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A B S T R A C T 

We present a new X-Ray Accretion Disc-wind Emulator ( XRADE ) based on the 2.5D Monte Carlo radiative transfer code that 
provides a physically moti v ated, self-consistent treatment of both absorption and emission from a disc wind by computing the 
local ionization state and velocity field within the flow. XRADE is then implemented through a process that combines X-ray 

tracing with supervised machine learning. We develop a novel emulation method consisting in training, validating, and testing 

the simulated disc-wind spectra into a purposely built artificial neural network. The trained emulator can generate a single 
synthetic spectrum for a particular parameter set in a fraction of a second, in contrast to the few hours required by a standard 

Monte Carlo radiative transfer pipeline. The emulator does not suffer from interpolation issues with multidimensional spaces 
that are typically faced by traditional X-ray fitting packages such as XSPEC . XRADE will be suitable to a wide number of sources 
across the black hole mass, ionizing luminosity, and accretion rate scales. As an example, we demonstrate the applicability 

of XRADE to the physical interpretation of the X-ray spectra of the bright quasar PDS 456, which hosts the best-established 

accretion disc wind observed to date. We anticipate that our emulation method will be an indispensable tool for the development 
of high-resolution theoretical models, with the necessary flexibility to be optimized for the next generation microcalorimeters 
onboard future missions, like X-Ray Imaging and Spectroscopy Mission ( XRISM )/Resolve and Athena /X-ray Integral Field Unit 
(X-IFU). This tool can also be implemented across a wide variety of X-ray spectral models and beyond. 

K ey words: radiati ve transfer – methods: numerical – techniques: spectroscopic – galaxies: active – galaxies: individual: 
PDS 456. 
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 I N T RO D U C T I O N  

ccretion disc winds are generally observed through blueshifted
bsorption features at rest-frame energies > 7 keV, imprinted in the
 E-mail: maggie.lieu@nottingham.ac.uk (ML); 
james.n.reeves456@gmail.com (JNR) 
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Pub
-ray spectra of active galactic nuclei (AGNs; Chartas et al. 2002 ;
ounds et al. 2003 ; Reeves, O’Brien & Ward 2003 ). Their degree
f blueshift from the lab energies of Fe XXV He α (He-like) and/or
e XXVI Ly α (H-like) implies mildly relati vistic outflo w velocities,

ypically falling in the range ∼0.1–0.4 c (e.g. Reeves et al. 2009 ;
offord et al. 2014 ; Nardini et al. 2015 ; Matzeu et al. 2016 , 2019 ;
iddei et al. 2020 ; Parker et al. 2020 ). Their frequent detection, in

pproximately 35–40 per cent of local AGNs (Tombesi et al. 2010 ;
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offord et al. 2013 ; Igo et al. 2020 ), suggests that the wind geometry
s characterized by a large co v ering factor ( �). This was confirmed by
he direct measurement of � � 2 π in the luminous quasar PDS 456
Nardini et al. 2015 , hereafter N15 ). With such a high co v ering factor,
oupled with high column densities ( N H � 10 23 cm 

−2 ; Tombesi et al.
011 ; Gofford et al. 2013 ) and high velocities, a large amount
f kinetic power can be transported, possibly exceeding the 0.5–
 per cent of the bolometric luminosity required for significant AGN 

eedback (King 2003 ; King & Pounds 2003 ; Di Matteo, Springel &
ernquist 2005 ; Hopkins & Elvis 2010 ). 
Measuring the intrinsic physical properties of these winds can 

rovide important insights into the mechanism through which they 
re driven (launched, accelerated). There are currently three known 
hysical mechanism responsible for driving accretion disc winds: gas 
ressure, radiation pressure, and magnetic fields. While gas pressure 
thermal driving) is unable to explain the large velocities observed 
n accretion disc winds in AGN, the two other mechanisms are in
rinciple able to do so. Three possible scenarios might therefore 
e able to explain the observations of AGN accretion disc winds: 
i) radiatively driven winds (e.g. Proga, Stone & Kallman 2000 ; 
allman & Bautista 2001 ; Proga & Kallman 2004 ; Giustini & Proga
019 ); (ii) magnetically driven (hereafter MHD) winds (e.g. Em- 
ering, Blandford & Shlosman 1992 ; Ohsuga et al. 2009 ; Fukumura

t al. 2010 , 2015 ; Kazanas et al. 2012 ); and/or (iii) to some extent
 likely combination of the two (e.g. de Kool & Begelman 1995 ;
verett 2005 ; Matzeu et al. 2016 ). 
In the radiatively driven scenario, the AGN radiation pressure 

aunches a wind from the accretion disc from tens to thousands 
f gravitational radii from the supermassive black hole (SMBH; 
he gravitational radius r g = GM BH / c 2 , with G the gravitational
onstant, c the speed of light, and M BH the black hole mass). The
etection of strongly blueshifted broad absorption lines (BALs), 
ssociated with the ultraviolet (UV) transitions (e.g. Weymann et al. 
991 ; Matthews et al. 2016 ; Rankine et al. 2020 ), demonstrates that
ubstantial momentum can be transferred from a powerful radiation 
eld to the gas, thus accelerating mass outflows. These type of
adiati vely dri ven outflo ws are described as line-driven winds, as
heir strength depends on the opacity of the absorption lines, which 
cts as a force multiplier to the radiation pressure and can make the
ound–bound absorption cross-section considerably larger than the 
homson cross-section for electron scattering (i.e. σ line � σ T ; e.g. 
astor, Abbott & Klein 1975 ; Stevens & Kallman 1990 ; Dannen
t al. 2019 ). The strength of line-driven disc winds depends on the
onization state of the gas ξ = L / nR 

2 , where n is the gas density,
 is the ionizing luminosity, and R is the distance between the
as and the source of the ionizing luminosity. As demonstrated by 
annen et al. ( 2019 ), for a typical AGN spectral energy distribution

SED) the effects of the force multiplier drop at log ξ > 3, where
ll the rele v ant opacity is lost. Line-dri ven winds are therefore
ikely more rele v ant for sub-Eddington sources, 1 where the ionizing 
uminosity is not as large as completely ionize the illuminated 
as. 

In AGN close to Eddington or super-Eddington, the ionization 
tate of the gas is so high that the dominant interaction between
he outflowing gas and the radiation field is likely Thomson (and 
ompton) scattering (King & Pounds 2003 ; King 2010 ). In this case,
 The Eddington luminosity is defined as L Edd = 4 πGMm p c/σT , with m p 

he proton mass and σT the Thomson cross-section, and it is the luminosity 
or which the radiation pressure and the gravitational pull are equal, for a 
iven mass M . 

a
a
e  

(  

b
A  
 direct correlation between the momentum rate of the outflow and
he momentum rate of the radiation field, i.e. ṗ out ∼ ṗ rad ( = L/c),
ould be expected if the optical depth to electron scattering is τ
1. This indeed appears to be the case in many observations of

ast, highly ionized winds (Tombesi et al. 2013 ; Gofford et al. 2015 ;
ardini, Lusso & Bisogni 2019 ), but it does require the AGN to

adiate at a considerable fraction of its Eddington luminosity, L Edd 

King & Pounds 2003 ). 
Most theoretical outflow studies are mainly concentrated on 

adiati vely dri ven winds in both AGNs (Sim et al. 2008 , 2010 ; Hagino
t al. 2015 , 2016 , 2017 ; Matthews et al. 2016 , 2020 ; Nomura &
hsuga 2017 ; Luminari et al. 2018 ; Nomura, Ohsuga & Done 2020 ;
uera-Bofarull et al. 2020 ; Mizumoto et al. 2021 ), X-ray binaries

XRBs; Higginbottom et al. 2019 , 2020 ; Tomaru et al. 2020a , b ),
nd cataclysmic variables (e.g. Matthews et al. 2015 ). Nevertheless, 
HD wind models have been successfully applied to both AGNs 

Fukumura et al. 2010 , 2015 , 2018 ) and XRBs (Fukumura et al.
017 , 2021 ; Ratheesh et al. 2021 ). These findings suggest that both
riving/launching mechanisms apply across the black hole mass and 
uminosity scales. 

The development of physical models for accretion disc winds and 
 self-consistent test of their predictions are among the primary goals
n modern X-ray astronomy. Predictions can be tested by using grids
f spectral simulations generated for different values of the physical 
arameters of interest, such as the ionization state and column density
f the gas. Up until now, astronomers had to compromise between the
ampling resolution and the extent of the parameter space co v ered
n the model, due to the extremely demanding computational times 
nvolved. Although grids generated with coarser sampling generally 
llow one to explore a broader parameter space, they are more
usceptible to interpolation issues (Arnaud 1996 ) that may affect 
he degree of accuracy of the measurements. The next generation 
f instruments, onboard X-Ray Imaging and Spectroscopy Mission 
 XRISM ) and Athena (planned to be launched in 2023 and early
030, respectiv ely), will pro vide a significant increase in spectral
esolution, with �E ∼ 5 eV for XRISM /Resolve (Tashiro et al. 2020 )
nd �E ∼ 2 . 5 eV for Athena /X-ray Integral Field Unit (X-IFU;
arret et al. 2018 ). Such advances in technology will inevitably

equire the development of higher resolution grids to match the 
mpro v ed spectral information. 

Machine learning techniques, which allow us to learn the mapping 
rom an input space to an output space, can play a fundamental role in
peeding up this process. In supervised machine learning, a sample 
f both the input and the output is known, and the objective is to
earn a mapping that is able to best reproduce the output for a given
oss function . In our case, the loss function is a measure of how
lose the machine learning emulated X-ray spectra are to ground 
ruth , the simulated spectral values. This is the training of the model,
nd the data sample is known as the training data. Machine learning
enefits from large data samples and although such process can be
omputationally e xpensiv e to train, the trained data are capable of
fficiently computing the mapping. 

Consequently, supervised learning methods can be useful to reduce 
he computational cost of large and complex models, provided that 
 representative training set can be obtained (Kasim et al. 2022 ).
rained machine learning models can be used as surrogate models to
pproximate computationally e xpensiv e models such as the weather 
nd climate (Watson-Parris 2021 ). These frameworks are known as 
mulators , and they can be developed as artificial neural networks
 ANN s hereafter). The ANN architecture is loosely based on the human
rain and consists of interconnected neurons organized into layers. 
NN s are also quickly becoming popular in astronomy to approxi-
MNRAS 515, 6172–6190 (2022) 
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Figure 1. Schematic representation of the biconical structure adopted for 
the disc-wind model. The 2D geometry is defined with three parameters: 
R min , R max , and d . R min and R max correspond to the radii at which the inner 
and outer edges of the disc wind intercept the disc plane, respectively. The 
blue-shaded area represents the physical extent of the outflow, while d defines 
the focus point of the wind below the disc plane, which controls the degree 
of collimation and opening angle of the wind (where tan θmin = 

R min 
d 

). This 
2D structure is then rotated around the vertical z-axis and mirrored with 
respect to the accretion disc plane to produce an axisymmetric 2.5D wind 
geometry. 
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ate simulations and interpolate between them (see e.g. Chardin et al.
019 ; He et al. 2019 ). Kerzendorf et al. ( 2021 ) created an emulator to
eplace e xpensiv e radiativ e transfer codes for modelling superno va
pectral time series, while Alsing et al. ( 2020 )’s stellar population
ynthesis (SPS) model emulator accurately generates galaxy spectra
nd photometry from SPS parameters. 

