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Abstract: Vehicle-to-grid (V2G) has been identified as a key technology to help reduce carbon
emissions from the transport and energy sectors. However, the benefits of this technology are best
achieved when multiple variables are considered in the process of charging and discharging an
electric vehicle. These variables include vehicle behaviour, building energy demand, renewable
energy generation, and grid carbon intensity. It is expected that the transition to electric mobility
will add pressure to the energy grid. Using the batteries of electric vehicles as energy storage to
send energy back to the grid during high-demand, carbon-intensive periods will help to reduce the
impact of introducing electric vehicles and minimise carbon emissions of the system. In this paper,
the authors present a method and propose a V2G control scheme integrating one year of historical
vehicle and energy datasets, aiming towards carbon emissions reduction through increased local
consumption of renewable energy, offset of vehicle charging demand to low carbon intensity periods,
and offset of local building demand from peak and carbon-intensive periods through storage in the
vehicle battery. The study included assessment of strategic location and the number of chargers to
support a fleet of five vehicles to make the transition to electric mobility and integrate vehicle-to-grid
without impacting current service provision. The authors found that the proposed V2G scheme
helped to reduce the average carbon intensity per kilowatt (gCO2/kWh) in simulation scenarios,
despite the increased energy demand from electric vehicles charging. For instance, in one of the
tested scenarios V2G reduced the average carbon intensity per kilowatt from 223.8 gCO2/kWh with
unmanaged charging to 218.9 gCO2/kWh using V2G.

Keywords: V2G; vehicle-to-grid; electric vehicles; EVs; energy storage; net zero; carbon intensity

1. Introduction

According to the Department for Business, Energy & Industrial Strategy (BEIS) [1],
the transport sector is the largest emitter of greenhouse gases (GHG) in the UK, responsible
for 27% of emissions in 2019. The energy supply sector was the second largest emitter,
responsible for 21% of UK GHG emissions. The increase in renewable energy generation,
the reduction in the use of coal for electricity generation, and the closure of the largest deep
coal mines were some of the factors that influenced the reduction in emissions from energy,
as this was the largest emitter until 2016, when transport took over [1].

The Intergovernmental Panel on Climate Change (IPCC) reaffirmed the near-linear
relationship between carbon (CO2) emissions and global warming, as well as the need to
reach net zero to stabilise the increase in global temperature [2]. According to the IPCC [3],
net-zero emissions are achieved when GHG emissions caused by human activities are
balanced by anthropogenic removals [2]. The UK has established a pathway to achieve
net zero in the transport sector and the energy sector. The goal is to decarbonise all
forms of transport [4] by increasing cycling and walking, supporting the adoption of zero-
emission buses, decarbonising railways, phasing out petrol and diesel cars, and accelerating
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maritime and aviation decarbonisation. On the other hand, the UK energy sector aims to
support renewable energy generation using smart and flexible energy systems [5], defined
as “one which uses smart technologies to provide flexibility to the system, to balance supply
and demand and manage constrains on the network” [6] (p. 9). It has been highlighted
that this flexibility can be provided by electricity storage, flexible demand, and flexible
generation [5].

Integral to both transport and energy plans is the transition to electric mobility. For in-
stance, from the transport perspective, in the UK, plans are in place to stop the sale of diesel
and petrol cars by 2030 [6] and to support the deployment of charging infrastructure to
fulfil drivers’ needs and establish a circular economy for the batteries of electric vehicles
(EVs) [7]. The plan for the decarbonisation of transport recognises the need to expand the
electricity system to absorb the load from EVs, which may increase energy demand by up
to 20% by 2050, compared to a system without EVs [7].

From the energy system’s perspective, it is recognised that EVs will represent a
significant increase in energy demand; however, it also represents an opportunity to add
flexibility to the energy system [8]. For instance, it is expected that technologies such as
smart charging could support the grid by avoiding charging during peak time, and vehicle-
to-grid (V2G) could be used to send the energy stored in EVs back to the grid on demand
(e.g., at peak electricity demand) [8].

The concept of using electric vehicles as energy storage and support for the energy
grid was first published by Kempton and Letendre in 1997 [9]. According to the authors,
some of the benefits of this new technology are the capacity to support the grid as a backup
in case of power outages and the low cost that EVs would represent in comparison to
electric generation infrastructure. In 2001, Kempton et al. [10] defined vehicle-to-grid (V2G)
as “ . . . using the electric storage and/or generation capacity of battery, hybrid and fuel cell
vehicles to send power to the grid” (p. 1). The authors also described that this technology
would provide air-pollution benefits in three ways: (i) incentivising drivers to switch to
EVs by generating an economic revenue from selling the energy stored in their vehicles;
(ii) supporting the energy grid during peak times and emergency generation, conditions
that are usually covered by fossil fuel plants; and (iii) storage of renewable sources, such as
wind and solar [10].

According to Waldron et al. [11], despite V2G technology being developed more than
20 years ago, studies and publications have been ramping up over the last few years.
This recent deployment of the technology is explained by the increasing uptake of EVs,
the increased capacity of renewable energy generation, technology development (e.g.,
battery capacity), and the need to reduce carbon emissions from the transport and energy
sectors [11].

There are currently multiple V2G trials in the UK, developing different business cases.
For instance, EDF Energy proposed V2G for business by providing the charger, installation,
and maintenance [12]. The benefits for the end user are estimated to be around 9000 miles
per year of electric fuel to run their vehicle for free if they connect every day from 4:30 p.m.
to 8:00 a.m. of the next day. Octopus Energy, with the project Powerloop [13], offered
a bundle for domestic users, including leasing of a vehicle, providing a charger and the
option to connect the vehicle 12 times per month between 6:00 p.m. and 5:00 a.m. to obtain
a cashback benefit of GBP 30 on the user’s energy bill. Project Sciurus [14] offered a
charger and an app to control and schedule the charging sessions. The energy from the
vehicle would be used to power the user’s home, and any excess would go back to the grid.
The economic incentive was 30 pence per kilowatt hour discharged [15]. The Electric Nation
V2G trial [16] offered users a minimum reward of GBP 120 per year and the possibility to
keep the V2G charger for GBP 250 at the end of the trial.

