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We present a VOF-based numerical method for incompressible Direct Navier–Stokes (DNS) equations for
diffusion-driven phase-change flows. A special emphasis is placed on the treatment of velocity disconti-
nuities across the interface. A novel algorithm is presented to smoothly extend the liquid velocity field
across the interface in a way that the interface can be transported by a divergence-free velocity field.
The transport of species is treated with a two-scalar approach and special attention is paid to the advec-
tion and diffusion steps in order to prevent artificial mass transfer. The methodology is implemented in
the open-source code Basilisk and is validated against analytical and semi-analytical models. The relative
errors on the relevant quantities are generally below 1% for the finest grids. The method is finally applied
to study the growth of electrochemically generated bubbles on planar electrodes and the effect of contact
angles and number of nucleation sites is investigated.

� 2022 The Author(s). Published by Elsevier Ltd. This is an open access article under the CC BY license
(http://creativecommons.org/licenses/by/4.0/).
1. Introduction

Mass transfer phenomena driven by diffusion of chemical spe-
cies occur in a variety of industrial applications which involve
two-phase gas–liquid systems, such as bubble column reactors,
waste-water treatment facilities, photo- and electro- chemical
reactors and many others. In order to improve the design and effi-
ciency of such systems, a number of details about the characteristic
flow features are needed. In the case of bubbly flows, the typical
size of bubbles, their distribution within the reactor, rising veloci-
ties, mass transfer rates and induced mixing within the vessel are
just a few physical flow features that are extremely relevant for the
optimization of these devices. However, analytical solutions for
this class of problem are not generally available and only a few
exact solutions can be derived using extremely simplified assump-
tions (Epstein and Plesset, 1950; Scriven, 1959; Clift et al., 1978).
Although these models are not applicable to the design of real sys-
tems, they still provide useful information and reference solutions
for the validation of other models (e.g. numerical approaches).
Experimental methods have been successfully used to investigate
the mass transfer and rising velocities of bubbles (Takemura and
Yabe, 1998; Takemura and Yabe, 1999; Takemura and
Matsumoto, 2000) and advanced visualization techniques have
been employed to investigate the gas concentration released in
the liquid by bubbles (Dani et al., 2007; Francois et al., 2011). How-
ever, experimental measurements are generally expensive and
limited by the available measuring techniques which usually pro-
vide global quantities (e.g. global mass transfer rate, rising veloci-
ties) and do not give information about local details, such as local
mass transfer rates. On the other hand, the continuous increase in
computational power and the development of High-Performance-
Computing (HPC) facilities make high-fidelity numerical simula-
tions a valuable alternative to investigate the detailed dynamics
of mass transfer across deformable interfaces. Among the most
popular numerical methods for two-phase flows are the Front
Tracking (FT) approach (Tryggvason et al., 2001), the Level Set
(LS) method (Sussman et al., 1994) and the Volume Of Fluid
(VOF) approach (Hirt and Nichols, 1981; Scardovelli and Zaleski,
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1999). The VOF method has been applied successfully to a variety
of multi-phase problems with complex interfaces and one of its
major strengths is the capability to preserve mass. The present
work focuses on the coupling of the VOFmethod with the transport
of chemical species for phase-change problems, where the mass
transfer is driven by the concentration of species. Examples of pub-
lished works which employ the VOF method to study phase-
change of incompressible flows (both temperature- or
concentration-driven) can be found in (Welch and Wilson, 2000;
Schlottke and Weigand, 2008; Kunkelmann and Stephan, 2009;
Magnini et al., 2013; Ma and Bothe, 2013; Fleckenstein and
Bothe, 2015; Vachaparambil and Einarsrud, 2020; Taqieddin
et al., 2020; Maes and Soulaine, 2020; Scapin et al., 2020; Malan
et al., 2021; Zanutto et al., 2022a; Zanutto et al., 2022b). It is worth
pointing out that although temperature-driven (e.g. boiling, evap-
oration) and concentration-driven (e.g. absorption, desorption)
phenomena have different mechanisms which drive the mass
transfer (i.e. temperature vs concentration), the mathematical for-
mulation of the governing equations (i.e. continuity and conserva-
tion of momentum) is the same and the numerical schemes
derived for the first class of problems can be applied to the second
type of flows. Although many studies have been published on the
numerical modelling of incompressible phase-change problems
by means of the VOF method, only a few of them have combined
a rigorous treatment of the velocity jump across the interface,
which occurs when mass is transferred between phases with dif-
ferent densities, with a sharp advection of the interface. In the
work of Schlottke andWeigand (2008), the authors derived an iter-
ative method to compute a virtual velocity field based on the inter-
face and gas velocities which fulfills the continuity constraint.
More recently, Malan et al. (2021) proposed an approach to extend
the liquid velocity field across the interface of evaporating dro-
plets, in a way that the resulting flow velocity is divergence-free
everywhere. This extended velocity was then used to transport
the interface. This point is fundamental when dealing with geo-
metric VOF schemes designed for incompressible flows, which gen-
erally ensure mass conservation, provided the velocity field is
divergence-free everywhere (an example of such schemes can be
found in Weymouth and Yue (2010)). Similar methods to Malan
et al. (2021) are proposed in Scapin et al. (2020) and Guo (2020)
for evaporating and boiling flows. Such treatments of velocity dis-
continuities at the interface are particularly relevant for large mass
transfer rates, where significant convective (Stefan) flows are
expected. The previous methods rely on iterative algorithms
(Schlottke and Weigand, 2008) or on the solution of an additional
elliptic equation (Malan et al., 2021; Scapin et al., 2020; Guo,
2020). In the present work we contribute to the treatment of inter-
facial velocity discontinuities by proposing an original algorithm
which does not require the solution of additional partial differen-
tial equations and is readily implementable in existing VOF codes.
The goal is the same as the method proposed by Malan et al.
(2021), i.e. to obtain a divergence-free liquid velocity field for the
transport of the interface. The method is coupled with a geometric
VOF scheme based on the Piecewise Linear Interface Construction
(PLIC) method.

The transport of chemical species in two-phase flow systems
adds additional challenges for numerical methods, as the concen-
tration is generally discontinuous across the interface due to differ-
ent solubilities in the gas and liquid phases. In this work, the jump
in species concentration across the interface is modeled by apply-
ing Henry’s Law. Two main approaches are available for the trans-
port of species and can be classified as one-scalar and two-scalar
methods, according to the number of equations which are solved
for each species. Among the one-scalar approaches, we remind of
the work of Bothe et al. (2004) where the concentration field is
represented by a single scalar which is made continuous across
2

the interface by applying a proper variable transformation. For
others methods based on similar scaling procedures, the reader is
referred to the references in Bothe and Fleckenstein (2013). A dif-
ferent approach within the one-scalar family is presented in
Haroun et al. (2010), where the species transport equation is
derived from the one-fluid formulation of the concentration field.
The result is an additional diffusive-like term which represents
the concentration jump at the interface. This method is further dis-
cussed and extended in Marschall et al. (2012),Deising et al. (2016)
(Continuous Species Transfer model - CST) and Maes and Soulaine
(2018) (Compressive Continuous Species Transport method - C-
CST). The method of Haroun et al. (2010) and the C-CST approach
are used to study the growth of rising bubbles in supersaturated
solutions in Taqieddin et al. (2020) and Vachaparambil and
Einarsrud (2020), respectively; the C-CST model is also employed
in Maes and Soulaine (2020) for multicomponent mass transfer
problems. One-scalar methods are further developed in the works
of Zanutto et al. (2022a) and Zanutto et al. (2022b), where an alge-
braic VOF method is coupled with the CST model. The authors
show the importance of treating the advection of the interface
and concentration field with the same numerical scheme in order
to preserve mass; the method is validated for evaporating flows
and non-ideal mixtures with large jumps in the concentration pro-
files across the interface. Among the two-scalar methods, we recall
the work of Alke et al. (2009) where the concentration is repre-
sented by two one-sided (i.e. confined to one side of the interface)
scalars, which are extended to zero in the other phase. These VOF-
like variables can be transported (advection) using the same fluxes
as used for the phase volume fraction field. The mass transfer
appears as a source term which is simultaneously added and sub-
tracted from the transport equations, so that the method is inher-
ently mass conservative. This method requires the direct
evaluation of the mass transfer term for each interfacial cell (con-
trary to one-scalar approaches) and different approaches for this
term are compared in Bothe and Fleckenstein (2013). This method-
ology is further extended in Fleckenstein and Bothe (2015) for mul-
ticomponent mass transfer with volume change. A novel
implementation of the two-scalar method is presented in Schulz
et al. (2022), where the authors use the PLIC reconstruction of
the interface to split the mesh between the phases. The newly cre-
ated cell faces match the interface and accurate boundary condi-
tions can be set for the transport of species. A hybrid method
was recently proposed by Kumar Farsoiya et al. (2021) for geomet-
ric VOF schemes, which uses the one-scalar approach of Haroun
et al. (2010) for the diffusion step and recovers the two-scalar for-
mulation for the advection of the species concentration. As pointed
out by Deising et al. (2016) the choice between the one- or two-
scalar approaches depends on the type of VOF methodology used.
For algebraic VOF methods, the most convenient choice is the one-
scalar approach, where the consistency in the treatment of the
interface and species advection is a crucial point to ensure mass
conservation (Zanutto et al., 2022a). In this work we use a geomet-
ric VOF scheme and the natural way to transport the species is the
two-scalar method, where the PLIC-based fluxes are used to advect
the two scalars. This ensures that the concentration fields are kept
confined to their respective phase during the transport of the inter-
face and prevents the occurrence of artificial mass transfer. In the
present paper we implement the method of Fleckenstein and Bothe
(2015) in the open source code Basilisk (http://basilisk.fr/) for pure
gas bubbles which exchange mass with the surrounding liquid and
we provide the details of the implementation; particular attention
is devoted to the integration of the species transport and VOF
equations and the relative velocity extension algorithm.

The work is organized as follows. The governing equations and
the one fluid formulation which leads to the VOF model are intro-
duced in Section 2. The details of the numerical implementation of
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the phase-change model are given in Section 3, while the
methodology is validated in Section 4 against analytical and
semi-analytical solutions for 2D and 3D problems. Finally, the
methodology is applied to the study of growing bubbles on planar
electrodes in Section 5.

2. Governing Equations

We consider the two-phase gas–liquid system represented in
Fig. 1. Although the methodology presented in this work can be
applied to a generic multi-phase flow, we mainly focus on disperse
bubbly flows and we refer to the gas and liquid phases as disperse
and continuous phases respectively. The regions occupied by the
two phases are called Xd tð Þ, for the disperse phase, and Xc tð Þ for
the continuous phase, and these two sub-domains are separated
by an infinitely thin interface R tð Þ, so that the entire domain is
given by X ¼ Xd tð Þ [Xc tð Þ [ R tð Þ. We define the normal vector
(nR) at the interface as the unit vector which points into Xd tð Þ.
To simplify the notation, in the following we omit the time depen-
dence from the phase domains (Xd;Xc) and interface (R). The terms
continuous (disperse) and liquid (gas) will be used interchangeably
in the rest of the work.