The aim of this paper is to present the description, development,
nd application of a new extended Monte Carlo radiative transfer
 MCRT hereafter) accretion disc-wind code initially developed by
im et al. ( 2008 , 2010 , hereafter S08 , S10 ): X-Ray Accretion Disc-
ind Emulator ( XRADE ). The no v el approach in the development of
RADE is twofold. (i) First, we compute a new set of synthetic X-ray
pectra in order to explore the physical conditions of accretion disc
inds in a larger AGN population. (ii) Secondly, as the synthetic

pectra are fed into a purposely built ANN , the data will undergo
 process of training, validation, and testing with the aim of (a)
ccelerating the process of synthetic spectra simulations, and (b)
olving the multidimensional interpolation problems 2 that arise when
ultiplicative tables are adopted in spectral fitting packages such

s XSPEC (Arnaud 1996 ). Our ANN allows the user to generate
ustomized XRADE tables at their requirement. On this basis, we
enerated two new large MCRT tables, namely slow64 and
ast32 , which co v er a larger parameter space (CPU time: ∼7–
 months with 480 50 GB cores), than the one generated in S08 ,
10 , and Reeves et al. ( 2014 ). In the future, the spectral resolution
f the wind grids will also be increased, in order to match the
ext-generation calorimeter data. Hence to reduce the computational
emands for our future tables, machine learning is a very important
ool. 

This paper is organized as follows. In Section 2 , we give an
 v erview of the MCRT methods used to simulate disc-wind
ynthetic spectra from the code originally developed in S08 and
10 , and we describe the physical assumptions adopted in the disc-
ind slow64 and fast32 models. We also discuss the input
arameters and we present a brief description of the main input
arameters. In Section 3 , we describe in detail the methods adopted
or the development of XRADE . In Section 4 , we apply XRADE to the
uasar PDS 456, which hosts one of the most powerful and persistent
ccretion disc winds disco v ered to date. We specifically test XRADE

n the XMM–Newton and NuSTAR 2013 observation of PDS 456, as
he X-ray spectrum is characterized by the most prominent and best
tudied P Cygni-like profile yet observed. In Section 5 , we draw our
onclusions and discuss further work. 

 R A D I AT I V E  TRANSFER  C O D E  OV ERVIEW  

he development of XRADE is based on training the synthetic wind
pectra simulated with the MCRT code by S08 and S10 into an ANN .
ote that a more detailed description of the input model set-up can be

ound in S08 and S10 . In this section, we present, for completeness,
n o v erview of the physical basis and approach adopted in generating
he input MCRT wind spectra for XRADE . 

Initially, S08 carried out multidimensional (2.5D) Monte Carlo
adiative transfer simulations in a biconical wind structure (see
ig. 1 ). The simulated spectra were calculated o v er grid points
ith coordinates x , y , z, under the assumption that the system is

xisymmetric about the polar ( z) axis in the azimuthal direction.
10 extended the atomic data base with the inclusion of the L-
nd M-shell transitions. As a result, the simulated synthetic spectra
NRAS 515, 6172–6190 (2022) 

 https:// heasarc.gsfc.nasa.gov/ xstar/ docs/html/ node95.html 

i  

f  

X

ere more accurate o v er a larger range of photon energies (i.e. 0.2–
0 keV). Additionally, the Monte Carlo ray-tracing method described
n Lucy ( 2002 , 2003 ) was implemented in the code. This allowed the
reatment of ionization and radiative heating of the gas by means
f self-consistent calculations of the heating/cooling of electrons
ased on the photon packets (the computational structure used in
he simulations) that propagate throughout the wind. A temperature
radient is then calculated in order to provide a more physical
epresentation of the ionization structure of the wind. This process
s then reiterated multiple times to accurately define the heating and
ooling rates for the wind until they reach equilibrium. In slow64
nd fast32 , we set 160 000 photon packets each, which are then
ollected and grouped into 10 000 energy bins (and binned up by
 factor of 10 × giving a total of 1000 energy bins), based on their
iewing (observer) angle ( θ ) from the z-axis. 
The MCRT code creates tables of simulated wind spectra that

ake into account the effects of the radiation transmitted through
he wind, which include the scattering and reflected emission from
he flow. An interesting outcome of this model is that the accretion
isc wind itself can give rise to Fe K emissions, with line widths up
o σ width ∼ 1 k eV (Park er et al. 2022 ). Such profiles are obtained
rom the combination of (i) velocity shear in the flow, (ii) its rotation
round the polar axis, and (iii) the Compton scattering of the Fe K α

ine photons in the wind. Thus the disc-wind model can provide a
hysically moti v ated, self-consistent treatment of both the absorption
nd emission produced in the wind by computing the ionization state
nd velocity field within the flow. In other words, the disc-wind model
alculates the ionization at each point in the wind o v er a wide range
f states, thus describing a more realistic (non-uniform) ionization
tructure and velocity field throughout the outflow. As for iron, the
ode co v ers charge states from Fe X–XXVII , and the output spectra
nclude not just the absorption and emission from Fe K, but also
rom L-shell iron and the K-shell lines of lighter elements in the soft
-ray band. 

https://heasarc.gsfc.nasa.gov/xstar/docs/html/node95.html
art/stac2155_f1.eps
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Routines that take into account special relativistic aberration of 
ngles and Doppler shifts between the comoving and observer frames 
re included in our MCRT code, so that the model fully accounts for
pecial relati vistic ef fects. Such an implementation provides realistic 
nd accurate estimates of the mass outflow rate and o v erall energetics,
s the local radiative pressure might require non-negligible special 
elativistic corrections (e.g. Luminari et al. 2020 , 2021 ). The number
f energy packets used in each simulation is chosen so that the Monte
arlo noise in the estimators is < 3 per cent. This level of precision

s sufficient given the quality of the observational data available at 
resent (see Section 4 ). 

.1 Geometry 

he assumed biconical structure of the inner disc-wind geometry is 
hown in Fig. 1 . The x -axis corresponds to the plane of the accretion
isc, and the z-axis to the polar (rotational) direction. The black hole
s located at the origin and the X-ray source is located within 6 r g from
t (see Section A2 ). R min and R max are, respectively, the distances from
he origin to the inner and outer edge of the wind at the interception
ith the equatorial ( xy ) plane. The radii R min and R max (expressed in
ravitational units) then enclose the disc-wind launch region, and set 
he collimation and the o v erall opening angle (equatorial or polar)
ogether with the parameter d , which represents the distance of the
ocal point of the wind along the z-axis below the origin. The o v erall
ind inclination angle θ is measured with respect to the z-axis, with 

he polar opening angle defined as θmin = arctan R min /d . Here we 
et d / R min = 1, so the wind opening angle is 45 ◦ from the pole.
he observer’s polar angle is included in the code through μ = 

os θ , where any line of sight with μ < 0.7 intercepts the wind.
he terminal velocity 3 attained by the wind is v ∞ 

= f v v esc , where
 esc = (2/ R min ) 1/2 c , and the factor f v parameter allows the user to
ary the terminal velocity for a given launch radius (see below). 
he lines that extend from d and intercept the xy -plane in R min and
 max produce the first quarter of the biconical wind, which is made
xisymmetric under rotation in the azimuthal direction and reflected 
ith respect to the disc plane (see Fig. 1 ). The difference between

he outermost and innermost launch radii ( � R = R max − R min ) of
he flo w of f the disc plane defines the o v erall thickness of the wind
treamline. 

.2 Velocity 

aving set up the geometric framework in which the wind is
imulated, we now describe the properties and key parameters of 
he synthetic spectra that will be subsequently fed into the ANN .
ote that the emulation process itself will be described in more 
etail in Section 3 . For the purpose of this work we generated two
CRT disc-wind tables named fast32 and slow64 (see Table 1 

or the summary of their parameter space). The former is tuned to
he fastest disc-wind cases like PDS 456, where typically v out / c =
.25–0.35 (e.g. Matzeu et al. 2017 ), with R min = 32 r g ; thus, for
 v = 1, v ∞ 

= −0.25 c . The latter is instead tuned to slower winds,
.g. MCG-03-58-007 (e.g. Braito et al. 2022 ) or PG 1211 + 143 (e.g.
ounds et al. 2016 ), with R min = 64 r g ; for f v = 1, v ∞ 

= −0.177 c
see Section A2 ). Our input choice of R min is related to the range
f outflow velocities typically observed in AGNs, in the range v w 

0.05–0.4 c (e.g. Tombesi et al. 2010 ; Gofford et al. 2013 ; Reeves
 See Section A3 in Appendix A for a calculation of the velocity field through 
he streamline, up to the maximum terminal velocity, v ∞ 

. 

4

s
m
o

t al. 2018a ; Igo et al. 2020 ; Chartas et al. 2021 ). The terminal
elocity parameter f v can be considered a fine-tuning factor of the
utflo w velocity, which allo ws the user to adjust v ∞ 

to match their
bservations. So v ∞ 

is regulated by changing the f v parameter, for
 given launch radius. Note that for these MCRT simulations a 
lack hole mass of M BH = 10 9 M � is assumed. Ho we ver as most
f the units are normalized, e.g. radii to the gravitational radius,
ass outflow rate, and X-ray luminosity to the Eddington value (see

elow), the output table parameters are black hole mass invariant. 
Note that these versions of these MCRT tables are newly 

enerated in this work and they will be made publicly available. 
ence, the new range of parameters is tabulated in Table 1 . The

pectral properties of these grids, in particular in relation to the
nclination and launch radius, are discussed further in Appendix A .
oth the slow64 and fast32 tables were generated with f v ranging
etween 0.25 and 2 in steps of � f v = 0.25. As a result, the following
anges of v ∞ 

are co v ered: 

 ∞ 

/c = 

{−0 . 500 � v ∞ 

/c � −0 . 0625 R min / r g = 32 , 
−0 . 354 � v ∞ 

/c � −0 . 0442 R min / r g = 64 . 
(1) 

For simplicity, for both the fast32 and slow64 tables, the 
eometric thickness of the outflow is set to be R max / R min = 1.5,
ut in principle this could be variable. The outer boundary of the
imulations is set as log ( R out / r g ) = 4 . 53 (i.e. ∼ 34 000 r g ), whereas
he X-ray source is set to originate from a central region of 6 r g in
adius. Both the slow64 and fast32 tables are generated with 
 grid points for the photon index ( 
; see Section 2.5 ), 8 for the
erminal velocity parameter ( f v ), 12 for the normalized mass outflow
ate ( Ṁ w ; see Section 2.3 ), 9 for the ionizing luminosity ( L X ; see
ection 2.4 ), and 20 angular bins ( μ). The combination of these
arameters produces 5 × 8 × 12 × 9 × 20 = 86 400 synthetic spectra
n each table, for a total of 172 800. Each spectrum is simulated o v er
000 4 spectral points, uniform in log-space, and subsequently used 
n the emulation process described below. 

