhibit 50% of the specific binding.

o (100 x [A])
% specific binding = 100 - ————,
([A] +1Cso)

where [A] is the concentration of the competing agonist and IC,, is the
concentration at which half of the specific binding of 3H-rauwolscine
has been inhibited.

From the IC, value, the known concentration of 3H-rauwolscine
and the known K, 3H-rauwolscine (determined from saturation
binding),40 a K value (concentration at which half the receptors are
bound by the competing agonist ligand) was calculated using the

Cheng-Prusoff equation:

IC
Kp competing agonist = 50

1+ ([3H ~ rauwolscine| / Kp®H — rauwolscine).

In some cases the maximum concentration of competing ligand
was not able to inhibit all of the specific 3H-rauwolscine binding.
Where no inhibition of radioligand binding was seen, even with maxi-
mum concentration of competing ligand possible, “no binding” is given
in the tables. Where the inhibition produced by the maximum con-
centration of the competing ligand was 50% or less, an IC, could not
be determined and thus a K value not calculated. This is shown in
the tables as IC.,>top concentration used (i.e. IC.,>100pM means
that 100uM inhibited some but less than 50% of the specific binding).
In cases where the competing ligand caused a substantial (greater
than 50%, but not 100%) inhibition of specific binding, an IC;, value
was determined by extrapolating the curve to non-specific levels and
assuming that a greater concentration would have resulted in 100%
inhibition. These values are given as apparent K, values in the tables.

All data are presented as mean+SEM of triplicate determina-
tions and n in the text refers to the number of separate experiments.
Affinity selectivity ratios are given as a ratio of the K, values for the
different receptors, and intrinsic efficacy is given as efficacy ratios
determined from KD/I(250.3‘"36'37’43

Key protein targets and ligands in this article are hyperlinked
to corresponding entries in http://www.guidetopharmacology.
org, the common portal for data from the IUPHAR/BPS Guide to
PHARMACOLOGY,** and are permanently archived in the Concise
Guide to PHARMACOLOGY 2019/20.%°

3 | RESULTS

3.1 | CHO-a2A—Brimonidine

The a2-adrenoceptors are predominantly Gi-coupled receptors so
inhibition of forskolin-stimulated CRE-SPAP production was initially
evaluated. In CHO-a2A cells, brimonidine stimulated a biphasic con-
centration response with an initial decrease of forskolin-stimulated
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CRE-SPAP production at low concentrations (log IC;,-8.94+0.05,
n = 26), followed by a stimulation of CRE-SPAP production at
higher concentrations (log EC,,-7.07+0.04, n = 26; Figure 1A;
Table 1). Pre-treatment with PTX (which inactivates Gi-proteins by
ADP-ribosylation*® and had no effect on the baseline or forskolin-
stimulated control measurements), abolished the inhibitory re-
sponse but left the stimulatory responses intact (EC,~7.81+0.06,
1.33+0.03 fold increase, n = 11; Figure 1B). This suggests that the
initial inhibitory response is occurring via Gi-coupling and the stim-
ulatory response via Gs-coupling. When examined in the absence of
forskolin, the stimulatory (Gs-coupled) response of brimonidine re-
mained (log EC5,-6.67 +0.06, 160.8 + 9.6% of the response to 3 uM
forskolin, n = 11; Figure 1C,D).

To confirm that CRE-SPAP production was an accurate reflec-
tion of cCAMP responses, direct cAMP measurements were made.
Brimonidine stimulated a biphasic response in the presence of for-
skolin (log 1C5,_9.21+0.10, log EC;,-6.74+0.09, n = 7), and stim-
ulatory response in the absence of forskolin (log EC;,-6.67 +0.12,
33.0+4.5% forskolin 10 pM, n = 6), very similar to the CRE-SPAP
responses (Figure 2A). This is very similar to the biphasic cAMP
response previously reported for a2A-adrenopceptor expressed
in CHO or HEK cells with adrenaline, noradrenaline, brimonidine,

clonidine and guanabenz!”2¢:27:29-32.47

and for a CRE-reporter gene
study in guinea pig a2A, a2B and «2C-adrenoceptors.?®

To confirm that both parts of these responses were occurring via
the a2A-adrenoceptor, the a2-selective antagonist yohimbine was
used to inhibit the response. Increasing concentrations of yohimbine
caused a rightward shift of both the inhibitory (yohimbine log K,
-8.45+0.03, n = 15; schild slope 1.00+0.08, n = 5) and the stimu-
latory brimonidine response (yohimbine log K, -8.65+0.04, n = 13,
schild slope 0.92+0.11, n = 5; Figure 1A), as in.% This affinity is similar
to the affinity obtained for yohimbine from whole cell binding in these
cells (log K, -8.48).%° A similar high affinity for yohimbine was seen
with the stimulatory brimonidine response in the presence of PTX (yo-
himbine log K, -8.48+0.13, n = 15; Figure 1B), and in the absence of
forskolin (whether that be without PTX, Figure 1C, -8.61+0.06,n = 14
or in the presence of PTX (Figure 1D, -8.54+0.04, n = 12). Finally no
response was seen to brimonidine in cells without the transfected re-

ceptor (see later).