2.1. Two-phase Navier–Stokes equations

For each phase, the system of governing laws for an incom-
pressible flow is given by the Navier–Stokes equations:

r � u ¼ 0 in X n R ð1Þ

@t quð Þ þ r � qu� uð Þ ¼ �rpþr � 2lDð Þ þ qa in X n R ð2Þ
where the material properties, e.g. density (q) and viscosity (l),
have constant values in Xd;Xc and depend on the respective phase.
Eq. 1 is the continuity equation (balance of mass), where u repre-
sents the fluid velocity field. In the balance of momentum (Eq. 2),
p is the static pressure, a contains the acceleration terms which
come from external body forces (e.g gravitational force) and D is

the deformation tensor ruþ ruð ÞT
h i

=2. The only body force which

is considered in the present work is the gravitational force; the
acceleration term a is then replaced by g in the following sections.
Eqs. 1 and 2 are valid everywhere in the domain, except at the inter-
face, where additional conditions are needed to close the system
(see Tryggvason et al., 2011). The first condition derives from the
principle of mass conservation and states that the amount of mass
which leaves Xd Xcð Þ must be entirely transferred to Xc Xdð Þ since
Fig. 1. Two-phase gas–liquid domain.
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the interface is an infinitely thin region and no mass can be stored
in it. This statement results in a jump condition across the interface
for the normal component of the velocity field:

kq u� uRð Þ � nRk ¼ k _mk ¼ 0 ð3Þ
where the jump notation has been introduced (e.g. kqk ¼ qc � qd);
uR is the interface velocity and _m is the mass transfer rate [kg/m2s].
Eq. 3 is also known as the Rankine-Hugoniot condition and for flows
without phase-change ( _m ¼ 0) it implies that no relative velocity
along the normal direction can occur between the fluids and the
interface. The second jump condition can be derived by applying
the conservation of momentum to a control volume with an infi-
nitely small thickness around the interface and it reads:

kqu� u� uRð Þ þ pI� 2lDk � nR ¼ rknR þrRr ð4Þ
where I is the unit tensor, r is the surface tension and k is the cur-
vature of the interface. In the present work we focus on gas bubbles
which exchange mass with the surrounding liquid (e.g. water) and
we consider interfaces with uniform surface tension. Given the
physical properties of these types of flow and assuming a no-slip
condition for the tangential velocities at the interface (coherently
with the assumption of phases with non-vanishing viscosity), Eq.
4 can be further simplified to (see Fleckenstein and Bothe, 2015):

kpI� 2lDk � nR ¼ rknR ð5Þ
The numerical approach used in the present work for the transport
of the interface is the VOF method, which relies on the so-called
one-fluid formulation of the governing equations. In the one-fluid
approach we solve a single set of Navier–Stokes equations for the
entire domain X and the jump conditions (Eqs. 3 and 4) are replaced
by source terms that act at the interface as singularities (d- func-
tions). The one-fluid formulation of the Navier–Stokes equations
for incompressible flows reads:

r � u ¼ _m
1
qd

� 1
qc

� �
dR ð6Þ

@tuþr � u� uð Þ ¼ 1
q

�rpþr � 2lDð Þ½ � þ gþ rknR

q
dR ð7Þ

where dR is the surface Dirac function which has a nonzero value
only at the interface and the last term on the right-hand side of
Eq. 7 is the surface tension force per unit volume, written in the vol-
umetric formulation. The material properties (i.e. density and vis-
cosity) assume different values in the respective phase and are
discontinuous across the interface. The system of Eqs. 6 and 7 is
valid in the whole domain and it recovers the form of Eqs. 1,2 in
the region x R R, where dR ¼ 0. In the one-fluid approach we need
a marker function to determine the location of the interface and to
identify whether a point x 2 Xc or Xd; a transport equation for this
function can then be derived to track the position of the interface.
The Heaviside function serves this purpose:

H x; tð Þ ¼ 1; if x 2 Xc

0; if x 2 Xd

�
ð8Þ

Once H x; tð Þ is known everywhere, the values of q and l in Eq. 7 can
be computed as:

q ¼ qcH þ qd 1� Hð Þ ð9Þ
and

l ¼ lcH þ ld 1� Hð Þ ð10Þ
where the arithmetic mean has been used (different formulations
are clearly possible, e.g. the harmonic mean). The transport equa-
tion for H x; tð Þ is obtained from the following integral balance for
a control volume V:
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Z
V
@tHdV þ

I
@V
Hu � ndSþ

Z
R
uc � uRð Þ � nR dS ¼ 0 ð11Þ

where the second term represents the convective transport and the
last term accounts for the mass transfer across the interface. Con-
verting the surface integrals to volume integrals, Eq. 11 can be writ-
ten in the differential form:

@tH þr � Huð Þ þ _m
qc

dR ¼ 0 ð12Þ

Eq. 12 is the starting point for the derivation of the Volume of Fluid
method (see Section 3.2).

2.2. Transport of species

In a generic two-phase system both phases can be a mixture of
several chemical species. For the generic species k, the individual
mass balance reads:

@tqk þr � qkuk
� � ¼ Rk ð13Þ

where qk is the partial density, uk denotes the species velocity and

Rk is a generic reaction term that can be used to model chemical
reactions. Eq. 13 is coupled with the jump condition at the interface
for conservation of mass:

kqk uk � uR
� � � nRk ¼ k _mkk ¼ 0 ð14Þ

The average phase density and velocity that appear in the Navier–
Stokes Eqs. 6,7 are derived from the respective species terms as:

q ¼
X
k

qk ð15Þ

and

qu ¼
X
k

qkuk ð16Þ

Taking advantage of Eq. 16, the individual mass balance of species k
(Eq. 13) for incompressible flows can be rewritten as:

@tqk þ u � rqk þr � Jk ¼ Rk ð17Þ
where the diffusive flux is introduced:

Jk ¼ qk uk � u
� � ð18Þ

The mass transfer rate of a single species can be rearranged using
Eq. 14 into:

_mk ¼ qk uk � uR
� � � nR

¼ qk u� uRð Þ � nR þ qk uk � u
� � � nR

¼ qk

q
_mþ Jk � nR

ð19Þ

which shows that for each chemical component, the mass transfer
contains both a convective term and a diffusive term. Under the
assumption of dilute liquid solutions, the diffusive flux (Eq. 18)
can be well modelled by Fick’s law of diffusion:

Jk ¼ �Dkrqk ð20Þ
where Dk is the species coefficient of diffusion which assumes dif-
ferent but constant values for each phase. Although the methodol-
ogy employed in this work can be applied to multi-component
species transfer, in the present study we focus on pure incompress-
ible gas bubbles and we assume that no liquid species exists in the
disperse phase (i.e. the liquid is not volatile). Therefore, the system
contains two different species: pure gas (k ¼ 1) and liquid (k ¼ 2)
and the overall mass transfer ( _m) is entirely given by the transfer
rate of the single species which exists in the disperse phase, i.e.
_m ¼ _m1. It is worth pointing out that we do not need to solve the
4

individual mass balance (Eq. 17) in the disperse region, since no
mixture exists inside the bubbles (pure gas) and the density is
assumed to be constant everywhere in Xd. Combining Eqs. 19,20,
the mass transfer rate for a single species system reads:

_m ¼ � M1D1

1� q1=q
@c1

@nR
ð21Þ

where the molar concentration has been introduced, i.e. c1 ¼ q1=M1

and M1 is the molar mass. Eq. 21 gives the mass transfer rate eval-
uated from the continuous side of the interface, where the concen-
tration of the dissolved species is generally variable. According to
the jump condition for mass conservation (Eq. 14), the same
amount of mass must be transferred from the disperse side of the
interface ( _mc ¼ _md). However, for the applications considered in
this work (pure incompressible bubbles), solving Eq. 19 in Xd,
where q ¼ qd ¼ const, simply gives the identity _m ¼ _m. Therefore,
in order to compute the value of _m, Eq. 21 must be computed in
Xc . Since we have only one species which can be transferred
between phases, in the following we will omit the species indicator
k as we will always refer to the concentration of the soluble species.

For a gas–liquid system at equilibrium, we can employ Henry’s
law to compute the concentration on the liquid side of the inter-
face, which is directly proportional to the partial pressure of gas
on the liquid. Taking advantage of the perfect gas law, we can write
Henry’s formula in terms of a jump condition for the species con-
centration at the interface:

ccð ÞR ¼ cdð ÞR
He

ð22Þ

where He is the Henry coefficient and it is a material property of the
gas–liquid system, which generally depends on the temperature
and pressure fields near the interface. For the applications consid-
ered in the present work, He is assumed to be constant (see Bothe
and Fleckenstein, 2013). The interface is considered to be at equilib-
rium and the liquid-side of gas concentration is immediately known
from Eq. 22, where cdð ÞR ¼ qd=M. Henry’s law will be used for the
computation of the gradient term in the mass transfer rate formula
(Eq. 21) and the relative discretization scheme is introduced in
Section 3.4.

In order to obtain a system of transport equations suitable for
the numerical integration of the two-scalar approach of Bothe
and Fleckenstein (2013), we need to rewrite the individual mass
balance (Eq. 17) in a form where the mass transfer rate appears
explicitly. Here we do this in Xc only, for a non reactive flow
(R ¼ 0), and we start from the following integral balance for the
species concentration:Z
V
@tcc dV þ

I
@V

ccuc � Dcrccð Þ � ndSþ
Z
R
cc uc � uRð Þ � nR dS ¼ 0

ð23Þ
By combining Eqs. 23 and 14 we get the final differential form of the
species transport equation:

@tcc þ uc � rcc �r � Dcrccð Þ ¼ � _m
M

dR ð24Þ

where the incompressible velocity constraint has been applied
(r � uc ¼ 0). Since we treat single species transfer problems, the
gas dissolved in Xc is the only species for which we need to solve
the respective transport Eq. (24); therefore, in the following, we will
omit the phase indicator, i.e. c ¼ cc .

3. Numerical Method

The numerical framework used to solve the governing equa-
tions shown in Section 2 is the open source solver Basilisk
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(Popinet and collaborators, 2013–2022), which is a Finite Volume
(FV) solver platform for adaptive Cartesian grids. The ability of
refining the mesh at each iteration (Adaptive Mesh Refinement
technique - AMR) in regions where strong gradients occur makes
Basilisk a suitable software for interfacial flows where, generally,
a fine grid is required around the gas–liquid interface (but not
everywhere in the domain). The shape of the domain is always a
square (cube) in 2D (3D) and the grid is organized following a hier-
archical quadtree (octree) structure. Each cell can be further
divided into four children cells (eight in 3D) and a level is assigned
to each cell, following the relative tree structure. The root cell is the
only cell present at level zero and the dimension of a generic cell at
level n is given by D ¼ L0=2n, where L0 is the length of the whole
computational domain. For a detailed description of the mesh
structure and relative nomenclature, the reader is referred to
Popinet (2003).