.3 Mass outflow rate 

he mass within the flow is determined by the normalized mass
utflow rate parameter, which is expressed in Eddington units as 
˙
 w = Ṁ out / Ṁ Edd (a radiati ve ef ficiency for a Schwarzschild black

ole of η = 0.06 is assumed; Shapiro & Teukolsky 1983 ). Hence,
˙
 w is not directly dependent upon the black hole mass of the source.

n increase in Ṁ w affects the mass density in each cell by increasing
he opacity of the medium thereby yielding a higher column density
hrough the wind and deeper absorption lines (see Section A4 in
ppendix A ). Additionally, as scattering of photons increases with 
pacity, the relative strength of the component scattered out of the
ow would also increase proportionally with Ṁ w . In both tables, the
˙
 w parameter co v ers the 0 . 020 < Ṁ w < 0 . 676 range in 12 equally

paced logarithmic steps (see Table 1 ). This range co v ers the bulk
f the typical measurements carried out in the literature, i.e. −2 �
og ( Ṁ w ) � 0 (see fig. 2 in Tombesi et al. 2012 and fig. 1 in Gofford
t al. 2015 ). Note that for future grids it is our intention to extend the
˙
 w parameter space to super-Eddington values, Ṁ w � 1. 
MNRAS 515, 6172–6190 (2022) 

 Note that 1000 energy bins are adopted when simulating CCDs resolution 
pectra, i.e. �E = 60 eV at 6 keV, o v er the 0.1–511 keV range. For future 
icrocalorimeter resolution we will increase the binning by at least one order 

f magnitude. 
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Table 1. fast32 and slow64 input parameters. Note that the 172 800 output spectra will be available for dev eloping XRADE . F or the quantities flagged with 
† or ‡ , more details are provided in Sections A3 and A4 (Appendix A ), respectively. Note that in the bottom five rows the ANN input parameters are also the 
measurable output when fast32 and slow64 tables are loaded into X-ray fitting packages such as XSPEC . 

Input parameter Values 
fast32 slow64 

Range of source photon energies in 
simulation 

0.1–511 keV 

Photon packets 160 000 
Size of X-ray emission region ( r er ) 6 r g 
Inner radius of the accretion disc ( r d ) 6 r g 
Inner launch radius ( R min ) 32 r g 64 r g 
Outer launch radius ( R max ) 1.5 R min 

Distance to wind focus ( d ) R min 

Velocity scale length ( R v ) † R min 

Velocity exponent ( β) † 1.0 
Launch velocity ( v 0 ) † 0.0 
Mass-loss exponent ( κ) ‡ −1.0 
Outer radius of simulation grid 33876 r g 
3D Cartesian RT grid cells 180 × 180 × 180 
2D wind grid zones 100 × 100 

Input parameter Values 
Source power-law photon index ( 
) { 1.6, 1.8, 2.0, 2.2, 2.4 } 
Terminal velocity parameter ( f v ) { 0.25, 0.50, 0.75, 1.0, 1.25, 1.50, 1.75, 2.0 } 
Source luminosity 

(
L X = 

L 2 –10 keV 
L Edd 

)
{ 0 . 0252 , 0 . 0475 , 0 . 0796 , 0 . 1415 , 0 . 2516 , 0 . 4475 , 0 . 7958 , 1 . 4151 , 2 . 5165 } × 10 −2 

Wind mass-loss rate 
(
Ṁ w = 

Ṁ out 
Ṁ Edd 

)
{ 0.0196, 0.0270, 0.0373, 0.0515, 0.0710, 0.0980, 0.1352, 0.1866, 0.2575, 0.3552, 0.4901, 0.6762 } 

Angular bins ( μ = cos θ ) { 0.025, 0.075, 0.125, 0.175, 0.225, 0.275, ···0.725, 0.775, 0.825, 0.875, 0.925, 0.975 } 
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.4 Ionizing X-ray luminosity 

he ionizing luminosity parameter is defined as the fraction of X-
ay luminosity, calculated in the 2–10 keV band, with respect to
he Eddington luminosity, i.e. L X = L 2 –10 keV /L Edd . As per Ṁ w ,
ith this normalization the L X parameter keeps the same meaning

cross the black hole mass scale. L X measures the o v erall de gree
f ionization of the material within the flow, where lower values of
 X , typically < 1 per cent of L Edd , lead to the wind being less ionized

nd more opaque to X-rays. In contrast, an increase in L X will lead
o winds that are more ionized and transparent to X-rays, to the
xtent that the spectrum becomes completely featureless. In the disc-
ind code, the ionization of the plasma is self-consistently computed

t each point in the wind, whilst both shielding and scattering of
hotons are also accounted for in the calculations. As a result, the
 v erall ionization is stratified along the wind, whereby the innermost
urface of the wind is almost fully ionized (mainly Fe XXVI ), as
 xpected, being fully e xposed to the X-ray source. The denser base
f the wind is, not surprisingly, less ionized (with charge states down
o Fe X–XVI ). The decrease in ionization occurs both along the flow
nd across the base of the wind. More details regarding the input
pectrum and its effect upon the wind ionization will be discussed in
ection 2.5 . 
Compared to other models (e.g. Hagino et al. 2015 , see Sec-

ion 4.2 ), the disc-wind code has access to more e xtensiv e atomic
ata, which co v er a wide range in ionization; ions from Fe X–
XVI and from lighter elements such as C–Si are included. Thus,
or an y giv en observation of an AGN, the L X parameter can be
alculated by comparing the intrinsic 2–10 keV luminosity to the
known) Eddington luminosity, and it is not a degenerate parameter
n the modelling. The synthetic spectra for XRADE were simulated
 v er a range of 2 . 5 × 10 −4 < L X < 2 . 5 × 10 −2 (or 0 . 025 per cent to
 . 5 per cent of L Edd ) o v er nine equally spaced logarithmic increments
see Table 1 ). It is worth briefly discussing how such a range compares
NRAS 515, 6172–6190 (2022) 

1

o the observed distributions of Eddington ratios ( λEdd = L bol / L Edd )
nd bolometric corrections ( k bol = L bol /L 2 –10 keV ) as, by definition,
 X = λEdd /k bol . These two quantities are known to correlate with

ach other, and their ratio typically falls in the range ≈10 −3 –10 −2 

or the majority of type 1 AGNs (e.g. Vasude v an & Fabian 2009 ;
usso et al. 2012 ). We conserv ati vely adopt for L X a more extended

ange, especially at the low end, based on the evidence that the
trongest winds are usually observed in sources that are relatively
eak in the X-rays compared to the UV (hence a larger k bol ), which

s interpreted as a requirement for ef fecti ve line dri ving (e.g. Castor
t al. 1975 ; Giustini & Proga 2019 ). 

.5 The input spectrum 

he choice of the initial input spectrum is a crucial step for setting
he MCRT simulations, required for the development of XRADE ,
s the intrinsic spectrum can profoundly affect the observable disc-
ind parameters. Steep (i.e. 
 > 2) spectral slopes of the X-ray

ontinuum are, in fact, critically responsible for producing strong
bsorption profiles. On the other hand, harder spectra (i.e. 
 < 2)
ikely o v erionize the obscuring medium, leading to a considerable
ttenuation or disappearance of the absorption profiles (e.g. Pinto
t al. 2018 ). 

Various surv e ys on Se yfert galaxies and quasars (e.g. Porquet et al.
004 ; Piconcelli et al. 2005 ; Bianchi et al. 2009 ; Scott & Stewart
014 ; Marchesi et al. 2016 ; Williams, Gliozzi & Rudzinsky 2018 ;
hartas et al. 2021 ) established the diverse nature of the primary
ontinuum slope in AGNs. The vast majority of objects studied in
he abo v e samples are type 1 sources, hence the y pro vide a reliable

easure of their intrinsic spectral shape due to the general lack of
bscuration. These studies show that ∼80 per cent of AGNs are
haracterized by an intrinsic slope distribution ranging between 
 =
.6 and 2.4 and peaking at 
 ∼ 2. 
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Figure 2. Seven input SEDs, calculated in the 0.1–511 keV range, corre- 
sponding to five power laws with slope in the range 
 = 1.6–2.4 and two 
more physically moti v ated input spectra, such as a double broken power 
law and the disc-corona Comptonization model optxagnf (see text). The 
spectra have been normalized to unity in the 2–10 keV band for comparison 
purposes. The shaded area indicates the energy band abo v e the ionization 
threshold of Fe XXVI , at E = 9 . 28 keV. 
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Figure 3. The total (black), direct (red), and scattered (green) simulated 
wind spectra normalized to their corresponding input SED from Fig. 2 . 
The blueshifted absorption profile at E ∼ 9 keV increases in strength and 
shifts to lower energies as the input SED becomes steeper. On the other 
hand, the hardening of the spectra would lead to an increase of ionizing 
photons that would eventually overionize the wind. As a consequence the 
o v erionized material would lose its opacity, which translates into a shallow 

absorption feature as shown in the top panel. For this example, the disc- 
wind simulations were carried out by assuming a 2–10 keV luminosity 
of 1.24 per cent of L Edd , an outflow rate of ∼40 per cent of Ṁ Edd , f v = 