3.2 | Brimonidine response in o 2A cells lines with
different levels of receptor expression

To examine this biphasic response further, two other cell lines stably
expressing the human a2A-adrenoceptor at lower receptor expres-
sion levels were examined. As expected, lower receptor expression
resulted in a rightward shift of the Gi-coupled inhibitory brimonidine
response (and for para-amino-clonidine, clonidine and naphazoline),
however, there was a direct relationship between the receptor ex-
pression level and the ability to induce a Gs-stimulatory response
(both in the presence and absence of forskolin). As shown in supple-
mentary Figure S1, in the presence of forskolin, as well as brimonidine

A 50f 23
NOPET (6 s 22

Gi-inhibition, cell line 1 (main CHO-a2A cells used in this study with

a2-adrenoceptor expression level of 5830 fmol/mg protein) resulted

in a large stimulatory component, to a level above that of the 3 pM
forskolin stimulation, cell line 2 (expression level 4724 fmol/mg pro-
tein) resulted in less of a stimulatory component, reaching the level of
the 3 uM forskolin stimulation, whilst cell line 3 (receptor expression
level 121 fmoL/mg protein) had no Gs-stimulatory response at all. This
was also true in the absence of forskolin, where the brimonidine re-
sponse in cell line 1 was 160.8% of the 3 uM forskolin response, less
in cell line 2 (56.1%) and no response was seen in cell line 3. Thus the
ability to stimulate a Gs-coupled response at the «2A-adrenoceptor is
directly related to the receptor reserve within that system.

3.3 | CHO-a2A cells—Other a2-agonists

Not all agonists stimulated a biphasic response. Moxonidine stimu-
lated a clear biphasic CRE-SPAP production response, whilst nap-
hazoline, despite a similar potency for the Gi-component, did not
(Figure 3A). In the absence of forskolin, moxonidine stimulated
an agonist response whereas naphazoline did not (Figure 3B).
Furthermore, examining many ligands showed that the ability
to stimulate the Gs-response was not an all or nothing event, but
compounds exist with a graded range in the size of Gs-mediated
responses (Table 1). For example, dexmedetomidine, used increas-
ingly in ITU, was able to simulate Gs-coupling, however this was sig-
nificantly less than that seen for brimonidine and the endogenous
catecholamines (Supplementary Figure S2), whereas the Gs-coupled
response for clonidine was barely measureable.

3.4 | CHO-a2A-ERK1/2 phosphorylation responses
When other responses were examined, brimonidine stimulated a
potent ERK1/2-phosphorylation response, with an EC, (log EC, -
9.14+0.08, n = 7, Figure 2B) similar to that seen for the Gi-coupled
response. The responses to all agonists studied closely mirrored that
of the Gi-inhibitory CRE-SPAP response (Table 1).

3.5 | S3H-rauwolscine whole cell binding and
intrinsic efficacy ratio

Affinity measurements were made from SH-rauwolscine binding using
the same media and conditions as for the functional assays (living
cells). From the K, values obtained and the IC,, value from the Gi-
inhibition of CRE-SPAP production, an efficacy ratio (K,/1C,)>*3¢373
was obtained as a measure of the intrinsic efficacy of the agonist. This

is the same analysis as*®

's visual comparison in human fat cells where
the clonidine concentration response from binding and lipolysis were
superimposable, but the lipolysis response to adrenaline and brimoni-
dine were left-shifted with respect to binding, demonstrating greater

intrinsic efficacy for adrenaline and brimonidine than clonidine. Thus
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FIGURE 1 CRE-SPAP in CHO-a2A cells in response to brimonidine in the absence and presence of yohimbine. (A) in the presence of

3 uM forskolin, (B) in the presence of 3 pM forskolin after 24 h PTX pre-treatment, (C) in the absence of forskolin and (D) in the absence of
forskolin after 24h PTX pre-treatment. Bars represent basal CRE-SPAP production, that in response to 3 uM forskolin alone, and that in
response to yohimbine 100nM, 1 uM and 10 uM alone. Data points are mean+SEM of triplicate determinations. The Schild slopes are (a)
1.00+0.08, n = 5 for inhibitory (Gi) component and 0.92+0.11 n = 5 for stimulatory (Gs) component.

