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It has been shown that the synergy of a scalar field coupling with both the Ricci scalar and the Gauss-
Bonnet invariant significantly affects the properties of scalarized black holes and neutron stars, including
their domain of existence and the amount of scalar hair they carry. Here we study the radial stability of
scalarized black-hole solutions. We demonstrate that they are stable against radial perturbations for Ricci
couplings consistent with both a late-time cosmological attractor and the evasion of binary pulsar
constraints. In addition, we investigate the effect of the Ricci coupling on the hyperbolicity of the equation
governing linear, radial perturbations and show that it significantly reduces the region over which
hyperbolicity is lost.
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I. INTRODUCTION

The first direct detection of gravitational waves in 2015
[1] by the LIGO-Virgo collaboration signaled the start of a
new era in astrophysics. Observations of gravitational
waves generated by merging compact objects, namely
black holes (BH) and neutron stars (NS), provide a
powerful tool to probe the strong field, dynamical regime
of gravity for the first time in history. Despite the success of
general relativity (GR) in the weak field limit, deviations
from GR could become relevant when gravitational effects
are extreme. Indeed, gravitational-wave observations have
already been used to place constraints on theories that seek
to modify GR and look beyond the Standard-Model
framework [2–6].
Considering the overwhelming success of GR in the

weak-field regime, theories which show no weak-field
deviations from GR and yet exhibit new effects in the
vicinity of black holes and compact neutron stars are of
particular interest. To that end, spontaneous scalarization is
a strong gravity effect in which a phase transition endows
black holes and neutron stars with an extra scalar configu-
ration. The phase transition is induced by a coupling of the

scalar field with curvature invariants, and the details of
this coupling control the transition threshold. At a linear
level, such couplings trigger a tachyonic instability, and
consequently the development of scalar hair. The phe-
nomenon was originally identified in Ref. [7] for a class of
theories where it only takes place for compact stars.
However, these theories are unable to induce scalarization
on black hole spacetimes as they are subject to the no-hair
theorems, [8–11], and so cannot support nontrivial scalar
profiles. Recently, it been shown that another class of
theories can exhibit black hole scalarization, [12,13], by
including a coupling with the Gauss-Bonnet (GB) invari-
ant, G ¼ RμνλσRμνλσ − 4RμνRμν þ R2. Here Rμ

νλσ denotes
the Riemann tensor, Rμν the Ricci tensor, and R the Ricci
scalar.
In particular, Ref. [13] considered the action

S ¼ 1

2κ

Z
d4x

ffiffiffiffiffiffi
−g

p ½Rþ X þ fðϕÞG�; ð1Þ

where κ ¼ 8πG=c4, X ¼ −ð∂ϕÞ2=2, and showed that sta-
tionary and asymptotically flat black holes are described by
the Kerr metric provided f0ðϕ0Þ ¼ 0 for some constant ϕ0

and f00ðϕ0ÞG < 0. Further, it was found that −f00ðϕ0ÞG acts
as an effective mass squared for the scalar perturbation;
hence, when f00ðϕ0ÞG becomes positive and sufficiently
large it triggers a tachyonic instability. A fðϕÞ ∝ ϕ2

coupling was considered, being the simplest model that
satisfied the conditions for developing the instability.
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Indeed, scalarization was found to occur and the scalarized
black hole solutions exist in the same region of parameter
space as the tachyonic instability. Reference [12] focused
instead on the case where fðϕÞ ∝ eϕ

2

, also showing that
tachyonic instabilities occur and that scalarized black holes
again exist in the same region of the parameter space.
Extensions of these models have examined the effects of

additional terms in the action, including a bare mass and
higher order corrections, different fields, or different types
of instabilities as triggers of scalarization, e.g., [14–20]. In
more recent work, it has been shown that a tachyonic
instability leading to scalarization can be triggered by spin
[21] and spacetimes describing such scalarized black holes
have been generated [22,23]. The onset of scalarization is
controlled by terms that contribute to linear perturbations
around a GR background in all of these scenarios. The
minimal action that contains all such terms for scalar-tensor
theories, up to field redefinitions, and leads to second order
equations upon variation was identified in Ref. [24]:

S ¼ 1

2κ

Z
d4x

ffiffiffiffiffiffi
−g

p �
Rþ X þ γGμν∇μϕ∇νϕ

−
�
m2

ϕ þ
β

2
R − αG

�
ϕ2

2

�
; ð2Þ

where κ ¼ 8πG=c4, X ¼ −ð∂ϕÞ2=2, mϕ is the bare mass of
the scalar field, β is a dimensionless parameter, and α has
dimensions of length squared. Since vacuum spacetimes in
GR satisfy Gμν ¼ 0, the derivative coupling to Gμν and the
coupling between the scalar and R will not contribute to the
onset of the tachyonic instability for black holes. These
terms will however affect scalarization thresholds for
neutron stars [25] and also affect the end state of scalariza-
tion for both neutron stars [26] and black holes [27].
Indeed, the tachyonic instability is quenched by non-
linearities. Therefore, these terms affect the final properties
of the scalarized configurations, as do any other terms that
have been neglected in action (2) because they do not
contribute to the linear perturbation equation.
Understanding how the various (self)interactions beyond

the scalar-Gauss-Bonnet coupling affect the scalar profile
of a scalarized compact object is essential from an
observational perspective. It has been shown that scalarized
black holes are unstable under radial perturbations in the
simplest, quadratic coupling scenario [15]. This issue can
be overcome if one considers an additional quartic inter-
action in the Gauss-Bonnet coupling function, provided
that the sign of the quartic coupling coefficient is opposite
to the quadratic one [16]. However, addressing the insta-
bility with quartic, or exponential couplings is not entirely
appealing from an effective field theory (EFT) perspective.
This is because these terms have a higher mass dimension
than other terms that could contribute nonlinearly, e.g., a
simple ϕ4 self interaction. It was, indeed, shown in