However, according to Sovacool et al. [17], environmental performance is one of the
underexamined topics of vehicle-to-grid. In a review of 197 publications between 2015
and 2017, the authors observed that only 10% of studies reviewed carbon emissions [17].
The carbon emissions generated during the operation of an EV come from the carbon
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intensity of the electricity used to charge them [17]. It is estimated that whereas an internal
combustion engine light car emits between 95 and 147 gCO2/km, an EV with unmanaged
charging and smart charging would emit between 35 and 52 gCO2/km [18]; however, these
figures would be reduced as the grid is decarbonised. Moreover, V2G-enabled vehicles
would allow for a reduction in overall system emissions through offset of grid demand,
with studies suggesting they can have effective negative carbon emissions between −116
and −243 gCO2/km [18]. In the report Future Energy Scenarios for the UK [19], it is
forecasted that unmanaged EV charging could increase peak electricity demand by more
than 25 GW by 2040, implementing smart charging would result in a peak demand of
around 10 GW, whereas V2G could reduce the peak demand by nearly −8 GW by 2040.
Additionally, O’Malley et al. [20] estimated that V2G-enabled fleets can reduce system
operation costs by up to GBP 12,000 and CO2 emissions by up to 60 tonnes per year.

The carbon reductions from optimally managed vehicle-to-grid come from several sources:

- (i) Managing charging demand of the vehicle: as with one-directional (V1G) smart
charging, recharging the vehicle battery after use of the vehicle itself is timed to offset
charging to when the grid carbon intensity is low. This reduces carbon emissions
relative to unmanaged charging of the same vehicle.

- (ii) EVs as battery storage: using any available battery capacity from EVs to store
energy at times when system carbon intensity is low allows for strategic discharging
of this stored energy when carbon intensity is high. In this way, the EV battery can be
used to effectively offset carbon emissions from its surrounding system (applicable at
the scale of local buildings, the local energy grid, or the wider national grid).

- (iii) EVs to support renewable energy application: as renewable energy is an inter-
mittent source, using EVs as storage when renewable generation is high can facilitate
the most effective use of low-carbon generated energy. This method is particularly
important in localised energy systems where renewable generation can exceed local
demand. V2G can increase local self-consumption of renewables and potentially offset
the need for dedicated local battery storage.

- (iv) Optimising the battery ageing process: it has been shown that managed V2G
charging schedules could reduce EV battery ageing [21], potentially reducing the
embedded carbon associated with EV battery production across a vehicle’s lifetime.
Given the complexity of modelling required to determine effects of charging on the
vehicle battery, this source is beyond the scope of this paper and is not considered
further in the methods presented.

In this paper, the authors present a scenario of integrating vehicle-to-grid in an existing
fleet without affecting current service provision, with the aim of reducing carbon emissions
from the building energy demand and vehicle operation. To achieve this, the following
method was developed: (1) assessment of the strategic location of charging infrastructure
based on the vehicles’ behaviour; (2) definition of the charging/discharging profile, pri-
oritising CO2 emission reduction according to the building’s energy demand, renewable
energy generation, and grid carbon intensity; and (3) calculation of the carbon savings of the
system through simulation. The outcomes of this paper indicate that vehicle-to-grid can re-
duce the average CO2 intensity per kilowatt in all the scenarios tested. Additionally, it was
found that the vehicles analysed can easily make the transition to electric and integrate
V2G, as 99.5% of the time, the vehicles fulfilled the charge required for their journeys.

2. Materials and Methods

In this work, the authors designed a method to quantify the benefits of charging
and discharging electric vehicles to reduce carbon emissions, simulating scenarios for
vehicle-to-grid using real-world data from vehicle behaviour, electricity demand, energy
generation, and grid carbon intensity. The University of Nottingham was selected as a case
study due to its infrastructure and access to data, which allowed us to focus on the nexus
of transport, buildings, and energy. The University has 50 vehicles providing different
services around the campuses (Figure 1) in Nottingham, such as estates, security, mailroom,
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transport, grounds, and catering services. For this work, one subsection of the fleet was
selected for further analysis due to its suitability for V2G operation, with vehicles that
remained stationary for long periods of the day, each parked in a consistent location on
campus. This fleet comprises five vehicles, for which one year of historic data was available.
Four of the vehicles of this fleet are diesel, and one is a non-V2G-compatible electric vehicle.
The V2G scenarios explored in this paper are simulated, assuming V2G-compatible vehicles
undertaking the same usage behaviours.
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2.1. Data Sources

• Telematics: This dataset was gathered by a telematics system installed in the fleet [22]
and filtered by Shipman et al. [23,24]. The dataset of the five vehicles contains details of
23,449 journeys made between 1 January 2019-00:00:00 and 31 December 2019-23:59:59.
The variables registered in the dataset were the start and end date/time of each journey,
start and end latitude and longitude, start and end odometer, and distance travelled.

• Building Energy Demand (BED): The data from the University buildings were facili-
tated by the Energy Management team from the University of Nottingham. The dataset
contained the energy consumed in kilowatt hours every 30 min per building during
the period from 1 January 2019-00:00:00 to 31 December 2019-23:59:59.

• Renewable Energy Generation (REG): The data from the renewable energy generation
at the university campuses was facilitated by the Energy Management team from the
University of Nottingham. The datasets contained the energy in kilowatt hours every
30 min generated by the solar photovoltaics (PV) installed at different sites between
1 January 2019-00:00:00 and 31 December 2019-23:59:59. For the University Park
campus, renewable energy generation from three buildings was considered, and for
the Jubilee campus, generation from eight buildings was included.

• Grid Carbon Intensity (CO2): These dataset was retrieved from the National Energy
Grid Carbon Intensity API [25], which allows for download of UK data in batches of
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30 days. The raw data from January to December 2019 contained the actual carbon
intensity in grams of CO2 per kilowatt hour (gCO2/kWh), the forecast carbon intensity
(gCO2/kWh), and an index (very low, low, moderate, high, very high). The index was
developed by Bruce et al. [26] to illustrate times when carbon intensity is high or low.

• Exceptions: Bank holidays and university holidays were treated as weekends, as the
data showed they were not significantly different. This included the following dates:

Bank holidays: 1 January 2019, 19 April 2019, 22 April 2019, 06 May 2019, 27 May 2019,
26 August 2019, 25 December 2019, and 26 December 2019.
University holidays: 23 April 2019, 23 December 2019, 24 December 2019, 27 December
2019, 30 December 2019, and 31 December 2019.

• Sensitive information: data such as individual characteristics of the vehicles/drivers or
tasks were anonymised. This study was approved by the Ethics Committee of the Fac-
ulty of Engineering of the University of Nottingham and the University Estates team.

2.2. Data Analysis

The data analysis was conducted in four stages:

2.2.1. Stage 1: Vehicle Behaviour Analysis

• Descriptive statistics: The dataset was filtered to exclude journeys when the vehicles
were idling (distance below 0.01 miles). Descriptive statistics of the journeys were
generated using SPSS to understand the driving patterns of the different vehicles.