efficacy ratios allow a numerical comparison and is a more accurate
measure of true ligand intrinsic efficacy than either potency or maxi-
mal response.*® The affinity of brimonidine was relatively low (log K
-6.37+0.07, n = 5, Figure 2C; Table 1), compared to its IC;, (-8.94)
giving an intrinsic efficacy ratio of 2.57. This was similar for moxoni-
dine (2.49). However, the efficacy ratio for naphazoline was only 0.78.
The ligands in Table 1 (CHO-a2A cells) are presented in order of de-
creasing efficacy ratio, as determined from Gi-inhibition of CRE-SPAP
production and K, from binding. However given the close correlation

between IC,, and ERK1/2-phosphorylation EC,, similar results would
have occurred from using efficacy ratio calculated using the ERK1/2-
phosphorylation as the functional response.

3.6 | CHO-u2B cells

Brimonidine also stimulated a biphasic response in CHO-a2B cells
(Table 2). Both inhibitory and stimulatory parts of the response
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FIGURE 2 Responses to brimonidine in CHO-a2A cells (A)
3H-cAMP accumulation in the absence and presence of 10 pM
forskolin. Bars represent basal °H-cAMP accumulation and that

in response to 10 uM forskolin. (B) ERK1/2-phosphorylation. Bars
represent basal ERK1/2-phosphorylation and that in response

to 10 pM PDBu. (C) inhibition of SH-rauwolscine binding. Bars
represent total binding and non-specific binding as determined

by 10 uM RX821002. The concentration of *H-rauwolscine in this
experiment was 0.62nM. Data points are mean +SEM of triplicate
determinations in all cases.

were inhibited by yohimbine to yield K, values of -7.62+0.14 and
-7.66+0.03 respectively (n = 8; Figure 4A), very similar to that
obtained from whole cell binding (log K, -7.66).%° As expected,
Gs-stimulatory responses were seen in the absence of forskolin
(Figure 4B). Similar responses were also obtained from cAMP accu-
mulation in the presence (log IC.,-8.19 +0.11, log EC,, -6.56 +0.08,
n=7) and absence (log EC;, -6.09 +£0.11, 163.0+ 15.2% 10 uM for-
skolin, n = 7) of forskolin and the ERK1/2-phosphorylation response
closely resembled the IC,, obtained from Gi-inhibition (log -7.78,
Table 2; Figure 4D).

Most ligands had a biphasic CRE-SPAP response in the CHO-a2B
cell line (Table 2, Supplementary Figures S3 and S4), likely due to its
high expression of a2B-adrenoceptors (13102 fmoL/mg protein“©).
Affinity was also assessed, and compounds ranked in order of intrin-

sic efficacy (Table 2).

3.7 | CHO-a2Ccells

In the CHO-a2C cells, brimonidine inhibited the forskolin-stimulated
CRE-SPAP production in a manner best described by a monopha-
sic sigmoidal response (log IC;, -8.00+0.06, 82.9 +2.0% inhibition
of 3 pM forskolin response, n = 17; Figure 5A, Table 3). In keep-
ing with this, there was no stimulatory CRE-SPAP response in the
absence of forskolin (Figure 5C). The cAMP response was similar
(log IC5, -8.96+0.14, 97.7+4.8% inhibition of 10 pM forskolin,
n = 6, Figure 5B), with no response seen in the absence of forsko-
lin (n = 6). Once again, the ERK1/2-phosphorylation response (log
EC,,-8.21+0.23, n = 8, Figure 5D) occurred at a similar potency to
the inhibitory responses, as it was for all agonists (Supplementary
Figures S5 and Sé6, Table 3). Affinity was obtained and ligands were

once again ranked in order of efficacy ratio (Table 3).

3.8 | CHO-p1and CHO-$2 cells

As expected the p-AR agonists (e.g., fenoterol, formoterol and salbu-
tamol) stimulated potent responses in the CHO-p1 and CHO-B2 cells,
however significant agonist responses and measureable affinity were
also seen in response to a few a-agonists e.g., etilefrine, metaraminol,
phenylephrine and methoxamine (Supplementary Figure S7, Table S1
binding affinity) and Table 2 CRE-SPAP responses). There was no
binding or CRE-SPAP responses to any of the classical a2-agonists

e.g., brimonidine, clonidine, dexmedetomidine etc.

