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a b s t r a c t

Spatial, amplitude and phase variations in spatial functional data
are confounded. Conclusions from the popular functional trace-
variogram, which quantifies spatial variation, can be misleading
when analyzing misaligned functional data with phase varia-
tion. To remedy this, we describe a framework that extends
amplitude-phase separation methods in functional data to the
spatial setting, with a view towards performing clustering and
spatial prediction. We propose a decomposition of the trace-
variogram into amplitude and phase components, and quantify
how spatial correlations between functional observations mani-
fest in their respective amplitude and phase. This enables us to
generate separate amplitude and phase clustering methods for
spatial functional data, and develop a novel spatial functional
interpolant at unobserved locations based on combining separate
amplitude and phase predictions. Through simulations and real
data analyses, we demonstrate advantages of our approach when
compared to standard ones that ignore phase variation, through
more accurate predictions and more interpretable clustering
results.

© 2022 The Authors. Published by Elsevier B.V. This is an open
access article under the CC BY license

(http://creativecommons.org/licenses/by/4.0/).

1. Introduction

1.1. Motivation

In many disciplines, including environmental science, medicine, biology, geology and econo-
etrics, it is increasingly common to observe functional data with complex spatial dependencies;
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such data are commonly referred to as spatial functional data (Delicado et al., 2010). An archetypal
example is the well-known Canadian weather data consisting of daily temperature recordings at 35
locations across Canada, described in detail in Ramsay and Silverman (2005). Data representing spa-
tial functional data come in the form of traditional spatio-temporal data (Cressie and Wikle, 2011).
However, the functional data analysis framework allows one to directly capture temporal variation
through its representation, thus enabling one to view data as discrete space–time realizations of a
latent functional random field.

From this perspective, spatial functional data analysis can be regarded as an extension of spatial
tatistical methods to functional data objects. While standard multivariate spatial statistics can be
sed once some form of dimension reduction of functional data has been carried out (Nerini et al.,
010), the more popular approaches to model spatial correlations directly on observed functions
ave been based on the notion of a metric-based trace-variogram, which extends the standard
ariogram used in spatial statistics to the setting of second-order stationary, isotropic functional
andom fields assuming values in the Hilbert space of square-integrable functions (Giraldo et al.,
011). Accordingly, the standard L2 metric is used in the definition of the trace-variogram which,
hen coupled with the spatial distance, captures spatial dependencies between functions (Goulard
nd Voltz, 1993). Specifically, if {fs, s ∈ D} ⊆ L2 is a second-order stationary and isotropic random
ield, on a spatial domain D with metric d, the L2 trace-variogram function

d(r, s) ↦→ V (d(r, s)) =
1
2
E(∥fr − fs∥2), (1)

uantifies spatial correlation between functions (∥ · ∥ is the usual L2 norm). The trace-variogram
lays a central role in clustering and kriging of spatially correlated functional data (Mateu and
omano, 2017). For example, coefficients of linear combinations of observed functions that de-
ine a linear kriging estimate at a new location are determined using an estimate of the trace-
ariogram (Giraldo et al., 2011).
A key assumption, implicit with the use of the L2 distance in the trace-variogram in (1), is that the

emporal correspondence between functional observations is fixed. Thus, application of currently
vailable L2 metric-based trace-variogram methods to spatial functional data either assumes that
he functions are perfectly aligned or treats phase variation as negligible noise. In reality, however,
s with traditional functional data, it is frequently the case that the observed functions are out of
hase: there is temporal misalignment of prominent geometric features of the functions, e.g., local
xtrema. For example, in the well-studied Canadian temperature dataset, this issue can arise
hen comparing average daily temperatures for two nearby cities, where in addition to spatial
ependency of seasonal high and low temperatures, temporal seasonal trends shared between them
hould also be considered. Further, underlying phase variation in spatial functional data may easily
ake it non-stationary.
The adverse effects of disregarding phase variation while computing amplitude-related statistical

ummaries of functional data (e.g., functional mean and functional principal component analysis)
sing the L2 distance are well-documented (Marron et al., 2015; Srivastava et al., 2011). The
ituation is exacerbated in the spatial setting since there are three sources of variation that are
otentially confounded: amplitude, phase and spatial, and these have to be appropriately accounted
or in the data analysis. A simulated example of kriging of spatial functional data with phase
ariation is shown in the left panel of Fig. 1. It is clear that the prediction generated by a method
hat accounts for phase variation (blue) is more accurate than one generated by a method that does
ot account for phase variation (red). To elaborate, for spatial functional data with phase variation,
ne is interested in quantifying spatial correlation between two complementary, latent features of
he data: amplitude and phase. This necessitates a decomposition of the functional random field
fs, s ∈ D} into its phase {γs, s ∈ D} and amplitude {fs ◦ γs, s ∈ D} components, which should
hen be used to define appropriate trace-variograms; the phase random field assumes values in the
pace of warping functions, made precise later, and ◦ denotes function composition. In other words,
uantifying spatial variability using a trace-variogram V in the presence of phase variation requires
decomposition of V into separate amplitude and phase components that are trace-variograms

hemselves. Such a decomposition will enable more interpretable clustering relating to amplitude
nd phase components, and will result in better prediction of functions at unobserved locations. This

onstitutes the main focus of the paper, which to our knowledge has hitherto not been considered.
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Fig. 1. Left: Spatial prediction of a target function (black) based on a sample of spatial functional data (gray) using
riging methods that account for (blue) and ignore (red) phase variation. Right: The local template estimated using
patial correlation (blue) better represents sample variability in a local area (gray) when compared to the (overall) mean
mplitude function (red), and is a better template to use for local alignment of functions. (For interpretation of the
eferences to color in this figure legend, the reader is referred to the web version of this article.)

.2. Contributions

The key challenge in decomposing the traditional trace-variogram V into separate amplitude and
hase trace-variograms, say, Va and Vp, lies in synthesizing spatial information with the fundamental
symmetry between the absolute and relative notions of amplitude and phase of a function:
mplitude variation of a function f : [a, b] → R can be viewed as variability in the set {f (t)}
f y-axis values as t varies in [a, b], while phase variation tracks variability in locations along the

x-axis of amplitude features of f relative to another function g . As a consequence, any definition of
a trace-variogram for phase, based on the variance of the increment fsi − fsj at locations si, sj ∈ D,
will depend on the amplitudes (shapes) of the two functions and hence needs to be defined by
conditioning on amplitudes (shapes).

Following viable definitions, estimation of Va and Vp based on a sample of n observed functions
at locations s1, . . . , sn requires a template function to estimate the unobserved warping functions,
by aligning the sample functions to the template. In the absence of spatial correlation, a template is
typically estimated by the mean amplitude function (Srivastava et al., 2011). However, when sample
functions are spatially correlated, a locally defined (with respect to the spatial domain D), data-
driven template is desirable to better reflect the confounding between, and eventual disentangling
of, amplitude, phase and spatial variations. The right panel in Fig. 1 illustrates the advantage of
estimating the template using spatial information (blue) over the mean amplitude function (red);
the spatial template better reflects amplitude features of the functions observed in a local area
(gray). Such a desideratum is particularly relevant for kriging at a new location s0 at which no
functional datum is observed. Operationally, one could first align spatial functional data using any
off-the-shelf registration algorithm to separate the amplitude and phase components, followed
by appropriate modeling of spatial dependency. But, such an approach does not use local spatial
information in the alignment procedure leading to poor results since spatial dependency amongst
functions may arise in the amplitude component, the phase component or both; see Appendix A in
the supplement for more on this issue. Accordingly, our contributions are as follows.

1. Aided by a geometric framework for amplitude-phase separation in spatial functional data
we define separate amplitude and phase trace-variograms (Section 3.1); the amplitude trace-
variogram is invariant to warping and hence captures pure amplitude variation (Lemma 1).

2. We propose an algorithm based on a non-trivial extension of the elastic functional data
analysis framework (Srivastava and Klassen, 2016) to compute a spatially-weighted template
(Algorithm 1) that enables simultaneous alignment and computation of estimators of the

amplitude and phase trace-variograms (Section 3.2).
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3. Using the trace-variograms, we propose: (i) linear unbiased estimators for kriging of ampli-
tude and phase, which are combined to form the final kriging estimate, and discuss their
properties (Sections 4.1–4.3); and (ii) a method for clustering spatial functional data into
amplitude and phase clusters (Section 5).

1.3. Related work and article organization

Spatial functional data analysis has received considerable attention. Adaptation of multivariate
spatial data methods to functional clustering, following dimension reduction, was done in Giraldo
et al. (2012) and Haggarty et al. (2015). Romano et al. (2010) and Romano et al. (2017) extended the
classical dynamic clustering approach in geostatistics to spatial functional data by employing the
trace-variogram. On the other hand, Secchi et al. (2013) introduced Bagging Voronoi classifiers for
clustering spatial functional data. This method was further improved by Abramowicz et al. (2017)
by combining it with k-means registration (Sangalli et al., 2010).

Kriging is based on borrowing information from nearby objects to construct predictions at new
spatial locations; the contribution to the predictor from each function depends on the strength of
spatial correlation. Giraldo et al. (2011) used the trace-variogram for ordinary kriging of functional
observations, which inspired related approaches. Chief amongst these are universal kriging methods
wherein observed functions are pre-processed to better manage deviations from the stationarity
assumption (Caballero et al., 2013; Menafoglio et al., 2013; Reyes et al., 2015; Menafoglio and Petris,
2016). However, non-stationarity induced by phase variation has not been considered in previous
work, and this form of non-stationarity cannot be remedied using the state-of-the-art universal
kriging approach (Menafoglio et al., 2013); see simulation results in Section 6.1. Menafoglio et al.
(2021) further generalized kriging of functional data to data on a Riemannian manifold.

Indeed, not all functional kriging methods rely on the trace-variogram. Martínez-Hernádez and
Genton (2020) outlined a comprehensive list of functional kriging methods. Many of the approaches
that do not use the trace-variogram focus on prediction via various forms of penalized regression.
Aguilera-Morillo et al. (2017) proposed a functional spatial regression model with penalties account-
ing for spatial and temporal dependency. Bernardi et al. (2017) proposed a regression approach
with partial regularization, and used two roughness penalties that separately accounted for spatial
and temporal regularity. Compared to trace-variogram-based approaches, the proposed regression
models do not explicitly model spatial dependency of the observations, and ensure regularity of the
predictions through penalization.