In this Section, a brief description of the numerical methodol-
ogy is provided. Section 3.1 outlines the time integration of the
Navier–Stokes equations, while the VOF method is described in
Section 3.2. Here we introduce a new approach to make incom-
pressible VOF schemes compatible with phase-change flows,
where r � u– 0 at x 2 R. The integration of the Species Transport
Eq. (24) and the computation of the mass transfer term ð _mÞ are
finally described in Sections 3.3 and 3.4, respectively.
3.1. Navier–Stokes solver

The approach used to solve the Navier–Stokes equations is a
time-splitting pressure-correction method, which is second order
accurate in time and space. For a general description of the algo-
rithm, the reader is referred to Sharaborin et al. (2021); more
details on a similar scheme can be found in Popinet (2003) and
Popinet (2009). The VOF field, along with any other tracer (e.g.
the species concentration field), is first integrated from time tn�1

2

to tnþ1
2
and the fluid properties (i.e. density and viscosity) are

updated. The momentum Eq. (7) is then discretized without taking
into account the pressure gradient term:

qnþ1
2

u� � un

Dt
þr � unþ1

2
� unþ1

2

� �h i
¼ r � 2lnþ1

2
D�

� �
þ gþ rknRdRð Þnþ1

2
ð25Þ

where Dt ¼ tnþ1 � tn. The first step is the integration of the convec-
tion term, which requires a prediction of the velocity field at time
tnþ1

2
. This is done using the unsplit, upwind second order scheme

of Bell et al. (1989), which extrapolates the face-centered velocity
field from the known cell-centered velocities at time tn, taking into
account the effect of the pressure gradient, surface tension and
gravitational acceleration. The obtained face velocity field is gener-
ally non-divergence free and a projection step is applied to enforce
the continuity constraint. The convective term in Eq. 25 is then inte-
grated by transporting the cell-centered velocity field (un) with the
same advection scheme of Bell et al. (1989).

The next step is the integration of the viscous termwhich is per-
formed implicitly with a second order central differential scheme.
A multigrid algorithm is used to efficiently solve the viscous equa-
tion and restriction and prolongation operators are defined in
order to transfer the solution from the finer and coarser meshes,
respectively. The hierarchical structure of the Cartesian grid in
Basilisk offers a natural environment for the implementation of
the multigrid solver and more details can be found in Popinet
(2015).

The velocity u� is then obtained by adding the contribution of
the gravitational and surface tension forces. The last term is dis-
5

cretized following the approach proposed by Brackbill et al.
(1992), which consists in the following approximation:

rknRdR
q

� �
nþ1

2

¼ rkrf
q

� �
nþ1

2

ð26Þ

where f is the volume fraction field (defined in Section 3.2). Special
attention is given to the discretization of the term rf , which is
approximated with the same scheme used for the gradient of pres-
sure. This is fundamental to guarantee that the equilibrium solution
of the Laplace equation (i.e. the equilibrium between pressure and
surface tension across the interface of a stationary spherical bub-
ble/droplet) is verified by the numerical approach. A method which
satisfies such requirement is generally defined as a well-balanced
method and it is fundamental to reduce the magnitude of spurious
currents. The volumetric formulation of the surface tension force
(Eq. 26) requires the computation of the interface curvature k,
which is generally a challenging task for VOF methods. Basilisk
implements a height function (HF) approach where the location of
the interface (height) is first obtained from the summation of the
volume fraction field over few cells and then is differentiated in
order to compute the curvature. In the case of low mesh resolution
or highly curved interfaces, the HF method could fail to find a suit-
able interfacial height; in this case a parabolic function is fitted
through the interface and the curvature is obtained by differentiat-
ing the resulting formula. For a review about numerical methods to
treat surface tension problems, the reader is referred to Popinet
(2018) and to Popinet (2009) for a detailed description of the HF
algorithm.

To obtain the velocity at the end of the time step (unþ1), we need
to take into account the contribution of the pressure gradient:

qnþ1
2

unþ1 � u�
Dt

h i
¼ �rp ð27Þ

By applying the continuity constraint (Eq. 6) we get the Poisson
equation for pressure at time tnþ1:

r � Dt
qnþ1

2

rp

 !
¼ r � u� � _mnþ1

2

1
qd

� 1
qc

� �
AR

V

� �
nþ1

2

ð28Þ

where the d-function which appears on the RHS of Eq. 6 is already
shown in its FV formulation, i.e. the ratio between the interfacial
area AR (computed for each interfacial cell based on the recon-
structed PLIC element) and the cell volume V (see Fleckenstein
and Bothe, 2015). Once the pressure is obtained from Eq. 28, the
velocity unþ1 is computed from Eq. 27. An analogous step is per-
formed during the integration of the convective term, but with a
time step of Dt=2 instead of Dt.

The time step integration ends with the adaption of the mesh,
where the grid can be refined/coarsened according to a wavelet-
based estimation of the spatial discretization error for specific
fields (e.g. velocity, volume fraction and gas concentration fields).
The reader is referred to van Hooft et al. (2018) for details about
the AMR technique.

3.2. Volume of Fluid method (VOF)

The starting point for the derivation of the VOF method is the
definition of the volume fraction for the continuous phase:

f c ¼
R
V HdV
V

ð29Þ

where V is the computational cell volume. For a cell completely
filled with liquid f c ¼ 1; if the cell is pure gas f c ¼ 0, while for inter-
facial cells 0 < f c < 1. The volume fraction of the disperse phase is
known from the relationship f c þ f d ¼ 1. Therefore, we don’t need
to solve an additional equation for f d and, in the following, we will



Fig. 3. Geometrical computation of the VOF flux across the cell face iþ 1=2; jð Þ. DVc

is the volume (area in 2D) of liquid transported across the cell boundary.
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omit the phase indicator (f ¼ f c). Eq. 12 can then be rewritten in the
following form:

f nþ1
2
� f n�1

2

Dt
þ 1
V

Z
V
r � Huð ÞdV þ 1

V

Z
V

_m
qc

dR dV ¼ 0 ð30Þ

The integration of Eq. 30 is performed in two steps: first, f is
advected by the liquid velocity field and then the interface is shifted
to take into account the mass transfer term.

3.2.1. Step 1. The advection term
The advection term is integrated with a geometric scheme

based on the Piecewise Linear Interface Construction (PLIC)
method, where the interface is reconstructed as a line (plane) in
2D (3D). For each interfacial cell we can define a local reference
system centered on the cell centroid and the interface is then
described by the following equation (see Fig. 2 for a 2D example):

xnRx þ ynRy þ znRz ¼ a ð31Þ
where the components of nR are such that jnRxj þ jnRyj þ jnRzj ¼ 1
and the spatial dimensions are scaled with the cell length D. The
integration of the advection term is performed in two steps, namely
the reconstruction step and the propagation step (Scardovelli and
Zaleski, 1999). During the reconstruction step, the interface normal
nR is computed by combining the schemes of Youngs (1984) and
the centered-columns method (Tryggvason et al., 2011). Once nR

is known, a is uniquely determined from f n�1
2
and nR. The second

step consists of computing the geometrical fluxes for each pair of
cell faces, i.e. the quantity of volume fraction which is transported
across each pair of boundaries during the time step integration.
Taking adavantage of the interface reconstruction, the exact volume
(in the sense of the PLIC approximation) of continuous phase which
is transported from cell i; jð Þ to the cell on the right iþ 1; jð Þ can be
computed, as shown in Fig. 3, where the face-centered velocity uxjiþ1

2

is assumed to be positive, i.e. it points towards the cell neighbour on
the right side. The advection step is finally performed using the
operator-split scheme proposed by Weymouth and Yue (2010),
where the volume fraction is updated by applying the VOF fluxes
in a sequential manner along the x; y and z directions. To minimize
errors, the order of the advection steps is changed at each iteration.
The method of Weymouth and Yue (2010) is exactly mass conserva-
tive, provided the velocity field is divergence free, which is the typ-
ical situation for incompressible flows without mass transfer.
However, this is not the case for two-phase gas–liquid flows with
phase-change, where r � u – 0 at x 2 R, as given by the continuity
Eq. (6). A possible solution to this problem comes from the observa-
Fig. 2. PLIC reconstruction of a 2D interface.
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tion that the volume fraction field f is advected by the continuous
phase velocity only and, therefore, the solenoidal requirement of
the VOF scheme applies only to the same velocity component. Inte-
grating the advection term of Eq. 30 on a computational cell reads:

f � � f n�1
2

Dt
¼ � 1

V

Z
V
r � Hucð ÞdV ð32Þ

where u has been replaced by uc to emphasize the point that the
Heaviside function is transported by the liquid phase only. There-
fore, the idea to make the incompressible VOF scheme compatible
with phase-change flows is to find a consistent way to extend the
liquid velocity field across the gas–liquid interface, so that for each
cell where f > �, the divergence of the velocity field is null (� is a
threshold value used to identify the cells which contain liquid and
is set to 10�6); we refer to the extended velocity field as uc;ext . At this
point, a remark is in order. Such a correction algorithm should be
able to preserve the velocity field in pure liquid/gas cells (where
u is already divergence free) and modify u in interfacial cells only.
However, a solenoidal extension requires a velocity correction in a
few neighbouring (pure) cells too; these cells must be pure gas
ones, as we need to preserve uc in liquid cells during the transport
of the volume fraction field. Although developed for different rea-
sons, several approaches exist to extend phase velocity fields in
multiphase flows. The Ghost Fluid method (Fedkiw et al., 1999) is
the basis for the development of the algorithms proposed in
Nguyen et al. (2001),Sussman (2003) and Tanguy et al. (2007). More
recently, Malan et al. (2021) proposed a different approach for
evaporating flows which serves the same purpose as required by
the present work, i.e. make incompressible VOF schemes compati-
ble with phase-change flows. All these methods share the common
feature that require the solution of at least one additional Poisson
equation to make the final extended velocity field divergence free.

3.2.2. The velocity extension algorithm
Here we present a novel method to extend the liquid velocity

field across the interface and make it divergence free for all the
cells which contain liquid (f > 10�6); the algorithm requires mini-
mum computational effort and it is readily implementable in exist-
ing codes. The steps of the algorithm will be illustrated for a 2D
problem; extension to 3D is straightforward.