• Location of the chargers: The ‘dwell events’ refer to the moments when the vehicles
were stationary. As the dataset was only integrated by the journeys of the vehicles,
the dwell events were estimated by calculating the difference between the start time of
a journey and the end time of the previous journey. Initially, the dataset was filtered
to only include dwell events longer than 60 min to identify the location where the
vehicles were stationary for longer periods. The list with the coordinates of these
events was processed using the Folium library in Python. In this analysis, Folium
allowed for visualisation of the location datapoints in a Leaflet map [27]. This analysis
provided the identification of three strategic locations for chargers for the five vehicles.
The locations were identified as A, B, and C, with location A being the primary dwell
location for one vehicle, B the primary location for three vehicles, and C the location for
one vehicle. As all vehicles were found to typically dwell overnight at these locations,
concurrent overnight use of chargers at Location B required three chargers at this
location. Locations A and C were assigned one charger each. Connection to the V2G
system was assumed to only occur at the primary dwell location for each vehicle.

• Vehicle availability: As not every dwell event would allow an electric vehicle to charge
or discharge, the first parameter to define vehicle availability for V2G was assessed by
filtering the cases to only include dwell events longer than 30 min, providing a reason-
able assumption that drivers are less likely to plug in their vehicles for short dwells.
This dataset and the location of the chargers identified as A, B, and C in the previous
section were used to calculate the distance between vehicles and chargers using the
Haversine tool in Python, which uses the equation described by Shipman et al. [23]
(Figure 2).
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Haversine calculates the distance between two points on earth using the latitude and
longitude (equation presented in Figure 2). After this calculation, a filter was created
to check whether the distance between the vehicle and the charger was below 100 m
(distance < 100 m, 1, 0) and would be available to connect.

• Primary dwell location: The data was filtered to identify the location of the vehicles
during each dwell event. The outcomes were recorded per minute as: A, B, C, other,
or driving/short dwell. The letters refer to the location of the V2G charger. The anal-
ysis also included ‘other’ dwell events longer than 30 min that occurred at different
locations and ‘driving/short dwell’, which was driving times or dwells shorter than
30 min. The analysis was filtered per location to identify the dwell pattern of the
vehicles at each site.

• Battery state of charge: Although the vehicles analysed were not V2G-compatible,
(four diesel and one electric), the simulated V2G scenario assumed operation of V2G-
compatible vehicles making the same journeys as those in the historic dataset. In the
UK, there are few V2G compatible vehicles on the market, including the Nissan
LEAF, Nissan e-NV200, and Mitsubishi Outlander PHEV, due to their CHAdeMO
charging technology. As the closest comparable V2G-compatible vehicle, the technical
specifications of the Nissan e-NV200 40 kWh were considered to calculate the battery
state of charge (SoC). The electricity consumption of the vehicles was estimated based
on an average consumption of the Nissan e-NV200 at 417 Wh/mile [28].

2.2.2. Stage 2: Building Energy Demand, Renewable Energy Generation, and Carbon
Intensity Analysis

• Building Energy Demand (BED): The energy demand from the buildings located next
to the V2G chargers was analysed. The buildings identified as A, B, and C contained
energy readings every 30 min. Therefore, to match the vehicle data, which were
available per minute, the half-hour values were copied to provide readings per minute.
These data were only used to support a clustering analysis to identify times of low,
medium, and high energy demand. The datasets of the three buildings were processed
to obtain the descriptive statistics and k-means cluster analysis in SPSS, where k = 3
was defined to identify the thresholds of the building energy demand when this was
low, medium, or high.

• Renewable Energy Generation (REG): Building A is located at Jubilee Campus, and
buildings B and C are located at University Park Campus (Figure 1). The available
renewable energy generation data from each campus was analysed. The data contained
readings every 30 min; therefore, the values were copied as described for the BED.
Similarly, the dataset was processed using k-means clusters, where k = 3 was defined
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to identify the thresholds of the renewable energy generation of the campuses when
the energy generation was null/low, medium, or high.

• Grid Carbon Intensity (CO2): Like the BED and REG analyses, the 30 min CO2 dataset
was expanded. Bruce et al. [26] categorised the grid carbon intensity as very low
(0–59 gCO2/kWh), low (60–159 gCO2/kWh), moderate (160–259 gCO2/kWh), high
(260–359 gCO2/kWh), and very high (360+ gCO2/kWh); in this research, we used the
thresholds for low, medium, and high.

2.2.3. Stage 3: Data Integration and V2G Assessment

The previously described datasets were integrated to define the possible scenarios
for vehicle-to-grid by prioritising the environmental benefits. The data were computed
considering the status of the vehicles, battery state of charge, renewable energy generation,
carbon intensity, and building energy demand per minute to determine whether the vehicle
should charge, discharge, or delay charge/discharge.

Table 1 presents the parameters used for the calculations. The vehicle availability was
defined by two factors: (i) whether the vehicle was stationary and (ii) whether the vehicle
was close to a V2G charger. The minimum state of charge accepted was defined by the
mean battery percentage required to operate the vehicle in a day; this was extracted from
the maximum mean daily distances of the vehicles in the descriptive statistics, and it was
established to guarantee that the vehicle would always top up to reach the minimum. The
battery state of charge (SoC) allowed for determination of whether the vehicle would have
capacity to charge or discharge as follows:

Table 1. Parameters to calculate the scenarios for V2G.

Vehicle Availability not available
available

Minimum SoC Accepted SoC < 20%
SoC > 20%

State of Charge (SoC)
SoC < 50%

SoC between 50–90%
SoC > 90%

Renewable Energy Generation
(REG)

REG low
REG medium

REG high

Carbon Intensity (CO2)
CO2 low

CO2 medium
CO2 high

Building Energy Demand (BED)
BED low

BED medium
BED high

If the SoC < 50%, then the vehicle would require charging.
If the SoC was between 50% and 90%, then the vehicle would be available to charge

or discharge.
If the SoC > 90%, then the vehicle would be mainly available to discharge (however,

the option to complete charging up to 100% was also included for the times when the
carbon intensity of the grid was low).