The rest of this paper is organized as follows. Section 2 introduces the notions of amplitude and
phase used throughout this paper, defines amplitude and phase distances used in the specification
of amplitude and phase trace-variograms, and discusses template-based alignment to separate
amplitude and phase variations. Section 3.1 introduces the proposed amplitude and (conditional)
phase trace-variograms while Section 3.2 defines their estimators. Section 4 outlines the procedure
for amplitude-phase kriging; a key step is the estimation of a spatially-weighted amplitude template
(Algorithm 1). Section 5 introduces amplitude-phase hierarchical clustering based on spatially-
weighted dissimilarity matrices. Section 6 reports results of extensive simulations while Section 7
considers applications of the proposed methods on two different datasets. Finally, Section 8 offers
a brief discussion and outlines directions for future work. The supplement contains empirical
performance assessments of Algorithm 1 (Appendix A), proofs of all propositions (Appendix B), a
conceptual model-based formulation for kriging and a discussion of convergence for the proposed
amplitude kriging estimator (Appendix C), a discussion of invariance of amplitude-phase clustering
to the global scale of the amplitude and (conditional) phase trace-variograms (Appendix D), and
additional implementation details and kriging/clustering results (Appendix E).

2. Amplitude-phase separation

2.1. Relevant function spaces and distances

We build on the metric-based elastic functional data analysis framework for amplitude-phase
separation (Srivastava et al., 2011; Srivastava and Klassen, 2016). Without loss of generality, we
4
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consider the representation space of functional data objects to be F = {f : [0, 1] → R |

f is absolutely continuous}. The group of warping functions representing phase is Γ = {γ :

[0, 1] → [0, 1] | γ (0) = 0, γ (1) = 1, γ̇ > 0} (γ̇ is the time derivative of γ ). For any f ∈ F ,
γ ∈ Γ , the warping of f by γ is given by the group action of composition, f ◦γ . The group-theoretic
formulation of phase enables a definition of the amplitude of a function f as the equivalence class
[f ] = {f ◦ γ | γ ∈ Γ } ⊆ F , known as its orbit under the action of Γ ; thus, f ◦ γ ∈ [f ] has the same
amplitude as f for each γ ∈ Γ . The amplitude space then is the quotient space F/Γ = {[f ] | f ∈ F}.

Separating amplitude and phase requires a metric on the amplitude space F/Γ . A convenient
way to define one is through a metric d on F that is invariant to simultaneous warping: for every
γ ∈ Γ , d(f1, f2) = d(f1◦γ , f2◦γ ). Under such a metric d, it becomes possible to view the action of the
group Γ as performing an isometric operation γ ↦→ f ◦ γ , much like an orthogonal transformation
O ↦→ Ox for orthogonal matrices O and x ∈ Rd that preserves sums of squares of relevant quantities
in the multivariate setting.

The standard L2 metric fails to be invariant and Srivastava et al. (2011) thus proposed to use the
extended Fisher–Rao (eFR) metric. Unfortunately, this metric is difficult to use in practice. However,
the square-root slope transform remarkably reduces the complicated eFR metric on F to the standard
L2 metric on the transformed space. The transform maps f ↦→ Q (f ) = q = sgn(ḟ )|ḟ |

1/2
(ḟ is the time

derivative of f ). Given f (0), Q is bijective with inverse Q−1(q, f (0))(t) = f (t) = f (0)+
∫ t
0 q(u)|q(u)|du.

enceforth, for any f ∈ F , we will refer to q = Q (f ) as its square-root slope function (SRSF).
The transformed space Q (F) is a subset of L2[0, 1], and, by an abuse of notation, is denoted by Q.

nder Q , the eFR metric on F maps to the standard L2 metric on Q, and thus analysis of SRSFs can
e carried out using standard Hilbert space machinery. Warping of f ∈ F by γ induces the warping
ction (q, γ ) = (q ◦ γ )γ̇ 1/2 on Q equipped with the L2 metric, and the action is by isometries since
(q, γ )∥ = ∥q∥ for every γ ∈ Γ , q ∈ Q.
The corresponding orbit or amplitude of the SRSF q is then given by [q] = {(q, γ ) | γ ∈ Γ }, and

he amplitude space becomes Q/Γ = {[q] | q ∈ Q}. According to this definition, the amplitude of
is an entire equivalence class under the action of Γ ; this implies that each member (q, γ ) of [q],
s γ varies in Γ , represents the amplitude component of the function q. We will use ‘amplitude’ to
efer to both [q] and (q, γ ), for any particular γ , and the context will disambiguate the two. Note
hat the amplitude of a function contains its magnitude (global scale), whereas a sensible notion of
shape’ of a function would be one that is scale-invariant. We thus define the shape of a function
s the SRSF orbit [q̄] = {(q̄, γ ) | γ ∈ Γ }, where q̄ = q/∥q∥ corresponds to the scale-normalized
unction, and the set of shapes of functions in Q constitute the shape space.

efinition 1 (Amplitude and Shape Distance). The amplitude distance between q1, q2 ∈ Q is defined
s da(q1, q2) = infγ∈Γ ∥q1 − (q2, γ )∥, where ∥ · ∥ is the L2 norm, and is a distance on the
mplitude space. The shape distance between q1, q2 ∈ Q is defined as dsh(q1, q2) = da(q̄1, q̄2) =

a(q1/∥q1∥, q2/∥q2∥) and is a distance on the shape space.

Amplitude and phase separation through pairwise registration or alignment of f2 to f1 (or vice
ersa) is formulated as the determination of the relative phase obtained by solving

γ ∗
= argmin

γ∈Γ

∥q1 − (q2, γ )∥ = argmin
γ∈Γ

∥q̄1 − (q̄2, γ )∥, (2)

ypically using the dynamic programming algorithm, where q1 and q2 are the SRSFs of f1 and f2,
espectively. The optimal alignment of f2 with respect to f1 is then given by f2 ◦ γ ∗.

Alignment of f2 to f1 using q1 and q2 allows us to compute their relative phase distance. For this,
we consider the square-root slope transform ψ of γ : γ ↦→ Q (γ ) = ψ = γ̇ 1/2. Since

∫ 1
0 ψ

2(t)dt = 1
nd ψ(t) > 0 ∀t , the square-root transformed warping group Q (Γ ) = Ψ is the positive orthant of
he unit sphere in L2[0, 1], enabling us to define the (extrinsic) relative phase distance.

efinition 2 (Phase Distance). If ψ∗
=

√
γ̇ ∗ is the relative phase between q1, q2 ∈ Q, then their

extrinsic) phase distance is dp(q1, q2) = ∥ψ∗
− ψid∥, where ψid(t) = 1 is the square-root slope

ransformed identity warping function γ (t) = t .
id
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Since Ψ is a subset of the unit sphere in L2[0, 1], the intrinsic ‘arc-length’ distance cos−1(⟨ψ∗, ψid⟩)
an also be used. We note that Ψ , equipped with the L2 Riemannian metric, is a Riemannian
manifold. Further, the L2 metric on Ψ corresponds to the Fisher–Rao metric on the warping group
Γ (Srivastava et al., 2011).

Due to the nonlinear nature of warping, the L2 distance between q1, q2 ∈ Q does not decompose
exactly into the respective amplitude and phase distances in Definitions 1 and 2. The elastic
framework, however, enables us to extract pure amplitude and phase components, and disentangle
them from spatial variation in spatial functional data.

2.2. Template-based alignment of multiple functions

Amplitude-phase decomposition of variability present in a sample f1, . . . , fn can be carried out
using the corresponding SRSFs q1, . . . , qn ∈ Q (equipped with the L2 metric) by jointly aligning
he sample to a template µq ∈ Q, which is representative of a population-level amplitude. A
atural choice is a representative q̂ from the amplitude Karcher mean of [q1], . . . , [qn], which is
efined as a local minimizer of the variance functional [q] ↦→

∑n
i=1 d

2
a(q, qi) on the amplitude space

/Γ . In practice, this is carried out by using an algorithm that iterates between aligning {qi} to
he current iterate of the representative of the Karcher mean amplitude and updating it (Section
.3.3 of Srivastava and Klassen, 2016). The output of such an algorithm is the representative q̂ and
ptimal warping functions {γ̂i}, such that (qi, γ̂i) are optimally aligned to q̂ with respect to the
etric da. When {qi} are spatially correlated across the spatial domain D, their amplitudes (and
ence the relative phases) are dependent on the locations in D, and using a common template in
heir alignment might be inappropriate. We propose a modified version of the above algorithm
Algorithm 1) that jointly computes a suitable template for alignment of qi and carries out the
lignment.

.3. Setup and notation

We focus on the setting of dense functional data (Wang et al., 2016), wherein a function at
ach spatial location is assumed to have been observed on a fine partition of [0, 1]. This implies
hat we are not considering situations wherein some form of function estimation is required that
an potentially add another source of variability to amplitude, phase and spatial variations. It is
mportant to first understand the interplay between the variations in this setting before moving to
he more challenging one of sparsely observed functional data.

The functional random field {fs, s ∈ D}, on a spatial domain D ⊆ R2, assumes values in F .
ssociated with {fs} is its square-root slope transformed version {qs, s ∈ D} such that s ↦→ qs ∈ Q.

Then, {qs} is a square-integrable functional random field since Q ⊆ L2([0, 1]).
Observed functional data fsi , si ∈ D (i = 1, . . . , n) is first mapped to its corresponding SRSF

representation, qsi , and methodology is entirely developed using qsi . Henceforth, the subscript i as
an index is short for the spatial location si (e.g., qi, γi); the subscript s is only used with a functional
random field (e.g., qs). The L2 norm (inner product) on the function spaces Q and Ψ is denoted by
∥ · ∥ (⟨·, ·⟩), while ∥ · ∥2 denotes the Euclidean norm on D.