1 . 25 ( v w = 0 . 3125 c for R min = 32 r g ) and an inclination of μ = 0.675. 
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A power-law SED is assumed to be a reasonable first-order 
pproximation of the intrinsic X-ray continuum of AGNs, but in 
eality we know it to be much more complex. In Fig. 2 , we show seven
ossible input spectra that correspond to five power laws with 
 =
.6–2.4 along with two more complex SED models, such as a broken
ower law and optxagnf 5 (Done et al. 2012 ), where the integrated
–10 keV fluxes of the input spectra are normalized to unity. In this
lot, the fraction of luminosity radiated abo v e E lab = 9 . 28 keV (i.e.
he ionization threshold of Fe XXVI , shaded area) compared to the
ardest ( 
 = 1.6) power law is calculated for each of the input
ontinua. The percentages of the integrated photon flux in the 9.28–
11 keV band, corresponding to each of the seven input spectra, 
re also noted in Fig. 2 . As the input spectrum becomes steeper,
he number of photons abo v e E lab = 9 . 28 keV decreases, leading to
 lower mean charge of iron within the flow. On the other hand,
arder spectra would induce a higher ionization of the gas, possibly
 v erionizing iron for its K-shell to be significantly populated. 
In Fig. 3 , we show the output spectra corresponding to the different
 = 1.6–2.4 in Fig. 2 , which illustrate how a change in ionization
ffects the spectra. Note that the optxagnf and broken power-law 

ontinuum, which both adopted a 
 = 2.4 photon index at hard
-rays, produced a very similar Fe K absorption line depth as per

he corresponding simple power-law case. In other words, the cases 
ith a more complex continuum ( optxagnf , broken power law) 
roduced consistent results compared to the equi v alent po wer-law 

ase ( 
 = 2.4). Subsequently, to generate our slow64 and fast32
ables, we choose a power-law SED with a photon-index range of
 = 1.6–2.4 with five linear steps of �
 = 0.2 between 0.1 and
11 keV. The abo v e results in Fig. 3 suggest that the strongest lines
rom disc winds should occur in steep spectrum X-ray sources. For
he case of the simulations in Fig. 3 , the equi v alent width of the
e XXVI line increases fourfold from 
 = 1.6 (EW ∼ 110 eV) to
 = 2.4 (EW ∼ 420 eV). This could be the case observationally,
here strong (EW � 100 eV) blueshifted Fe K absorption lines are

pparent in AGNs with steep ( 
 > 2) photon indices or when they
 optxagnf is a self-consistent Comptonized disc emission model in XSPEC , 
nd it was adopted in generating XSTAR (Bautista & Kallman 2001 ; Kallman 
t al. 2004 ) tables for PDS 456 (see section 4.2 in Matzeu et al. 2016 , for more 
etails). Note that in this e x ercise we adopted a 
 = 2.4 and a hot coronal 
emperature of kT e = 100 keV. 

t

W  

a
w
G
w

re intrinsically X-ray weak (low L X ), e.g. PDS 456 (Reeves et al.
021 ), PG 1211 + 143 (Pounds et al. 2003 ), and IRAS 13224 −3809
Parker et al. 2017 ; Pinto et al. 2018 ). 

 ARTI FI CI AL  N E U R A L  E M U L ATO R  

NN s are machine learning algorithms consisting of a set of neu-
ons organized into layers. Each neuron is a distinct mathematical 
peration. They take an input x and apply an affine transformation 
ollowed by a threshold function a , known as the acti v ation function,
o ensure the mathematical operation is non-linear. This then allows 
everal neurons to be applied sequentially, thus forming a network. 
f the network is fully connected, then the output of each neuron in
 given layer becomes the input to every neuron in the next layer: 

 

n 
m 

= a( x n −1 · W m 

+ b m 

) , (2) 

here x n −1 is the input to the n th layer and x n m 

is the m th neuron
n the n th layer. W and b are the trainable weight and bias (i.e.
nalogue role to a constant value in a linear function) parameters
hat are updated during the training phase of the model. 

The universal approximation theorem (Hornik, Stinchcombe & 

hite 1989 ) states that ANNs with just a single layer can approximate
ny continuous function with a finite number of neurons. Here 
e train a simple feed-forward neural network (FFNN; Bebis & 

eorgiopoulos 1994 ) to map physical parameters to simulated disc- 
ind spectra ( y ), using both the fast32 and slow64 disc winds. 
MNRAS 515, 6172–6190 (2022) 
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The inputs to the first layer are the parameters describing the
GN spectra x 0 = { 
, Ṁ w , f v , L X , μ, R in } and the outputs of the
nal layer x N are the predicted spectral values ( ̂  y ). The trainable
arameters ( N P ) of the network are updated to optimize the loss
unction by comparing the predicted spectral values with the true
pectral values. We explored the use of various loss functions and
e found that the mean square error loss function, 

2 = 

∑ 

i 

( y i − ˆ y i ) 
2 , (3) 

as most suited to this problem, as it is simple to compute and
ensitive to outliers: an important characteristic to ensure absorption
nd emission lines are conserved. Furthermore, we experimented
ith the use of various activation functions: 6 linear, tanh, Exponential
inear Unit (ELU), and sigmoid (see e.g. Nwankpa et al. 2018 ).
dditionally, we tested the acti v ation functions outlined in Alsing

t al. ( 2020 ), which was developed specifically to reproduce well
oth to smooth and sharp features – again, an important feature
or spectra. Nevertheless, we found that these activation functions
nderperformed compared to the Rectified Linear Unit (ReLU)
cti v ation function on our data set, 

( x) = max (0 , x) . (4) 

his acti v ation ensures that the outputs are positive, which is a
ey requirement for spectra. Under this same constraint, it is not
ossible to fit spectra in log units, where values can be ≤0. In
he case of log spectra, the network would have to be redesigned
ith some other acti v ation function such as tanh, and/or a linear
nal acti v ation function. Our emulator network consists only of fully
onnected layers, the best of which used three dense layers, each with
000 neurons (Fig. 4 ). In ANN a dense (or hidden) layer is located
etween inputs and outputs of the algorithm and performs non-linear
ransformations (i.e. fitting complex data) of the inputs and directs
hem into the outputs. They are referred to as dense (or hidden)
ecause the ‘true’ values of their neurons are unknown. In total, this
esults in N P = 2009 000 trainable parameters (see Appendix B for
he deri v ation). 

The netw ork w as trained o v er 1500 epochs, where each epoch
omprises the entire data cycle, ho we ver for improved efficiency
i.e. not to feed the data at the same time), the parameters of
he network are updated in batches. For the training, we use an
ncremental batch size updating from 1 to 100, to 1000 at each
00 epoch interval. The batch size is the size of the training data
ubsample that is used to optimize the weights at a time. Larger
atch sizes require more memory to load that can result in slower
raining, but smaller batch sizes give more stochastic loss that can
ill also take longer for the network to reach global minima. We use

n increasing batch size that is equi v alent to decreasing the learning
ate (Smith et al. 2017 ). The learning rate is another hyperparameter
hat determines the size of the changes made to weights at each
tep. This aids the network in reaching the minimum loss, because
s you approach the minima you need to make smaller changes to
he weights or you will o v ershoot. Similarly, slowly increasing the
atch size provides more confidence in the direction of descent to
he minima as opposed to the stochastic descent provided by a small
atch size. Additionally, early stopping (Yao, Rosasco & Caponnetto
007 ) is implemented to prevent overfitting. This ends the training
NRAS 515, 6172–6190 (2022) 

 The acti v ation function is a mathematical function that is added to an ANN 
n order to ensure non-linearity. In this way the ANN can learn the complex 
atterns of the training data ‘fed’ into it. 

r  
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a  

t  

S

rocess once the model is no longer improving. We use the adaptive
ptimizer Adam (Kingma & Ba 2014 ) to update the weights with
earning rate of 10 −3 . 

In addition to training data that are used to optimize the network,
dditional data are required to validate the model, to ensure that it
ill generalize to new data. These data are seen during the training
f the network to determine when to stop training. The performance
f the trained network was then e v aluated on additional test data that
re not seen during the training of the network. In total we have
72 800 MCRT synthetic spectra available for the ANN and we
hoose a train–validation–test split of 0.8–0.1–0.1. This equates to
38 240 spectra for training, 17 280 for validation and 17 280 for
esting. The training set was checked to ensure a good representation
f all parameters was included. The final L1 (absolute error), 

1 = 

∑ 

i 

| y i − ˆ y i | , (5) 

nd L2 (mean square error) loss on the validation data was 0.0071
nd 0.0002, respectively. The L1 and L2 statistics for the test data
et are 0.0071 and 0.0001, respectively. Fig. 5 shows some examples
f the spectra predicted by the emulator from the test data set. 

.1 Mitigating interpolation issues with emulation 

ntil now, the data used to train and test the network are MCRT 
imulations from two grids of parameters. But we need to know
f the emulator is capable of reproducing parameter values be-
ween all the grid points. To do this, the trained network is
urther tested against 2000 new MCRT simulations, where 100
f each of the parameters are drawn from uniform distributions:
 ∼ U(1 . 6 , 2 . 4), Ṁ w ∼ U(0 . 0196 , 0 . 6762), f v ∼ U(0 . 25 , 2), L X ∼
(2 . 52 × 10 −4 , 2 . 52 × 10 −2 ), and the launch radius from a binomial
istribution R in ∼ B(1 , 0 . 5), corresponding to the fast32 and
low64 winds. For each spectrum, we have corresponding μ values
f 0.025 to 0.975 in steps of 0.05. Fig. 6 shows the fractional offset
f the predicted from the ground truth spectra, 

ractional error = 

∣∣∣∣ ˆ y − y 

y 

∣∣∣∣ . (6) 

he fractional error is in most cases smaller than the noise on the
imulated spectra, and we find no bias with respect to any particular
arameter. Typical errors are of per cent level across the entire energy
ange (Fig. 7 ), although a non-negligible error is seen in the 7–8 keV
and, corresponding to Fe XXV–XXVI transitions in both emission
nd absorption. 

To investigate the influence of the fractional error in the 7–8 keV
and on the parameters (Fig. 7 ), we take the fractional error on the
ux values at from the test simulations at 8 keV. We order the error
alues and take the parameter set corresponding to the 70 per cent ,
5 per cent , 80 per cent , 85 per cent , and 90 per cent error value as
hown in Fig. 8 . From these five parameters sets we emulate spectra
sing XRADE and create CCD observations, by using the XMM–
ewton European Photon Imaging Camera (EPIC)-pn response and
ackground files corresponding to the PDS 456 ObsCD observation
n 2013 (see Section 4 ), between the 0.3 and 10 keV energy range
i.e. the XMM–Newton bandpass), using XSPEC . The observation is
hen fit using the MCRT tables. The parameters are generally well
eco v ered despite the differences between the MCRT tables and
RADE . We find that the reco v ery of μ is the only parameter that is
ffected by the uncertainty on the Fe K bandpass. This parameter is
he one that affects the shape of the spectral features the most (see
ection A1 in Appendix A ). 
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Figure 4. The FFNN architecture of the emulator constructed for XRADE . Each circle represents a neuron. Each connection is marked as a right arrow. 

Figure 5. Randomly chosen examples of 12 ground truth spectra (orange) out of the 17 280 available from the test data (10 per cent of total) with the 
corresponding emulated predicted spectra (blue). Note the ANN had not seen the spectra from the test set (10 per cent of the total) during training. The input 
parameters corresponding to { 
, Ṁ w , f v , L X , μ, R min = 64 r g (0 . 0) or 32 r g (1 . 0) } are listed abo v e each plot. 
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The fractional error seems to increase, not as severely, at energies 
orresponding to other wind features e.g. O VIII , Ne X , and Si XIV .
he network could benefit from training data with more spectral 
oints in these regions, and ideally a more finely sampled grid of
arameters (see Section 5 ). In particular, in the near future, we also
im to regenerate steps for the fast32 and slow64 grids in linear
rather than log) space for the L X and Ṁ w parameters. This will 
ikely increase the accuracy of mapping these parameters through 
he emulator and this could be especially important in training the
mulator at the higher Ṁ w range, which is currently more sparsely 
ampled in logarithmic space. As a consequence, this may also reduce 
he fractional error seen o v er the Fe K bandpass in Fig. 7 . 