Ref. [17] that including self interactions for the scalar
can lead to radially stable scalarized solutions.
More recently, Ref. [27] provided strong indications that

a coupling of the scalar field with the Ricci scalar, already
present in action (2), can also lead to radially stable
solutions. This would be particularly interesting if proven
to be true as this same coupling has already been shown to
address observational viability issues for black hole scala-
rization models when β > 0: it dominates the scalar
dynamics in the late-time cosmology and turns GR into
a cosmological attractor [28]; it can also suppress scala-
rization of neutron stars [26] and hence, remove binary
pulsar constraints. In this paper, we perform a radial
perturbation analysis for scalarized solutions and fully
explore the role of the coupling with the Ricci scalar in
the stability of the solutions.
The structure of the paper is as follows: in Sec. II we,

first, introduce our model and present the field equations.
We reproduce the results already derived in previous work,
concerning the background BH solutions, that describe
static and spherically symmetric configurations. Then, we
consider radial perturbations to the static background and
discuss the properties of our model as a Schrödinger-like
problem. In Sec. III we discuss our numerical results
regarding the stability of the solutions and the hyperbolicity
of the scalar perturbation equation. Finally, in Sec. IV we
present our conclusions.

II. SETUP

A. Action and field equations

We will consider the following action

S ¼ 1

2κ

Z
d4x

ffiffiffiffiffiffi
−g

p �
Rþ X −

�
β

2
R − αG

�
ϕ2

2

�
; ð3Þ

motivated in part by simplicity and in part by the fact that
we seek to understand the influence of the coupling
between the scalar and R in stability considerations. One
can think of this action as part of an EFT in which the scalar
enjoys Z2 symmetry and shift symmetry is broken by the
couplings to curvature. Note that the model considered in
Refs. [7,29] is equivalent to action (3) with α ¼ 0 in linear
perturbation theory [24] and our definition of β matches
that of Refs. [7,29].
The field equations for the metric that one derives from

action (3) are

Gμν ¼ Tϕ
μν; ð4Þ

where
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Tϕ
μν ¼ −

1

4
gμνð∇ϕÞ2 þ 1

2
∇μϕ∇νϕ

þ βϕ2

4
Gμν þ

β

4
ðgμν∇2 −∇μ∇νÞϕ2

−
α

2g
gμðρgσÞνϵκραβϵσγλτRλταβ∇γ∇κϕ

2. ð5Þ

The scalar field equation reads

□ϕ ¼ m2
effϕ; ð6Þ

where the effective scalar mass is given by

m2
eff ¼

β

2
R − αG: ð7Þ

B. Spherical black hole solutions

The background considered is static and spherically
symmetric, and described by the metric

ds2 ¼ −AðrÞdt2 þ 1

BðrÞ dr
2 þ r2dΩ2; ð8Þ

with a scalar field that depends only on the radial
coordinate, ϕ ¼ ϕðrÞ. The differential equations describing
the unknown functions ðAðrÞ; BðrÞ;ϕðrÞÞ can be obtained
from (4) and (6) which are explicitly shown in Appendix A.
In [27] BH solutions that are asymptotically flat, and

continuously connected to GR were found and their
characteristics were studied. From these solutions one
can infer the ADM mass M and scalar charge Q from
the large r behavior of BðrÞ and ϕ

grr⟶
r→∞

1 − 2M=r; ð9Þ

ϕ⟶
r→∞

Q=r: ð10Þ

For the expansions including terms up to Oðr−6Þ refer to
[27]. The solutions depend on the scaling of the BH mass

and scalar charge with respect to the parameter α, control-
ling the GB coupling. When analyzing the stability of the
solutions, a dimensionless reparametrization proves par-
ticularly useful:

M̂≡M=α1=2 and Q̂≡Q=α1=2: ð11Þ

The domain of existence for black holes with nonzero
scalar charge is nontrivial. To analyze the parameter space
in which these solutions exist, we scan ðα=r2h; βÞ for BHs
with a nontrivial scalar field configuration that vanishes
asymptotically, in accordance with [27]. For α ¼ 0 the only
solution that is regular at the horizon and asymptotically
flat is the Schwarzschild BH [10], while for β ¼ 0, the
allowed values for α are in agreement with [12,13].
The left panel of Fig. 1 shows the existence domain in

the ðα=r2h; βÞ plane. Scalarized solutions with the desired
properties, i.e., regular everywhere and asymptotically
vanishing, exist in the shaded regions. We can classify
the space of solutions existing in three domains bounded by
a seemingly vertical line given by the critical value for
scalarization α=r2h ≈ 0.18 and a parabolalike curve defined
by the existence condition presented in Ref. [27].
To further analyze the solutions, in the center panel of

Fig. 1, we show the domain of existence in the ðM=rh;
Q=rhÞ plane, which is suggestive of several properties of
these solutions. First, it appears that the map ðα=r2h; βÞ ↦
ðM=rh;Q=rhÞ is invertible offering a direct connection
between the asymptotes of the solution and the underlying
gravity model. The lines of constant β approaching the
vertical line in the left figure, merge at ðM=rh;Q=rhÞ ¼
ð0.5; 0Þ, which corresponds to the GR solution. These same
lines appear to be bounded from above as they approach the
parabola in ðα=r2h; βÞ.
The BH solutions and their stability are better under-

stood when characterized by the quantities ðM̂; Q̂Þ [17,30],
as in the rightmost panel of Fig. 1. For clarity, in Fig. 2 we
show the same domain but for select values of β.