The first step is the computation of the mass transfer rate field
( _m) in all the interfacial cells (see Section 3.4); these cells are iden-
tified with the criterion 10�6 < f < 1� 10�6. For each interfacial
cell i; jð Þ, the number of pure gas cells which belong to the 3� 3
stencil centered on i; jð Þ is stored in the field avgji;j (see Fig. 4).
These cells are marked as acceptors of the donor cell i; jð Þ. Donors



Fig. 5. Computation of _m0. The acceptor cell i; jð Þ receives from each donor (five in
this example) a contribution equal to _m

avg AR .
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and acceptors are clearly related, and a donor (acceptor) may have
multiple acceptors (donors).

The second step is the redistribution of the mass transfer rate
term _m. For each acceptor, the contribution from all the relative
donors is computed and stored in the new field _m0, which is defined
only for acceptors cells and set to null for the others. The informa-
tion of the interfacial area AR from the donors is also passed to _m0,
which is computed as (see Fig. 5):

_m0 ¼
X
donors

_m
avg AR ð33Þ

Eq. 33 ensures that the overall mass which is exchanged between
the phases per time unit is conserved, i.e.

P
X
_mAR ¼PX

_m0. The
mass transfer term _m is finally replaced by the new field _m0 in the
projection step of the Navier–Stokes solver, which becomes:

r � Dt
qnþ1

2

rp

 !
¼ r � u� � _m0nþ1

2

1
qd

� 1
qc

� �
1
V

ð34Þ

The new pressure equation ensures that the projected velocity field
is divergence free everywhere if _m0 ¼ 0 (which is always true in
pure liquid and interfacial cells) and provides a natural extension
of the continuous phase velocity across the interface. We remark
that the terms acceptor and donor refer to the transfer of the mass
source term from the interfacial cells (donors) to the neighbouring
pure gas cells (acceptors), irrespective of the direction of the mass
exchange (e.g from liquid to gas or vice versa) and that the redis-
tributed term _m0 is always null in pure liquid and interfacial cells.
A drawback of the proposed methodology is given by the possibility
that no acceptors exist for one or more donors. This can happen for
highly curved interfaces and/or low mesh resolution; however, the
present work aims at direct numerical simulations, where a fine
mesh is always required to capture all the flow features and we
assume that the grid is fine enough to provide at least one acceptor
for each donor. At this point we remind that the idea of redistribut-
ing the mass transfer term has already been proposed in the litera-
ture by Hardt and Wondra (2008) and successfully used for
diffusion-driven phase change flows (Vachaparambil and
Einarsrud, 2020). However, the methodology of Hardt and
Wondra (2008) was developed to reduce numerical instabilities
which occur when the source term is distributed in a narrow layer
of cells and does not provide a divergence free velocity field in all
the liquid and mixed cells. Contrary to Hardt and Wondra (2008),
our approach does not require the solution of an additional inhomo-
geneous Helmholtz equation and completely removes the source
Fig. 4. 2D example of the computation of the field avg. The number of acceptors
(marked with an �) for the donor cell i; jð Þ is 2.
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term from the interfacial cells. We finally remind that the mass
transfer term _mAR is substituted by _m0 in Eq. 34 only and is left
unchanged in the source terms of the VOF Eq. (30) and Species
Transport Eq. (24). It is worth noting that the face-centered velocity
field used for the advection of the interface (Eq. 32) is the same as
the one used for the advection term of the momentum equation
(Section 3.1), making the (convective) transport of momentum con-
sistent with the transport of the interface. The reader is referred to
Section 4.2 for the assessment of the momentum conservation
property of the proposed methodology.

3.2.3. Step 2. The mass transfer term
The second step is the integration of the mass transfer term:

f nþ1
2
� f �

Dt
¼ � 1

V

Z
V

_m
qc

dR dV ð35Þ

Coherently with the PLIC-based approach of the VOF scheme, we
follow the same approach of Malan et al. (2021) and integrate Eq.
35 in a geometric way. The contribution of the mass transfer rate
consists in a rigid displacement of the interface, along the normal
direction nR:

h ¼ � _m
qc

Dt
D

nR ð36Þ

where D is the mesh size. The equation describing the shape of the
interface still has the same form of Eq. 31, with nRð Þnþ1=2 ¼ nRð Þ�
and:

anþ1
2
¼ a� �

_m
qc

Dt
D

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
nRxð Þ2 þ nRy

� �2 þ nRzð Þ2
h i

�

r
ð37Þ

The volume fraction f nþ1=2 is then uniquely determined from
nRð Þnþ1=2 and anþ1=2. This approach is consistent with the geometric
(PLIC) description of the interface and avoids over- and undershoots
(f > 1 and f < 0, respectively) when a cell is completely filled with
liquid or gas.

3.3. Species Transport Equation

The integration of the species transport Eq. (23) is a challenging
step of the numerical methodology, as the molar concentration
profile is generally discontinuous across the interface (Henry’s
law). A suitable numerical method must be able to preserve such
discontinuity and avoid any artificial diffusion of the concentra-
tion. The problem is indeed very similar to the advection of the



Fig. 6. Flux computation for the diffusion of c in Xc . The concentration field must be
confined in the liquid region and the flux across the interface is set to
D @c

@nR
Sc

� �
R
¼ 0.

Fig. 7. Concentration gradient scheme (2D). The concentrations in P1 and P2 are
obtained by quadratic interpolation from the neighbouring values.
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Heaviside function and this suggests that the choice of the right
approach must rely on the method used to transport the volume
fraction field (Deising et al., 2016). Since Basilisk adopts a geomet-
ric VOF method, we opted for the two-scalar approach (Bothe and
Fleckenstein, 2013; Fleckenstein and Bothe, 2015), which has the
advantage of applying the same geometric fluxes used for f to the
species concentration c, making the advection of c consistent with
the displacement of the interface. The two-scalar approach
requires the integration of two equations for each species (one
for cc and one for cd) but, as noted in Section (2.2), in this work
we only need to solve for the gas concentration in the liquid phase
(cc). Eq. 23 can then be integrated in the following form:

/nþ1
2
� /n�1

2

Dt
þ
I
@V

cuc � ndS ¼
I
@V

Drc � ndS � _m
M

AR

V
ð38Þ

where the cell-volume average / is related to the phase-average via
the following relationship:

/ ¼ f
1
Vc

Z
Vc

cdV ð39Þ

The first step of the numerical integration is the advection term,
which is performed with the same split method used for the VOF
equation. The scheme is presented in López-Herrera et al. (2015)
and the fluxes for each pair of boundaries are computed by multi-
plying the face value of c (obtained with the unsplit upwind method
of Bell et al. (1989)) by the amount of liquid volume DVc which is
transported trough the cell face (see Fig. 3). In this way the advec-
tion of / is made consistent with the advancement of the interface
and any artificial mass transfer is prevented.

After the integration of the mass transfer term (last term on the
RHS of Eq. 38), the diffusion step is performed by using the multi-
grid solver. As for the advection, we need to prevent any transfer of
/ across the interface at this stage, beacuse the whole mass trans-
fer is given by _m (which is integrated separately). We use the same
approach of (López-Herrera et al., 2015; Magdelaine-Guillot de
Suduiraut, 2019) to put the diffusive term in a convenient way
for FV discretization schemes, where the variables are averaged
over the volume cell (e.g. /) rather than the sub-volume occupied
by a specific phase (e.g. c). A 2D example of flux computation for
the phase-average concentration c is given below for the control
volume shown in Fig. 6:

@tc ¼ D
Vc

@c
@x

Sc

� �
iþ1

2;j
� @c

@x
Sc

� �
i�1

2;j
� @c

@y
Sc

� �
i;j�1

2

" #
ð40Þ

where Sc is the (variable) face area of each boundary of the control
volume Vc and the flux across the interface as been set to zero to
prevent mass transfer between the phases. Eq. 40 can be easily gen-
eralized as:

f@tc ¼ D
V

X
cellfaces

f f D
@c
@n

A ð41Þ

where the face fraction f f ¼ Sc=A has been introduced and A is the
cell face area. The advantage of formulation 41 is that this equation
can be readily solved with standard FV schemes, after the diffusion
coefficient is replaced by f f D and the transient term multiplied by f.

3.4. Mass transfer term

The mass transfer term appears in the continuity Eq. (6), inter-
face Eq. (12) and species transport Eq. (24); it is evident that an
accurate solution depends on the discretization scheme used to
compute _m. As noted in Section 2.2, the gradient of concentration
in the mass transfer term (Eq. 21) must be evaluated in the liquid
domain, since the concentration is constant in the disperse phase.
8

Here we use the same unsplit geometric method approach pro-
posed in Bothe and Fleckenstein (2013). The scheme is shown in
Fig. 7 for a 2D case. P is the centroid of the interface in the interfa-
cial cell i; jð Þ and the values of concentration in P1 and P2 are
obtained from quadratic (bi-quadratic in 3D) interpolation. For
points P1 and P2, the values used for quadratic interpolation are
the closest cell-centered and the values in the top and bottom cells,
if jnRxj > jnRyj, or right and left cells, when jnRyj > jnRxj. The gradi-
ent is then computed by weighting the two first-order derivatives:

� @c
@nR

¼ f
c P1ð Þ � c Pð Þ

PP1
þ 1� fð Þ c P2ð Þ � c Pð Þ

PP2
ð42Þ

where the concentration in P is given by Henry’s law, i.e.
c Pð Þ ¼ cd=He. The grid convergence order of this numerical scheme
is tested for the 1D concentration profile shown in Fig. 8 (left). This
profile is the solution to the Stefan problem for a planar interface
(see Section 4.3 for details) and is given by the following formula:

c x; tð Þ ¼ cR 1� erf
x� xR tð Þ
2
ffiffiffiffiffiffi
Dt

p
� �� �

for x > xR ð43Þ
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where xR and D are the position of the interface and the diffusivity
of the gaseous species, respectively. The gradient of the concentra-
tion at the interface is:

@c
@x

� �
x¼xR

¼ � cRffiffiffiffiffiffiffiffiffi
pDt

p ð44Þ

The numerical derivative (Eq. 42) is computed for five different
grids with decreasing mesh size (D) and compared against the ana-
lytical solution (Eq. 44). The error is computed as:

Err ¼
@c
@x

� �a
x¼xR

� @c
@x

� �n
x¼xR

@c
@x

� �a
x¼xR












 ð45Þ

where the superscripts a and n refer to the analytical and numerical
solutions respectively; results are reported in Fig. 8 (right) and
show that the numerical method converges with second order
accuracy.