This test demonstrates that not only are we able to use the emulator
or parameter values within the training range, but also on parameter
MNRAS 515, 6172–6190 (2022) 
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Figure 6. Histogram of absolute fractional error of the emulated spectra on 
the 2000 additional simulations. 

Figure 7. Fractional error on flux at different energies for the 2000 additional 
test simulations from 0.1 to 511 keV. We show 68 per cent , 90 per cent , and 
95 per cent of the sample. 

Figure 8. The fractional error on individual parameters fit using the MCRT 
tables based on five different spectra generated from XRADE with increasing 
fractional error at the 8 keV band ( x -axis). 
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alues that lie between points on the simulated grid. The trained
mulator can predict spectra for a particular parameter set in ∼0.04 s
n comparison to ∼2–3 h when using the MCRT pipeline, which
llows us to emulate finer grids of models more efficiently. In this
ight, we test whether the predictions of our emulation process are
ble to reproduce a true (or ground) spectrum. We then compare
hem with spectra arising from standard interpolation between grid
NRAS 515, 6172–6190 (2022) 
alues, which are normally occurring in X-ray fitting packages such
s XSPEC . For this test, a true spectrum can be selected from any of
he 17 280 available test spectra. We chose two test cases in Fig. 9 ,
ne (upper panels) where there is one free wind parameter ( μ) and
ne where two parameters ( μ and f v ) are varied (lower panels). 
For the 1D test we considered the case where the true spectrum

as the following parameters: x true = [ 
 = 2 . 0 , Ṁ w = 0 . 257 , f v =
 . 0 , L X = 2 . 52 × 10 −4 , μ = 0 . 625 , R min = 64 r g ]. Here the 1D
Fig. 9 , panel A, upper-left) interpolation (blue) between μ = 0.575
nd 0.675 (in order to reproduce a real value of μ = 0.625). Here
he interpolation does a reasonable job in reproducing the true
pectrum with the following conditions: x true = [ 
 = 2 . 0 , Ṁ w =
 . 257 , f v = 1 . 0 , L X = 2 . 52 × 10 −4 , μ = 0 . 625 , R min = 64 r g ]
orange), but underestimates the profile depth. The emulated true
pectrum plotted in panel (B) (blue) is better at reproducing the
epth of the absorption trough at ∼8 keV, but slightly worse at
stimating the higher order transition at ∼8 . 3 keV. Overall, both
ethods reasonably predict the true spectrum between 5 and 12 keV.
In panels (C) and (D) we compare a 2D interpolation (i.e. two

arameters of interest) between μ = (0.575, 0.675) and f v = (0.75,
.25) to respectively reproduce μ = 0.625 and f v = 1.0. In this
cenario it is much harder for the interpolated spectrum to reproduce

x true as these parameters produce both a shift in energy and depth
imultaneously. Clearly the interpolated spectrum fails to reproduce
he true spectrum. On the other hand the emulated spectrum is a closer
atch to x true (panel D). It is worth noting that any interpolation

ssues in Ṁ w nor L X are not as dramatic, given that they are mainly
ffecting the profile depth and do not tend to produce a shift in energy
etween the points. 

 OBSERVA  T I O NA L  DA  TA :  FITTING  T H E  

OWERFUL  DISC  W I N D  IN  PDS  4 5 6  WI TH  

RADE A N D  FAS T32 

he generated XRADE spectra are tabulated into FITS files and can be
sed as multiplicative grids within XSPEC . In this section, we want to
ompare the o v erall performance and reliability consistency check
f our MCRT and XRADE tables with real CCD data. we also want
o check and compare them in the ability predicting values between
he grid points. 

As a test case we consider the ‘prototypical’ (and most studied)
isc wind hosted in the luminous quasar PDS 456. A large monitoring
ampaign, co v ering 6 months, was carried out between 2013 and
014 and consisted of five joint XMM–Newton and NuSTAR obser-
ations (ObsA–ObsE) of ∼100 ks each. During these observations,
 prominent and persistent P Cygni profile was revealed ( N15 ). Such
 feature is characterized by the combination of a broad emission
nd absorption profile, where the former is produced by scattered
hotons off the wind averaged from all angles and the latter from
ransmitted photons through the material. ObsC and ObsD were
eparated by only ∼3 d, so their spectra were virtually identical.
s per N15 , we subsequently combined them into a single ObsCD
bservation resulting into a total net exposure time of 195 ks, showing
 P Cygni feature of unprecedented quality. The XMM–Newton and
uSTAR data considered here are the EPIC-pn (Str ̈uder et al. 2001 )
nd FPMA + FPMB (Harrison et al. 2013 ), respectively, and they are
educed following the procedure presented in N15 . 

From what was discussed in Section A2 of Appendix A , the
nitial setting of R min has a direct impact on the range of outflow
elocities that can be measured (see equation 1 ). In this paper, we
hose fast32 for our comparison with XRADE . Note that fast32
as initially generated based on the range of v elocities observ ed in
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Figure 9. A comparison between interpolated spectra, normally produced in XSPEC , and those predicted by our trained ANN . Top row: in panel (A) we show 

the true spectrum of x true = [ 
 = 2 . 0 , Ṁ w = 0 . 257 , f v = 1 . 0 , L X = 2 . 52 × 10 −4 , μ = 0 . 625 , R min = 64 r g ] (orange) and the spectral prediction using 
interpolation between μ = (0.675 and 0.575). Same in panel (B), but the true spectrum is predicted by the emulator (blue). Panel (C): same as panel (A) but with 
a 2D parameter interpolation involving μ and f v (see text box). The resulting interpolated spectrum is not able to accurately recover the amplitude and shape of 
the spectral lines. Panel (D): the emulator is able to produce an accurate mapping of the ground truth spectrum. 
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DS 456 (e.g. v out / c = 0.25–0.35; Matzeu et al. 2017 ; Reeves et al.
018a ) since its first detection with XMM–Newton in 2001 (Reeves 
t al. 2003 ). On the other hand, by following the same prescription
n Section A2 , slow64 was successfully applied in modelling the 
owerful disc wind observed in the Seyfert 2 galaxy MCG-03-58-007 
Braito et al. 2022 ). 

In Fig. 10 , we show the unfolded XMM–Newton and NuSTAR
pectra of PDS 456 (ObsCD) between 2 and 40 keV against a simple
 = 2 power law. Once the continuum (cyan) is accounted for,

here are strong residuals in the Fe K region that correspond to the
 Cygni feature. From a visual inspection the centroid energies are 

ocated at E rest, em 

∼ 7 keV and E rest, abs ∼ 9 keV for the emission and
bsorption component, respectively. The model in XSPEC is expressed 
s 

Tbabs × pcfabs × ( powerlaw × highecut ) × XRADE 

( or fast32 ) , (7) 
here Tbabs is the Galactic absorption of N 

Gal 
H = 2 . 9 × 10 21 cm 

−2 

Reeves et al. 2021 ). To model the soft X-ray spectral curva-
ure we adopt a layer of neutral partial co v ering ( pcfabs in
SPEC ) with N H = 7 . 9 + 2 . 1 

−2 . 5 × 10 22 cm 

−2 , and co v ering fraction of
 frac = 0 . 37 + 0 . 05 

−0 . 02 . A high-energy rollo v er ( highecut ) fix ed at
 cut = 100 k eV w as also adopted and a cross-normalization factor
etween the XMM–Newton and NuSTAR detectors was measure at 
 cal = 1 . 10 ± 0 . 02. For this test, we generated a customized XRADE

rid with the values tabulated in Table 2 . 
Fitting the P Cygni profile with XRADE yielded a mass outflow rate

f Ṁ w = 0 . 318 + 0 . 014 
−0 . 046 , i.e. about 30 per cent of Ṁ Edd . In PDS 456,

ith M BH ∼ 10 9 M � and L Edd ∼ 1 . 3 × 10 47 erg s −1 , then Ṁ Edd ∼
0 M � yr −1 for η = 0.06, Ṁ out ∼ 10 M � yr −1 . The X-ray ionizing 
uminosity is L X = 0 . 272 + 0 . 090 

−0 . 061 × 10 −2 or ∼0 . 3 per cent of L Edd , i.e.
 2 –10 keV ∼ 4 . 0 × 10 44 erg s −1 . By comparison, the directly observed

ntrinsic 2–10 keV luminosity is of the order of ∼5 × 10 44 erg s −1 

nd hence consistent with the XRADE predicted value, see Table 3 . A
ine-of-sight orientation angle of θ ∼ 50 ◦ (i.e. μ = 0 . 63 + 0 . 01 

−0 . 02 ) with
MNRAS 515, 6172–6190 (2022) 
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Figure 10. Top: unfolded XMM–Newton (black) and NuSTAR (blue) spectra 
(ObsCD) of PDS 456 (against a 
 = 2 power law) between 2 and 40 keV 

with the continuum-only model (cyan), XRADE (red), and fast32 (green) 
superimposed. Bottom: the corresponding data/model ratio plots. Both 
models do an excellent job in fitting the P Cygni feature, of which they 
self-consistently fit the broad emission (scattered/reflected component) and 
absorption (direct component). 

Table 2. Customized XRADE model values and ranges used for PDS 456 
ObsCD. 

Parameter Value range � value Steps 


 1.6–2.4 0.1 9 
Ṁ w 0.05–0.65 0.05 13 
f v 0.25–2.0 0.097 19 
L X (0.05–1.5) × 10 −2 9.7 × 10 −4 16 
μ 0.2–0.9 0.05 15 
R min 32 r g – –

Note. Number of emulated spectra: 533 520. 

Table 3. XRADE and fast32 model results for PDS 456 ObsCD. The 
uncertainties are calculated at a 90 per cent confidence level that corre- 
spond to a �χ2 / �ν = 2.71/1. The power-law normalization is in unit of 
photons keV 

−1 cm 

−2 s −1 at 1 keV. 