0.50 0.51 0.52 0.53 0.54 0.55
0.0

0.1

0.2

0.3

0.4

0.5

1.00 1.05 1.10 1.15 1.20 1.25 1.30
0.0

0.2

0.4

0.6

0.8

1.0

–2

–1

0

1

2

0.18 0.20 0.22 0.24 0.26

/rh2

FIG. 1. Left: The shaded part corresponds to the region in the parameter space ðβ; α=r2hÞwhere scalarized, and asymptotically flat black
hole solutions exist. Center: Themass and charge for scalarized black holes. The blue, green and red regions correspond to the upper,middle
and lower regions of the left-panel plot respectively. The contours shown are of constant β with separation of δβ ¼ 0.04, 0.01, 0.24 in the
blue, green, and red regions respectively. Right: Same as the center plot but for mass and charge normalized with respect to α.
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Schwarzschild BHs are radially unstable for M̂ < M̂c ≈
1.174 [15,17]. It can be seen that M̂c is the point where the
curves converge in Fig. 2. When M̂ < M̂c, scalar pertur-
bations grow spontaneously and form a nontrivial scalar
profile, and so are the energetically favorable solutions. We
again stress that the final scalar field profile is determined
by the full nonlinear equations and not only the terms that
trigger the instability.
In contrast, Schwarzschild BHs are stable in the region

M̂ > M̂c, and potential scalarized solutions would decay
back to GR, as seen from purely energetic arguments. This
reasoning can be confirmed by performing a radial linear
stability analysis of the scalarized BH solutions.
As we increase the value of β, the curves start to occupy

the region M̂ < M̂c, and their gradients become negative.
In accordance with [17,27], we expect a negative gradient
to correspond to radially stable solutions. From the right
panel of Fig. 2, we see that the critical value of β for which
part of the curves starts existing in the region M̂ < M̂c is
approximately β ≈ 1.15, while the window of potentially
stable solutions widens when β increases. Moreover,
beyond βc ≈ 1.2 we do not find any solutions that we
would expect to be radially unstable. Note that while the
right panel in Fig. 1 shows that there are potentially stable
solutions with β < 0, it is the β > 0 case that renders GR a
cosmic attractor [28], so we will focus on β > 0 henceforth.
While the arguments above provide a preliminary

indication of the scalarized solutions’ stability, it is neces-
sary to investigate the problem by performing a full
stability analysis before reaching a conclusion.

C. Radial perturbations

We can investigate the radial stability of the BH solutions
by employing a perturbative approach. This not only allows
us to further elucidate the timescale of the instability, but

also to analyze possible modifications to the oscillatory
spectrum of the BHs. It is worth noting that since a scalar
degree of freedom is absent in GR, the radial modes
contribute only to a shift in the mass in that case, and
hence are not radiative in nature [31].
We start by considering time-dependent radial perturba-

tions of the metric tensor and scalar field over a static and
spherically symmetric background:

ds2 ¼ −½A0ðrÞ þ A1ðt; rÞ�dt2 þ
dr2

B0ðrÞ þ B1ðt; rÞ
þ r2dΩ2; ð12Þ

ϕ ¼ ϕ0ðrÞ þ ϕ1ðt; rÞ ð13Þ

where A0, B0, and ϕ0 are the time-independent background
solutions, while A1, B2, and ϕ1 are the time-dependent
perturbations. We can then write down a system of
equations for ðA1; B1;ϕ1Þ, by substituting the metric and
scalar perturbations in Eqs. (4) and (6). This system can be
reduced to a second order partial differential equation
system for ϕ1 [15], namely

gðrÞ2 ∂
2ϕ1

∂t2
−
∂
2ϕ1

∂r2
þ CðrÞ ∂ϕ1

∂r
þ UðrÞϕ1 ¼ 0; ð14Þ

where the coefficients depend only on the background
solution.
When considering a quadratic coupling function with the

Gauss-Bonnet term, Ref. [15] pointed out that for some
values of the coupling, the equation describing the pertur-
bations is not hyperbolic. While this can hinder the
investigation of linear stability as a Cauchy problem, we
can still examine the mode structure of the spacetime by
looking into the frequencies ω.
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FIG. 2. Charge-mass diagram for scalarized BHs with the Ricci term. The blue part of the curves corresponds to stable solutions while
the red to unstable ones (as verified by the stability analysis in Sec. III). The dashed vertical line represents M̂ ¼ M̂c. Left: sample of
solutions for different values of β. Solutions on the left part of the dashed vertical line on the diagram are stable against radial
perturbations. Right: Zoom on the stability threshold region. We see that for β ≈ 1.15 stable solutions appear in the theory. For
β > βc ≈ 1.2 unstable solutions are no longer present.
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To perform a mode analysis of the spacetime, we search
for the natural frequencies of the system ω, such that
ϕ1ðt; rÞ ¼ ϕ1ðrÞe−iωt. The perturbation equation (14) can
be manipulated to the more familiar Schrödinger form:

�
−

d2

dr2�
þ Veff

�
ψ ¼ ω2ψ ; ð15Þ

where ϕ1ðrÞ ¼ FðrÞψðrÞ and the tortoise coordinate is
defined through dr� ¼ gðrÞdr. We also define

2F0

F
¼ C −

g0

g
; ð16Þ

Veff ¼
1

g2

�
U þ C2

4
−
C0

2
−
3g02

4g2
þ g00

2g

�
: ð17Þ

The real part of the frequency ω describes the resonant
modes of the system, i.e., for which frequencies an initial
perturbation would respond. The imaginary part of the
frequency indicates the system’s (modal) stability. For
modes with a negative imaginary part, an initial perturba-
tion decays exponentially, while when positive the pertur-
bation grows and the system is rendered unstable.
Generally, the effective potential identified from Eq. (16)
is useful when one attempts to verify the presence of
unstable modes as a negative value for the integral of the
effective potential with respect to the tortoise coordinate
indicates the existence of unstable modes [32], namely

Z þ∞

−∞
Veffðr�Þdr� < 0 ⇒ unstable modes: ð18Þ

It is worth noting that while the condition (18) is sufficient
in indicating the presence of unstable modes, it is not a
necessary condition.
In what follows we will be making use of the compacti-

fied coordinate

x ¼ 1 − rh=r; ð19Þ

which maps all of spacetime, from the black hole horizon
up to infinity, to a finite region, namely x ∈ ½0; 1�.
In Fig. 3 we plot the effective potential for two random

normalized masses M̂ corresponding to the left and right
parts of the left panel of Fig. 2, i.e., M̂ ¼ 1 and M̂ ¼ 1.2.
We see that for M̂ ¼ 1.2 > M̂c the effective potential has a
large negative region which is entirely absent for
M̂ ¼ 1 < M̂c. Taking into account (18), we have a further
indication suggesting the presence of unstable modes for
M̂ > M̂c and the absence of them for M̂ < M̂c.
To explore the modal structure of the spacetime, we have

to impose proper boundary conditions in order to obtain the
modes. These correspond to an ingoing wave at the horizon
and an outgoing one at infinity

8>><
>>:

ϕ1 ⟶
x→0

½r�→−∞�
e−iωr�

ϕ1 ⟶
x→1

½r�→þ∞�
eþiωr�

: ð20Þ

We can see that, for modes with ωI > 0 (unstable), they
simplify to ϕ1ðx → 0; 1Þ ¼ 0.
To finish this section, let us mention that the equations

describing the radial perturbations in the Schwarzschild
spacetime can be directly obtained from (14) by setting
ϕ0 ¼ 0 and A ¼ B ¼ 1 − rh=r which specify g, C and U.
The resulting scalar wave equation is

∂
2ϕ1

∂t2
−
∂
2ϕ1

∂r2�
þ
�
1 −

rh
r

��
rh
r3

− 12
αr2h
r6

�
ϕ1 ¼ 0; ð21Þ

where dr� ¼ dr=ð1 − r=rhÞ is the tortoise coordinate of the
Schwarzschild spacetime. The effective potential is iden-
tified as

VðdÞ
eff ¼

�
1 −

rh
r

��
rh
r3

−
12r2hα
r6

�
; ð22Þ

where the index d stands for decoupling. In Fig. 4 we plot
the potential in the decoupling limit for some values of α,
using the tortoise coordinate to improve visualization. Just
as before, the equation describing radial perturbations can
be used to access the stability properties of the
Schwarzschild spacetime in sGB. From a direct integration
of the potential, it is straightforward to see that (18) in this
case yields α=r2h ≳ 0.208.

0.0 0.2 0.4 0.6 0.8 1.0
– 0.06

– 0.04

– 0.02

0.00

0.02
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0.06

FIG. 3. Plot of the effective potential for four different cases.
The red lines correspond to right tilting curves with M̂ ¼ 1.2,
while the blue ones to left-tilting curves with M̂ ¼ 1. In either
case the dashed lines are characterized by a larger value of beta in
comparison with the solid ones.
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III. NUMERICAL RESULTS

In order to find the modes of scalarized BHs, we follow
the direct integration method presented in previous works
on the same subject [15,16]. We briefly summarize the
method here.
After picking a value for ω, we integrate Eq. (14) from

the horizon and infinity, using ingoing and outgoing waves
as boundary conditions respectively.1 In practice, the
integration starts from finite values very close and very
far away from the horizon’s position, such that the potential
is small. This changes the boundary conditions which are
no longer purely ingoing and outgoing waves, but are rather
given by the Taylor expansion of the field at the horizon and
infinity. Using the two separate solutions, we can demand
that they are linearly dependent on a given frequency ω.
This is done by examining the Wronskian, given by

W ¼
�
ϕð−Þ
1

∂ϕðþÞ
1

∂r�
− ϕðþÞ

1

∂ϕð−Þ
1

∂r�

�
: ð23Þ

where ϕð−Þ
1 represents the solution obtained by integrating

from the horizon and ϕðþÞ
1 the solution obtained from

infinity. The Wronskian vanishes when the value of ω is a
QNM frequency. An alternative approach is to integrate
from the horizon using the in-going boundary condition, up
to a large distance r∞=rh. Then one can decompose the
solution at infinity onto in-going and out-going waves, and
should the value of ω be a QNM frequency, the ingoing
amplitude is zero. For both methods, an initial choice for ω
is made, and root-finding algorithms are employed to solve
for the QNM frequency. This is usually called the shooting
method, as one starts at one end, “shooting” for the value of

ω for which the boundary condition is satisfied at the
other end.
Both methods are suitable for finding stable quasinormal

modes with large quality factors, i.e., with large jωr=ωij.
This usually means that the fundamental mode is easily
found. The reason is that the function describing radial
perturbations grows exponentially in r, as ∼eωir� . The
method also works remarkably well with unstable modes,
as the perturbations decrease exponentially with r. As such,
this method is reliable in identifying regions where BHs are
linearly unstable.
BHs solutions of the theory (2) were already studied to

some extent in Ref. [27] and we revisited some in Figs. 1
and 2. Now we present new insights considering the
stability and modes of the Schwarzschild and scalar-
ized BHs.