4. Validation

In this Section, the proposed methodology is validated against
several benchmark tests which have analytical or semi-analytical
solutions. Our numerical approach consists of two main parts
which need to be tested, i.e. the velocity extension algorithm
(Section 3.2.2) and the gradient scheme used to compute _m (Sec-
tion 3.4). The first test case is aimed at validating the correctness
of the velocity extension algorithm and consists of a growing/
shrinking bubble with a constant mass transfer rate (Section 4.2).
The classic benchmark for phase-change schemes - the Stefan
problem - is presented in Section 4.3, while the solution for bub-
bles immersed in a super-saturated and under-saturated solutions
is shown in Sections 4.4.1 and 4.4.2 respectively. The last two val-
idation benchmarks consider the case of moving bubbles: the
problem of a dissolving bubble rising in a low-Reynolds flow is pre-
sented in Section 4.5, while a quantitative analysis of the mesh
refinement needed to capture the concentration boundary layer
is shown in Section 4.6 for rising bubbles at different Péclet
numbers.

The governing equations are solved in their non-dimensional
form and the relevant non-dimensional numbers are introduced
in Section 4.1. We remind that we refer to the gaseous (liquid)
Fig. 8. 1D concentration profile (left) and grid convergence analysis (right). The disco
(cR ¼ cd=He). The non-dimensional time and gas diffusivity are t ¼ 0:8 and D ¼ 0:19.
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phase as the disperse (continuous) phase and that these terms
can be used interchangeably in the following; the concentration
in the gaseous phase is assumed to be constant as no mixtures of
species are considered in the present work.

4.1. Non-dimensional groups

The dynamics of a bubble in a gravitational field can be
described by the Galilei and Bond numbers. The Galilei number
compares the gravitational and viscous forces and is defined as:

Ga2 ¼ gD3
b

m2c
ð46Þ

where Db is the bubble diameter and mc is the kinematic viscosity of
the continuous phase. The ratio of gravitational and capillary forces
is estimated by the Bond number:

Bo ¼ qcgD
2
b

r
ð47Þ

For rising bubbles, the Reynolds number is defined as:

Re ¼ qcUbDb

lc
ð48Þ

where Ub is the velocity magnitude of the gravitational center of the
bubble.

When mass transfer driven by species diffusion occurs, the Sch-
midt number compares momentum diffusion to mass diffusion:

Sc ¼ mc
Dc

ð49Þ

The ratio between the advection-driven transport of a species to the
diffusive transport of the same species is given by the Péclet
number:

Pe ¼ ReSc ð50Þ
For applications involving mass transfer phenomena, it is useful to
introduce the Sherwood number:

Sh ¼ klLref
Dc

ð51Þ

where kl is the mass transfer coefficient given by:
ntinuity across the interface in the concentration profile is given by Henry’s Law
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kl ¼
R
R
_mdS

ARM cR � cbulkð Þ ð52Þ

AR is the area of the interface, M the molar mass of the transferred
species and cbulk is the species concentration in the bulk liquid.

The amount of chemical species which is initially dissolved in
the liquid is a technical parameter which can be controlled in
experiments and the saturation ratio compares the bulk liquid con-
centration and the interface concentration at equilibrium (satu-
rated interface):

f ¼ cbulk
cR

ð53Þ

Depending on the value of f, three different scenarios can occur:
saturated solution (f ¼ 1), under-saturated solution (f < 1) and
super-saturated solution (f > 1). When f > 1, an excess of species
is dissolved in the liquid and diffusion will transfer gas from the
continuous phase to the disperse one (growing bubble) in order to
recover the equilibrium solution (f ¼ 1). For the same reason, bub-
bles will shrink when f < 1.

If it is not specified, we assume the bubble diameter as the ref-
erence length (Lref ) for the non-dimensional coordinates (x=Lref ),
while the reference time is given for each problem in the following
sections.

4.2. Bubble with a fixed mass transfer rate

In this test we model a single 3D spherical bubble with constant
mass transfer rate. The accuracy of the solution depends on the
correctness of the velocity extension algorithm, which can be
tested properly here, since _m is known (and, therefore, no addi-
tional discretization errors are introduced). The properties of the
gas–liquid system are the same as for CO2 - water and are reported
in Table 1. The initial bubble diameter is Db ¼ 0:01 m, the reference
time is tref ¼ qcD

2
b=lc and the mass transfer rate is _m ¼ 	1:8� 10�2

kg/m2s. The computational domain is a cube with dimension
L0 ¼ 50Db and the finest mesh size is D ¼ L0=211 (LEVEL ¼ 11),
which corresponds to approximately 40 cells per diameter. We
use the AMR technique to keep the mesh at the maximum refine-
ment level around the interface, while a coarser grid is distributed
far from the bubble. Gravity is neglected and outflow boundary
conditions (fixed pressure and zero gradient for the velocity) are
assigned to all the external boundaries. For this test case, the ana-
lytical solution for the time-evolving radius is given by:

R tð Þ ¼ R 0ð Þ þ _m
qd

t ð54Þ

Fig. 9 (left) compares the analytical solution (Eq. 54) against
two numerical results, obtained with and without the velocity
extension algorithm. It is evident that the solution without velocity
extension completely misses the movement of the interface, as a
result of the non-solenoidal velocity field in interfacial cells (which
produces strong pressure/velocity fluctuations around the inter-
face). On the other hand, the numerical solution obtained by apply-
ing the velocity extension algorithm is able to capture the correct
solution. A small deviation from the analytical solution is observed
for t=tref > 0:04, where the mesh is not fine enough to capture the
flow features. Fig. 10 shows the velocity field around the interface
Table 1
Gas–Liquid properties.

Phase Density kg
m3

h i
Viscosity Ns

m2

h i
Surface tension N

m

� �
Liquid 1000 1:05� 10�3 0.072

Gas 1.8 1:46� 10�5
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(left) and the corresponding divergence field (right). The velocity
field is axisymmetric and preserves the spherical shape of the bub-
ble; the divergence field obtained from the redistribution of the
mass transfer term is null everywhere both in the bulk liquid
and interfacial cells. The purpose of the velocity extension algo-
rithm (Section 3.2.2) is therefore achieved and the velocity field
is not divergence-free only in the first row of pure gas cells next
to the interface; vectors show that the resulting liquid velocity
field is smoothly extended across the interface. A similar test case
is shown in Fig. 9 (right) for a growing bubble with _m ¼ 1:8� 10�2

kg/m2s. In this case the mesh refinement is always sufficient to
resolve the interface and the numerical solution is accurate at
every time step. The consistency between the transport of the
interface and momentum is shown in Fig. 11 for the growing bub-
ble case. As the bubble grows, a certain amount of liquid (dm tð Þ)
crosses the boundaries and leaves the numerical domain. This
quantity can be evaluated both from the boundary fluxes of
momentum as:

dm tnþ1
2

� �Flux
¼ Dt

Z
@X
qc u � nj jdS ð55Þ

and from the Volume of Fluid field as:

dm tnþ1
2

� �VOF
¼
Z
X
f �qc dV �

Z
X
f n�1

2
qc dV










 ð56Þ

where f � is the VOF field at tnþ1
2
right after the advection step, but

before the phase-change term is applied. The imbalance between

dm tnþ1
2

� �Flux
and dm tnþ1

2

� �VOF
is monitored during the simulation

and the relative error decreases constantly and approaches a value
below 0:01% (Fig. 11).

These tests show that extending the liquid velocity field across
the gas–liquid interface is a crucial step for the advection of the
interface and that the proposed methodology gives accurate
predictions.

4.3. Stefan problem

The Stefan problem is a classic benchmark for phase-change
schemes and consists in a planar interface which separates the
gas and liquid regions. The diffusion of gas into the liquid activates
the fluid flow and drives the displacement of the interface. The liq-
uid is initially under-saturated (f ¼ 0) and no gravity and surface
tension are taken into account. The properties of the system are
the same as reported in Table 1 and two different gas diffusivities
are tested: D ¼ 2� 10�9 m2/s and D ¼ 2� 10�7 m2/s. The first case
corresponds to the diffusion of CO2 in water and the relative Sch-
midt number is Sc ¼ 526, while the large diffusion case has
Sc ¼ 5:26; Henry’s coefficient is set to He ¼ 1:203 for both tests.
The reference length is Lref ¼ 0:01 m and the computational
domain is a square of length L0 ¼ Lref for Sc ¼ 526 and L0 ¼ 10Lref
for Sc ¼ 5:26. The interface is a horizontal line and the liquid region
is on top of it; an outflow boundary condition is applied at the top
boundary, while symmetric conditions are set for the other bound-
aries. The reference time is tref ¼ qcL

2
ref =lc , whilst the species con-

centration is nondimensionalized with the pure gas concentration,
which is a material property of the gas (see Section 2.2). A qualita-
tive representation of the problem is given in Fig. 12 for the case
Sc ¼ 5:26.

For this problem, the exact solution can be found analytically
(Crank, 1975) and is characterized by a null velocity field in the
gas region, while the liquid velocity is given by:

jucj ¼ qc � qd

qc
juRj ð57Þ



Fig. 9. Radius evolution for a suspended bubble with constant mass transfer rates _m ¼ �1:8� 10�2 kg/m2s (left) and _m ¼ 1:8� 10�2 kg/m2s (right).

Fig. 10. Velocity field and contours of horizontal velocity (left) and velocity divergence field (right) for a collapsing bubble with _m ¼ �1:8� 10�2 kg/m2s. Snapshot taken at
t=tref ¼ 0:01.

Fig. 11. Relative error of the imbalance between the amount of liquid that crosses
the external boundaries based on the fluxes of momentum (dmFlux) and VOF field
(dmVOF ), for the growing bubble case.
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11
The interface velocity magnitude is:

juRj ¼ D

He
ffiffiffiffiffiffiffiffiffi
pDt

p ð58Þ

and the interface displacement can be found by integrating Eq. 58:

l tð Þ ¼ 2
He

ffiffiffiffiffiffi
tD
p

r
ð59Þ

Finally, the species concentration in the liquid region is:

c y; tð Þ ¼ cR 1� erf
y� yR tð Þ
2
ffiffiffiffiffiffi
Dt

p
� �� �

ð60Þ

A grid convergence study is performed for the large diffusivity case
(Sc ¼ 5:26). Results are reported in Fig. 13 and show the error con-
vergence for both the interface displacement and amount of gas
moles dissolved in the liquid (left) and the plot of the time evolving
interface displacement (right). Five grids are tested and each grid is
identified by the hierarchical level of the respective finest cell in the
quadtree structure. The mesh size for each level is D ¼ L0=2LEVEL,
where L0 is the domain length (L0=Lref ¼ 10, for this case). The



Fig. 12. Interface displacement and contour of species concentration (Sc ¼ 5:26) at t=tref ¼ 0:05 (left) and t=tref ¼ 0:8 (right).

Fig. 13. Grid convergence study (left) and interface displacement (right) with five different resolutions for the Stefan problem with Sc ¼ 5:26 at t=tref ¼ 0:8.