The BED, REG, and CO2 thresholds were also integrated to determine the V2G scenarios.
Figure 3 presents a flowchart of the steps proposed to compute the variables for a

vehicle-to-grid model that prioritises the reduction in carbon emissions from the grid and
the vehicle by minimising interaction with the outside grid and stress on local infrastructure.
The first step checked whether the vehicle was available to connect to the V2G charger.
The second and third steps estimated the state of charge of the battery. Then, the fourth step
checked the generation of renewable energy, the fifth step revised the grid carbon intensity,
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and the final step checked the building energy demand. This process determines whether
the vehicle was ‘not available’ or should ‘charge’, ‘discharge’, or ‘delay’.
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The charging/discharging scheme represented in Figure 3 was then applied to the
vehicle historic data through simulation to assess the effect of vehicle charging on the
system carbon emissions. A model of vehicle charge/discharge using the previously
described parameters was implemented in Python.

2.2.4. Stage 4: Carbon Emissions Calculations

To assess the carbon emissions of the system, a separate simulation was completed for
each location (A, B, and C) with their corresponding vehicles.

The simulation was run by iterating through the historical datasets of vehicle usage,
building energy demand, renewable generation, and grid carbon intensity to simulate
operation of the control system in real time. The battery state charge of each vehicle was
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updated for each minute of the time period according to the estimated demand from
driving and V2G energy transactions with the building/grid system. Charge instructions
for each vehicle were then recalculated at each timestep based on the state of charge. Net
energy supply or demand from the fleet to each building location was then calculated
for each timestep. The carbon emissions per timestep were calculated based on the sum
of building energy demand, renewable generation, and fleet energy. In timesteps where
the total transaction with the renewables–building–vehicle system was an energy import,
carbon intensity was taken as the UK grid carbon intensity at that timestep. Where the total
system transaction was an energy export, this was counted as a carbon saving equal to the
grid carbon intensity at that timestep.

The analysis was conducted by integrating the data per building; for each building,
three scenarios were tested:

1. Baseline System Demand: the buildings’ energy demand minus the renewable energy
generation with no EVs present in the system.

2. Unmanaged EV Charging: the energy demand and carbon emissions added by charg-
ing the EVs immediately upon their arrival to the building.

3. V2G Charging: estimated energy demand and carbon imports by applying the V2G
ruleset described in Figure 3.

The outcomes include the following measures:

- Total Net Energy Import (kWh): the sum of all imports to and exports from the system
of buildings, renewables, and vehicles over the simulated year.

- CO2 from 1 year System Net Import (kg): sum of CO2 released by energy imports
minus CO2 saved by exports from the system at each timestep over the year.

- Average CO2 Intensity (campus energy only) (gCO2/kWh): sum of CO2 divided by
the sum of energy used by the system.

- Instances of Vehicle Battery Depletion: the number of times that a simulated vehicle
ran out of battery within the simulated year.

- CO2 from 1 year external top up (kg): where vehicles were unable to fulfil their demand
from driving, using the simulated on-campus charging hardware and rulesets, it was
assumed that the vehicles would need to rely on external charging when the battery
became very low. This was counted as an ‘external’ energy cost, with CO2 intensity
calculated based on grid intensity at the time of battery depletion.

- Average CO2 intensity (campus + external): sum of CO2 from the system and from
external energy caused by battery-depletion events divided by the sum of energy used
by the system and external energy used for battery recharge.

As the impact of one vehicle on the energy demand can be low in comparison to
the total energy of the system, additional simulation scenarios were completed assuming
10 vehicles connected at each of the buildings. This was calculated by extrapolating vehicle
behaviour at each building based on the available vehicles.

3. Results

The results are presented and discussed for each stage.

3.1. Stage 1: Vehicle Behaviour Analysis

Descriptive statistics: The analysed dataset contained 23,449 journeys from five vehi-
cles. Table 2 shows the descriptive statistics of the vehicles and the journeys. The mean
distance travelled by the fleet per day was 14.3 miles, and the maximum distance registered
by a vehicle in a single day was 70.6 miles.
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Table 2. Descriptive statistics of vehicle journeys and travel distance.

Vehicle ID # Journeys (Year) Mean Daily
Distance (mi/Day)

Max. Daily Dist.
(mi/Day)

Mean Journey
Dist. (mi/Journey)

Max. Journey
Dist. (mi/Journey)

1 5566 11.7 41.4 0.6 16.9

2 5006 16.2 70.6 0.8 59.9

3 5415 16.2 55.6 0.8 29.0

4 4704 19.1 56.1 1 31.3

5 2758 8.4 31.2 0.7 10.0

Fleet 23,449 14.3 70.6 0.8 59.9

Figure 4 presents the distribution of the journeys per hour of the day, per day of the
week, and per month. In the 24 h period, it was observed that the vehicles started activities
at 6 h and finished at 22 h. Vehicle 5 was the most active vehicle at the end of the day.
The peak time in the morning was between 11 h and 12 h. The activity decreased at 13 h,
and the peak of the afternoon occurred at 14 h. Most of the activity was reduced after 17 h.
In the weekly analysis, it is observed that the activity is highly reduced over weekends,
and vehicle 5 is the least used overall. In the monthly analysis, the activity of the vehicles
was reduced during August, corresponding to university holidays.
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Location of V2G chargers: The evaluated vehicles provide services on campus, such
as delivering items or patrolling around. In this context, there are numerous events when
the vehicles were stationary during the day; nevertheless, not all these dwell events would
allow a vehicle to charge due to the short duration of the stop and/or the proximity to a
charger. Table 3 shows the total dwell events per vehicle, as well as the number of events
shorter than or equal to 60 min and longer than 60 min. It is observed that only 9% to 20%
of the stops are longer than 60 min.

Figure 5 presents a geospatial analysis of the main dwell locations of the five vehicles
using the dwell events longer than 60 min (n = 2460). The map captures the campuses of
the University of Nottingham in the city (University Park Campus, Jubilee Campus, King’s
Meadow Campus, and Queens Medical Centre—Medical School). In the heatmap, red
means a high number of dwell events in that specific location. The most frequent locations
for long dwell events were identified as A, B, and C. A radius of 100 m was defined to
consider when a vehicle was close to any of these charging locations.
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Table 3. Dwell events per vehicle shorter or longer than 60 min.

Vehicle ID Total ≤60 min >60 min

1 5691 5134 (90.2%) 557 (9.8%)
2 5107 4615 (90.4%) 492 (9.6%)
3 5573 5081 (91.2%) 492 (8.8%)
4 4810 4360 (89.7%) 450 (10.3%)
5 2826 2357 (80.1%) 469 (19.9%)

Total Fleet 24,037 21,577 (89.8%) 2460 (10.2%)
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Vehicle Availability: The availability of the vehicles to connect to a charger is presented
in Figure 6. Dark blue means that all vehicles were available to connect. This fleet is mainly
available to connect during the evenings, as the vehicles were away from the charger
between 08:00 to 13:00 h and 14:00 and 16:00 h.
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Figure 6. Number of vehicles parked close to a proposed V2G charger for more than 30 min over the
one-year historical dataset. Dark blue means all vehicles five vehicles were parked next to a charger,
and red means that none of the vehicles was available to connect to a V2G charger.