3. Amplitude-phase separation of trace-variogram

Denote by µq,s the expected value of the random field {qs} ⊆ Q defined using the Bochner
integral. The covariance function C : D × D → R of {qs} is the positive definite function C(s, s′) =

E(⟨qs − µq,s, qs′ − µq,s′⟩), resulting in the variance function being defined as var(qs) = C(s, s) =

E(∥qs − µq,s∥
2). The semi-variogram of the process {qs} then is a conditionally negative definite

function defined as θq(s, s′) =
1
2var(qs −qs′ ) for s, s′ ∈ D. The random field {qs} is said to be second-

rder stationary and isotropic if µq,s ≡ µq, i.e., the mean is constant across the spatial domain D,
nd C(s, s′) is a function of ∥s − s′∥ only for every pair (s, s′). Under this condition, using Fubini’s
2

6
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theorem, the trace-semivariogram Vq corresponds to the integrated pointwise variogram (Giraldo
t al., 2011),

Vq(h) = θq(h) =
1
2

∫ 1

0
E [qs(t) − qs′ (t)]2 dt =

1
2
E(∥qs − qs′∥2), (3)

here h = ∥s − s′∥2. In other words, Vq is (half the) expected squared L2 distance between values
of the functional random field {qs} at two locations in D. Henceforth, we will simply refer to Vq as
the trace-variogram. The definition implicitly assumes that qs and qs′ are aligned with zero phase
variation, a situation rarely true in practice. Importantly, Vq is invariant to warping of two SRSF
functions qs and qs′ by the same γ ∈ Γ . This is not true when the trace-variogram is defined using
he L2 distance on the random field {fs} as in (1), providing a strong motivation for using the SRSF
epresentation to define separate amplitude and phase trace-variograms.

.1. Trace-variograms for amplitude and phase

The amplitude and phase components in spatial functional data represent two distinct sources
f variation, and importantly, can have different spatial correlations. Furthermore, in contrast to
urrent approaches, phase variation cannot be viewed as noise. For example, in the aforementioned
anadian weather data (Ramsay and Silverman, 2005), phase represents important seasonal trends
f temperature fluctuations across the observed sites, and spatial correlation in the phase compo-
ent is important to explore regional climate change. Thus, our aim is to define complementary
mplitude and phase trace-variograms that separately capture spatial correlation in these two
omponents of spatial functional data, and can be used in downstream statistical tasks.
To define amplitude and phase trace-variograms, we treat the functional random field {qs, s ∈

D} ⊆ Q as being comprised of two random fields representing amplitude and phase. The amplitude
random field is defined as {(qs, γs), s ∈ D} and the phase random field as {ψs, s ∈ D}, where
γs ∈ Γ is a random warping function and ψs = γ̇

1/2
s . Amplitude-phase separation of {qs} into

{(qs, γs)} and {ψs} allows us to capture the spatial dependence in functional data via two different
trace-variograms, one for the amplitude and one for the phase. We provide the definitions of the
amplitude and phase trace-variograms next.

Definition 3 (Amplitude Trace-Variogram). Assuming that the amplitude random field {(qs, γs), s ∈

D} is second-order stationary and isotropic, the amplitude trace-variogram is defined as

∥s − s′∥2 = h ↦→ Va(h) =
1
2
E
(
∥(qs, γs) − (qs′ , γs′ )∥2) . (4)

The amplitude trace-variogram is similar to the trace-variogram in (3). The random warping
functions γs and γs′ account for the removal of phase variation from the original random field
{qs}. Since the amplitude random field is assumed to be stationary, the above definition in essence
supposes that any non-stationarity in the functional random field {qs} is induced by phase variation.
This is manifestly different from the typical case wherein a spatially dependent mean induces non-
stationarity, for which the universal kriging predictor of Menafoglio et al. (2013) may be used.
Further, the proposed amplitude trace-variogram is invariant to simultaneous warping of {qs}, which
is a direct consequence of the isometric action of Γ on Q under the L2 metric, as recorded in the
following lemma.

Lemma 1. The amplitude trace-variogram in (4) is invariant to simultaneous warping of the functional
random field {qs, s ∈ D} by any γ ∈ Γ .

While it may be reasonable to assume that the amplitude random field {(qs, γs)} is second-
rder stationary and isotropic on D, elements of the phase random field {ψs} are only relative
nd generally depend on both (proximity of) spatial locations and similarity in the shapes of the
unctions that constitute the random field {qs}. Thus, to account for the relative nature of phase, it

s thus sensible to consider the phase random field {ψs} conditional on the shape random field

7
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associated with {qs} defined as S = {[q̄s], s ∈ D} (recall that q̄s = qs/∥qs∥). This allows us
o handle the non-stationarity in the phase random field {ψs} due to heterogeneous shapes of
he functions in the random field {qs}. The relative nature of phase, with respect to amplitude or
hape features, has received considerable attention in previous literature, albeit in other statistical
ontexts. For example, Sangalli et al. (2010) propose a simultaneous approach for clustering and
lignment of functional data, where the cluster partitions are determined via amplitude similarity,
nd the relative phase of each function is estimated with respect to a cluster-specific template.
s a result, the procedure accounts for the fact that only functions with similar amplitude have
omparable phase components. Strait et al. (2017) and Matuk et al. (2021) further show that using
hape constraints to regularize the phase component of functions and/or curves can result in more
atural alignment. This leads to the following definition of the conditional phase trace-variogram.

efinition 4 (Conditional Phase Trace-Variogram). Assuming that, conditional on the shape random
ield S , the phase random field {ψs, s ∈ D} is second-order stationary and isotropic, the conditional
hase trace-variogram is defined as

Vp(∥s − s′∥2, S) =
1
2
E
(
∥ψs − ψs′∥

2
| S

)
. (5)

The above definition requires a valid definition of distance on D that uses information of the
shape random field S. Inspired by the approach proposed by Schmidt et al. (2011) for traditional
spatial data, we consider shape as an additional covariate in order to define a pseudo-metric on
a subset M := {(s, [q̄s]) | s ∈ D, [q̄s] ∈ S} ⊂ D × S. For a fixed ω ∈ R≥0, define a functional
hω : M × M → R≥0 as

hω = hω((s, [q̄s]), (s′, [q̄s′ ])) =

√
∥s − s′∥2

2 + ω · d2sh(qs, qs′ ), ω ≥ 0, (s, [q̄s]), (s′, [q̄s′ ]) ∈ M,

(6)

that provides a combined measure of discrepancy between shapes [q̄s] and [q̄s′ ] of two functions at
locations s and s′ and their spatial distance; ω serves as a tuning parameter that allows us to adjust
the importance of the shape covariate. Thus, we consider a modification of the conditional phase
trace-variogram Vp defined as

Vp(hω) = Vp(∥s − s′∥2, S) =
1
2
E
(
∥ψs − ψs′∥

2
| S

)
.

eminiscent of the pseudo-metric E[(xs−xs′ )2]1/2 on D for a Gaussian random field {xs, s ∈ D} (see,
.g., Section 1.3 of Adler and Taylor, 2007), one can view hω as a pseudo-distance on the spatial
omain D, and its definition is motivated by the fact that the relative phase components of functions
ith very different shapes are not comparable. In other words, for a fixed ω > 0, when two

unctions have very different shapes, their phase components are viewed as ‘spatially’ far away
rom each other in terms of the pseudo-distance hω . Viewing function shape information as an
dditional covariate (or coordinate), the relative phase components of {qs, s ∈ D} are further
tratified according to the shapes of the associated functions. This idea is analogous to the one
sed in Sangalli et al. (2010) for simultaneous clustering and alignment of functional data; the
ain difference lies in the use of a continuous measure of shape discrepancy in our case versus
discrete partition of the function space in theirs. As will be seen in the sequel, the estimator
f the proposed conditional phase trace-variogram better captures the interplay between relative
hases and spatial dependencies of the sample functions. Henceforth, we refer to the conditional
hase trace-variogram simply as the phase trace-variogram.

emark 1. Introducing shape information in the phase trace-variogram allows us to account for
he potential association between amplitude and phase components in spatial functional data. As
efined, the phase trace-variogram considers a functional random field over an infinite-dimensional
omain, i.e., the space M ⊂ D × S. Literature on variography over infinite-dimensional spaces is

carce, and we use the proposal in this paper without formal theoretical justification. That said, we

8
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Fig. 2. Decomposition of the L2 trace-variogram (left) into amplitude (middle) and phase (right) components for simulated
unctional data with spatially correlated amplitudes and phases. The dots represent the empirical L2 , amplitude, and phase
race-variograms (see definitions in Section 3.2). Estimates of the trace-variograms (red curves) are obtained by fitting a
atérn variogram model to the empirical trace-variograms.

ave found through extensive simulations and real data applications that the phase trace-variogram
efined in (5) has strong practical value; see Sections 6 and 7, and Appendix E in the supplement.
rigorous examination of the conditional phase trace-variogram is a significant undertaking and
eyond the scope of this manuscript; as such, we leave it as future work. Alternatively, one could
efine the phase trace-variogram by replacing dsh in (6) with a distance on a space of reduced

(finite) dimension that captures shape features of the functions. Dimension reduction in this case
can be attained either through functional principal component analysis or an appropriate basis
decomposition. However, the choice of dimension reduction procedure will have a strong effect
on the resulting distance and phase trace-variogram.

The benefits of constructing separate amplitude and phase trace-variograms are illustrated in
Fig. 2 using simulated functions, wherein the spatial dependency in the data arises through both
the amplitude and phase components. The amplitude components are generated from a second-
order stationary and isotropic functional random field, whereas the correlation between phase
components arises through both, their spatial locations and the shape features of the associated
functions. Failure to disentangle the amplitude and phase variations leads to an empirical trace-
variogram (Delicado et al., 2010) that suggests a quadratic pattern for spatial dependency (left
panel), which is the truth for neither amplitude nor phase. A fitted Matérn variogram model, shown
in red, is constant and fails to capture the spatial correlation that exists in the data. On the other
hand, decomposing the trace-variogram into amplitude and phase (the empirical versions of (4)
and (5)) appropriately captures the spatial correlatedness (middle and right panels) in these two
components.