Fig. 14. Interface displacement for the Stefan problem.
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errors on the interface (Errl) and on the dissolved gas moles (Errc)
are computed as:

Errl D; tð Þ ¼ la tð Þ � ln D; tð Þ
la










 ð61Þ

and

Errc D; tð Þ ¼
R
Xc

ca y; tð ÞdV � RXc
cn y; tð ÞdVR

Xc
ca y; tð ÞdV












 ð62Þ

where the subscripts a and n refer to the analytical and numerical
solutions respectively. For both quantities, the convergence of the
solution is close to second order, coherently with the accuracy of
the scheme used for the gradient of species concentration (see Sec-
tion 3.4). For the finest grid (LEVEL ¼ 9), the mesh size is
D=Lref 
 0:0195 and the relative error on the interface position at
t=tref ¼ 0:8 is approximately 0:06%. For the low diffusivity case
(Sc ¼ 526), a thinner concentration boundary layer is obtained
and a finer mesh with D=Lref 
 0:0039 is used. The interface dis-
placement is plotted in Fig. 14 for both cases and compared with
the analytical solution. In both configurations, the numerical solu-
tion provides an accurate prediction of the interface location. Veloc-
ity and concentration profiles along the vertical line y ¼ 0 are
plotted in Fig. 15 and compared against their respective analytical
solutions (Eqs. 57 and 60). Both types of profiles are characterized
by discontinuities across the interface which are accurately cap-
tured by our numerical simulations. The velocity profile at
12
t=tref ¼ 0:05 shows a small deviation from the expected results;
such behaviour is probably due to the initialization of the simula-
tion which assumes that the interface is saturated while no gas is
yet dissolved into the liquid. Such nonphysical initial condition is
then adsorbed as soon as a diffusion boundary layer develops
around the interface, and no significant deviations are reported
for velocity profiles at later times.



Fig. 15. Velocity (left) and concentration (right) profiles along the line y ¼ 0 at different times for the Stefan problem with Sc ¼ 5:26. The dotted lines show the interface
locations.

Table 2
Summary of test cases for a growing bubble in a super-saturated solution.

f b �t=tref

2 0.421 0.0186
3 0.669 0.0073
4 0.895 0.0041
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4.4. Suspended bubbles

In this section we study the mass transfer of gas from bubbles
suspended in a liquid solution. Since no gravity is taken into
account, the center of the bubble is fixed. We consider both cases
of growing (Section 4.4.1) and dissolving (Section 4.4.2) bubbles.
The properties of the gas–liquid system are the same as reported
in Table 1. Henry’s coefficient is He ¼ 5, while the diffusivity of
gas in liquid is set to D ¼ 2� 10�5 m2/s which corresponds to
Sc ¼ 0:0526. Such increase in the diffusion coefficient with respect
to typical values for gas diffusivities in liquids (D 
 10�9 m2/s)
leads to a reduction of computational cost, since the resulting mass
transfer rate is speeded up ( _m / D). The reference time is set to
tref ¼ qcD

2
b=lc in both cases.

4.4.1. Bubble growing in a super-saturated solution
In this section we model a single 3D spherical bubble immersed

in a supersaturated solution (f > 1) with a constant initial concen-
tration. The analytical solution for this problem was found by Scri-
ven (Scriven, 1959) and the resulting equation for the radius of the
bubble is:

R tð Þ ¼ 2b
ffiffiffiffiffiffi
Dt

p
ð63Þ

The non-dimensional factor b depends on the gas and liquid densi-
ties (qd;qc), initial bulk concentration in liquid (cbulk) and interfacial
concentration (cR):

U ¼ 2b3 exp b2 þ 2�b2� � Z 1

b
x�2 exp �x2 � 2�b3x�1� �

dx ð64Þ

where

U ¼ qc

qd

M cbulk � cRð Þ
qc �McR

ð65Þ

and

� ¼ qc � qd

qc
ð66Þ

The bubble initial diameter is Db ¼ 0:01 m and the computational
domain is a cube with dimension L0 ¼ 50Db; outflow boundary con-
ditions are applied to all the external boundaries. Eq. 63 assumes
13
that no bubble exists at t ¼ 0 (i.e. R 0ð Þ ¼ 0); however, within the
VOF approach, the volume fraction of gas must be initialized (i.e.
a bubble must be generated). In order to make the numerical results
comparable with the analytical solution, we first initialize the solu-
tion with a constant bubble size (R ¼ 0:005 m) where _m is taken
into account in the species transport equation only. This allows a
realistic concentration field around the bubble to be obtained at
t ¼ �t, where �t is the time required for the radius to grow to
R �tð Þ ¼ 0:005 m, according to Eq. 63. For t > �t the full phase-
change model is solved and the bubble volume is free to evolve. A
summary of the cases simulated here is reported in Table 2.

A mesh sensitivity study is performed for the case f ¼ 2. Four
different grids are tested and the relative error on the radius pre-
diction at t=tref ¼ 0:3 is reported in Table 3. The number of cells
per diameter reported in Table 3 refers to the initial bubble diam-
eter. The mesh with LEVEL ¼ 10 is a good compromise between
accuracy and computational cost and the same grid is used for
the other cases reported in this section.

A qualitative representation of the problem is given in the slices
reported in Fig. 16, for the case f ¼ 2. Two snapshots taken at dif-
ferent times are compared and the figure clearly shows the evolu-
tion of the concentration boundary layer around the gas–liquid
interface as the bubble grows.

Results of the time-evolving radius are compared in Fig. 17
against the theoretical solution. For all the saturation ratios tested
here, the numerical methodology provides accurate predictions.
4.4.2. Bubble dissolving in an under-saturated solution
In this section, we study the dissolution of a bubble in an under-

saturated solution with no initial concentration of gas (f ¼ 0). The
numerical setup is similar to that used for the growing bubble
cases (Section 4.4.1); the domain size is reduced to L0 ¼ 20Db



Table 3
Relative errors on radius at t=tref ¼ 0:3 for the case f ¼ 2.

LEVEL #cells=Db Error %

8 
 5 8.34
9 
 10 2.56
10 
 20 1.2
11 
 41 0.89
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and a finer mesh with approximately 102 points per diameter is
used. This choice is justified by the fact that more cells are needed
to properly resolve the flow around the interface as the bubble dis-
solves. The simplified problem which neglects the advection term
in the species transport equation:

@tc ¼ r � Drcð Þ
c r;0ð Þ ¼ cbulk for r > R

c R; tð Þ ¼ cR for t > 0
lim
r!1

c r; tð Þ ¼ cbulk for t > 0

ð67Þ

was solved analytically by Epstein and Plesset (Epstein and Plesset,
1950) for a domain internally bounded by a sphere with a constant
radius R. The solution to Eq. 67 can be used to approximate the case
of a bubble exchanging mass with the surrounding liquid (where R
is time dependent). Such a quasi-stationary approximation is as
accurate as the mass transfer process is slow (i.e. the effect of the
liquid velocity is negligible compared to diffusion) and the growth
of the concentration boundary layer is fast compared to the rate
of dissolution (Duda and Vrentas, 1971). This is usually the case
for gas bubbles dissolving in liquids, since diffusion coefficients
are typically small. The solution in terms of bubble radius is:

dR
dt

¼ DM cbulk � cRð Þ
qd

1
R
þ 1ffiffiffiffiffiffiffiffiffi

pDt
p

 �
ð68Þ

and the concentration field is given by (Crank, 1975):

c ¼ cbulk þ cR � cbulkð ÞR
r
erfc

r � R

2
ffiffiffiffiffiffi
Dt

p
� �

ð69Þ

where cbulk is assumed null for the cases presented in this section.
The accuracy of our numerical methodology is first tested

against the exact solution of the Epstein-Plesset (EP) model (Eqs.
68,69), i.e. for a bubble with constant size. In this test, the volume
of the bubble is kept fixed and _m appears as a source term in the
species transport equation only. The equivalent time-evolving vol-
ume is computed by integrating the mass flux over the bubble
surface:
Fig. 16. Interface and contour of species concentration on the XY pla
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V tð Þ ¼ V 0ð Þ þ 1
qd

Z t

0

I
R

_mdsdt0 ð70Þ

The comparison in terms of radius and concentration profiles
between the numerical simulation and the EP model is shown in
Fig. 18, where excellent agreement is found.

In the following test case, the full phase-change model is
applied and the volume of the bubble changes in time. An approx-
imate analytical solution is given by the EP model, where R is
replaced by R tð Þ in Eq. 68. Since the EP model neglects the advec-
tion of the concentration, a significant deviation from the analyti-
cal model can be expected when the full species transport equation
is solved. Here we present two numerical tests: in the first one we
solve the full governing equations, while in the second one we
switch off the advection term in the transport of species concentra-
tion. Results in terms of radius evolution over time are presented in
Fig. 19. As expected, the full numerical simulation deviates signif-
icantly from the EP model, as a result of the influence of the con-
vective transport of gas concentration. On the other hand, the
second numerical test (without the advection term), matches the
EP model with good accuracy until t=tref 
 0:015, when the disso-
lution rate becomes too fast for the quasi-stationary approxima-
tion. A detailed experimental study on the validity of the EP
model can be found in Duncan and Needham (2004). The authors
show that the dissolution time of a bubble in an under-saturated
solution is generally overpredicted by 8:2% by the EP model with
respect to their experimental measurements. However, the disso-
lution time computed with the EP model was obtained with a sim-
plified version of the model, which neglects the second term on the
RHS of Eq. 68 and reads:

tsimp
d ¼ qdR

2 0ð Þ
2DcRM 1� fð Þ ð71Þ

For an air–water system, the full EP model predicts a dissolution

time tfulld 
 0:84tsimp
d (see Epstein and Plesset, 1950) and the conclu-

sions of Duncan and Needham (2004) can be reformulated, stating
that the EP model underpredicts the dissolution time by 
 10%.
This correction factor is used in Fig. 19 to plot a corrected curve
for the EP model which shows better agreement with the full
numerical model, in agreement with the experimental findings.

4.5. Rising bubble in a low-Reynolds flow

In the cases considered so far the bubbles were stationary as
neither gravity nor external forces were applied. The aim of this
test is to validate our phase-change model for a moving bubble
which exchanges mass with the surrounding under-saturated
ne at t=tref ¼ 0:01 (left) and t=tref ¼ 0:3 (right) for the case f ¼ 2.



Fig. 17. Time-evolving radius for a growing bubble in super-saturated solutions at
different saturation ratios.
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liquid (f ¼ 0). Here we replicate the same setup proposed in
Fleckenstein and Bothe (2015), where the authors derived a
semi-analytical solution for a bubble rising with a low speed
(creeping flow). The initial bubble diameter is Db ¼ 0:004 m and
the computational domain is a cube with dimension L0 ¼ 120Db.
The mesh LEVEL is 13 (approximately 68 cells=Db) and an outflow
boundary condition is set on the top face, while symmetric condi-
tions are applied to the other boundaries. The properties of the
gas–liquid system are reported in Table 4.