Parameter XRADE fast32 


 2 . 19 + 0 . 02 
−0 . 05 2 . 21 + 0 . 05 

−0 . 04 

Ṁ w 0 . 318 + 0 . 014 
−0 . 046 0 . 243 + 0 . 056 

−0 . 131 

f v ( v ∞ 

) 1 . 33 + 0 . 03 
−0 . 04 

(−0 . 33 + 0 . 01 
−0 . 01 c 

)
1 . 31 + 0 . 08 

−0 . 04 

(−0 . 33 + 0 . 02 
−0 . 01 c 

)

L X 0 . 273 + 0 . 090 
−0 . 061 × 10 −2 0 . 208 + 0 . 058 

−0 . 130 × 10 −2 

μ = cos θ 0 . 629 + 0 . 010 
−0 . 017 0 . 652 + 0 . 008 

−0 . 022 

log ( N H / cm 

−2 ) 22 . 8 + 0 . 4 −0 . 4 22 . 9 + 0 . 4 −0 . 4 

C frac 0 . 39 + 0 . 04 
−0 . 04 0 . 37 + 0 . 03 

−0 . 02 

norm / 10 −3 3 . 2 + 0 . 05 
−0 . 3 2 . 7 + 0 . 3 −0 . 2 

C cal 1 . 10 + 0 . 02 
−0 . 02 1 . 10 + 0 . 02 

−0 . 02 

�χ2 / �ν 655.3/682 659.7/682 

Figure 11. Three simulated microcalorimeter resolution (i.e. 2 eV at 6.4 keV) 
spectra, using a high-resolution f32hires grid, corresponding to f v = 1 
(black) and f v = 1.25 (blue). The remaining disc-wind parameters are fixed 
to 
 = 2, Ṁ w = 0 . 3, L X = 0 . 5, and μ = 0.625. The interpolated spectrum 

between f v = 1 and f v = 1.25 corresponding to f v = 1.15 is shown in red. 
Note the asymmetry of the profiles visible at high resolution is a direct result 
of the acceleration of the gas along the streamline. 
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NRAS 515, 6172–6190 (2022) 
espect to the polar axis is required, suggesting that the sightline
ully intercepts the innermost and fastest wind streamline, hence
xplaining the prominence (and high degree of blueshift) of the
 Cygni feature. The terminal velocity parameter was measured at
 v = 1 . 33 + 0 . 03 

−0 . 04 and, as XRADE was generated by assuming a launch
adius of R min = 32 r g , this translates into a terminal wind velocity
f v ∞ 

= −0 . 33 + 0 . 01 
−0 . 01 c. 

Note that the input photon index of the XRADE model is tied
o the powerlaw continuum at 
 = 2 . 19 + 0 . 05 

−0 . 02 . The addition of
RADE resulted in a large impro v ement on the fit statistics by
χ2 /�ν = −231 . 4 / 4 ( > 99 . 99 per cent ), for an o v erall best-fitting
2 / ν = 655.3/682. We subsequently replaced XRADE with our
CRT generated fast32 in equation ( 7 ). We find that both fits are

xcellent and almost identical with χ2 / ν = 659.7/682 (see Fig. 10 ,
ottom right). During the fitting procedure in XSPEC , the ‘delta’ value
arameter has been set to be 0.001 (via the XSET command) so that a
ik e-for-lik e comparison could have been achieved between XRADE

nd fast32 . Moreo v er, the same best-fitting values were returned
hen restoring the original fixed delta values of the model (i.e. via

he command XSET delta 0.0) 
The values are largely consistent with XRADE , as shown in Table 3 .

his initial consistency test demonstrates that both physical models
ro vide an e xcellent fit to the P Cygni-like profile in PDS 456 and
hat XRADE is able to reproduce the results obtained by the MCRT 
rid. Note that errors measured in both grids are indeed similar due
o CCD spectral resolution of the data that illustrates that, at the
esolution of the data, XSPEC interpolation upon the MCRT table
odels achieves an equally adequate parametrization of the data as

er the emulated XRADE tables. Ho we ver the limitations of the former
nd o v er-reliance of interpolation is more likely to have a significant
mpact for calorimeter resolution spectra, which we further discuss
elow. 
In Fig. 11 , we show three simulated Athena /X-IFU resolution (i.e.

 eV at 6.4 keV) spectra using the high-resolution disc-wind grid
 f32hires ; see Parker et al. 2022 for details). f32hires was a
CRT generated table to match the microcalorimeter resolution

ata of XRISM /Resolve and Athena /X-IFU with a total of 10 000
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nergy bins (i.e. with an energy resolution of �E = 1 . 8 eV) between
.1 and 20 keV. Because of its high CPU cost, f32hires is in a
reliminary stage and is limited to 2400 grid points, ho we ver it will
e expanded in the near future. 
Here we keep all the parameters fixed (see caption) whilst the 

hanging the velocity factor parameter to f v = 1 (black), f v = 1.25
blue) and the interpolated value of f v = 1.15 (red) between the former
wo grid points. As expected, both the highly ionized (i.e. Fe XXV

e α and Fe XXVI Ly α) absorption features are prominent in both f v =
 and f v = 1.25 spectrum, although more blueshifted in the latter.
he intermediate (interpolated) point seems to generate a spectrum 

hat is characterized by some hybrid set of absorption feature caused 
y interpolation. The intermediate (interpolated) spectrum at f v = 

.15 is characterized by a hybrid set of absorption features caused 
y interpolation in energy space, between the f v = 1 and f v =
.25 grid points. In fact such an issue is already striking, unlike
n the CCD resolution framework (see Fig. 9 ), in the simplest 1D
nterpolation discussed in Section 3.1 . A more detailed set of exper-
ments will be performed and reported on a following companion 
aper. 

At this stage, the key contrast between these two tables is the
 ast dif ference in the CPU time required to generate these grids. In
act, to produce the 86 400 synthetic spectra in fast32 required 
n o v erall CPU time of ∼4 months on 600 cores at 50 GB RAM
per core), against an impressive time-scale of ∼4 s for generating 
33 520 emulated spectra for the XRADE table. Note that our emulator
as the flexibility to generate parameter ranges with unprecedented 
esolutions within minutes. 

.1 Global parameter exploration 

e sought to test the emulated parameter space created with 
RADE via global parameter exploration. We use the same XMM–
ewton /EPIC-pn and NuSTAR PDS 456 data sets as described 

n Section 4 and an identical model set-up. For the purposes of
omparing the different parameter spaces, we use the fast32 and 
RADE table model as in equation ( 7 ) (see Table 2 ). We employ the
ayesian X-ray Analysis ( BXA v2.10; Buchner et al. 2014 ) software
latform that connects the nested sampling algorithm MultiNest 
Feroz, Hobson & Bridges 2009 ) with the XSPEC fitting environment. 
n brief, nested sampling (see Buchner 2021 for a recent re vie w)
tores a set of parameter vectors drawn from the prior distribution.
he lowest likelihood parameter vector is iteratively replaced with a 
ew one of higher likelihood, until some termination condition is met.
n this way, the algorithm scans the global prior-defined parameter 
pace and is thus a useful tool for visually exploring and comparing
he multidimensional parameter spaces associated with fast32 and 
RADE . 
We assign uniform priors to all parameters apart from the partial 

o v ering absorber column density and intrinsic power-law normal- 
zation that were assigned log-uniform priors, and the multiplicative 
ross-calibration constant that was assigned a custom log-Gaussian 
rior with mean zero (i.e. a linear cross-calibration of unity) and 
.1 standard deviation. This choice of prior is useful for the cross-
alibration to a v oid ne gativ e values, whilst also peaking close to
nity (e.g. Madsen et al. 2017 ). The same 10 free parameters were
sed in both models. 
The result of the fits is shown in Fig. 12 with grey and blue contours

or fast32 and emulated XRADE tables, respectively. Shaded 
egions represent the 2 σ level, though note that the percentage of
oints encompassed by the 2D contours is not the same as in the 1D
istograms. 7 In general, the parameter space attained with XRADE 

ppears to match the fast32 parameter space well with good 
greement within 2 σ . The majority of individual posterior shapes 
lso show good agreement, indicating that the emulation process is 
ble to reliably map different regions of parameter space to spectral
pace. 

There are some parameters that have different posterior shapes, 
.g. μ. Disagreements between posterior shapes could indicate that 
articular regions of the emulated spectral/parameter space require 
ore training data as input. Alternati vely, e ven though both models
ere fit with XSPEC , the emulated parameter grid of XRADE was finer

han fast32 , hence with the corresponding interpolation between 
djacent grid points performed o v er smaller parameter steps with
SPEC . We note that the higher resolution XRADE table does not
ecessarily mean that the confidence intervals should be smaller, 
ince the aim of the emulator is to reproduce the multidimensional
arameter space associated with the original fast32 model as 
ccurately as possible. The ultimate limitation to the confidence 
ntervals is thus the data quality, since the emulated XRADE model
as trained on fast32 originally. 
If the input training data was sufficient for the ANN to learn the

omplex mapping process involved, posterior differences could hint 
o alternative parameter estimation with emulation versus interpo- 
ation. Ho we ver, since Ṁ w , f v , and μ have a very strong (and/or
on-linear) relation to the observed spectral shape of the model, 
uch parameters are most likely to suffer from interpolation issues, 
uggesting such parameters may require finer parameter resolution 
raining grids in particular. None the less, testing future emulated 
RADE tables on real data with BXA may be an efficient method to

terativ ely e xplore and check the emulated parameter space in detail.
Fig. 13 presents an alternative comparison between the spectral 

ts performed with BXA in Section 4.1 . A total of 500 posterior
arameter vectors from the fast32 (left) and XRADE (right) model 
ts were loaded and o v erplotted with the unfolded spectral data.
he models found for each data set (distinguished by the cross-
alibration) are plotted with the same colour in each panel and shaded
egions represent the overall 500 realizations. Clearly the spectral 
hapes are very similar apart from a small difference at ∼8 keV, in
greement with Fig. 7 . 

.2 Other models 

 model similar to XRADE is defined and used in Hagino et al.
 2015 ) ( MONACO – MONte Carlo simulation for Astrophysics and
Osmology), which is then subsequently applied in Hagino et al. 
 2016 , 2017 ) to fit the disc winds in PDS 456, 1H 0707 −495, and
PM 08279 + 5255. Here, the same biconical structure is used (see
g. 3 in Hagino et al. 2015 ). MONACO separates the wind structure

nto shells and then performs a series of XSTAR runs to ascertain
he ionization balance and the luminosity leaving and entering each 
ayer. The radiative transfer is then performed using the He-like and
-like iron and nickel transitions along with Compton scattering. 
his has the benefit of being less computationally e xpensiv e than our
isc-wind code, as the higher the number of lines that are tracked,
he more computationally intensive the simulation. Therefore, the 
imited number of transitions allows a quicker exploration of the 
arameter space. The argument for only tracking the highly ionized 
pecies is that high-velocity winds are typically highly ionized. 
MNRAS 515, 6172–6190 (2022) 
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Figure 12. Corner plot showing the results obtained from fitting the XMM–Newton and NuSTAR spectra with fast32 (grey) and XRADE (blue) using BXA . 
Shaded regions show the 2 σ confidence level. 
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Ho we ver, lo wer ionization species can survive in thicker winds
nd should be considered in a more general case. These lower
onization species may be observed at lower energies, such as the
ower ionization lines observed in the XMM–Newton Reflection
rating Spectrometer (RGS) data of many AGNs. In PG 1211 + 143

Pounds et al. 2016 ; Reeves, Lobban & Pounds 2018b ) and PDS 456
Reeves et al. 2016 , 2020 ) these soft features appear to be physically
ssociated with the highly ionized outflow. These features may be
tudied in more detail in the future by lowering the ionization in
uns. This can be done by either lowering the source luminosity or
ncreasing density through clumps within the streamlines. 