Table 4 presents the percentage of time that vehicles of the fleet were available for a
V2G connection. For example, the vehicles were simultaneously stationary next to a charger
55% of the time. This percentage was even higher during weekends (72%). Only 2% of the
time were none of the vehicles available to connect.

Table 4. Percentage of time that vehicles were available to charge/discharge in the one-year
historical dataset.

All Year Weekdays Weekends

none 2% 3% 0%
1 vehicle 6% 9% 0%
2 vehicles 8% 11% 1%
3 vehicles 10% 12% 3%
4 vehicles 20% 18% 23%
5 vehicles 55% 47 72%

Primary dwell location: Table 5 contains the percentage of time per vehicle spent
at each charger. Other dwell locations and the time spent driving are also included.
The primary dwell location for vehicle 1 was A; for vehicles 2, 3 and 4 was B; and for
vehicle 5 was C.

Table 5. Percentage of time spent at each charger per vehicle.

Vehicle ID Location A Location B Location C Other
(>30 min)

Driving/Short
(<30 min)

1 80% 0% 0% 4% 16%
2 0% 81% 0% 3% 16%
3 0% 78% 0% 7% 15%
4 0% 78% 0% 7% 15%
5 5% 1% 78% 9% 7%

Figure 7 presents the average dwell in a 24 h period of the vehicles at locations A, B,
and C. The results are differentiated between weekdays and weekends. In these graphs,
a value of 100% would mean that the vehicle was parked at that specific location for the
whole year. The results indicate that the vehicles typically each parked at their primary
location (A, B, or C) overnight. Vehicle 1 was away from the charger after 6:00 h and
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returned around 16:00 h. Vehicles 2, 3, and 4 presented a similar operational pattern,
starting activities at 6:00 h, returning to location B between 13:00 and 15:00 h, and ending
operation around 16:00 h. This pattern indicates a possibility of using the vehicles as storage
for renewable energy generated during the daytime. Vehicle 5 presented a variable starting
time between 7:00 and 11:00 h and a lower probability to be in operation over the rest of
the day until 23:00 h.
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3.2. Stage 2: Building Energy Demand, Renewable Energy Generation, and Carbon Intensity

• Building Energy Demand: The electricity demand from the buildings located near
A, B, and C was analysed. Building A is used for academic and research activities,
and it is located at the Jubilee Campus. Buildings B and C are student halls located at
the University Park Campus. The descriptive statistics for the buildings’ electricity
demand (kWh) are summarised in Table 6. The results were differentiated between
seasons. The average demand for building A was 58 kWh, for building B was 34 kWh,
and for building C was 38 kWh.

Table 6. Electricity demand (kWh) of buildings A, B, and C.

All Year Winter Spring Summer Autumn

Building A (kWh)

mean 58 57 61 57 58
minimum 20 32 42 20 24
maximum 105 96 88 105 96

std. deviation 10 10 8 9 10

Building B (kWh)

mean 34 35 34 29 38
minimum 10 10 12 11 10
maximum 101 99 74 74 101

std. deviation 14 15 12 11 16

Building C (kWh)

mean 38 47 41 24 40
minimum 1 13 16 1 1
maximum 98 98 89 60 97

std. deviation 16 14 11 12 16
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Table 7 summarises the results of the cluster analysis, defining the low, medium, and
high threshold of electricity demand for buildings A, B, and C. These thresholds were used
as parameters for the V2G assessment.

Table 7. BED thresholds (kWh).

Low (kWh) Medium (kWh) High (kWh)

BED A 20.0–53.5 54–65 65.5–105
BED B 9.9–30.9 31–48.2 48.3–101.2
BED C 1.0–31.3 31.5–51 51.3–98

Figure 8 corresponds to the heatmap of the electricity demand for buildings A, B,
and C during 2019. Building A presented a uniform pattern across the year, with higher
electricity demand during the day between 8:00 h and 18:00 h. The demand from building
C was also higher during daytime, with peaks between 6:00 and 11:00 h and between
15:00 and 19:00 h. Conversely, Building C presented high energy demand from midnight
to 6:00 a.m, with another peak between 15:00 and 19:00 h. The electricity demand from
buildings B and C was highly reduced during the university holidays (April and June to
September). Building C presented high electricity demand during the early hours of winter.
It is also observed that the electricity demand was lower during summer for buildings B
and C.
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• Renewable Energy Generation: Energy generation from photovoltaics is available at
different buildings on the University of Nottingham campuses. Each campus works as
an independent grid, where the surplus generated from one building is transferred to
the university grid and used by other buildings. Therefore, the total energy generated
by three buildings at the University Park and eight buildings at Jubilee campuses
was analysed. The energy generation over the year and per season is summarised in
Table 8. The maximum energy generated at the University Park campus was 61 kWh,
and the maximum for Jubilee campus was 35 kWh.

The results of the REG cluster analysis are shown in Table 9, defining the low, medium,
and high threshold of electricity demand for buildings A, B, and C. These thresholds were
used as parameters for the V2G assessment.

Figure 9 presents a heatmap of the energy generated across the year in and over a 24 h
period. Both sites present a similar pattern; however, the capacity to generate energy at
the University Park campus is higher. The generation time during summer is from 06:00 h
to 18:00 h. This period is reduced to 09:00 to 15:00 h over winter. The highest peaks are
achieved between 09:00 h and 15:00 h from March to September.
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Table 8. Renewable energy generation from photovoltaics at the University Park and Jubilee campuses
(kWh per 30 min).

All Year Winter Spring Summer Autumn

University Park
Campus (kWh)

mean 7 3 9 10 4
maximum 61 44 60 61 48

std. deviation 11 7 13 13 9

Jubilee Campus (kWh)

mean 4 1 5 6 5
maximum 35 21 34 35 34

std. deviation 6 3 7 7 7
Note: Total data from three buildings from University Park and eight buildings from Jubilee Campus.

Table 9. Renewable energy generation thresholds (kWh per 30 min).

Low Medium High

Campus 1 0–9 9–26.2 26.2–61.4
Campus 2 0–4.9 4.9–14.8 14.9–35.3

Energies 2022, 15, x FOR PEER REVIEW  15  of  25 
 

 

Table 8. Renewable energy generation from photovoltaics at the University Park and Jubilee cam‐

puses (kWh per 30 min). 