A. Radial oscillations and the existence
of purely imaginary modes

While the Schwarzschild BH is a solution in both GR
and sGB theories, its dynamical response to perturbations
can be completely different. In fact, it is precisely this
difference that allows for spontaneous scalarized BHs,
where the radial perturbations instabilities lead to the scalar
hair. Here we investigate the radial mode structure of BHs
in sGB, elucidating some major points considering
Schwarzschild and scalarized solutions.

1. Scalarized BHs

Let us look into the solutions presented in Fig. 2. As
discussed, we expect to find unstable modes for the region
M̂ > M̂c, where the Schwarzschild BH is stable and
energetically favourable. We performed a search for the
modes using the shooting method. In Fig. 5 we plot the
unstable mode frequencies for the scalarized solutions
considering different values for β, some of them presented
in the right panel of Fig. 2. These frequencies are purely
imaginary. The imaginary part of the Schwarzschild fun-
damental mode is also plotted, and it is independent of our
choice of β. We notice that all scalarized solutions with
M̂ > M̂c ≈ 1.175 are unstable.
In agreement with the predictions made by observing

Fig. 2, for β > βc ≈ 1.15, the behavior of the curves
changes. We notice that the curve for which β ¼ 1.2 begins
not from M̂c, but from some M̂ ≈ 1.168 < M̂c. This means
that the minimum BH mass for this parameter is no longer
M̂c, but smaller. Once again, the reasoning for this can be
understood qualitatively from purely energetic arguments.
For β ¼ 1.2, we can have two scalarized solutions for a
given mass M̂, presenting different charges. Solutions with
higher charges are unstable, decaying to the scalarized BH
with a smaller charge. A similar feature was observed for
the case of scalarized BHs with self-interaction [17].
Overall, the timescale of the instability τ ¼ jω−1

I j increases

– 10 – 5 0 5 10

– 0.10

– 0.05

0.00

0.05

0.10

FIG. 4. Effective potential for radial perturbations in the
Schwarzschild spacetime. The effective potential for the scalar-
ized BH behaves similarly, as can be seen in Fig. 3, presenting a
minimum and a maximum as well.

1We could instead work with Eq. (15), but in our setup this
would add an extra step, slowing down the integrations.
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as β increases, indicating the shift from unstable to stable
solutions.

2. Radial modes for the Schwarzschild spacetime

Since Schwarzschild BHs are stable for M̂ > M̂c and the
dynamical response is different from GR, it is natural to
investigate the impact of sGB terms on the Schwarzschild
BH spectrum. The fundamental mode was already analyzed
in Ref. [30], elucidating how the transition from stable to
unstable modes occurs. Here we take an additional step,

looking into the first overtone. The results of this sub-
section are independent of β [cf. Eq. (21)].
To find the modes for the Schwarzschild BH we use the

continued fraction (CF) method, as presented in
Appendix B (see also Ref. [30]). In Fig. 6 we show the
results. Starting from the rightmost part of the plots, we see
that for M̂ ≫ 1 (or equivalently α2 ≪ M) we recover the
modes for a minimally coupled scalar field in GR, as
expected. As we decrease M̂, both the real and the
imaginary part of the fundamental mode (n ¼ 0) approach
zero monotonically at M̂ ¼ M̂c. Beyond that point the
frequency becomes purely imaginary and the correspond-
ing mode unstable. For the first overtone (n ¼ 1), however,
we notice that the real part seems to approach zero before
the instability occurs. This would imply that Schwarzschild
BHs with M̂ ≈ 1.87 in this theory have a purely imaginary
mode, with the first one being ωrh ≈ −i0.55. The real part
of the first overtone goes to zero again when this mode
becomes unstable (purely imaginary), in the region
M̂ < M̂c. Higher overtones present a similar behavior,
suggesting that we might have many of these purely
imaginary modes even for stable Schwarzschild BHs in
sGB theories.
We highlight here that the usual CF method is not

suitable to study purely imaginary modes [33,34]. As the
real part of the modes decreases, more terms in the CF
expansion are needed in order to compute reliable values
for the QNM frequencies. Typically, near the purely
imaginary mode, we consider N ¼ 5 × 104 or more terms
in the CF expansion. Curiously, only recently this class of
modes was computed with a reliable precision for the Kerr
spacetime [33,34]. We shall not attempt to generalize this
method for sGB theories, but it would be interesting to
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FIG. 5. Imaginary part of the unstable modes for scalarized
solutions in sGB considering the Ricci term. We see that as we
increase the value of β, the instability decreases, having a critical
value βc < 1.2 for which the M̂-Q̂ curves start tilting to the left
and solutions becomes stable. We found no unstable modes for
scalarized BHs with β > βc. The vertical dotted line marks the
scalarization threshold and the dashed black line the Schwarzs-
child mode.
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FIG. 6. Fundamental mode and first overtone of radial QNM frequencies in the Schwarzschild spacetime. We see that the fundamental
mode is responsible for the instability. The first overtone presents a purely imaginary mode with ωrh ≈ −i0.55 for M̂ ≈ 1.87 in a region
that the BH is stable. Higher overtones present the same feature. The horizontal dotted lines represent the GR scalar modes and the
vertical line, the threshold for scalarization.
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further investigate the full spectrum of the Schwarzschild
spacetime in the theory in light of such tools.
Purely imaginary modes for BHs are not an exclusive