3.2. Estimating amplitude and phase trace-variograms

We have introduced the definitions of trace-variograms using latent amplitude and phase
components. The amplitude and phase of given spatial functional data, however, are not observable
and need to be estimated through appropriate alignment procedures that satisfy the requirements
of different statistical analysis tasks. Here, given a sample of functions {qi, si ∈ D} (i = 1, . . . , n),
e propose empirical versions of the amplitude and phase trace-variograms that are compatible
ith the kriging and clustering tasks.
For kriging at a new location, since information from the entire sample q1, . . . , qn is used,

e require a template-based multiple alignment approach. For this, it is essential to define a
ensible template that captures spatially localized features of the sample. A detailed algorithm
or estimating such a template is given in Section 4. Assuming that a template is available, we
xtract the relative phase components {γ̂i} by aligning each function in the sample q1, . . . , qn to
he template. The aligned functions {(q , γ̂ )} and estimated (transformed) warping functions {ψ̂ }
i i i

9
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are then used to estimate the amplitude and phase trace-variograms, respectively. Specifically, the
empirical amplitude trace-variogram is

V̂a(h) =
1

2|Na(h)|

∑
i,j∈Na(h)

∥(qi, γ̂i) − (qj, γ̂j)∥2, (7)

where Na(h) = {(si, sj) | ∥si − sj∥ = h}. For irregularly spaced data, Na(h) is modified to {(si, sj) :

si − sj∥ ∈ (h − ϵ, h + ϵ)} for a small ϵ > 0. Similarly, a feasible estimator of Vp is

V̂p(hω) =
1

2|Np(hω)|

∑
i,j∈Np(hω)

∥ψ̂i − ψ̂j∥
2, (8)

where the neighborhood Np(hω) = {((si, [q̄i]), (sj, [q̄j])) | hω((si, [q̄i]), (sj, [q̄j])) ∈ (hω−ϵ, hω+ϵ)} (for
a small ϵ > 0) is defined with respect to the pseudo-distance hω specified in (6), with a suitable
hoice of ω ≥ 0.
The estimators V̂a and V̂p are simplified when only pairwise comparisons of functions q1, . . . , qn

re of interest; this is the case for example in clustering methods based on dissimilarity/distance
atrices such as hierarchical clustering. Here, a joint alignment of q1, . . . , qn to a template can be
voided, with alignment between qi and qj carried out using either of the functions as the template.

This circumvents the challenges associated with estimation of a template, and thus reduces the
computational and methodological complexity. In this case, the corresponding expressions for V̂a
nd V̂p reduce to

V̂a(h) =
1

2|Na(h)|

∑
i,j∈Na(h)

da(qi, qj)2, V̂p(hω) =
1

2|Np(hω)|

∑
i,j∈Np(hω)

dp(qi, qj)2, (9)

here Na(h) and Np(hω) are defined as in (7) and (8).
To guarantee that the estimated variograms are conditionally negative definite (Cressie, 2015),

e fit a Matérn variogram model to the empirical variograms at a discrete set of distance values;
e use ordinary least squares (Cressie, 2015) to estimate the parameters of the Matérn model.

n subsequent analyses, i.e., kriging and clustering, the fitted variograms are used instead of the
mpirical variograms V̂a and V̂p. In the phase trace-variogram, the tuning parameter ω is selected to
inimize the squared error of the parametric Matérn fit to the empirical estimate. Fig. 3 illustrates
n example of tuning parameter selection for a simulated dataset. In the left panel, we plot the
quared error (y-axis) of the fit versus different values of ω (on the log10 scale on the x-axis).
In the middle (ω = 0) and right (optimal ω = 102.2) panels, spatial correlation patterns of the
phase components are captured by scatterplots of the pairwise phase discrepancies ∥ψ̂i − ψ̂j∥

2 (y-
xis) versus the pairwise pseudo-distances hω (x-axis). In red, we highlight points corresponding to
mall spatial distances (∥si − sj∥), but relatively large phase discrepancies. After introducing shape
nformation as a covariate through the pseudo-distance hω , with ω = 102.2, the red points shift to
he right due to shape differences of the corresponding functions. This shows that the large phase
iscrepancy in the red points in the middle panel is partially due to the shape differences of the
orresponding functions. In the right panel, using the optimal value of the tuning parameter, we
re able to account for the shape heterogeneity in the given data, and as a result, detect a clearer
ependency pattern between the phase components. Note that the scale of ω in the distance hω
epends on the difference in the scales of the spatial and shape distances. In particular, one can
how that the shape distance dsh is bounded above by 2. The spatial distance, on the other hand,
epends on the size (and coordinates) of the spatial domain. Thus, there is no absolute scale for the
uning parameter ω.

. Amplitude-phase kriging

Giraldo et al. (2011) developed a linear unbiased estimator that extends ordinary kriging or
patial interpolation to the functional setting by minimizing the L2 prediction error. In the presence
f phase variation, the L2-based linear estimator can be biased, since function features such as
10
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Fig. 3. Left: Squared error (y-axis) of Matérn variogram fit to the empirical phase trace-variogram (8) under different
alues of log10(ω) (x-axis). Middle: The pairwise squared distances ∥ψ̂i − ψ̂j∥

2 (y-axis) versus pairwise pseudo-distances
ω (x-axis) with ω = 0. Right: Same as middle for ω = 102.2 . Red points represent pairs with small pseudo-distance hω ,
ut relatively large phase discrepancy. (For interpretation of the references to color in this figure legend, the reader is
eferred to the web version of this article.)

ocal extrema can be misaligned; see an example in the left panel of Fig. 1. Given observations
qi, si ∈ D} (i = 1, . . . , n), the goal is to predict an unobserved function q0 at a new location
0 ∈ D comprising amplitude (q0, γ0) and phase γ0. To address possible misalignment of qi, we
onsider a three-stage kriging procedure: (i) predict the amplitude component, (ii) predict the phase
omponent conditional on the predicted amplitude, and (iii) combine the two to obtain the kriging
stimate.

.1. Amplitude kriging

Let us first assume that a template has been chosen so that a multiple alignment procedure
as been implemented to obtain aligned functions {(qi, γ̂i)} and warping functions {γ̂i}; for each
= 1, . . . , n, recall that (qi, γ̂i) is an estimate of the amplitude [qi] of qi as a representative of the
rbit. Let ∆n := {(x1, . . . , xn)T ∈ Rn

|
∑n

i=1 xi = 1}. We define the linear estimator of the amplitude
omponent (q0, γ0) at s0 as

q̃0(t) =

n∑
i=1

ηi(qi, γ̂i)(t), (10)

here the coefficient vector η = (η1, . . . , ηn)T ∈ ∆n is implicitly defined as the minimizer of the
xpected amplitude prediction error functional

η ↦→ E
(
∥q̃0 − (q0, γ0)∥2) . (11)

In the ideal setting, if {γi} are known or can be estimated exactly, the situation reduces to the
traditional setting without phase variation for determining η that simplifies the optimization in
(11) through its relationship with a matrix consisting of evaluations of the trace-variogram (see,
e.g., Menafoglio et al. (2013)). The following result demonstrates this.

Proposition 1. If we assume that γi can be estimated exactly such that (qi, γ̂i) = (qi, γi) for every
= 1, . . . , n, then the η ∈ ∆n that minimizes (11) also minimizes η ↦→ ηTVaη, where the n × n
atrix Va contains as its elements Va(h0j) + Va(hi0) − Va(hij) with hij = ∥si − sj∥2 (i, j = 1, . . . , n). As
consequence, the amplitude kriging predictor in (10) depends only on the amplitude trace-variogram

Va(h).

Unfortunately, it is well-known that the ideal setting considered in Proposition 1, wherein the
phase components γi can be estimated exactly, only applies in very restrictive modeling scenar-
ios (Kurtek and Srivastava, 2011; Chakraborty and Panaretos, 2021); a more detailed discussion of
this issue is given in Appendix C in the supplement. An important implication of this fact is that the
11
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e

estimation of amplitude and phase components heavily relies on the choice of template, and thus
it is essential to estimate an appropriate template in the amplitude-phase separation for kriging.

When aligning independent functional data, as described in Section 2.2, the template is typically
stimated by the mean amplitude function (a representative of the mean amplitude orbit), i.e., the
inimizer of the variance functional. However, when the sample functions are spatially correlated,

he dependence structure must be taken into account in template estimation. When focusing on
rediction at a certain location s0, we seek a local (with respect to the spatial domain D) template

that captures the amplitude features of aligned functions that have (strong) spatial correlation with
the amplitude component at s0. In particular, the ideal template for alignment of q1, . . . , qn for
mplitude kriging at s0 is an element of the orbit [q0]. However, q0 (and its orbit) is not observed
s it is the quantity we seek to predict. This implies that the two objectives of (i) estimating a
emplate for alignment of spatial functional data, and (ii) prediction of amplitude at the location s0
re essentially the same. We outline a procedure, provided as Algorithm 1, that iterates between
he following two steps until convergence: (i) alignment of {qi, si ∈ D} given the current estimate
f the template, and (ii) prediction of amplitude at s0 that specifies an update of the template. The
lgorithm results in a spatially-weighted amplitude kriging estimator q̃0 that serves the dual purpose
f acting as a local template for alignment and as a predictor of the amplitude component (q0, γ0).