3.9 | CHO-CRE-SPAP cells

There were no CRE-SPAP responses to any of the agonist ligands
examined the parental CHO-CRE-SPAP cell line (i.e. cells stably
expressing the CRE-SPAP reporter, but with no transfected recep-
tor), either in the presence (looking for Gi responses) or absence
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FIGURE 3 Responses to naphazoline and moxonidine in CHO-a2A cells. (A) CRE-SPAP production in the presence of 3 pM forskolin and
(B) CRE-SPAP production in the absence of forskolin. Bars respresent basal CRE-SPAP production and that in response to 3 uM forskolin.
(C) ERK1/2-phosphorylation. Bars represent basal ERK1/2-phosphorylation and that in response to 10 uM PDBu and (D) inhibition of
3H-rauwolscine binding. The concentration of H- rauwolscine was 0.60nM. Data points are mean + SEM of triplicate determinations in all

cases.

(looking for Gs responses) of forskolin (Supplementary Table S2).
Oxymetazoline, xylometazoline and dihydroergotamine have previ-
ously been demonstrated to stimulate ERK1/2-phosphorylation ag-
onist responses via a non-a-mediated mechanism in the parent cells
(see® for details). There were no other ERK1/2-phosphorylation
agonist responses in these cells with the exception of bromocriptine
(log EC54 -6.93+0.18, 21.4+6.8% 10 uM PDBU), whose responses
were considerably less potent and much smaller in amplitude than
those seen in the a2A cell lines. The bromocriptine responses in
Tables 1-3 are therefore highly likely to be occurring via the trans-
fected a2-adrenoceptors.

Of note, some Gi-coupled receptors have been found to stim-
ulate calcium responses (e.g., muscarinic M2 receptor49). Calcium/
Gg-coupling was not assessed as part of this study.

4 | DISCUSSION

Certain a2-agonists stimulate biphasic cAMP responses at a2-
adrenoceptors, with Gi-cAMP inhibition at low concentrations
followed by Gs-mediated stimulation at higher concentrations.
However, other ligands, of equal Gi-mediated potency do not stimu-
late Gs. This study aimed to investigate this.

Brimonidine stimulated biphasic «a2A-adrenoceptor responses
for both CRE-SPAP production and 3H-cAMP accumulation as
previously observed.”?¢3247 This Gi and Gs-protein coupling is
through third intracellular loop residues,®! and is similar to adenos-
ine Al receptor agonist responses.41 However, whilst moxonidine
and naphazoline have similar Gi-potency, only moxonidine stimu-

331

lated a Gs-response. This is similar to”'s observation that agonists
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FIGURE 4 Responses to brimonidine in CHO-a2B cells. (A) CRE-SPAP production in the presence of 3 pM forskolin, in the presence

and absence of yohimbine. Bars represent basal CRE-SPAP production, that in response to 3 uM forskolin alone, and that in response to
yohimbine 100nM, 1 uM and 10 uM alone. (B) 3H-cAMP accumulation in response to brimonidine in the absence and presence of 10 pM
forskolin. Bars represent basal 3H-cAMP accumulation and that in response to 10 pM forskolin. (C) CRE-SPAP production in the absence

of forskolin. Bars represent basal CRE-SPAP production and that in response to 3 uM forskolin. (D) ERK1/2-phosphorylation in response

to brimonidine. Bars represent basal ERK1/2-phosphorylation and that in response to 10 pM PDBu. and (E) inhibition of 3H-rauwolscine
binding in whole CHO-a2B cells in response to brimonidine. Bars represent total binding and non-specific binding as determined by 10 uM
RX821002. The concentration of *H-rauwolscine in this experiment was 0.86 nM. Data points are mean +SEM of triplicate determinations in

all cases.
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PROUDMAN ET AL.

with similar Gi-responses (including full agonists) had different Gs-
responses. When extended to other a2-agonists, a graded spectrum
was seen from agonists with large Gs-stimulatory components,
through to those with none.

As CRE-SPAP responses can involve ERK1/2-phosphorylation
separately from the Gs-cAMP pathway (biased signaling at p2-
adrenoceptor®®), and previous reports of a2-adrenoceptor ERK1/2-
phosphorylation,”*% this was studied. Agonists stimulated
ERK1/2-phosphorylation with potencies (EC,, values) closely mirror-
ing the Gi-inhibitory response. Correlation plots of IC,, (Gi-mediated
5h CRE-SPAP inhibition) vs EC,, (2-4 min ERK1/2-phosphorylation)
give straight lines (Figure 6A-C). This agrees with others' observa-
tions that «2A-ERK1/2-phosphorylation is a Gi-mediated response.
Indeed PTX-pre-treatment abolished a2A-ERK1/2-phosphorylation
responses.”* >3 Thus ERK1/2-phosphorylation biased signaling does
not explain why only some agonists stimulate CRE-SPAP production.

Studies with different receptor expression levels give hints. Of
three a2A-adrenoceptor cell lines studied, the higher the recep-
tor expression level, the larger the Gs-stimulation, including no
Gs-responses in the cell line with very low receptor expression.
Others?”>* report similar findings. So the ability to induce Gs-
responses depends upon the receptor reserve and ligands with bi-
phasic responses appear monophasic in systems with low receptor
reserve.