The analytical model of Fleckenstein and Bothe (2015) is based
on the Hadamard-Rybczynski solution for the steady-state velocity
field around a rigid spherical particle rising in a creeping flow
(Hadamard, 1911; Rybczynski, 1911) and the terminal velocity of
a particle with radius R is given by:

Ub ¼ 2
3
qc � qd

lc
gR2 1þ ld=lc

2þ 3ld=lc
ð72Þ

The steady-state velocity obtained by Fleckenstein and Bothe
(2015) from their numerical simulation (for a bubble with constant
size) is Ub ¼ 0:03 m/s, which underestimates the theoretical value
Fig. 18. Comparison between the EP model and numerical simulations of a bubble wit
(right).
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predicted by Eq. 72 for the properties reported in Table 4
(Ub ¼ 0:035 m/s). Here, in order to validate our model against the
same results reported in Fleckenstein and Bothe (2015), we
adjusted the gravitational acceleration to g ¼ 8:92 m2/s which
ensures that the bubble reaches the same terminal velocity
Ub ¼ 0:03 m/s. The non-dimensional groups which describe the
problem are: Bo ¼ 2:96;Ga ¼ 2:04 and Sc ¼ 250; the reference time
is set to tref ¼

ffiffiffiffiffiffiffiffiffiffiffi
Db=g

p
. For these parameters (Bo and Ga) the bubble

retains its spherical shape and follows a rectilinear path (Tripathi
et al., 2015); the assumptions of the Hadamard-Rybczynski model
are then valid for this specific problem. In order to compare our
numerical solution against the semi-analytical model, we first need
to reach a steady-state solution in terms of rising velocity and con-
centration field. The simulation is first run without taking into
account the volume change related to the mass transfer until the
bubble reaches its terminal velocity. During this stage, the species
transport equation is solved and the concentration field around
the interface evolves until it becomes locally (in a region around
the bubble) time-independent (in a reference frame moving with
the bubble). After the bubble reaches the steady-state regime, the
full phase-change model is applied and the volume starts to shrink
as the gas is released into the liquid. In our simulation we reach the
bubble terminal velocity at tsteady=tref 
 25 and the results in terms
of volume ratio for t > tsteady are reported in Fig. 20. The numerical
solution shows good accuracy and the relative error on the volume
ratio at the end of the simulation (after a physical simulated time of
Dt ¼ 0:25 s) is 0:43%.

A qualitative representation of the problem is shown in Fig. 21,
for three different times. The first two pictures show the bubble at
time t=tref ¼ 0 and t=tref ¼ 20; the volume is kept constant at this
stage, but the concentration field develops as part of the gas is
released into the liquid. The last snapshot is taken at time
t=tref ¼ 40 and shows the reduction in volume of the bubble. The
thickness of the concentration boundary layer is not constant
around the interface and depends on which transport mechanism
prevails locally. On top of the bubble, the velocity boundary layer
is attached to the interface and the concentration profile is con-
strained into a thin region where diffusion is dominated by convec-
tion. Diffusion becomes progressively more relevant as we move
along the interface towards the rear part of the bubble, where
the concentration boundary layer grows accordingly. The wake
h constant size: radius (left) and concentration profiles at three different locations



Fig. 19. Time evolving radius for a dissolving bubble. Numerical simulation with
and without the advection term are compared and a corrected version of the EP
model (based on experimental findings) is plotted.
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region close to the bottom of the bubble is characterized by a stag-
nation velocity field, where diffusion prevails over convection and
makes the concentration field almost uniform.

One of the advantages of numerical modelling is that simula-
tions give access to local information that is difficult to obtain
experimentally. One example is shown in Fig. 22, where the con-
tour of the mass transfer is plotted on the XZ plane. The mass
transfer is a local interfacial property which depends on the con-
centration gradient (Eq. 21) and is directly related to the thickness
of the boundary layer. Fig. 22 shows that the maximum of _m is on
top of the bubble, where the concentration profile is thin and the
gradient is steep. The mass transfer progressively decreases as
we move towards the rear of the bubble and becomes almost null
in the stagnation region where the concentration is constant
(@c=@nR 
 0).

4.6. Rising bubbles at different Péclet numbers

The limiting factor for direct numerical simulations of diffusion-
driven mass transfer problems is mainly given by the thickness of
the concentration boundary layer dc . In order to capture the mass
transfer rate at the interface with the numerical scheme given by
Eq. 42, the concentration boundary layer must be resolved and
enough points must lie within it. Indications on the thickness of
dc can be obtained from the Péclet number (Eq. 50), i.e. the ratio
of convective transport to diffusive transport of species, and the
larger is Pe the thinner is the concentration boundary layer. In this
section we provide a quantitative analysis of the mesh refinement
needed to properly model the mass transfer for rising bubbles at
different Péclet numbers. The numerical setup is similar to Sec-
tion 4.5, but 2D (axisymmetric) bubbles are modelled instead of
3D ones; the rising trajectory is the horizontal x- direction. Only
the mass transfer process is computed (i.e. release of gas into the
liquid as bubbles rise) and no volume change is taken into account.
Three different gas species are modelled that have different diffu-
sivities (D) and, therefore, different Pe numbers. The properties of
the gas–liquid systems are reported in Table 5. The bubble diame-
Table 4
Gas–Liquid properties.

Phase Density kg=m3
� �

Viscosity Ns=m2
� �

Liquid 1245 0:46

Gas 1.2 1:8� 10�5
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ter is Db ¼ 0:001m and the relative Bond and Galilei numbers are
Bo ¼ 0:163 and Ga ¼ 19:77. The steady-state Re number is the
same for all the configurations (Re 
 18:6) since no volume effect
is taken into account here; Henry’s constant is set to He ¼ 5. The
Sherwood numbers are compared for the three bubbles against
the formula proposed by Takemura and Yabe (1998) (valid for
Re < 100 and Pe > 1):

Sh ¼ 2ffiffiffiffi
p

p 1� 2
3

1

1þ 0:09Re2=3
� �3=4

2
64

3
75

1=2

2:5þ
ffiffiffiffiffi
Pe

p� �
ð73Þ

Results are shown in Fig. 23 and for all the cases considered here the
numerical solutions approach the values predicted by Takemura
and Yabe (1998) as bubbles reach a steady-state rising regime (i.e.
constant rising velocity), with a relative error on Sh below 2%.
The level of grid refinement needed to achieve a mesh independent
solution increases with the Péclet number. The grid sizes (D) along
with the number of cells per diameter used for these simulations
are reported in Table 6. A qualitative representation of the distribu-
tion of gas concentration around the interface and the grid refine-
ment needed to resolve the boundary layer is shown in Fig. 24.
From the data collected in Table 6 and the contour of Fig. 24 it is
clear how strong the Pe number and thickness dc are related and
how they constrain the mesh resolution around the interface. The
concentration profiles at the equator of the bubble (i.e. at
H ¼ p=2, where H is the polar coordinate which is H ¼ 0 at the
leading edge and H ¼ p at the trailing edge) are shown in Fig. 25
for t=tref ¼ 6. As expected, the larger is the Pe number, the steeper
is the gradient of concentration at the interface and a finer mesh
is needed to resolve the boundary layer profile. In order to provide
a quantitative measure of the boundary layer thickness dc , we use
the same definition employed by Bothe and Fleckenstein (2013),
who assume that dc is the distance from the interface where the
concentration reaches the value:

c dcð Þ ¼ cR 1� erf 1ð Þð Þ ð74Þ
The horizontal dotted line in Fig. 25 represents the concentration
value given by Eq. 74; the thickness of the different boundary lay-
ers, along with the number of cells that are contained within them,
are reported in Table 7. We finally remark that adaptive mesh
refinement methods are extremely useful for this class of problems,
where a very fine mesh is needed only around the bubble interface.

5. Growing bubbles on electrodes

In this section we investigate the growth of electrochemically
generated bubbles on planar electrodes. The production of dis-
solved gas at the electrode walls creates a locally supersaturated
solution (f > 1) and drives the growth of bubbles which are gener-
ated from microscopic pits on the wall surface (heterogeneous
nucleation, see Pereiro et al., 2019). This phenomenon is of great
relevance for the chemical engineering industry, as the presence
of bubbles in electrochemical reactors can significantly reduce
the performance of these devices. Bubbles are responsible for the
reduction in the active area of electrodes and they induce a non
uniform current distribution in the electrolytic solution. Since the
gaseous phase has a much lower electrical conductivity than the
Diffusivity m2=s
� �

Surface tension N=m½ � He

1:48� 10�6 0.06 5



Fig. 20. Volume ratio Vs time for the rising bubble case. The simulation is first run
without volume change until t ¼ tsteady , while the full phase-change model is
applied for t > tsteady .
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liquid one, the presence of bubble blocks the transport of ions and
the effective resistance of the electrolyte increases (Angulo et al.,
2020). Here we replicate experiments carried out in Glas and
Westwater (1964) for hydrogen bubbles generated on a flat elec-
trode. A CFD study which reproduces the same experimental setup
was published by Liu et al. (2016); contrary to our approach, the
authors used empirical correlation models to compute the mass
transfer across the interface.

The properties of the gas–liquid system are reported in Table 8.
The large density ratio for this specific system (qc=qd ¼ 12450) is
observed to slow down the convergence of the multigrid solver,
making the computational cost of these simulations expensive.
To circumvent this problem, the gas density is increased to
qd ¼ 0:8 kg/m3; the molar mass is increased by the same factor,
so that the volume change is not altered (DV / M=qd). Such change
in the volume ratio does not affect the dynamics of the interface, as
we limit the present study to the growth stage of bubbles attached
to the wall, where the interface movement is mainly determined
by the mass transfer rate. However, even for rising bubbles, the
Fig. 21. Bubble position and contours of concentration at t=
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influence of such change in the density ratio is not expected to sig-
nificantly affect their general dynamics (Bunner and Tryggvason,
2002).