Algorithm 1: Amplitude kriging estimate
1 Input: s0 and (s1, q1), . . . , (sn, qn);
2 Output: Amplitude kriging estimate q̃0;
3 Initialization: k = 0, ϵ > 0 and template q̃(0)0 with the qi closest to s0 ∈ D;
4 while ∥q̃(k+1)

0 − q̃(k)0 ∥ > ϵ do
5 Align each qi to q̃(k)0 using (2) to obtain (qi, γ̂

(k)
i );

6 Compute V̂a(h) using {(qi, γ̂
(k)
i )} and q̃(k)0 =

∑
i ηi(qi, γ̂

(k)
i ) using Proposition 1;

7 Set q̃(k+1)
0 = q̃(k)0 , k = k + 1;

8 end

In Algorithm 1, within each iteration k, the template q̃(k)0 is fixed, and acts as the given template
in Proposition 1. Spatial information is incorporated through the use of V̂a(h) for determining
. Strictly speaking, the equivalent formulation of the optimization criterion to determine η in
roposition 1 assumes that {γ̂i} recover {γi} exactly; we nevertheless use it as it significantly
implifies computations. As a result, Algorithm 1 specifies a (spatially) local alignment procedure
hat emphasizes functions observed at locations close to s0 based on a local template.

emark 2. Explicit convergence analysis for Algorithm 1 is complicated due to the alternating
ptimizations to compute the phase functions {γ̂i}, and the weights η to construct the spatially-
eighted template, at each iteration. In particular, due to the dependence of η in line 6 on the
hase functions estimated in line 5, it is difficult to formalize the entire procedure under a single
ost function. We empirically examine convergence properties of Algorithm 1 in Appendix A in
he supplement. Additionally, in Appendix C in the supplement, we establish convergence of the
lgorithm for a one-dimensional model when randomness manifests in q only through a scale
arameter.

The advantages of using the local template over a global one (e.g., Karcher mean of amplitude)
re confirmed by simulations in Appendix A in the supplement. In particular, it is evidenced there
hat the local template, estimated via Algorithm 1, better reflects amplitude features of the sample
unctions observed in a (spatially) local area than a global template that does not take spatial
ependence into account. In Appendix A, we also evaluate the influence of the initialization q̃(0)0
n line 3 on prediction performance.

.2. Phase kriging

In amplitude kriging, phase variability is removed by aligning all functions with respect to the
stimated template, which results in improved prediction of the shape and magnitude of a function
12



X. Guo, S. Kurtek and K. Bharath Spatial Statistics 51 (2022) 100687

k
p
t

p
Ψ

l
c
p
s
p
o

T
r

p
e
o

(Section 6). However, q̃0 is the prediction of an element in [q0] and not q0. To obtain the final
riging estimate of q0, we require an estimator of the phase γ0. We construct one by carrying out
hase kriging using the estimated warping functions {γ̂i}, with corresponding square-root slope
ransforms {ψ̂i}, computed by aligning {qi} to the amplitude kriging estimate q̃0.

We want to predict ψ0 on Ψ , which is a nonlinear Riemannian manifold, using the relative
hases ψ̂1, . . . , ψ̂n. We deal with the nonlinearity of Ψ by considering the positive extension of
, Ψ ′

= {ψ̃ = aψ | a ∈ R+, ψ ∈ Ψ }, i.e., we embed Ψ in L2[0, 1] via Ψ ′. Compatible with the
inearity of the amplitude kriging estimate q̃0, we use an extrinsic approach to phase kriging: we
ompute the corresponding linear phase kriging estimate in Ψ ′ and then project it back to Ψ . The
rojection Π : Ψ ′

→ Ψ is defined as Π (ψ̃) = argminψ∈Ψ ∥ψ − ψ̃∥ = ψ̃/∥ψ̃∥. This projection
imply normalizes the magnitude of a point ψ̃ ∈ Ψ ′

⊂ L2[0, 1] to result in the closest point on the
ositive orthant of the unit sphere, ψ ∈ Ψ . Thus, Π (ψ̃0) = ψ̃0/∥ψ̃0∥ is the phase kriging estimator
f ψ0 based on a linear estimator ψ̃0 ∈ Ψ ′. Such an estimator represents an extrinsic choice that

uses a natural embedding of Ψ into L2[0, 1] via Ψ ′.
Let ∆+

n := {(x1, . . . , xn)T ∈ Rn
|xi > 0,

∑n
i=1 xi = 1}. With the estimated phase components ψ̂i,

the phase kriging estimate of ψ0 in Ψ ′ is defined as

ψ̃0(t) =

n∑
i=1

ζiψ̂i(t), (12)

where ζ = (ζ1, . . . , ζn)T ∈ ∆+
n minimizes the conditional phase prediction error functional

ζ ↦→ E(∥ψ̃0 − ψ0∥
2

| S). (13)

Positivity of ζi is required to ensure that the resulting phase prediction ψ̃0 is positive, i.e., the
corresponding γ̃0 is strictly increasing. As with the amplitude kriging estimate in Proposition 1,
the following result describes how the vector ζ can be computed, again under the idealized setting
where the {γi} can be exactly recovered.

Proposition 2. Assume that there exists a template q such that γ̂i = γi. Then, the vector ζ ∈ ∆+
n

can be obtained by minimizing ζ ↦→ ζ TVpζ , where the n × n matrix Vp contains as its elements

Vp(h0j,ω)+Vp(hi0,ω)−Vp(hij,ω) with hij,ω =

√
∥si − sj∥2

2 + ω · dsh(qi, qj)2 (i, j = 0, 1, . . . , n). The phase
predictor in (12) thus depends only on the conditional phase trace-variogram Vp(hω).

The proofs of Propositions 1 and 2 are presented in Appendix B of the supplement.
Computation of distances h0j,ω, j = 1, . . . , n and hi0,ω, i = 1, . . . , n relies on the knowledge

of the function shape at s0; for this, we use the shape of the amplitude kriging estimate q̃0 at s0.
his aspect of phase kriging reflects the relative nature of phase, as described in Section 3.1, with
espect to q̃0.

Remark 3. An alternative to the proposed extrinsic approach, which we do not consider here, is to
construct an intrinsically defined kriging estimator defined directly on Ψ using the geometry of the
ositive orthant of the Hilbert sphere (see, e.g.,Section 7.5.4 of Srivastava and Klassen (2016)). For
xample, a phase predictor can be defined as a weighted Karcher mean via the intrinsic distance
n Ψ , ψ̃0 = argminψ∈Ψ

∑n
i=1 ζi cos

−1(⟨ψ,ψi⟩)2, where ζ = (ζ1, . . . , ζn)T ∈ ∆+
n is the minimizer of

E(cos−1(⟨ψ̃0, ψ0⟩)2 | S), i.e., the intrinsic counterpart to the extrinsic conditional phase prediction
error specified in (13). Unfortunately, Proposition 2 does not hold in this case. In particular, without
linearity as in the extrinsic approach, the prediction error cannot be decomposed as a function of
the conditional phase trace-variogram. This, in turn, prohibits direct estimation of ψ̃0.

4.3. Final prediction via combination of amplitude and phase kriging estimates

The predicted amplitude and phase kriging estimates q̃0 and ψ̃0 include all information about
the magnitude, shape and temporal characteristics of the final prediction, but not the translation,
13
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which is lost due to the square-root slope transformation. To account for this, we use the starting
points fi(0) (i = 1, . . . , n) of the observed functions and apply ordinary kriging (Cressie and Wikle,
2011) to obtain a translation prediction T̂0 of the function f0.

Recall the inverse of the square-root slope transformation Q−1
: (R × Q) → F from Section 2.

he final kriging estimate combines the three estimates of amplitude, phase and translation as
ollows. First, we combine the amplitude and phase predictions using q∗

0 = (q̃0, γ̃−1
0 ), where

˜0(t) =
∫ t
0 Π (ψ̃0)2(u)du is the phase prediction. The combined kriging estimate of f0 at site s0 then

s f ∗

0 = Q−1(q∗

0, T̂0), where T̂0 is the predicted starting point.

. Amplitude-phase clustering

Amplitude and phase distances arising from amplitude-phase separation enable separate distance
ased amplitude and phase clustering of functional data. Spatially informed adaptations can now
e defined through the use of dissimilarity measures by combining the amplitude (phase) distance
nd amplitude (phase) trace-variogram. Incorporating amplitude-phase separation into clustering
an lead to more interpretable clusters. For example, in the famous Canadian weather data (Ramsay
nd Silverman, 2005) considered in Section 7.2, we note that daily average temperatures at
ites with similar extreme temperatures (similar amplitude) need not experience similar seasonal
rends. Thus, one would reasonably expect different clustering results corresponding to the two
omponents.
In contrast to clustering independent data, detecting homogeneous partitions of spatially cor-

elated objects must additionally account for spatial dependence by grouping them based on both
heir similarity as well as proximity on the spatial domain. The proposed amplitude-phase clustering
pproach can be viewed as an extension of the spatially informed adaptations of clustering and
lassification for multivariate data (Oliver and Webster, 1989; Bourgault et al., 1992). While several
istance-based clustering approaches can be used, we consider hierarchical clustering based on
patially-weighted dissimilarity matrices (Giraldo et al., 2012), by combining the amplitude (phase)
istance and amplitude (phase) trace-variogram, and generate spatially-informed amplitude and
hase clusters separately. Given observations {qi, si ∈ D} (i = 1, . . . , n), the amplitude and phase
issimilarity matrices are defined as

dA,ij = da(qi, qj) × Va(∥si − sj∥), dP,ij = dp(qi, qj) × Vp(hij,ω), i, j = 1, . . . , n, (14)

espectively. Since the dissimilarity matrices measure the discrepancy in amplitude and phase for
ach pair of functions, it is not necessary to choose a common template for all of the functions for
lignment. Instead, we simply choose one of the functions in each pair as a template to compute
he amplitude and relative phase distances between them. This ensures that V̂a and V̂p expressed
n a simplified form via pairwise distances in (9) can be used. In the implementation of hierarchical
lustering, we use complete linkage to define the discrepancy between clusters. The number of
lusters is chosen by minimizing the average silhouette (Rousseeuw, 1987), which quantifies the
ifference in similarity of an object to its own cluster versus other clusters.
Because the trace-variogram is an increasing function of the distance h (or hω), clustering based

n dissimilarities in (14) tends to generate partitions with good spatial contiguity in the presence
f strong spatial dependence. Further, it is evident that clustering results do not depend on the
verall scale of the trace-variogram, but rather its structure (rate of increase), which reflects the
patial correlatedness among the amplitude (phase) components. In particular, when there is no
patial dependence, the trace-variogram is constant, and the dissimilarity measures in (14) simplify
o the amplitude and phase distances (multiplied by a different constant in each case). Furthermore,
t is evident that hierarchical clustering based on the amplitude and phase dissimilarity measures
efined in (14) are invariant to a global scaling of the amplitude and phase trace-variograms Va and

p. Appendix D in the supplement contains a more detailed discussion of this property.