It is thus important to stress that the faster winds will not just
roduce more highly blueshifted lines, but also produce intrinsically
roader line profiles, both in emission and absorption. While in
rinciple such profiles may be accounted for in other non-wind
cenarios (e.g. by absorption through a corotating disc atmosphere;
allo & Fabian 2011 ; Gallo et al. 2013 ; Fabian et al. 2020 ), in
NRAS 515, 6172–6190 (2022) 
ection 4 we demonstrate that the broad P Cygni-like profile in
DS 456 can be self-consistently modelled by our solar abundance,
ast32 and XRADE table of models. 

 C O N C L U S I O N S  A N D  F U T U R E  WO R K  

n this paper, we presented an impro v ed v ersion of the state-of-the-
rt disc-wind model obtained from a Monte Carlo multidimensional
2.5D) radiative transfer code initially developed by Sim et al. ( 2008 ,
010 ). For this purpose, we generated two large MCRT tables,
low64 and fast32 , of 172 800 synthetic spectra, co v ering a much
ider parameter space (see Table 1 ) than previously presented ( S08 ;
10 ; Reeves et al. 2014 ; Reeves & Braito 2019 ). These will allow us

o explore the physical conditions that characterize the accretion disc
inds across a wide range of sources, as our measurements are black
ole mass invariant. As mentioned abo v e, slow64 has been already

art/stac2155_f12.eps
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Figure 13. Unfolded model realizations from the BXA fits with the original fast32 (grey) and XRADE (blue) multiplicative table models. The data adopted 
here are the same as in Fig. 10 . 
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pplied to MCG-03-58-007 (Braito et al. 2022 ), and the fast32
ill be applied to all the PDS 456 data from 2001 to 2019 (Reeves

t al., in preparation). 
We also presented the development and implementation of a 

o v el emulator based on a purposely built ANN : X-Ray Accre-
ion Disc-wind Emulator ( XRADE ). The method developed here 
orks as follows. From the available MCRT generated spectra, 
e fed 80 per cent (or 138 240 spectra) into the ANN . A further
0 per cent (17 280) are used for validation and the remaining 
0 per cent are e xclusiv ely kept for testing the emulated spectra. Our
mulator is not only able to reproduce the slow64 and fast32
ynthetic spectra, which required a total of ∼8 months (600 cores)
o be generated, but also to emulate 533 520 spectra (see Table 2 )
ithin a 4 min time-scale, i.e. ∼5 orders of magnitude faster, with

n average mean square error of just 1 . 4 per cent . 
After the training and validation process, our built ANN can 

mulate synthetic MCRT spectra well within 10 per cent accuracy. 
s far as using XRADE in XSPEC , we are able to successfully produce
ner tables than slow64 and fast32 as long as they are within

he parameter boundaries set in the MCRT tables. Any user can 
asily build a fully customized XRADE multiplicative table that will 
e suitable for spectral analysis in XSPEC . A future test is, ho we ver,
o explore whether a coarser and wider parameter grid can be used
n order to localize regions of the parameter space to an acceptable
evel of precision, via e.g. the BXA process and error searches. Once
he parameter space is mapped, then finer grids can be adopted. 

We note that a finer XRADE table would still be susceptible to
SPEC interpolation issues. Our foreseeable goal is to exploit the ANN

mpressive emulation rate to be directly implemented in the fitting 
rocedure. We aim at eventually bypassing interpolation based fitting 
rograms such as XSPEC , as well as grid development, and use XRADE

n the likelihood calculations for parameter inference in a Bayesian 
odel. One solution is to integrate XRADE into the publicly available 
ayesian software e.g. 3ML . 8 The advantage of such an approach is

hat we will be able to obtain more accurate parameter estimates and
 https:// threeml.readthedocs.io/en/ stable/xspec users.html 

c  

e  

0

heir full posterior distributions, all the while taking into account any
rincipled prior information about the source. 
The great advantages of XRADE are the following: (a) it a v oids

he need to rerun the initial time-consuming ray-tracing simulations, 
peeding up, in turn, the process of generating new spectra or even
rids; (b) our ANN allows the user to generate fully customised
RADE tables at the user’s specific requirements; (c) it produces 
ery large XRADE tables, e.g. with much finer steps, o v er a much
horter computational time-scale, i.e. seconds–minutes; (d) it greatly 
itigates interpolation issues within XSPEC between coarse grid 

oints, while maintaining numerical accuracy to the 1 per cent level
see Fig. 10 ); and (e) the emulation process can be applied to a large
ariety of models (see text below) and can be easily implemented
irectly into Bayesian inference pipelines. 
We presented a test case by applying XRADE and fast32

o PDS 456, which hosts one of the most powerful, persistent
ccretion disc winds. We specifically tested XRADE on the combined 
MM–Newton and NuSTAR 2013 September 17–21 observations of 
DS 456, as the X-ray spectrum is characterized by the best-quality
 Cygni feature observed to date, and compared the results with those
rom fast32 . We found that both XRADE and fast32 return an
xcellent fit to the data, providing measurements of Ṁ w , L X , f v , μ,
nd 
 with < 10 per cent discrepancy. We demonstrated that XRADE

rovides an excellent fit to the P Cygni profile in PDS 456. 
The best-fitting values measured with both fast32 and XRADE 

re loosely consistent with N15 ; in particular the Ṁ w is a factor of
3 smaller than in N15 . This difference can be simply attributed

o an assumed launching radius being a factor of ∼3 larger, i.e.
 min = 100 r g = 1 . 5 × 10 16 cm than here. It is important to note that

ince R min is not yet a free parameter but fixed a priori, the ‘true’
ass outflow rate maintains a certain degree of uncertainty. For this

eason, in future work it is our priority to make R min a measurable
arameter in XRADE , as well as to further explore the wind thickness
 R max / R min ) or even a variable d parameter (i.e. changes the wind
pening angle). Note that another source of discrepancy for Ṁ w 

an be also attributed, on a lower extent, to the assumed accretion
f ficiency v alue of η = 0.06 here with respect to that in N15 (i.e. η =
.1). 
MNRAS 515, 6172–6190 (2022) 
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The extended energy band from 0 . 1 keV up to 511 keV was
dopted as in S10 in order to allow a comparison with observational
easurements from future instruments with a significant ef fecti ve

rea at relatively high photon energies, > 100 keV. However, as
uch a milestone has not been achieved yet, a possibility for the
ear future would be to restrict the energy range of the calorimeter-
esolution grids, so to optimize computational time and parameter
pace sampling o v er the region where this is most rele v ant (especially
or co v ering the Fe K re gion). 

At present, the major difference between XRADE and disc-wind
ables ( slow64 and fast32 ) generated through a ‘standard’ X-ray
racing method is the enormous difference of CPU time involved
n the process. To emulate one single spectrum we require a CPU
ime of 4.9 × 10 −5 s, against 10–50 min ( ∼60 eV resolution) or
–3 h (2 eV resolution). We also used BXA to perform a global
xploration of the parameter spaces associated with the original
ast32 and finer XRADE tables whilst fitting PDS 456 (Section 4.1 ).
e find good agreement between the o v erall best-fitting parameter

ontours, as well as individual posterior distribution shapes (see
ig. 12 ), indicating that the ANN is able to learn the complex
apping between parameter space and spectral space. Global pa-

ameter exploration algorithms thus represent a powerful tool to
teratively test the accuracy of emulation-based table models in the 
uture. 

Although XRADE is already a powerful alternative model to the
omputationally e xpensiv e MCRT simulations, there is still much
oom for impro v ement. Most notably, the increase in fractional
rror seen in the Fe K band will be impro v ed by introducing
ner sampling in the training process. Currently our training set

s based on simulated spectra generated from a grid of parameters,
o we ver ideally we would train from spectra that have parameter
alues that are randomly sampled across the chosen parameter
ange. Using a random parameters allows the network to better
ap the domain and parameter space in comparison to the grid

f parameters. Analogous to this is the e xtensiv e research that has
hown that random search is superior o v er grid search methods
or hyperparameter turning of machine learning algorithms (see
.g. Bergstra & Bengio 2012 ). Any future work must allow for a
ampling of μ and, most importantly, R min values, so that a more
ccurate energetics and eventually the launching/driving mechanism
nvolved in the disc wind can be can be achieved. The real power
f the emulation method is that the implementation of our ANN will
ndoubtedly be an indispensable tool in anticipation of future X-
ay detectors, such as the microcalorimeters onboard XRISM and
thena . Our emulation method will not be only restricted to the
evelopment of XRADE , but it will be implemented in other wind
odels, such as magnetohydrodynamic (e.g. Fukumura et al. 2010 )

nd WINd Emission (WINE) models (Luminari et al. 2020 ). This tool
an be also applied to non-wind models and beyond X-ray astronomy 
tudies. 
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PPENDIX  A :  SP ECTRAL  PROPERTIES  O F  

H E  DISC  W I N D  

1 Influence of geometry on the disc-wind features 

n the MCRT code, the photon packets are collected into 20
nclination bins and then processed into 1000 energy bins. The
bserver’s line-of-sight inclination ( θ ) is measured with respect to the
olar z-axis. Each angular bin is defined by μ = cos θ and determines
he degree of line-of-sight interception through the wind. In both
ables, the angular bins co v er the range 0.025 < μ < 0.975 in 20
ncremental linear steps of �μ = 0.05. As the geometric framework
ssumes a flow with an opening angle of 45 ◦, the observer’s line
f sight does not directly intercept the wind when θ < 45 ◦, or μ �
.7. In such a scenario, the corresponding spectra will be dominated
y a reflection component via photons scattered off the wind (see
atum et al. 2012 for examples of fitting the wind spectra to the Fe K
mission profiles of bare Se yferts). Conv ersely, at high inclinations
 μ � 0.7), the line-of-sight intercepts the wind and, consequently,
lueshifted absorption features, as well as scattered emission, will
e imprinted on the spectra. 
Depending on the range of the angular bin, the inclinations can be

enoted as: low (polar; θ = 0 ◦–45 ◦), intermediate (wind fully inter-
epted; θ = 45 ◦–66 ◦), and high (edge-on or equatorial; θ = 66 ◦–90 ◦).
he different sightlines, from each angular bin, intercept material
ith increasing column densities (or optical depth). Fig. A1 illus-

igure A1. Dependence of the line-of-sight column density on the viewing
ngle bins for a given Ṁ w = 0 . 4 in fast32 . Along a line of sight with θ
 45 ◦ the wind does not intercept the line of sight to the X-ray source so

he column density is approaching zero, although the observed spectrum is
odified by photons scattered into the line of sight. The column density

ncreases for θ � 45 ◦ as the line of sight becomes more edge-on. The
ashed red line represents one Compton depth, corresponding to N H =
/ σT = 1.5 × 10 24 cm 