Ligand affinity was examined to enable the two properties of
agonist ligands (affinity and intrinsic efficacy) to be studied sepa-
rately and a measure of intrinsic efficacy (efficacy ratio) obtained.
For brimonidine and moxonidine, the efficacy ratio was high (log
2.57 and 2.48 respectively), suggesting few receptors need occu-
pying to stimulate agonist responses (i.e. the compounds had high
intrinsic efficacy). Naphazoline had a lower efficacy ratio at 0.78
(lower intrinsic efficacy). Table 1, arranged in efficacy ratio order,
shows that compounds with the highest intrinsic efficacy stimulated
Gs-responses, irrespective of their potency or affinity. Thus, high in-
trinsic efficacy enables some compounds to stimulate Gs-responses.

1., reported that de-

This explains others' findings Eason et a
spite similar Gi-inhibition, adrenaline, noradrenaline and brimonidine
stimulated Gs-responses whereas BHT920 and BHT933 did not.
BHT933 and BHT920 are lower efficacy compounds (Table 1). Qu
et al*’ reported that a TM6é mutation (Y394N) reduced Gi-potency
by 1000-10 000-fold. The Gs-response was also attenuated - likely
due to loss of agonist affinity and/or intrinsic efficacy. Gs-responses
were exaggerated in a constitutively active a2A-mutant with Gs-
responses left-shifted compared to wild-type and obliterating the
Gi-coupled response.32

Thus (1) high receptor reserve and (2) high ligand intrinsic ef-
ficacy are both required for observation of Gs-coupling. What
remains unknown, is how higher ligand concentrations induce a dif-
ferent conformational state that alters receptor-G-protein coupling,
nor whether this phenomenon is relevant in native tissues or clin-
ical responses. Interestingly, dexmedetomidine exhibits a biphasic
blood pressure response in people, with low dose infusions reducing

blood pressure and high dose infusions increasing blood pressure.”®
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This has been attributed to a loss of dexmedetomidine selectivity

at higher doses,*® however it is tempting to consider it may, in part,
be due to a2-Gs-activation. a2-agonists used systemically in clini-
cal practice (e.g., clonidine for hypertension, dexmedetomidine for
sedation, guanfacine for ADHD, tizanidine for spasticity) are mid-
range, partial agonists.

The a2B-adrenoceptor cell line has very high receptor expres-
sion, with biphasic responses and substantial Gs-stimulation with
many agonists. ERK1/2-phosphorylation mirrored the Gi-inhibitory
CRE-SPAP component (Figure 4) and the degree of Gs-stimulatory
response was again related to the intrinsic efficacy of the agonist
compound.

The a2C-adrenoceptor cell line had a lower receptor expres-
sion and although agonists inhibited both CRE-SPAP and cAMP re-
sponses (Gi), no Gs-responses were seen (similar to low expressing
o2A cell line [cell line 3] Supplementary Figure S1). Once again, the
ERK1/2-phosphorylation mirrored the Gi-inhibition (Figure 5). This
cell line appears to have too little receptor reserve to observe Gs-
coupling. Kribben et al®® examined noradrenaline and octopamine
responses in CHO cells with similar a2A, «2B and «2C-adrenoceptor
receptor expression and found different degrees of Gs stimulation
(2B having the largest Gs-responses). Thus different a2-subtypes
may also have different G-protein coupling efficiencies.

As affinity and intrinsic efficacy measurements were made in all
«2-adrenoceptor subtypes under identical conditions, ligand affin-
ity and rank orders of intrinsic efficacy can be directly compared.
Furthermore, as identical conditions were used for al-adrenceptor

measurements,39

comparison across all human «- and f1 and
B2-adrenoceptors is possible.

Oxymetazoline was the most affinity-selective a2-agonist («2A
affinity 200-fold higher than «2B and 28-fold higher than «2C-
adrenoceptors) similar to comparisons from human colonic adeno-
carcinoma cells (a2A), neonatal rat lung («2B) and opossum kidney
cells (x2C)%%%* and in rat,?® guinea pig?® and pig.’® Other similarities
exist - guanfacine and guanabenz had 10-fold higher a2A than a2B
affinity similar to.?® Although precise values vary, not least because
of species differences, the pattern of higher affinity for dexmede-
tomidine and medetomidine, followed by clonidine and guanabenz
and lower affinity for catecholamines and xylazine is common across
studies.}2>28:57-5% However, there was little a2-selective affinity for
the other a-agonists, also noted by’ and no «2B-selective agonists.