14
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6. Simulations

In the simulation studies, we assess the performance of the proposed amplitude-phase kriging
nd clustering methods. The fitting of variograms is carried out using functions in the R packages
eofd (Giraldo et al., 2020) and geoR (Ribeiro Jr et al., 2020). Joint kriging and alignment in
lgorithm 1 is carried out by appropriately modifying the relevant functions in the R package
dasrvf (Tucker, 2021). Hierarchical clustering is performed using the hclust function in R. All
ore computing tasks in this paper were conducted using a high performance computing cluster.

.1. Kriging performance

.1.1. Simulated data
We fix the spatial locations to equally-spaced sites on a 5 × 5 grid with x, y coordinates taking

he values (−2,−1, 0, 1, 2). Spatial functional data fi (i = 1, . . . , 25) is generated using the model

fi(γi(t)) =

K∑
j=1

ai,jφj(t) + ei(t), t ∈ [a, b],

on the original function space F (and not the SRSF transformed space Q), where, for each j, the
coefficient vector [a1,j, . . . , a25,j] follows a multivariate normal distribution with a specific mean
vector θ and the Matérn covariance CMat (·, ·; σ 2

a , 0.5, ℓ1); here, σ
2
a is the scale parameter, ℓ1 is the

range, and the smoothing parameter is fixed to 0.5. This imposes spatial correlation in the amplitude
component of the simulated data. Holding i fixed, the coefficients for the basis φj, j = 1, . . . , K
are assumed to be independent. We consider two simulation settings based on the choice of basis
functions:

1. Bimodal: set K = 1 and φ1(t) = − cos(2π t) on [a, b] = [−1, 1], with the mean vector θ of
[a1,1, . . . , a25,1] identically set to 5;

2. B-spline: set K = 10 and {φj}
K
j=1 to be cubic B-splines on [a, b] = [0, 1] with the mean vector

θ for each i equal to (1, 2, 3, 4, 5, 5, 4, 3, 3, 2, 1)T .

We now describe how spatial correlation is induced amongst the warping functions. The phase
components γi, i = 1, . . . , 25 are chosen to be the cumulative distribution functions of the
Beta(1, ebi ) density with {b1, . . . , b25} generated from the correlated uniform distribution on [−B, B],
by transforming a random sample from the multivariate normal distribution with covariance
CMat (·, ·; 1, 0.5, ℓ2). The parameter B determines the magnitude of phase variation while ℓ2 controls
the range of spatial dependency. Additionally, when the B-spline model is used, we consider two
scenarios depending on whether the correlation between phase components depends on the shape
of observed spatial functional data:

1. B-spline Scenario 1, where spatial phase correlation does not depend on function shapes: we
use (6) with ω = 0 to induce correlations between warping functions and set ℓ1 = ℓ2 = 81/2

with ei generated from a white noise process with variance 0.25;
2. B-spline Scenario 2, where spatial phase correlation depends on function shapes: we use (6)

with ω = 10 to induce correlations between parameters of the warping functions, and set
ℓ1 = 81/2 and ℓ2 as the median of pairwise distances computed via (6).

6.1.2. Comparison with other methods
We compare predictive performance of the proposed amplitude-phase kriging method (APK) to

three competing approaches: (1) ordinary kriging without alignment (OK) (Giraldo et al., 2011),
(2) universal kriging without alignment (UK) (Menafoglio et al., 2013), and (3) two-stage kriging
(TSK). For (3), we align the observed functions using the joint template-based alignment procedure
described in Section 2.2, followed by ordinary kriging (Giraldo et al., 2011) applied to the aligned
functions in SRSF space. Additionally, a translation prediction is generated in the same way as in
15
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Table 1
Average prediction errors (SD) using metrics E1–E5, across 50 different replicates, for amplitude-phase kriging (APK),
wo-stage kriging (TSK), ordinary kriging (OK) and universal kriging (UK). E2 is divided by 100 and E4 is multiplied by
0 to adjust the scale. B controls the magnitude of phase variation.
Bimodal

B Method E1 E2 E3 E4 E5

0.5 APK 1.12 (0.33) 0.46 (0.12) 0.55 (0.19) 0.15 (0.03) 10.4 (5.00)
TSK 1.11 (0.34) 0.46 (0.12) 0.56 (0.19) 0.18 (0.04) 14.48 (6.56)
OK 2.34 (1.00) 0.86 (0.32) 0.98 (0.30) 0.17 (0.04) 8.99 (4.36)
UK 2.50 ( 0.99 ) 0.91 (0.32) 1.07 (0.33) 0.18 (0.05) 9.20 (4.36)

1 APK 1.48 (0.63) 1.31 (1.19) 0.81 (0.24) 0.55 (0.17) 31.42 (14.64)
TSK 1.45 (0.59) 1.30 (1.15) 0.82 (0.23) 0.54 (0.15) 32.89 (14.11)
OK 7.94 (3.88) 4.18 (2.19) 4.24 (1.93) 0.88 (0.37) 19.51 (8.05)
UK 6.86 (2.64) 3.71 (1.86) 3.72 (1.14) 0.83 (0.24) 19.43 (7.62)

B-spline Scenario 1 (independent)

B Method E1 E2 E3 E4 E5

0.5 APK 1.49 (0.42) 2.32 (0.99) 2.26 (0.44) 1.00 (0.25) 2.61 (0.57)
TSK 1.55 (0.45) 2.35 (0.99) 2.36 (0.47) 1.12 (0.32) 3.06 (0.79)
OK 1.20 (0.21) 2.34 (0.97) 2.48 (0.52) 0.99 (0.22) 1.84 (0.29)
UK 1.32 (0.22) 2.44 (0.97) 2.67 (0.57) 1.05 (0.25) 1.99 (0.30)

1 APK 1.63 (0.42) 2.96 (1.82) 2.52 (0.53) 1.23 (0.28) 3.65 (0.95)
TSK 1.63 (0.42) 3.00 (1.77) 2.61 (0.55) 1.39 (0.34) 4.09 (1.09)
OK 1.50 (0.27) 3.28 (1.74) 3.12 (0.68) 1.40 (0.22) 2.71 (0.65)
UK 1.59 (0.29) 3.32 (1.58) 3.17 (0.67) 1.43 (0.26) 2.83 (0.63)

B-spline Scenario 2 (dependent)

B Method E1 E2 E3 E4 E5

0.5 APK 1.53 (0.46) 2.26 (0.95) 2.30 (0.42) 1.04 (0.25) 2.85 (0.64)
TSK 1.56 (0.46) 2.31 (0.95) 2.37 (0.44) 1.17 (0.34) 3.26 (0.75)
OK 1.27 (0.24) 2.39 (0.99) 2.62 (0.60) 1.06 (0.27) 2.12 (0.49)
UK 1.36 (0.24) 2.48 (1.02) 2.74 (0.61) 1.10 (0.27) 2.23 (0.48)

1 APK 1.66 (0.47) 2.96 (1.64) 2.55 (0.49) 1.34 (0.27) 4.27 (1.42)
TSK 1.70 (0.52) 2.99 (1.55) 2.66 (0.52) 1.44 (0.34) 4.44 (1.42)
OK 1.77 (0.59) 3.70 (1.82) 3.64 (1.10) 1.66 (0.36) 3.34 (1.05)
UK 1.74 (0.39) 3.52 (1.68) 3.46 (0.78) 1.61 (0.32) 3.34 (1.02)

amplitude-phase kriging. Then, the SRSF and translation predictions are combined via Q−1 to yield
prediction in the original function space.

erformance metrics. To assess performance, we apply leave-one-out cross-validation. Let f [−i]∗

enote the prediction of fi using all observations except the ith, and q[−i]∗ and qi denote their SRSFs;
[−i]
∗

is f [−i]∗ after optimal alignment to fi and ḟ is the time derivative of f . To measure the accuracy
f predictions, we compute the following five error metrics:

• Amplitude least squares: E1 = n−1 ∑n
i=1 ∥f [−i]

∗
− fi∥2;

• Amplitude Sobolev least squares: E2 = n−1 ∑n
i=1 ∥ḟ [−i]

∗
− ḟi∥2;

• Amplitude mean squared error: E3 = n−1 ∑n
i=1 da(q

[−i]∗, qi)2;
• Phase mean squared error: E4 = n−1 ∑n

i=1 dp(q
[−i]∗, qi)2;

• L2 prediction error: E5 = n−1 ∑n
i=1 ∥f [−i]∗

− fi∥2.

The first three are amplitude errors while the fourth one is the phase error. The last metric is simply
based on the standard mean squared error, i.e., the L2 distance. We use a variety of amplitude/phase
error metrics for fair comparison. Note that the mean squared error E5 accounts for a combination
of amplitude and phase errors and tends to be more sensitive to phase.

Results. The advantages of amplitude-phase kriging over other methods are summarized in Table 1;

the table reports average prediction errors (with standard deviations in parentheses) over 50

16
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Fig. 4. Example predictions obtained via amplitude-phase kriging (blue), ordinary kriging (red), two-stage kriging (green)
nd universal kriging (cyan). Left: Bimodal simulation with B = 1. Right: B-spline Scenario 1 simulation with B = 1. The

true function is in black. (For interpretation of the references to color in this figure legend, the reader is referred to the
web version of this article.)

simulation runs. Best performance is highlighted in bold. Compared to ordinary and universal
kriging, the improvement in amplitude errors is large when significant phase variation is present
in the data. Although the two-stage method has similar performance to the proposed method in
terms of amplitude prediction, amplitude-phase kriging shows a clear advantage in predicting the
phase of target functions (E4).