feature of sGB theories. As mentioned above, even within
GR, the existence of such a class of modes has been known
for quite some time. For instance, Schwarzschild BHs in
GR have algebraically special modes that are purely
imaginary [35], and many works have studied these modes
for Kerr BHs. While the physical implications of these
purely imaginary modes in BH spacetimes are still poorly
understood, it is interesting to see them arising in the first
overtone for Schwarzschild BHs in sGB. This feature,
which seems to be an exception for GR BHs, seems to be
common in BHs in sGB.

B. The hyperbolic nature of the equations

An important property of partial differential equations
pertains to hyperbolicity. In physical theories, hyperbolic
equations are necessary to describe the time evolution of
initial data. In GR, where equations are quasilinear, proof
of strong hyperbolicity (e.g., through the harmonic gauge
choice) establishes the well-posedness of the theory (see
Ref. [36] for a pedagogical discussion). In linear equations
such as (14), the situation is fairly straightforward. Eq. (14)
is hyperbolic provided that g2ðxÞ > 0. It has been shown
that for the exponential coupling, the equation describing
the radial perturbations is not hyperbolic for a variety of
solutions [15]. Interestingly, even though the equations are
not hyperbolic, we can still proceed to search for unstable
modes. It was shown that for scalarized BHs in the
exponential model with low mass, an unstable mode arises
in the region where hyperbolicity is broken. Here we
investigate the impact of the Ricci term on the hyperbolicity
of the equation describing radial perturbations.
We start by analyzing the behavior of the coefficient

gðrÞ2 in the near-horizon regime. In this section, we shall
replace the quadratic coupling with the Gauss-Bonnet term
by a generic function of the form αϕ2 → αfðϕÞ, in order to
compare our results with other works in the literature. Note
that the definition of the normalized charge and mass are
unchained under this substitution. Using the expansion of
the background near the event horizon we find that the
coefficient gðrÞ2 appearing in Eq. (14) behaves as

gðrÞ2ðr − rhÞ2 ≈
1

2a1

�
1þ

ffiffiffi
δ

p

γ

�
; ð24Þ

where

δ ¼ 73728α3βϕhf0ðϕhÞ3
− 768α2½βð9β − 2Þϕ2

h þ 8�f0ðϕhÞ2
þ ½βð3β − 1Þϕ2

h þ 4�2; ð25Þ

γ ¼ βϕh½ð3β − 1Þϕh − 48αf0ðϕhÞ� þ 4: ð26Þ

In order to investigate whether the Ricci term helps
maintaining the hyperbolic nature of the equation, we look
into large positive values of β that, from our previous
analysis, we know correspond to stable scalarized solu-
tions. We find

gðrÞ2ðr − rhÞ2 ∼
1

a1

�
1þ 8α

ϕhβ
þ 8αf0ðϕhÞ

3ϕ2
hβ

2
ðϕh − 24αÞ

þOðβ−3Þ
�
; ð27Þ

which indicates that the Ricci term in the action acts in
favor of the hyperbolic character of the equation. Note,
however, that in order to verify whether the equation
maintains its hyperbolicity we need to properly solve the
BH solution and obtain the coefficient gðrÞ2 numerically.
Now, let us consider a scenario that is known to break

hyperbolicity and check the influence of the Ricci term. We
consider the exponential model presented in Ref. [15],
where

fðφÞ ∝ ½1 − e−3ϕ
2=2�; ð28Þ

looking into solutions with a fixed ϕh and varying β. In
Fig. 7 we compare two scalarized solutions with ϕh ¼ 2
and 2.5. We observe that the radial domain in which the
perturbation equation is nonhyperbolic decreases as β
increases, as predicted by Eq. (27). Further, we observe
that for some limiting value of β the region with g2 < 0
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FIG. 7. Representative solutions illustrating the effect of hyper-
bolicity healing from the Ricci term. The equations are not
hyperbolic in the region g2 < 0. The solid lines have ðM̂; Q̂Þ ¼
ð0.2677; 0.4494Þ (left panel) and ðM̂; Q̂Þ ¼ ð0.0319; 0.110Þ
(right panel). The dashed lines have ðM̂; Q̂Þ ¼ ð0.0915; 0.195Þ
(left panel) and ðM̂; Q̂Þ ¼ ð0.029; 0.068Þ (right panel).
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seems to vanish and the solution is hyperbolic for all
r > rh. We note, however, that as we approach this
threshold the solutions for a given ϕh are increasingly
hard to find, and beyond the threshold solutions cease to
exist. It seems that while the β-term improves the hyper-
bolicity of the perturbation equation, it still is not enough to
ensure it for all values of ðr;ϕhÞ for a given β.
To further illustrate the hyperbolic properties of the

equations as a function of the background solution, Fig. 8
shows curves of constant β and varying ϕh in the normal-
ized charge-mass plane for the exponential model. The
dotted part of the curves corresponds to regions in which
the radial perturbation equations are not hyperbolic. That
the β ¼ 2 curve ends is indicative of our inability to find
any solutions past this point. It seems that while the
additional term helps with hyperbolicity, the parameter
space of the solutions is truncated.