  All Year  Winter  Spring  Summer  Autumn 

University Park Campus (kWh)           

mean  7  3  9  10  4 

maximum  61  44  60  61  48 

std. deviation  11  7  13  13  9 

Jubilee Campus (kWh)           

mean  4  1  5  6  5 

maximum  35  21  34  35  34 

std. deviation  6  3  7  7  7 

Note: Total data from three buildings from University Park and eight buildings from Jubilee Cam‐

pus. 

The results of the REG cluster analysis are shown in Table 9, defining the low, me‐

dium, and high threshold of electricity demand for buildings A, B, and C. These thresh‐

olds were used as parameters for the V2G assessment. 

Table 9. Renewable energy generation thresholds (kWh per 30 min). 

  Low  Medium  High 

Campus 1  0–9  9–26.2  26.2–61.4 

Campus 2  0–4.9  4.9–14.8  14.9–35.3 

Figure 9 presents a heatmap of the energy generated across the year in and over a 24 

h period. Both sites present a similar pattern; however, the capacity to generate energy at 

the University Park campus is higher. The generation time during summer is from 06:00 

h to 18:00 h. This period is reduced to 09:00 to 15:00 h over winter. The highest peaks are 

achieved between 09:00 h and 15:00 h from March to September. 

 

Figure 9. Half‐hourly renewable energy generation from photovoltaics at University Park and Jubi‐

lee campuses, UK. 

 Grid Carbon Intensity: The carbon intensity of electricity import is a measure of 

the CO2 g produced per kilowatt hour of electricity consumed [26] (Bruce et al., 

2021). 

 Table 10 summarises the descriptive statistics of the UK grid carbon intensity dur‐

ing 2019. The mean carbon intensity was 213.9 gCO2/kWh. Also presented are the 

carbon intensity thresholds for low, medium, and high emissions. 

   

Figure 9. Half-hourly renewable energy generation from photovoltaics at University Park and Jubilee
campuses, UK.

• Grid Carbon Intensity: The carbon intensity of electricity import is a measure of the
CO2 g produced per kilowatt hour of electricity consumed [26] (Bruce et al., 2021).

• Table 10 summarises the descriptive statistics of the UK grid carbon intensity during
2019. The mean carbon intensity was 213.9 gCO2/kWh. Also presented are the carbon
intensity thresholds for low, medium, and high emissions.

Table 10. UK energy grid carbon intensity (2019) and carbon intensity thresholds.

Grid Carbon Intensity (gCO2/kWh) All Year

mean 213.9
minimum 48
maximum 447

std. deviation 61.3

Carbon Intensity Thresholds

low 0–159
medium 160–259

high 260+
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Figure 10 corresponds to the UK carbon intensity during 2019. This analysis used the
actual CO2 values; values missing in the data were replaced by the forecasted CO2 values
for this timestep. It is evidenced that the intensity is variable across the days. However,
there is a faded pattern, indicating a general trend towards higher intensity between 06:00
and 09:00 h and between 16:00 and 20:00 h.
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3.3. Stage 3: Data Integration and V2G Assessment

Figure 11 shows the resulting charging and discharging instructions supplied to each
vehicle under the charging scheme described in Figure 3. These instructions were calculated
as part of the V2G simulation process described in Section 2.2.4. in which the battery state
of charge was simulated through the full year of historic data and charge instructions were
recalculated at each timestep based on the current status of the battery, building demand,
renewables, and grid intensity. The results are presented per vehicle and differentiated
between weekdays and weekends.

It is observed that the option to ‘discharge’ is recommended before the start of the
shifts of vehicles 1–4. This is explained by the high carbon intensity of the grid at that time.
According to the miles travelled per day and the battery state of charge of the vehicles at the
end of the day, it can be assumed that the vehicles could support the grid by discharging
between 6:00 a.m. and 8:00 a.m. The exception occurs for vehicle 5, where the option to
‘discharge’ is occasionally suggested in the early morning, which can be explained by the
high electricity demand from building C at that time.

The analysis suggests that all vehicles could be used to support the storage of renew-
able energy from photovoltaics by charging during short stops in the daytime between
April and October.

The recommended charging behaviour after the daily shifts for vehicles 1 to 4 was
found to be dependent on their arriving state of charge (Figure 11). The primary action
during the hours of 15:00–21:00 h was to delay charge, effectively offsetting charging load
to lower-intensity times of the night. Due to the morning discharge event and the lack
of daytime charging during winter, these vehicles were not at a sufficiently high state of
charge to discharge during the evening CO2 peak. During the summer months, vehicles
were typically discharged during the hours of 16:00–18:00 h and then delayed recharging
until after 21:00 h. This outcome suggests that an option to further reduce CO2 emissions
from a charging scheme would be reducing or delaying the morning discharge to ensure
the daily CO2 peak intensity in the evening can be supported by a battery discharge from
all vehicles.
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3.4. Stage 4: Carbon Emission Calculations

The analysis was conducted for three locations: building A, B, and C. The calculations
included the building energy demand, total renewable energy generation from each campus,
the behaviour of the vehicles charging and discharging, and the grid carbon intensity.

The carbon emissions from energy import and energy demand analyses for each build-
ing are presented in Tables 11–13, including the ‘baseline system demand’, which refers
to the buildings’ energy demand minus the renewable energy generation, with no electric
vehicles. ‘Unmanaged EV charging’ indicates the energy demand and carbon emissions
added by charging the EVs immediately upon arrival to a charger location, as well as the
V2G, which estimated the energy demand and carbon imports by applying the V2G ruleset
described in Figure 3.

Table 11. Simulated CO2 emissions of Building A.

Building A (1 Vehicle) Building A (10 Vehicles)

Baseline System
Demand

Unmanaged
EV Charging V2G Baseline System

Demand
Unmanaged
EV Charging V2G

Total Net Energy
Import (kWh) 956,801 958,084 958,064 956,801 969,626 969,425

CO2 from 1 year
System Net Import (kg) 207,683 207,983 207,754 207,683 210,680 208,398

Average CO2 Intensity
(campus energy)
(gCO2/kWh)

217.06 217.08 216.85 217.06 217.28 214.97

CO2 from 1 year
external top up (kg) 0 0 0 0 0 0

Average CO2 Intensity
(campus + external) 217.06 217.08 216.85 217.06 217.28 214.97

Instances of Vehicle
Battery Depletion 0 0 0 0 0 0

Table 12. Simulated CO2 emissions of Building B.