Data simulated using the B-spline basis (under both scenarios) exhibits higher shape variation
than the bimodal case, and represents the more challenging setting for both amplitude-phase
kriging and the two-stage method. Nonetheless, amplitude-phase kriging outperforms ordinary and
universal kriging in most cases, even when phase variation is small. In particular, when the phase
components are dependent on function shapes, amplitude-phase kriging has a clear advantage in
terms of the amplitude errors E2 and E3, and the phase error E4. Further, amplitude-phase kriging
yields smaller amplitude and phase errors than two-stage kriging in this case; this is due to the
spatially-informed alignment via Algorithm 1.

While the proposed approach does not outperform ordinary or universal kriging in terms of the
L2 prediction error E5, it has been noted in Srivastava and Klassen (2016) that the L2 distance, which
s used to define this error metric, is not a good measure of amplitude and/or phase differences.
urthermore, since ordinary and universal kriging are optimal under the L2 metric, the results based
n these measures are naturally biased towards these methods. The amplitude-phase kriging errors
re mainly due to phase prediction, which is especially challenging on the boundary of the spatial
omain since fewer neighbors are available.

emark 4. In the simulated setting involving bimodal data, the performance of two-stage kriging
s very similar to that of the proposed amplitude-phase kriging method, especially in terms of the
mplitude errors E1, E2, and E3. The data in this case follows a one-dimensional model, and as such,

the shapes of all functions are the same across the entire spatial domain. Thus, the global Karcher
mean is very similar to the proposed spatially-weighted template.

Fig. 4 shows predictions generated by the four different methods for a single target function
based on the bimodal simulation with B = 1 (left), and the B-spline Scenario 1 simulation with

= 1 (right). In general, ordinary and universal kriging fail to capture important features of
unctions in the predictions when phase variation is present in the data. In the left panel, the
rdinary and universal kriging predictions severely underestimate the two peaks and the valley.
n the right panel, the two methods yield predictions that are ‘flat’ over a large portion of the
omain and fail to capture any of the shape patterns in the true function. The two-stage method
ppears to perform relatively well in terms of amplitude prediction, but does not provide a viable
hase prediction. The proposed amplitude-phase kriging, on the other hand, successfully captures
17
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Fig. 5. Estimation of trace-variograms for prediction at site 13 under the Bimodal simulation scenario with B = 1; site
3 was left out and the rest of the observations were used to estimate the trace-variograms. The dots represent the
mpirical L2 (ordinary kriging), amplitude and phase trace-variograms. Estimates of the trace-variograms (red curves)
ere obtained by fitting a Matérn variogram model to the empirical trace-variograms. For the phase trace-variogram, the
stimated optimal value of the tuning parameter ω is 0.

rominent function features, as well as their magnitude, and provides satisfactory phase predictions.
hese improvements often result in significant decreases in the various amplitude and phase error
etrics. Appendix A in the supplement reports results of another simulation study that directly
xplores the benefits of spatially-informed alignment in amplitude-phase kriging.
We further illustrate why amplitude-phase kriging yields better predictions than ordinary kriging

n the presence of phase variation. Here, we use a single simulation run for the bimodal scenario
ith B = 1. Fig. 5 displays the empirical L2 (left), amplitude (middle) and phase (right) trace-
ariograms; the fitted Matérn models are shown in red. In Fig. 6, we show the magnitude of optimal
riging coefficients for the observed data when trying to predict at site 13. Again, we consider
rdinary, amplitude and phase kriging in the left, middle and right panels, respectively. Due to
he ‘flat’ estimate of the L2 trace-variogram, ordinary kriging assigns very similar coefficients to all
of the observed functions, i.e., it fails to capture the spatial dependence in the data. On the other
hand, amplitude and phase kriging result in reasonable coefficient estimates: observations in the
spatial neighborhood of site 13 have largest kriging coefficients due to the strong spatial dependence
in the data. The resulting estimators are shown in dashed blue at site 13. It is evident that the
ordinary kriging prediction underestimates the magnitude of the two extrema; the amplitude
kriging prediction is much better at capturing these features. This result is similar to the one
presented in the left panel of Fig. 4. Since all of the functions in the bimodal simulation scenario have
the same shape, the estimated optimal value of the tuning parameter ω is 0. Thus, function shapes
o not contribute to the phase trace-variogram and phase prediction. We provide a similar set of
esults for the B-spline scenario with irregularly-spaced sites in Appendix E in the supplement; the
indings are very similar.

.2. Clustering

.2.1. Simulated data
Let n denote the number of spatial sites where data was observed and I the number of clusters.

hen, n =
∑I

i=1 ni, where ni is the number of functions in cluster i. Motivated by the fact that
mplitude and phase in real data scenarios may exhibit different clustering patterns, we simulate
he true partitions with respect to amplitude and phase separately. Our aim is to validate that
he proposed amplitude-phase clustering method is able to reveal the true underlying partitions
f both amplitude and phase simultaneously, irrespective of whether the spatial partitions of each
omponent agree.
We consider two different designs: (i) where amplitude and phase cluster partitions are the

ame (agree), and (ii) where they are not (disagree). For (i), sites are on a 4 × 4 grid with integer
oordinates 1, 2, 3, 4, and are partitioned into four equally sized clusters via the lines x = 2.5 and
y = 2.5. For (ii), 30 sites are chosen uniformly on [0, 4]2; the amplitudes are partitioned by the lines
18
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Fig. 6. Ordinary (left), amplitude (middle) and phase (right) kriging maps for prediction at site 13 under the bimodal
simulation scenario with B = 1. The magnitude of kriging coefficients to construct the estimators (dashed blue) are shown
n red.

Fig. 7. Top row: Ground truth amplitude (column 1) and phase (column 2) partitions for the agree design with spatial
ites on a 4 × 4 grid with integer coordinates. Ground truth amplitude (column 3) and phase (column 4) partitions for the
isagree design with uniformly sampled spatial sites on the domain [0, 4]2 . Black dashed lines delineate the boundaries
f the amplitude clusters, while red dotted lines delineate the boundaries of the phase clusters. Bottom row: Example
ataset generated for the agree and disagree designs, with colors corresponding to the true amplitude or phase clusters
isplayed in the top row.

= 2 and y = 2, while the phases are partitioned by the lines y = x and y = 4− x. The top row in
ig. 7 displays the two designs: the left two panels correspond to the ground truth amplitude and
hase partitions for the agree design, respectively, while the right two panels display the same for
he disagree design. In the bottom row, we display one example of simulated data for these two
esigns. The colors in each panel correspond to the ground truth clustering according to amplitude
r phase.
Let fij be the jth functional observation in cluster i. We generate spatial functional data with

omain [0, 1] as fij(t) =
{
(aijµ+ eij) ◦ γij

}
(t) (i = 1, . . . , I; j = 1, . . . , ni). We set µ(t) =

− cos(2π t), aij = iδa + ϵa,ij, and γi as the cumulative distribution function of Beta(1, ebij ), where
ij = iδb + ϵb,ij; δa and δb are fixed parameters that control the amplitude and phase differences
etween clusters, respectively. The vector {ϵa,ij} is generated from a multivariate normal distribution
ith a mean vector (5, . . . , 5)T and Matérn covariance CMat (·, ·; σ 2

a , 0.5, ℓ). The vector {ϵb,ij} follows
the correlated uniform distribution on [−B, B]n with the same correlation range ℓ; eij is a zero mean
aussian process with a diagonal covariance. We fix σ 2

a = 1, B = 1, σe = 0.5 and ℓ = 81/2. In the
ottom row of Fig. 7, we display one example of simulated data for the agree and disagree designs.
he colors in each panel correspond to the ground truth clustering according to amplitude or phase.
19
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Table 2
Average rand indices (SD) for estimated partitions based on amplitude-phase clustering (APC) and L2-based clustering
L2C), with respect to the true amplitude and phase clusters.
δa δb Method Agree Disagree

Amplitude Phase Amplitude Phase

1 0.1 APC 0.828 (0.106) 0.751 (0.101) 0.808 (0.107) 0.711 (0.088)
L2C 0.772 (0.079) 0.772 (0.079) 0.731 (0.085) 0.711 (0.067)

0.5 APC 0.870 (0.091) 0.958 (0.052) 0.752 (0.086) 0.887 (0.083)
L2C 0.910 (0.072) 0.910 (0.072) 0.701 (0.046) 0.877 (0.07)

2 0.1 APC 0.945 (0.067) 0.767 (0.104) 0.916 (0.076) 0.708 (0.087)
L2C 0.808 (0.082) 0.808 (0.082) 0.779 (0.085) 0.742 (0.068)

0.5 APC 0.949 (0.071) 0.955 (0.059) 0.835 (0.085) 0.879 (0.087)
L2C 0.908 (0.080) 0.908 (0.080) 0.707 (0.055) 0.873 (0.071)

Fig. 8. Estimation of trace-variograms for clustering under the disagree design with δa = 2 and δb = 0.5. The dots
epresent the empirical L2 , amplitude and phase trace-variograms. Estimates of the trace-variograms (red curves) were
btained by fitting a Matérn variogram model to the empirical trace-variograms.

.2.2. Comparison with another method
We repeat each simulation 100 times, and compare amplitude-phase clustering (APC) to the L2

istance-based method (L2C) (Giraldo et al., 2012) using the rand index (Rand, 1971).
Results. The means and standard deviations of the rand indices for each design, and different

hoices of δa and δb, are shown in Table 2; best performance is highlighted in bold. The proposed
mplitude-phase clustering approach outperforms the L2 distance-based method in most scenarios,
ven when the amplitude and phase partitions agree. When the true partitions are different, the
mplitude-phase clustering is far superior, especially for the larger values of δa and δb. The L2-based
pproach is always forced to compromise between the true amplitude and phase clusters, while the
roposed approach treats them separately. Further, the L2 metric is sensitive to phase differences.
s a result, when δb is large, it captures the phase clustering and exhibits similar performance to the
roposed method in that regard. However, it is unable to recover the true amplitude clusters. Fig. 8
hows the empirical and fitted trace-variograms for particular values of δa and δb, and demonstrates
hat spatial dependence is captured by all variograms, increasing the chance of grouping the subjects
ith stronger spatial correlation.