IV. CONCLUSIONS

We have explored the influence of a coupling between a
scalar field and the Ricci scalar on linear perturbations
around scalarized black holes. This coupling, which is
expected to be present in scalarization models based on
EFT considerations, has already been shown to be crucial
for observational viability: it can make GR a cosmological
attractor, thereby providing the right conditions for com-
pact objects without cosmological fine-tuning [28], and it
can also suppress neutron star scalarization, thus removing
binary pulsar constraints [26]. It also affects the amount of
scalar charge scalarized black holes can carry [27]. We
performed a radial stability analysis and have numerically
shown that this same term renders scalarized BH solutions
stable, confirming the expectations of Ref. [27].
This happens for values of the coupling constants that are

within the same range considered in the aforementioned

papers. Indeed, we have not found unstable modes for β
larger than some critical value, β ≈ 1.2. Choosing a β above
this threshold is consistent with having a cosmological
attractor [28] and could quench neutron star scalarization
for a range of α that still leads to black hole scalarization
[26,27]. It is worth noting that negative values of β are also
capable of stabilizing the solutions in a similar manner, but
since they do not give rise to the cosmological attractor
feature, they seem to be less interesting.
We have also performed a radial mode analysis in the

Schwarzschild spacetime and looked for QNM modes. We
were able to illustrate an interesting property: Beyond the
fundamental mode one can find purely imaginary modes in
a region of the parameter space where Schwarzschild BHs
are stable.
Finally, we analyzed the effects of the scalar-Ricci

coupling on the hyperbolicity of the scalar perturbation
equation, using the exponential GB coupling as an exam-
ple. We demonstrated that it actually improves the hyper-
bolic nature of the problem, by reducing the region of the
parameter space where hyperbolicity breaks down. This
happens as the additional term changes the scalar field
profile, as determined by the full nonlinear field equations,
which in turn changes the coefficients of the linear
perturbation equations. It would be interesting to generalize
the hyperbolicity analysis to more general perturbations
and beyond the linear level, in order to check if the coupling
with the Ricci scalar could have a positive effect when
considering hair formation by collapse [37] or binary
mergers [38].
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APPENDIX A: BACKGROUND FIELD
EQUATIONS

From the nontrivial components of the zeroth-order
Einstein equations, we obtain
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FIG. 8. Normalized charge-mass diagram for scalarized black
holes considering the exponential GB coupling and the Ricci
term. The dotted lines indicate the region in which the pertubation
equations are nonhyperbolic. For β ¼ 2 the perturbation equation
is always hyperbolic.
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ðt; tÞ∶ Bfβϕ2 þ 2ϕ½ϕ00ð−8αþ 8αBþ βr2Þ þ 2βrϕ0� þ ϕ02½−16αþ 16αBþ ð2β − 1Þr2� − 4g þ 4 ¼ 0

− βϕ2 þ B0½ϕϕ0ð−8αþ 24αBþ βr2Þ þ βrϕ2 − 4r� ¼ 0; ðA1Þ

ðr; rÞ∶ Bϕϕ0½A0ð−8αþ 24αBþ βr2Þ þ 4Aβr� þ ðβϕ2 − 4Þ½BrA0 þ AðB − 1Þ� þ ABr2ϕ02 ¼ 0; ðA2Þ

ðθ; θÞ∶ AA0fB0½48αBϕϕ0 þ rðβϕ2 − 4Þ� þ 2Bðβϕ2 þ 16αBϕ02 þ 2βrϕϕ0 − 4Þg
þ 2A2B0½βϕð2rϕ0 þ ϕÞ − 4� þ 8ABϕϕ00ð4αBA0 þ AβrÞ þ 2ABA00½16αBϕϕ0 þ rðβϕ2 − 4Þ�
− BA02½16αBϕϕ0 þ rðβϕ2 − 4Þ� þ 4A2Bϕ0½2βϕþ ð2β − 1Þrϕ0� ¼ 0; ðA3Þ

where a prime indicates differentiation with respect to r. The background equation for the scalar field reads

ϕfAA0½B0ð24αB − 8αþ βr2Þ þ 4βBr� þ 4A2βðrB0 þ B − 1Þ − BA02ð8αðB − 1Þ þ βr2Þg
þ 2Arϕ0ðBrA0 þ ArB0 þ 4ABÞ þ 2ABϕA00½8αðB − 1Þ þ βr2� þ 4A2Br2ϕ00 ¼ 0: ðA4Þ

APPENDIX B: CONTINUED FRACTION
METHOD FOR SCHWARZSCHILD BHS IN SGB

THEORIES

The direct integration method has low accuracy for
modes with low quality factors. For these modes, which
can be expected at the onset of scalarization, we can
implement the continued fraction (CF) method to under-
stand how the Schwarzschild spacetime becomes unstable.
The CF method relies on providing a semianalytical

approximation of the wave function through the
Frobenius method [39]. In summary, the solution can be
written in terms of coefficients that are computed by a
recursive relation that takes the form of a continued
fraction, justifying the name. Since the method requires
the analytical form of the coefficients (at least for the
expansion to be implemented), we focus mostly on the
stability analysis of Schwarzschild BHs.
We look into Eq. (21) factorizing the wave function in

the following way [30]