Oxymetazoline (a2A log K, -7.27), and related xylometazoline,
also have high alA-adrenoceptor affinity (a1A log K|, -7.19%) but
not for a1B/D, a2B/C or p1/2-adrenoceptors. These compounds
have selectivity across receptor subtypes, rather than between sub-
types. They also activate non-adrenoceptor responses (including
the ERK1/2-phosphorylation in these cells, probably via native CHO
5HT-1B receptors®P).

As expected, catecholamines had high intrinsic efficacy.
Medetomidine, and stereoisomer dexmedetomidine, were the most
potent agonists for all a2-subtypes, but also had the highest affini-

28)

ties (as in“®). Thus, the intrinsic efficacy of these is only mid-range.

This high potency has been reported before.r”'s conclusion that



Z
z TT i ST S 80°0F€8'G- S L00F8L'G- S 90°0FL6'G- aulpiuez|
3 TT 0c 87 S 90 0FTTL- S 90'0FST - S 70 0F T/~ aulpiwolaq
& v'e 91T 1e S 4deC0'0FT6°€- S aae70'0F8E'E~ S 4ae900F TL°E- suLydIg
LT v'T v S L0'0F95°9- S 90'0F €9~ S €00FCL9- aulpiuo|
14 1 ST S 4aeCT'0F 56~ S 4de80°0F €9°€- S 4ae€0'0FEO V- SuIWEXOYIdIN
9T 0T 9T S 60'0F18°G- S 90'0F0t'G- S ¥0'0F18°G- sulpluawiiy
zL LT LT S S00FZES- S LOOF 9t v S ¥0'0F 687~ €€61HG
ST 6T 8T S Y0'0FSL Y- S ¥0'0F 85 ¥— S 200F20'G- SUIPIUOXON
€€ TT 1€ 9 60°0F81°9- 9 ¥0'0F99°6- 9 Z00FST9- 16-1S
9'€ TT (47 S 0T’ 0F 07— S adel0'0F 78'€- S 70'0F 97— auupaydy
6'€€ 18 (44 S €00FST'9- S 90°0%29v- S 20'0F T G- suodidsng
ey 0T Sy S 60'0F81'8- S ¥0'0F S8/~ S 80'0F05'8- sjozawedny
oY €71 ¥'s S 4aeG0'0FC6'€- S 4deC0'0F CE € S T100FS0v- aunydauAg
ST 8T 69 S €0'0F69°G- S LO'0F6T°G- S Y0'0FET'9- zeniwy
v'e 1e L S 90'0F80°9- S S00FGS 'S S T00FT¥'9- YOEYTIN
ze ST 6L S T00FL6'G- S 80°0FL¥'G- S LOOFLE9- sulpluouilig
o84 0C G'8 S LO0F 65 V- S €0'0F96€- S €0'0F 687~ aunydajAuayd-y
¢ Y L8 S S00FGE9- S S0'0F20'9- 9 T00F969- zuageuens
44 9y zotr 9 90°0F¢6'S- 9 T00F LSS 9 007859~ aupeyueng
S'S TC LTT S 60'0FGL'9- S €0'0F10'9- S €0'0F80L- 0007 92-L
16 L 9Ct S TT0FSt6- S €00F 6L~ S 20'0F65°8- aulwejo81204pAyIQ
8'€T 0T zer S LOOF 617G S 0'0FSE 7 S €00F 'S auIpluo|d|AY320.0JYD
g 6L 0c 9T S 0T'0F£09- S 70'0FLT'G- S S0'0¥8¢g'9- auljozed|d
mmw (037 v 9T S 70'0F0t'9- S #0'0F08'S- S 90'0F 0L~ suijozeydeN
55 86 8T VLT S 80°0F L9°9~- S G0'0F89°S- S €0'0F269- auljAuaydA|y
@ 99 9T vLT 9 €0'0FL0'9- 9 S0'0FGT'G- 9 SO0F 619~ auljozoapAyes3a]
— 'S A4 v'ee S SO0FEYL- S 1007069~ S ¥0'0F5C'8- aundAnouwolg
% 6'€€ Sy 16T 9 70'0F£6°9- 9 600F 16— 9 ¥0'0F¢9'L- auljoze}awojAx
% z8e TL 00z ot LO0OFCH'9- 1T Y0’ 0F L6 - 1T €00FLTL- auljozeyrowAxQ

TP SAgTP JZ0 SA YO €20 SA YZ0 u JZ0-0OHD u gz0-0HD u VZP-OHD
solje. A}JIAIDI3|9S 3ulpulq [[92 3|0YM SUIDIS|OMNEI-H . WO PIUIWIDISP SaN|eA dy 807