. Real data analysis

.1. Kriging of daily ozone data in north california

We apply the proposed amplitude-phase kriging method to U.S. daily ozone data, available on
he air data website1 of the United States Environmental Protection Agency. We focus on a small

1 https://www.epa.gov/outdoor-air-quality-data.
20
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Table 3
Leave-one-out cross-validation average prediction errors of amplitude-phase kriging
(APK), two-stage kriging (TSK) and ordinary kriging (OK) for the ozone data in North
California. All values were multiplied by 1000.
Method E1 E2 E3 E4 E5

APK 4.88 7.57 1.94 49.02 7.17
TSK 4.67 8.79 2.21 45.9 6.6
OK 4.17 8.01 2.23 53.64 6.44

Fig. 9. After leaving out the observation at site 8, the remaining ozone concentration functions observed at 23 other
ites (left) are aligned to the estimated amplitude prediction at site 8 using Algorithm 1, resulting in separate amplitude
middle) and phase (right) components.

rea in North California (35◦
∼ 39◦ N, 120 ∼ 123◦ W) with 24 observation stations. Each station

ecorded daily average ozone concentration (parts per million) for the year 2018. We smooth the
ata using splines with smoothing parameter ι = 3×10−4. We evaluate the effect of smoothing on
riging performance in Appendix C in the supplement.

.1.1. Results
We use leave-one-out cross-validation on the 24 smoothed observations and report the mean

f the five error metrics, E1–E5, for ordinary kriging (OK), two-stage kriging (TSK) and amplitude-
hase kriging (APK) in Table 3; best performance is highlighted in bold. We do not compare to
niversal kriging here since this approach focuses on kriging residual functions after accounting for
spatially varying mean function. The proposed method outperforms ordinary kriging in terms of
he reported amplitude/phase error metrics E2, E3 and E4. The amplitude and phase mean squared
errors (E3 and E4) of amplitude-phase kriging are 13% and 8.6% smaller, respectively, compared to
ordinary kriging. This shows that combining separate amplitude and phase predictions has a clear
advantage in real data scenarios. Compared to two-stage kriging, amplitude-phase kriging generates
more accurate amplitude predictions as evidenced by smaller E2 and E3 errors. This is most likely
due to moderate shape variation among the spatial functional data. Two-stage kriging outperforms
amplitude-phase kriging in terms of the phase error E4.

Focusing on site 8, we present more detailed alignment and kriging results based on the proposed
approach. We present the results of amplitude-phase separation, computed via Algorithm 1, in
Fig. 9. The given spatial functional data (except for the datum observed at site 8) is given in
the left panel. It is clear that phase variation is present in the sample. The estimated warping
functions, with respect to the amplitude kriging predictor at site 8, are shown in the right panel;
phase variation in the ozone concentration functions is mainly due to local delays/advances in the
timeline, which represent significant deviations from identity warping. The middle panel displays
the aligned data. The right panel in Fig. 10 highlights the advantage of amplitude-phase kriging
as compared to ordinary kriging: between days 200 and 300, where significant phase variation is
present, amplitude-phase kriging is much more effective at predicting the shape of the function
at site 8. In particular, ordinary kriging underestimates the magnitude of the second peak of ozone
concentration. Accurate prediction of the phase component is difficult in practice since its definition
21
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Fig. 10. Amplitude-phase kriging of amplitude (left) and phase (middle) components at site 8. The solid curves are
estimated amplitude and phase components at observed sites; dashed blue lines are the predicted amplitude and phase
components. The color shading shows the contribution (from 0 to 1) from each site to the prediction. Right: The prediction
for site 8 with the true function (black) and predictions obtained via amplitude phase-kriging (blue), ordinary kriging (red)
and two-stage kriging (green). (For interpretation of the references to color in this figure legend, the reader is referred
to the web version of this article.)

depends on the shape of functional data. From the left and middle panels in Fig. 10, we can see
that amplitude kriging generally borrows information from neighboring sites since we only use the
spatial coordinates (distance) to model the dependency in this case. On the other hand, in phase
kriging, we include both the spatial locations and the shape of the observed functions to model
the dependency. Thus, the highest contribution into the final kriging estimate is a combination
of phase functions that are spatially nearby, and those that correspond to observed functions
that have a similar shape to the predicted amplitude. Furthermore, the spatial dependency in the
phase component is generally fairly weak. This is why many previous studies prefer to treat phase
variability as noise. However, in this real data analysis, we have found that even if the phase signal
is not as strong as the amplitude signal, separate amplitude and phase prediction is still beneficial
as evidenced in Table 3 and the right panel in Fig. 10.

7.2. Clustering of canadian weather data

We apply the proposed amplitude-phase clustering method to the Canadian weather data (Ram-
say and Silverman, 2005). The data can be found in the R package ‘fda’ (Ramsay et al., 2020). In this
paper, we analyze the daily temperature data averaged over 1960–1994, collected at 35 stations in
Canada. Because the 35 stations cover a large area, we first filter out the longitudinal and latitudinal
trends by fitting a functional linear regression model where longitude and latitude are included as
covariates; the same approach was taken in Giraldo et al. (2012). The resulting functional residuals
are then smoothed using splines (with low smoothing parameter ι = 5 × 10−5) and used as the
ata for clustering.

.2.1. Results
We use the clustering method described in Section 5 and compare the results to the L2

metric-based clustering of Giraldo et al. (2012). The empirical and fitted L2, amplitude and phase
trace-variograms are shown in Fig. 11. There is evidence of spatial correlations in each of them
and the amplitude trace-variogram has a smaller range than the L2 one. We further observe that
he Matérn model fits the empirical amplitude and phase trace-variograms better than the L2 one,
ince some quadratic patterns are present in the latter. Values from these fitted variograms are
lugged into the dissimilarity measures as weights for clustering.
The hierarchical clustering trees as well as the clustering results on the map of Canada are

hown in Fig. 12. Based on separate clustering of amplitude and phase, we discover some interesting
esults. First, the amplitude and phase clusterings agree in Western and Central Canada. The cities
ocated on the West Coast are further partitioned into South and North clusters, while the cities

n the Central region are in a single cluster. Second, the difference between amplitude and phase
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Fig. 11. Estimation of trace-variograms for clustering of the Canadian weather data. The dots represent the empirical L2 ,
amplitude and phase trace-variograms. Estimates of the trace-variograms (red curves) were obtained by fitting a Matérn
variogram model to the empirical trace-variograms.

variation mainly appears in the clustering of Resolute, Iqaluit and St. Johns. Specifically, Resolute
and St. Johns are clustered together based on amplitude due to similar magnitude (and shape) of
the residual functions whereas Iqaluit is clustered separately. In terms of phase, Iqaluit and St.
Johns are included in the large cluster in Southeast Canada, but Resolute forms its own cluster.
This is due to a large phase distance between the Resolute residual function and the Iqaluit/St.
Johns residual functions: the Resolute function reaches its peak earlier than the other two and
has a much longer plateau. Third, compared to the L2-based clustering method (bottom panel
in Fig. 12), amplitude-phase clustering yields fewer clusters and the clusters tend to be more
spatially connected. For example, the three cities in the Northwest are clustered together based
on amplitude-phase clustering whereas L2-based clustering separates them into three different
clusters. Further, based on L2-based clustering, we observe an unnatural result: Resolute, a station
in the Arctic Circle, is clustered with the Vancouver and Victoria stations on the West Coast and St.
Johns on the East Coast. We also applied hierarchical clustering without spatial weighting to the
same dataset (see Appendix E in the supplement). It is clear that involving spatial dependency in
the clustering helps preserve connectivity of adjacent sites, making the results more interpretable.

8. Discussion

It is difficult to verify the key assumptions of stationarity and isotropy for spatial functional
data, especially when one decouples amplitude and phase components, which effectively results
in two sets of functional data. Despite this, when deviation from stationarity is not too large,
the amplitude and conditional phase trace-variograms provide useful summary statistics of spatial
variation. Results from simulations and real data analyses offer corroboration. Although some of the
presented empirical amplitude and (conditional) phase trace-variograms could indicate a spatial
trend in the mean, it is difficult to assess whether the stationarity assumption has in fact been
violated. If a spatial trend in the mean is of concern, one can adapt the proposed framework
to a universal amplitude-phase kriging approach. This extension is non-trivial as it requires a
regression framework for amplitude and phase. For amplitude, the specified regression model must
be invariant to warping. For phase, considerable difficulties are posed by the non-Euclidean nature
of its representation space. We will consider this extension in future work.

Based on simulations in Section 6, the phase trace-variogram is more informative when allowing
for the plausibility that two nearby functions share similar shapes. Thus, a rigorous study of
the conditional phase trace-variogram, when conditioned on the shape random field, will add
further insight, but is beyond the scope of this paper. The main challenge will be to reconcile the
variogram definition with the property that a phase functional random field will almost never satisfy
stationarity since it is only interpreted in a relative sense.
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Fig. 12. Clustering (average linkage, clusters in different colors) of functional residuals, after adjusting for latitude and

longitude effects, obtained from the Canadian weather data.
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Evidently, formulating phase variation as an isometric action by the group of warping functions
lays a crucial role in this paper. This is enabled by adopting the square-root slope transform
→ q, which maps f ◦ γ → (q, γ ) under which ∥(q, γ )∥ = ∥q∥. The property that warping or
hase variation does not affect the function’s norm drives our definitions of variograms Va and Vp,
heir estimators, and is used when constructing, and examining properties of, kriging estimates
see proofs of Propositions 1 and 2 in Appendix B in the supplement as well as Proposition 3 and
ts proof in Appendix C in the supplement). Hence, although several methods for amplitude-phase
eparation are available, our developments in this paper complement the ubiquity of the L2 metric
n functional data analysis through the use of the square-root slope transform.

Extensions of developments in this paper to the setting of noisy, sparse spatial functional data
onstitute ongoing work. Variability due to considerable nonparametric or model-based smoothing
ill then need to be considered in addition to amplitude, phase and spatial variabilities. Promisingly,
esults here represent the first foray towards analyzing spatial complex functional data objects such
s shapes of curves (Srivastava and Klassen, 2016) and surfaces (Jermyn et al., 2017) by decoupling
patial, shape and nuisance variations.
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