ϕ1ðt; rÞ ¼ e−iωt
�
r
rh

− 1

�
−irhω

�
r
rh

�
2irhω

eiωr
X∞
n¼0

anð1 − rh=rÞn: ðB1Þ

By substituting the above expansion into Eq. (21), combining and simplifying the coefficients, we obtain the following six-
term recurrence relation for an

α0a1 þ β0a0 ¼ 0; n ¼ 0

α1a2 þ β1a1 þ γ1a0 ¼ 0; n ¼ 1

α2a3 þ β2a2 þ γ2a1 þ δ2a0 ¼ 0; n ¼ 2

α3a4 þ β3a3 þ γ3a2 þ δ3a1 þ σ3a0 ¼ 0; n ¼ 3

αnanþ1 þ βnan þ γnan−1 þ δnan−2 þ σnan−3 þ θnan−4 ¼ 0; n > 3;

ðB2Þ

where

αn ¼ ðnþ 1Þr2hðn − 2irhωþ 1Þ; ðB3Þ

βn ¼ 12α − r2h½2nðnþ 1Þ þ 1� þ 4ir3hð2nωþ ωÞ þ 8r4hω
2; ðB4Þ

γn ¼ −4
�
12α −

1

4
r2hðn − 2irhωÞ2

�
; δn ¼ 72α; σn ¼ −48α; θn ¼ 12α: ðB5Þ
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There are different methods used to solve the above
equations. Usually, in BH mode analysis, one reduces
the n-term recurrence relation to a three-term one by
successive Gaussian elimination steps, finding the appro-
priate CF expression to obtain the mode [39,40]. For
example, in the six-term recurrence relation, we have to
use three Gaussian elimination steps. We shall use the
above to compute the modes for the Schwarzschild

spacetime in sGB theories. We usually truncate the series
from a higher value for n ¼ N moving backwards up to
n ¼ 1, solving the series [40]. The number N of necessary
terms depends on the quality factor of the modes, begin-
ning higher for low values of lower quality factors. We
note that for α ¼ 0 we recover the standard recurrence
relation for a free scalar field in the Schwarzschild
spacetime.

[1] B. P. Abbott et al. (LIGO Scientific, Virgo Collaborations),
Phys. Rev. Lett. 116, 061102 (2016).

[2] N. Yunes, K. Yagi, and F. Pretorius, Phys. Rev. D 94,
084002 (2016).

[3] A. Dima and F. Vernizzi, Phys. Rev. D 97, 101302 (2018).
[4] B. P. Abbott et al. (LIGO Scientific, Virgo Collaborations),

Phys. Rev. Lett. 123, 011102 (2019).
[5] S. Ma and N. Yunes, Phys. Rev. D 100, 124032 (2019).
[6] R. Abbott et al. (LIGO Scientific, Virgo Collaborations),

Phys. Rev. D 103, 122002 (2021).
[7] T. Damour and G. Esposito-Farese, Phys. Rev. Lett. 70,

2220 (1993).
[8] J. D. Bekenstein, Phys. Rev. Lett. 28, 452 (1972).
[9] S. W. Hawking, Commun. Math. Phys. 25, 167 (1972).

[10] T. P. Sotiriou and V. Faraoni, Phys. Rev. Lett. 108, 081103
(2012).

[11] T. P. Sotiriou, Classical Quantum Gravity 32, 214002
(2015).

[12] D. D. Doneva and S. S. Yazadjiev, Phys. Rev. Lett. 120,
131103 (2018).

[13] H. O. Silva, J. Sakstein, L. Gualtieri, T. P. Sotiriou, and E.
Berti, Phys. Rev. Lett. 120, 131104 (2018).

[14] F. M. Ramazanoğlu and F. Pretorius, Phys. Rev. D 93,
064005 (2016).

[15] J. L. Blázquez-Salcedo, D. D. Doneva, J. Kunz, and S. S.
Yazadjiev, Phys. Rev. D 98, 084011 (2018).

[16] H. O. Silva, C. F. B. Macedo, T. P. Sotiriou, L. Gualtieri, J.
Sakstein, and E. Berti, Phys. Rev. D 99, 064011 (2019).

[17] C. F. Macedo, J. Sakstein, E. Berti, L. Gualtieri, H. O. Silva,
and T. P. Sotiriou, Phys. Rev. D 99, 104041 (2019).

[18] C. A. Herdeiro, E. Radu, N. Sanchis-Gual, and J. A. Font,
Phys. Rev. Lett. 121, 101102 (2018).

[19] F. M. Ramazanoğlu, Phys. Rev. D 96, 064009 (2017).
[20] F. M. Ramazanoğlu, Phys. Rev. D 98, 044011 (2018); 100,

029903(E) (2019).

[21] A. Dima, E. Barausse, N. Franchini, and T. P. Sotiriou, Phys.
Rev. Lett. 125, 231101 (2020).

[22] C. A. R. Herdeiro, E. Radu, H. O. Silva, T. P. Sotiriou, and
N. Yunes, Phys. Rev. Lett. 126, 011103 (2021).

[23] E. Berti, L. G. Collodel, B. Kleihaus, and J. Kunz, Phys.
Rev. Lett. 126, 011104 (2021).

[24] N. Andreou, N. Franchini, G. Ventagli, and T. P. Sotiriou,
Phys. Rev. D 99, 124022 (2019); 101, 109903(E) (2020).
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