−2 , where the flux is suppressed to 38 per cent of
he unattenuated flux. 

rates how the column density of the obscuring medium (for a given
˙
 w = 0 . 4, i.e. 30 per cent of Ṁ Edd in fast32 ), rapidly reaches

he optically thick regime (i.e. N H = 1 /σT = 1 . 5 × 10 24 cm 

−2 ) with
ncreasing θ . The boundary at the opening angle θ = 45 ◦ would
na v oidably create some discontinuity regions in the simulations. 
f igA 1 
In Fig. A2 , we show the output spectra from the different inclina-

ion ranges indicated abo v e, where the total, direct (or transmitted),
nd scattered/reflected spectral components are denoted in black,
ed, and green, respectively . Specifically , at low inclination, e.g.
∼ 30 ◦ (left), the line of sight does not intercept the wind, so

he transmitted spectrum (red) is unaffected by the medium. The
otal spectrum (black) is dominated by the primary continuum and
s supplemented by the scattered/reflected component (green) from
he wind material. Distinct features such as the ‘Compton hump’
NRAS 515, 6172–6190 (2022) 
peaking at 20–30 keV) and Fe K α emission at ∼6.4 keV (blurred by
he Doppler shifts within the flow) are prominent. At intermediate
alues, θ ∼ 50 ◦ (middle), the line-of-sight intercepts the outflowing
ompton-thick material with N H ∼ 2 × 10 24 cm 

−2 . The scattered
omponent is similar to before, ho we ver the direct continuum is
ow suppressed by the obscuring medium with absorption features
mprinted on the spectra. At high inclinations, θ ∼ 75 ◦ (right), the
cattered emission dominates o v er the transmitted component as the
ine of sight is intercepting material with N H ∼ 5 × 10 24 cm 

−2 (see
ig. A1 ), corresponding to a Thomson (or Compton) depth of τ ∼ 3.
The difference in shape and centroid energy of the absorption

rofiles, as seen in Fig. A2 (centre and right), reveals how the Fe K
trength and degree of blueshift are strongly dependent on both
he wind opening angle and the line-of-sight orientation. In fact, at
ntermediate inclination, the centroid energy is measured at ∼8 . 2 keV
centre), whilst at high inclination, the line is centred at ∼7 . 2 keV
right). In other words, as the viewing angles progressively become
olar, the shift in velocity of the profile increases. Such variation
rises from the line-of-sight projection of the velocity vector (see
g. 6, S08 ). 

2 Influence of the launch radius on wind features 

he o v erall shape of the Fe K absorption profile in the simulated
pectra changes upon the choice of the launch radius R min and
hickness of the flow � R . In Fig. A3 , we show the broad-band
imulated spectra for the slow64 and fast32 grids with fine-
uning velocity factor parameter fixed at f v = 1. Our findings are as
ollows. 

(i) The effect of R min on the terminal velocity, and thus the degree
f blueshift of the profiles, is larger at smaller radii. 
(ii) The width of the absorption lines depends on the range of the

elocities intercepted. Broader profiles are thus naturally reproduced
or faster (inner) winds – due to both the larger range in terminal
elocity and the wider shear of velocities intercepted along the flow
p to v ∞ 

(see Section A3 ). 
(iii) An inner, faster wind has a greater opacity as its � R (in r g )

s smaller, thus the density is higher for any given Ṁ w . 

3 Calculation of wind velocity 

 prescription that stipulates the rotational velocity at every point
n the wind, following the parametrization of Knigge, Woods &
rew ( 1995 ), was included in the S10 code. It is assumed that the

pecific angular momentum is conserved by the outflowing ‘packets’
f matter about the polar z-axis. At the base of the wind streamline,
he angular momentum of the packets is assumed to be Keplerian
or the radius at which the streamlines cross the xy -plane. Thus the
otational velocity is solely defined by choosing the wind geometry
nd black hole mass of the source. 

The outflow radial velocity, which points away from the focus
oint of the wind d (see Fig. 1 ), is 

 l = v 0 + ( v ∞ 

− v 0 ) 

(
1 − R v 

R v + l 

)β

, (A1) 

here l is the distance along the wind streamline, and R v is the
elocity scale length (set to be equal to R max ), which defines how
 ar the pack et of matter has travelled before reaching halfway
f the terminal speed in the streamline. The β exponent governs
he acceleration rate and is usually set to 1 due to difficulties in

art/stac2155_fa1.eps
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Figure A2. Simulated fast32 spectra between 5 and 12 keV with given Ṁ w = 0 . 5, L X ( per cent ) = 0 . 2, and f v = 1.0 corresponding to low- (left; μ = 

0.875, or θ ∼ 30 ◦), intermediate- (centre; μ = 0.625, or θ ∼ 50 ◦), and high inclinations (right; μ = 0.275, or θ ∼ 75 ◦). The total spectra (black) and their 
respective direct (red) and scattered (green) components are shown. Low inclinations: as the line of sight does not intercept the wind, the resulting spectrum is 
dominated by scattered photons from the inner edge of the flow, leading to the broad Fe K emission feature peaking at E ∼ 7 keV. Intermediate inclinations: 
as the line of sight fully intercepts the wind, deep absorptions, e.g. from Fe XXV–XXVI , and broad emissions are imprinted on the spectra. High inclinations: at 
nearly equatorial line-of-sight orientation, the total spectrum is dominated by the scattering component whilst the primary continuum is heavily suppressed by 
the Compton-thick material at the base of the flow. Such orientation would lead to a broad, shallow absorption feature in the spectra. 

Figure A3. Left: total broad-band simulated spectra shown in the 0.1–100 keV band, with a given μ = 0.625, corresponding to launch radii of R min = 64 r g 
(black) and R min = 32 r g (red). Right: zoom on the Fe K re gion. Re gulated by the assumptions on R min , a velocity shift is observed in the synthetic spectra, 
whereby the black one ( R min = 64 r g ) is slower than the red one ( R min = 32 r g ). This is a natural consequence of the velocity along the streamline, which 
scales directly with the escape velocity at the base of the flow. As the terminal velocity v ∞ 

= f v 
√ 

2 /R min ( r g ) c is affected by both R min and f v (or an effective 
R min ∝ f 2 v ), in our simulations we kept f v = 1 for clarity . Additionally , with a given mass outflow rate ( Ṁ w = 0 . 5) and ionizing luminosity ( L X = 2 × 10 −3 , 
i.e. L 2 –10 keV = 0 . 2 per cent of L Edd ), the fastest wind spectrum (red) is o v erall more attenuated and with stronger line depths than its counterpart. The innermost 
winds have a larger column density as a consequence of the observer’s line of sight crossing a larger portion of the wind than the outer flows (see Section A4 ). 
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onstraining it with the X-ray data currently available. The initial 
elocity v 0 is set to 0, given that v 0 
 v ∞ 

. Variations in the R v 

nd β terms in equation ( A1 ) can result in a change of the width of
he simulated wind feature profiles. Reducing β would increase the 
ed-wing of the absorption feature, as the material would take longer 
o accelerate to v ∞ 

. On the other hand, by reducing R v , the packet of
atter would travel a shorter distance along the streamline before v ∞ 

s reached, hence reducing the red-wing. Additionally, the presence 
nd strength of a red-wing characterizes the probability of observing 
lower packets of matter along a given streamline. 

4 Mass density 

he wind is assumed to be smooth and in a steady state, and it can be
haracterized by a mass-loss rate Ṁ out that corresponds to the total 
ass present within the flow. The local mass-loss rate per unit area

s a function of R is defined as d ̇m / d A ∝ R 

κ . In these simulations
he mass-loss exponent is set to κ = −1 (default value) that falls
ithin the range expected in a continuous large-scale radial outflow, 

.e. −1.3 < κ < −1 (Behar 2009 ). The integral of d ̇m / d A has to equal
he total mass-loss rate, such that Ṁ out = 4 π

∫ R max 

R min 
(d ̇m / d A ) R d( R).

hus, 

d ̇m 

d A 

= 

Ṁ out ( κ + 2) 

4 π
[
R 

κ+ 2 
max − R 

κ+ 2 
min 

]R 

κ . (A2) 

 decrease of the mass-loss parameter has the effect of making the
ass within the flow more centrally concentrated. The mass density 

or a given cell is ρ = d m /d V , the unit volume is d V = v l d t d A ,
here v l d t is the distance travelled by a packet of matter at velocity
 l along the streamline. By combining these terms, the mass per unit
olume is 

= 

1 

v 

d ̇m 

d A 

. (A3) 
MNRAS 515, 6172–6190 (2022) 
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igure A4. Colour map of an example model run showing the distribution
f the mass number density through the wind cells that falls off with radius
s a function of R 

( κ = −1) . The corresponding density values in log scale are
hown in the colour bar in units of g cm 

−3 . The x -axis represents the disc
lane, while the z-axis is along the rotational axis. Both axes are in units of
ravitational radii. 

he abo v e e xpression suggests that the mass density falls off
aster than what is expected in equation ( A2 ) at κ = −1, as
he wind accelerates up to v ∞ 

. Such occurrence can be seen in
ig. A4 where the mass number density at R = 10 3 r g and 10 4 r g is

og ( ρ/ g cm 

−3 ) = −17 . 6 and log ( ρ/ g cm 

−3 ) = −20 . 1, respectively,
NRAS 515, 6172–6190 (2022) 
.e. � log ( ρ/ g cm 

−3 ) = −2 . 5. Thus the mass density falls off quicker
han what would be expected from the mass loading equation ( A2 )
t κ = −1 due to the effect of the increasing velocity vector of the
ow along the streamlines. 

PPENDI X  B:  N E T WO R K  PA R A M E T E R S  

n a FFNN framework the number of trainable parameters ( N p ) is
erived from the number of connection in between each layer plus
he number of biases in each layer. Each dense layer contains one bias
er neuron, so we have a total of 3000 biases. A general expression
an be written as 

 p = 

n ∑ 

k= 1 

N H k N H ( k−1) + N H k , (B1) 

here n is the number of dense layers, N H 0 is the number of inputs
o the neural network. In our case n = 3 and N H 0 = 6. Each of the
hree dense layers H 

1 , H 

2 , and H 

3 have 1000 neurons each so we
ave N p = (6 × 1000 + 1000) + (1000 × 1000 + 1000) + (1000 ×
000 + 1000) = 2009 000. 
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