The electrode is the flat end of a wire with a diameter of
De ¼ 0:127 mm and the bubble is initialized in our VOF simulations
with the size Db ¼ De=10. For such small bubbles, the surface ten-
sion dominates the effect of gravity and the bubbles retain their
spherical shape during the growth stage. To reduce the computa-
tional cost due to the time step limitation of the surface tension
scheme, r is decreased by a factor of 10�4 and gravity is set to zero.
Such small surface tension is sufficient to keep the shape of the
bubbles spherical for different contact angle values when no grav-
ity is applied. When studying the growth of a single bubble on a
circular electrode, the shape of the bubble and the species distribu-
tion are axisymmetric and the problem can be modelled with an
axisymmetric solver (Liu et al., 2016). The domain is a square with
size L0 ¼ 25Db and the finest mesh size (AMR is used) is
LEVEL ¼ 10, which corresponds to 
 41points=Db. A sketch of the
case setup and mesh distribution are shown in Fig. 26. The axisym-
metric condition is applied at the bottom boundary (x axis), while
an outflow boundary condition is set on the right boundary; the
other two boundaries are treated as walls. The initialization
approach is similar to that used in Section 4.4.1, where we wait
for the nucleation time of the bubble before computing the volume
change. During the nucleation stage, the bubble size is kept con-
stant, but part of the gas which is produced by the electrode is con-
sumed at the interface. The nucleation time depends on many
factors, like the electrode material, the surface finish (i.e. the size
of the microscopic pits) and the current density, and cannot be
estimated a priori. Here, the nucleation time is set to tn ¼ 0:02 s,
which is a reasonable value, according to Glas and Westwater
(1964). The molar flux of hydrogen (H2) produced at the electrode
wall is given by Faraday’s law:
J ¼ I
2F

ð75Þ
where I is the current density applied to the electrode and F is the
Faraday’s constant (F ¼ 96485:3 As/mol). To take into account the
flux of H2 across the active area of the electrode, a Neumann
tref ¼ 0 (left), t=tref ¼ 20 (center) and t=tref ¼ 40 (right).



Fig. 22. Mass transfer distribution on the XZ plane. The value of _m reaches its
maximum on top of the bubble, where the boundary layer is thin.
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boundary condition for the gas concentration is applied to the left
wall (y axis):

@c
@x ¼ J

D 1� fð Þ for y < De
2

@c
@x ¼ 0 for y > De

2

ð76Þ

The liquid solution is initially saturated (f ¼ 1). In the following, the
results are reported with their dimensional units to provide a direct
comparison against experimental measurements.

The first finding from the experimental work of Glas and
Westwater (1964) is that the asymptotic growth of electrochemi-
cally generated bubbles follows the same functional relationship
given by the solution for a suspended bubble growing in a super-
saturated liquid (Scriven’s model - Eq. 63) which we report here
for the reader’s convenience:

R tð Þ ¼ 2b
ffiffiffiffiffiffi
Dt

p

Here we investigated the effect of the current density on the growth
rate and the results in terms of radius evolution over time are
reported in Fig. 27 for two bubbles with different contact angles
h. In both cases (h ¼ 90� and h ¼ 35�) we found a good agreement
with the proportionality law given by Scriven’s model (R tð Þ / ffiffi

t
p

)
for all the current densities tested here and the growth coefficient
b can be derived from the slope of the linear curves fitting the
numerical data.

Results from Glas and Westwater (1964) show that the varia-
tion in nucleation sites is a dominant factor which affects the
growth rate of bubbles. Depending on the material and surface fin-
ishing, an electrode can have multiple nucleation sites with differ-
ent sizes and the relative experimental measurements are usually
affected by a significant scattering. Here we investigate the effect
of the variation of nucleation sites by comparing the results
obtained for a single bubble with those relative to four bubbles
growing simultaneously on the electrode (3D simulation). The four
bubbles are located at a distance of 0:038 mm from the electrode
center and are equally spaced. The choice of modelling four nucle-
Table 5
Gas–Liquid properties.

Phase Density kg=m3
� �

Viscosity Ns=m2
� �

Liquid 998 0:005
Gas A 1.2 1:8� 10�5

Gas B 1.2 1:8� 10�5

Gas C 1.2 1:8� 10�5
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ation sites comes from the measurements reported in Glas and
Westwater (1964), where at least four sites are active. The contact
angle is usually variable during the growth stage on the electrode
wall; here we set h ¼ 35� which is an average value, according to
the experimental measurements. The results in terms of the influ-
ence of current density on the growth factor b are reported in
Fig. 28 for the single and multiple bubble cases and are compared
with the experimental measurements of Glas and Westwater
(1964). The dispersion in the experiments is quite relevant espe-
cially for high current densities as more nucleation sites can be
activated simultaneously and more variability is observed when
the experiment is repeated. For a single nucleation site, the growth
rate b is expected to increase with the current density as the
amount of dissolved gas near the electrode is larger and this is con-
firmed by all our numerical simulations.

A nucleation site is generally a microscopic indentation on the
electrode surface which traps some of the air when the cell is filled
with liquid (Pereiro et al., 2019). The gas dissolved into the liquid
diffuses into the gas pocket and the bubble starts to grow. If more
sites are active, the gas is consumed simultaneously by all of them
and the relative growth rates are smaller than for a single site,
where the whole amount of gas generated by the electrode is avail-
able for the only bubble present on the wall. This mechanism
explains the reason why our numerical simulations for a single site
generally overpredict the experimental measurements. More inter-
estingly, we found that the bubble with h ¼ 90� grows faster than
the h ¼ 35� case. A possible explanation of this phenomenon is that
in the h ¼ 35� case, the bubble is more elongated in the axial direc-
tion and, therefore, less exposed to the high concentration region
next to the electrode. A qualitative comparison between the
h ¼ 90� and h ¼ 35� cases is shown in Fig. 29. As expected, the four
bubble case shows smaller growth rates compared to the respec-
tive single case and the results are more consistent with the exper-
imental measurements, confirming the relevance of the number of
nucleation sites to the growth factor b.
6. Conclusion

In this work we contributed to the modelling of diffusion-driven
phase-change flows by means of a geometric (PLIC) VOF scheme. A
novel method is proposed to treat the velocity discontinuity at the
interface which is due to the mass transfer between the phases.
Our methodology consists of the redistribution of the mass transfer
term from the interfacial cells to the first row of pure gas cells next
to the interface and the interface area of each mixed cell is taken
into account in the redistribution process. Such approach allows
a liquid velocity field to be obtained which is smoothly extended
across the interface and results in a divergence-free liquid velocity
field, which is a fundamental requirement for incompressible VOF
schemes. The advantage of our methodology is that it is readily
implementable (with minimum coding effort) in existing FV codes
and is compatible with any VOF scheme. The transport of species is
treated with the two-scalar approach of Fleckenstein and Bothe
(2015) where the advection of the species concentration is per-
formed consistently with the transport of the volume fraction. Spe-
cial attention is paid to the diffusion step, where corrections are
D m2=s
� �

r N=m½ � Sc Pe

0.06

2� 10�7 25.05 465

2� 10�8 250.5 4650

2� 10�9 2505 46500



Fig. 23. Sherwood number Vs time for rising bubbles at different Pe numbers and
comparison against the solution proposed by Takemura and Yabe (1998).

Table 6
Mesh refinements for rising bubbles at different Pe numbers.

Pe D=Lref #cells=Db

465 7:32� 10�3 
 137

4650 1:83� 10�3 
 546

46500 4:58� 10�4 
 2185

Fig. 25. Equatorial concentration profiles for rising bubbles at different Pe numbers.
The dotted line represents the concentration value c dcð Þ=cref . Profiles taken at
t=tref ¼ 6.

G. Gennari, R. Jefferson-Loveday and S.J. Pickering Chemical Engineering Science 259 (2022) 117791
needed to prevent any artificial diffusion across the interface of the
one-sided concentration field. The whole methodology is imple-
mented in the open source software Basilisk which uses the AMR
technique to capture the smallest flow scales without the need to
refine the mesh everywhere in the domain.
Fig. 24. Contour of gas concentration and mesh refinement for rising bubbles with Pe ¼
Snapshots taken at t=tref ¼ 6.
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We performed several benchmarks to test the accuracy and cor-
rectness of the proposed methodology. The first test is a suspended
bubble with a fixed mass transfer rate. This case allows the evalu-
ation of accuracy and mass conservation properties of the redistri-
bution algorithm and excellent agreement with the exact solution
is found. The full methodology is verified against four validation
tests. The first one is the well-known Stefan problem for a moving
planar interface, where we obtained good accuracy for two Sch-
midt numbers (Sc ¼ 5:26 and Sc ¼ 526). The second and third tests
are for expanding and collapsing bubbles, respectively. The grow-
ing case is run for three different supersaturation ratios
(f ¼ 2; f ¼ 3 and f ¼ 4) and good agreement is observed with the
analytical solution of Scriven. The collapsing bubble is first tested
against the approximate Epstein-Plesset model for a bubble with
constant size, where excellent agreement is reached. We then
465 (a), Pe ¼ 4650 (b) and Pe ¼ 46500 (c). The withe line represents the interface.
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run the full solution (with volume change) and we showed that the
EP model deviates significantly from the numerical solution. The
reason behind this discrepancy is that the EP model does not take
into account the convective transport of species concentration. The
equivalent numerical test without species convection shows better
Table 7
Equatorial boundary layer thickness for rising bubbles at different Pe numbers. Values
taken at t=tref ¼ 6.

Pe dc=Lref #cells=dc

465 0:0598 
 8
4650 0:0189 
 10
46500 0:00612 
 13

Table 8
Gas–Liquid properties.

Phase Density kg=m3
� �

Viscosity Ns=m2
� �

Liquid 996 8:32� 10�4

Gas 0.08 8:96� 10�6

Fig. 26. Sketch of the case setup and adaptiv

Fig. 27. Radius growth for bubbles with h ¼ 90� (left) and h ¼ 35�

20
agreement with the EP model, until the dissolution rate becomes
too fast for the quasi-stationary assumption. In the last two bench-
marks we consider the dynamics of moving bubbles. First, a 3D
bubble rising in a creeping flow which exchanges mass with the
surrounding liquid is modelled and results are compared against
the semi-analytical solution of Fleckenstein and Bothe (2015),
where very good agreement is obtained. Then, the case of axisym-
mentric rising bubbles at different Péclet numbers is validated
with the results of Takemura and Yabe (1998) and the mesh refine-
ment needed to resolve the concentration boundary layer is
discussed.

The validated approach is applied to the case of growing bub-
bles on planar electrodes and the results are compared with the
experiments of Glas and Westwater (1964). We showed that the
growth rate of bubbles follows the functional relationship of Scri-
Diffusivity m2=s
� �

Surface tension N=m½ � He

7:38� 10�9 0.075 53.3

e mesh refinement around the interface.

(right) for different current densities. The units of I are A/m2.



Fig. 28. Influence of current density on the growth coefficient.

Fig. 29. Bubble shape and contour of gas concentration for h ¼ 90� (left) and h ¼ 35� (right) at t ¼ 0:53 s.
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ven (R tð Þ / ffiffi
t

p
) for different current densities, in agreement with

the findings of Glas andWestwater (1964). The effect of the contact
angle is shown for two different values (h ¼ 90� and h ¼ 35�) and
we found that smaller growth rates occur for the h ¼ 35� case.
The influence of the number of nucleation sites is investigated by
comparing the results for single bubbles with those relative to four
bubbles growing simultaneously. The average growth rate of the
four bubble test is smaller than the single site case, as the amount
of gas produced by the electrode is shared by all the active bubbles.
Results are finally compared with the experimental campaign of
Glas and Westwater (1964) and we conclude that both contact
angles and number of nucleation sites must be properly taken into
account when replicating experiments.
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