"A3IA1303]3S-yYZ P JO JapJo ul paduelle a1e spunodwo)) lojdadoualpe-gzo ay3 ueyy \ygo
3y3 JoJ Ajulyje Jaysiy pos-00Z Sey auljoze3dWwAXo sny| Jayjoue JaAo adAlgns 103dadal USAIS e 104 AJAI}ID|9S OU SD}BJISUOWDP T JO Ol3ed B 2I3YM USAIS OS|e aJe soljed A}AI}I3]9G Sjuswliadxa
ojeuedas U JO NS F ueaw Juasaidal sanjeA 's||22 SulAl| ul s103dad0uBIpe-)Zo pue gZp ‘YZo Uewny ay3 03 SUIpUIq SUIDS|OMNE-H, JO UOIHIGIYUI WOIY PaUIe}qO SBN|eA 9807 ¥ 379Vl

18 of 23



19 of 23

PHARMACOLOGICAL:

BRITISH
SOCIETY

3 AsPeT G

PROUDMAN ET AL.

£
zT

0T 61

e >

62z 56T
TT TT

£6 €8
v'T ST

8'e ze

6 L€
zT T1

60C 8'eT

Lz 8T

LT TT
JzZosagzo JZP sAYZo

87T
(0%
€71
0T
T
T
¢l
€T
€T
ST
ST
ST

dCoO SAYZO

n n n VW 60 N 1N 1N N 1N N 1N N 1N 1N "N wn

n O
~—

WWT <%
NWT -~
WWT <%
W00t <%
T 00T <%
NWT~%D
4ae€00F28'E~
dde80°0F L9 1~
Z0'0FZT'S-
LO'0F8T'S-
£0°0F9T'S-
Y0 0FTE9-
LOOF 6 v~
90°0F 25~
Z0'0F68'e-
¥0'0F9Z'G-
SO0F 6L~
TT0F88 -
90°0F ¥§ v~
£0°0F 66'G-
JZ0-0HD

"pajenojen sem 9y yuasedde ue snyj -ajqissod a1am puesi| Suizadwiod Jo UoI3eIIUIUOD JBYSIY
e JI paqIyul 3G pjnom Suipuiq d14153ds ||e 3ey3 Suiwnsse aAINd ay3 Suizejodelxa Aq pautwaaiap sem %55 uy “Suipuiq o13199ds [|e Jou Ing 3sow pajiqiyul puesi| Supaduwiod JO UOIFEIIUIIUOD WNWIXEW Y} 4y,

Sulpuiq oN
WwT <%
WWT <%
WT00T <%
W 00T <%
WWT <]
WwT <%
N 0T <]
S0'0F0C'G-
dde80°0F VL ¥~
aaeTT0F08°E-
Y0 0F¥E9-
TT0F s e-
£0°0F 99/
80°0FIEE-
SO0F LS b~
100F0v -
TT0F95°€-
SO0 F TT'p-
SO0FLLS-

n O O 1N 1N 1N VvV O N N 1 1N 1" 1N 1N 1N 1" 1" 1n wn

u g¢»-0OHD

n n 1N vV oW 1L N N N W N N N "N W

o
n

NWT <%
WWT <%
NWT <%

Wi 00T <D
W 00T~
dde€0'0F8E'E-
41eG0'0F 9P e~
dde80°0F 9L Y-
60°0F v6v-
ddeSO'0F 9L v~
aaeVO'0F 69°€-
£0'0F5E9-
£00FLG°E-
Y0 0F0LL-
vO'0F6E7E-
TO0F 69~
90°0F ¢S~
600F L e~
£0'0F8T v~
Y0 0F¥6'S-
VZP-OHD

soljel A}JIAIO9|9S

Sulpuiq ||92 3]OYM SUIIS|OMNEI-H WOL) PIUIULISIDP SaNjEA 9y 807

QULIPOPIA
Joweing|es
auljeuasdos|
|oJ3j0WI04

€0919V

sulwedoldO
[SEMCIVEN

€GECSIMY

aulze|Ax

[SEEES

aunyds uidasoujAyiaw-0
aulpluo|>-oujwe-eled
auljeualpeloN
aulpluolapawxaq
aulwedoQ
aujweinqoq
aulplwolspaN
auljeuapy
|oulweleId|n

0¢61Hd

(penunuod) ¥ 3719VL



PROUDMAN ET AL.