Building B (3 Vehicles) Building B (10 Vehicles)

Baseline System
Demand

Unmanaged
EV Charging V2G Baseline System

Demand
Unmanaged
EV Charging V2G

Total Net Energy
Import (kWh) 478,223 483,668 483,540 478,223 500,005 499,494

CO2 from 1 yr System
Net Import (kg) 107,033 108,284 107,613 107,033 112,037 109,354

Avg CO2 Intensity
(campus energy only)
(gCO2/kWh)

223.81 223.88 222.55 223.81 224.07 218.93

CO2 from 1 yr external
top up (kg) 0 0 24,880 0 0 86,280

Avg CO2 Intensity
(campus + external) 223.81 223.88 222.57 223.81 224.07 218.98

Instances of Vehicle
Battery Depletion 0 0 2 0 0 7
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Table 13. Simulated CO2 emissions of Building C.

Building C (1 Vehicle) Building C (10 Vehicles)

Baseline System
Demand

Unmanaged
EV Charging V2G Baseline System

Demand
Unmanaged
EV Charging V2G

Total Net Energy
Import (kWh) 550,615 551,344 551,326 550,615 557,903 557,723

CO2 from 1 yr System
Net Import (kg) 122,303 122,468 122,299 122,303 123,959 122,262

Avg CO2 Intensity
(campus energy only)
(gCO2/kWh)

222.12 222.13 221.83 222.12 222.19 219.22

CO2 from 1 yr external
top up (kg) 0 17,760 18,120 0 177,600 181,200

Avg CO2 Intensity
(campus + external) 222.12 222.13 221.83 222.12 222.19 219.23

Instances of Vehicle
Battery Depletion 0 2 2 0 20 20

It is observed that the total net energy import and CO2 from 1 year of system net
imports increased with unmanaged charging. However, V2G allowed for a reduction in
the average gCO2 per kWh despite adding additional energy demand from charging of
the electric vehicles into the system. For instance, in Building A, this was reduced from
217.08 gCO2/kWh with unmanaged charging to 216.85 gCO2/kWh; this is further reduced
to 214.97 gCO2/kWh when the fleet is increased to 10 vehicles. In Building B, the average
CO2 intensity per kWh was reduced from 223.88 gCO2/kWh to 222.55 gCO2/kWh; this
was further reduced to 218.93 gCO2/kWh when increasing the fleet size to 10 vehicles.
Finally, Building C also presented a reduction from 222.13 gCO2/kWh with unmanaged
charging to 221.83 gCO2/kWh with V2G; this was further reduced to 218.93 gCO2/kWh
with 10 vehicles. Instances of battery depletion were observed for Buildings B and C;
this occurred two times in a year for the V2G scenarios, which is equivalent to 0.2–0.5% of
the time. The battery depletion caused a small increase in the average CO2 intensity, as the
vehicle would require immediate charging.

In order to understand the impact of scaling up V2G, the carbon emissions with an
increased fleet size of 10 vehicles for each building were also calculated. The simulation
of vehicle charging/discharging over a 1-year period was repeated for the increased fleet
size for both an unmanaged charging scheme and the proposed V2G scheme (Figure 12).
For Buildings A and C, it is observed that one vehicle does not significantly impact the
average CO2 emissions. Nevertheless, it is observed that in the case of Building B, three
vehicles start to impact emissions, with the unmanaged charging scenario increasing
energy demand and thus emissions during the higher-intensity periods during the daytime.
The V2G scenario reduced emissions at peak times, concentrating charge activity towards
lower-carbon-intensity periods during the night.

It is observed that the impact of unmanaged charging with a larger fleet was to further
increase load during the daytime for Buildings A and B (Figure 12), including during
periods of peak grid carbon intensity. Conversely, the V2G scheme was able to significantly
flatten the average energy import load throughout the day by the combined mechanisms
of diverting vehicle charging demand to times of lower carbon intensity and reduction in
the existing buildings’ daily peak CO2 emission by discharging from the fleet’s batteries to
reduce peak grid import.
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Figure 12. Simulated average carbon emissions over 24 h from the total import of energy to the
building–renewables–vehicles system for Buildings A, B, and C. Scenario presented for ‘baseline
system demand (no vehicles)’, ‘unmanaged charging’ (actual fleet), ‘unmanaged charging’ (10 vehicle
fleet), ‘V2G charging’ (actual fleet), and ‘V2G charging’ (10 vehicle fleet) at each building.

The three cases in Figure 12 suggest higher carbon emissions than baseline for V2G
from 9:00 p.m. to 4:00 a.m. This is explained both by the fact that the vehicles prioritise
charging when the grid carbon intensity is lower and that battery capacity discharged
during peak grid intensity must be recovered during low-intensity periods. As shown
by the calculation results, the overall effect of this activity is a reduction in average CO2
intensity of the system.
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4. Discussion

This research presented the potential contribution that charging infrastructure can
make to reduce carbon emissions when integrating the energy storage capacity of EVs with
the fluctuations of local energy demand and renewable energy generation. The vehicle
behaviour analysis introduced the potential of using behaviour data to optimise the location
of charging infrastructure and vehicle availability to store and discharge energy. Multiple
different approaches to plan electric vehicle charging infrastructure are reported in the
literature, such as the node-based approach to minimise the number of chargers while
fulfilling the demand of all users; the path-based approach, which aims to provide charging
services in common pathways; and the tour-based approach, which estimates charging
demand based on parking demand [29]. For the case of vehicle-to-grid, it was found that
only 10% of the stops of the vehicles were longer than one hour, which means that not
every stop represents an opportunity to connect to a charger. In this way, a tour-based
approach to parking demand considering vehicles energy storage assets would be the most
suitable pathway to identify strategic locations for V2G infrastructure.

It was estimated that the five vehicles would be simultaneously available to connect
to a V2G charger 55% of the time during the year. This means an equivalent of up to
200 kWh battery storage capacity without requiring additional investment in battery
storage. According to Comello and Reichelstein [30], the U.S. market price of lithium-ion
batteries is around USD 171 per kWh and USD 970 per kW. If we consider the entire fleet of
50 vehicles, the battery storage capacity would theoretically be more than 2 MWh, which
would correspond to USD 1.94M in traditional battery storage. To provide a scale of battery
storage capacity for 50 vehicles, it would be almost the equivalent capacity of the battery
installed at the Community Energy Scheme Project SCENe (2.1 MWh), which, over the
course of one year, generated 152.8 MWh, which is enough to cover the annual electricity
consumption of 64 average properties in the community energy scheme [31].