20 of 23 oo
20012 | 1 CRSPET () it

FIGURE 6 (A-C)Correlation plots
of log IC;, determined from CRE-SPAP
o production with the EC,, determined
° e from ERK1/2-phosphorylation in a)
CHO-a2A cells, (B) CHO-a2B cells
and (C) CHO a2C cells. Data point are
mean +SEM taken from Tables 1-3. The
endogenous hormones adrenaline and
noradrenaline are represented by open
circles. The line is that of best fit. (D-F)
Correlation plots of efficacy ratio (Ky/
IC;,) for (D) a2A vs a2B, (E) a2A vs a2C
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and (F) a2B vs a2C as determined from
whole cell binding affinity measurements
and inhibition of forskolin-stimulated
CRE-SPAP production. The endogenous
hormones adrenaline and noradrenaline
are represented by open circles. The line
is that of best fit and the slope is not 1 and
does not necessarily go through the origin
as this represents a function of efficacy
(i.e. differences in cell line which include
receptor number, receptor-effector
coupling etc.). The data for oxymetazoline,
xylometazoline and dihydroergotamine

4 are not included in these plots as the
compounds generated agonist ERK1/2-
phosphorylation responses in non-
transfected cells and are therefore
non-a2-mediated responses. Compounds
with the greatest perpendicular distance
from the line represent compounds with
the greatest degree of selective intrinsic
efficacy.
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dexmedetomidine was their most potent a2-agonist compound,
more than catecholamines, is absolutely correct but only part of
the story. Dexmedetomidine did not have the highest intrinsic effi-
cacy (i.e. not the most efficacious agonist) either in terms of max-
imum response or if efficacy ratios are calculated using their data
(again mid-ranking). As higher intrinsic efficacy determines the
Gs-coupling, this explains why, despite being the most potent ago-
nists, medetomidine and dexmedetomidine did not elicit the largest
Gs-stimulation.

There is some correlation between the intrinsic efficacy of
compounds at the different «2-subtypes with some agonists
being more efficacious at all three subtypes (e.g., catecholamines)
and others having lower efficacy (e.g., clonidine and rilmenidine).
However, there are some differences (Figure 6D-F). Brimonidine/
UK14304 are highly efficacious a2A and «2C-agonists (both pres-
ent in brain), with medetomidine and dexmedetomidine being less

efficacy ratio a.2B

efficacious. However, the rank order of compounds is reversed at
a2B-adrenoceptors with medetomidine and dexmedetomidine
being more efficacious than brimonidine/UK14304. This rank order
is different for other compounds - oxymetazoline and xylometazo-
line are higher up the rank order in a2B and lower in «2A and a2C-
subtypes. This suggests there may be some subtype selectivity for
intrinsic efficacy.

A61603 was a very efficacious ligand at all a-adrenoceptors (al-
though not p1/p2-adrenoceptors). However, it has 1000-fold higher
alA-affinity than for any other a-adrenoceptor, giving rise to more
potent 1A functional responses. A61603 is an affinity-selective
alA-agonist. Interestingly at «2A-adrenoceptors, A61603 was the
only compound where the Gs-response was lower than predicted
from Gi-potency and intrinsic efficacy. The reason is unknown,
although the binding was so poor that affinity (and efficacy ratio)
could not be accurately established.
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Perhaps more interesting is the comparison between al and
a2-subtypes. Dexmedetomidine has 100-fold higher affinity for a2
than al-adrenoceptor subtypes with mid-range efficacy at all six a-
subtypes, suggesting that affinity is largely driving the higher a2 vs
al-potency of dexmedetomidine responses. However, brimonidine
only has a 10-fold higher a2 than a1-affinity but very high «2-intrinsic
efficacy (giving potent responses) and low a1 intrinsic efficacy. The
a2-selectivity of brimonidine appears to be driven more by «2-
selective intrinsic efficacy with less reliance on selective affinity.

There are examples of the reverse. R-phenylephrine, etilefrine,
metaraminol and methoxamine have similar affinity across all «a-
subtypes but are highly efficacious at al-adrenoceptors with low
efficacy at a2A and a2C-subtypes (interestingly a2B is once again a
little different). These compounds al-selective functional responses
are being driven by al-selective intrinsic activity, whilst A61603,
above, has alA-selective affinity.

In conclusion, both (1) system high receptor reserve and (2)
agonist high intrinsic efficacy are required for «2-Gs-mediated re-
sponses to be observed. From the Gi-mediated efficacy ratio (bind-
ing Kp/Gi-IC,), the degree of Gs-stimulation observed within a
given system can be predicted. It remains to be determined whether
this Gs-coupling is clinically relevant and the precise receptor con-
formational changes that occur, given the structural diversity of
compounds with high intrinsic efficacy.

This study also shows the importance of separating affinity and
intrinsic efficacy to understand agonist ligand responses. Some
a-ligands are selective because of affinity (A61603:a1A and dexme-
detomidine:a2) whilst others are selective due to intrinsic efficacy
(methoxamine/etilefrine:al and brimonidine:a2). A detailed knowl-
edge of these agonist characteristics is vital for improving computer-

based drug design.®
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