According to the presented carbon emissions and energy demand calculations, it was
observed that although the total energy demand of the system was increased by the
introduction of vehicle charging, the way that this charging was managed had a significant
impact on carbon intensity. The aim of reducing the average carbon emissions was achieved,
and the model with the increased fleet (×10) allowed further understanding of how V2G
could support a reduction in CO2 emissions. In agreement with Alsharif et al. [32], the V2G
scenarios with an increased fleet (10 vehicles) showed a load shifting, valley filling, and peak
shaving (Figure 12); these benefits of V2G are presented in Table 14.

Table 14. Observed benefits of vehicle-to-grid.

Load Shifting Valley Filling Peak Shaving

Increased CO2 imports
between 9:00 p.m. and 4:00
a.m, as the charging scheme
prioritised charging when the
CO2 grid intensity was low.

A small increase on the CO2
imports during mid-day,
when renewable energy
generation was high and
vehicles were available
to charge.

This occurred between 6:00
a.m. and 10:00 a.m. and
between 5:00 p.m. and 7:00
p.m., when the grid CO2
intensity and/or local
building demand was high.

As presented in the introduction, V2G programmes usually require the end user to
commit connecting to a charger for a certain amount of time to make the business case
feasible. Nevertheless, these clauses may add complexity to the relationship with the
end user and disincentivise the adoption of V2G. The analysis presented in this paper
suggests that by determining a minimum state of charge required per day based on vehicle
usage and assuming a connection of the vehicles every time they are near a charger and
remaining over 30 min, it is possible for the diesel and non-V2G compatible electric vehicles
to make the transition to EVs and integrate V2G without affecting most of their current
operation. However, there were a few events of battery depletion, representing 0.5% of
the entire year in the simulated V2G scenarios. These events can be addressed in advance
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by allowing the end user to manually opt out of the V2G scheme and charge their vehicle
to fulfil their travelling requirements. It is also important to note that the simulated
scenarios only included the V2G chargers proposed to cover the fleet demand; however, it
is expected that V2G infrastructure will be part of a wider charging ecosystem that may
offer other types of charging technologies to fulfil charging demand (e.g., smart, fast, rapid,
and wireless charging).

In comparison to the results from the existing five-vehicle fleet, the increased impact
on carbon intensity of the larger simulated fleet demonstrates that V2G will provide the
most benefit in application over larger populations. Whereas the impact of an individual
vehicle may be relatively small, there is significant potential for larger aggregated groups of
vehicles to act as a single energy storage unit while maintaining their existing use patterns.

Therefore, analysing a wider group of vehicles and buildings would provide a further
understanding of how other type of fleets [4] can support energy storage based on their
proximity to charging infrastructure.

This research presented the integration of different sources of data to address the best
possible scenarios for vehicle-to-grid. However, this system will need to be improved in
terms of capturing and centralising data to allow for larger-scale calculation of the most
suitable scenarios according to user needs, building energy demand, renewable energy
generation, and grid carbon intensity. According to Alsharif et al. [32], the integration of
electric vehicles into the energy grid may cause regulation issues and peak load rising,
but this can be addressed by integrating an advanced power management system and
using machine learning to predict the charging scheme 24 h in advance. The findings of
this research show how a system can support the transition of integrating EVs without
affecting the current operation of vehicles and addressing the issues of peak load demand.

The V2G strategy presented is a scheme based on fixed thresholds calculated from
historical data. This scheme can be further optimised in several ways:

- Defining thresholds per season to allow for maximisation of the benefits of vehicle-to-
grid. This will allow for better capture of vehicle and energy usage per season.

- Calculating the V2G scenarios 24h to 48h in advance. This will require integration of
grid carbon intensity and building energy demand forecasts. This will also require in-
tegration of prediction of vehicle availability to connect to V2G chargers, as developed
by Shipman et al. using machine learning techniques [23,24,33].

The analysis was focused on the use of historical datasets. However, the same parame-
ters could be used in real-time applications if V2G chargers run as ‘data aggregators’ to
optimise the operation of the system. This system would require predictions of grid carbon
intensity, such as the carbon intensity API [25], which provides a forecast 96 h in advance
for each region in Great Britain, and predictions of energy demand, local renewable energy
generation, and vehicle availability, which could be integrated using machine learning
(e.g., [23,24,33,34]).

According to the report “Understanding the true value of V2G” [35], a user can
achieve around GBP 436 of annual revenue with smart charging (with a plug-in rate of
75%). This economic incentive represents the feasibility of the business model. However,
the capacity of vehicle-to-grid to reduce carbon emission from the grid seems to be the only
charging alternative to decarbonise the transport system in the pathway to achieve net zero
and support the energy grid as presented in the Future Energy Scenarios Report [19].

5. Conclusions

This paper presents an overview of the role of V2G to support decarbonisation of the
transport and energy sectors in the UK. The authors presented a method to assess V2G
scenarios using real-world behaviour data from non-V2G-compatible vehicles, building
electricity demand, local renewable energy generation data, and grid carbon intensity.

The outcomes of the simulated scenarios suggest that unmanaged charging increased
the net energy demand and CO2 imports of the system, whereas V2G allowed for a
reduction in average CO2 imports despite adding the energy demand of charging EVs.
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It was possible for the diesel and non-V2G-compatible electric vehicles to operate in a
simulated V2G scenario; therefore, it is expected that this fleet would be EV-V2G compatible
in the real application without affecting most of its operation. However, instances of battery
depletion were observed for Buildings B and C; this occurred two times in a year for the V2G
scenarios, which is equivalent to 0.2–0.5% of the time. Therefore, an opt-out mechanism is
suggested for V2G schemes to allow users to charge on demand on busy days.

The impact of unmanaged charging was further increased with a larger fleet (10 vehicles).
Conversely, the V2G scheme was able to significantly flatten the average energy import load
throughout the day by the combined mechanisms of diverting vehicle charging demand to
times of lower carbon intensity.

The location analysis suggested that all vehicles were at the proposed V2G locations
more than 55% of the time. These stationary vehicles equate to a 200 kWh battery storage
capacity, which would be available without requiring further infrastructure investment.
Although the impact of an individual vehicle may be relatively small, there is a significant
potential for larger aggregated groups of vehicles to act as a single energy storage unit
while maintaining their existing use patterns.

The proposed optimisation of the system would rely on access to different sources
of data from vehicles, building energy demand, renewable energy generation, and grid
carbon intensity with 24–48 h forecasts and the implementation of optimisation models
using machine learning and artificial intelligence techniques.

Future charging schemes aiming to optimise carbon emissions should take battery
degradation parameters into account; for instance, Truong M. N. Bui et al. [21] propose a
VxG charging model that can optimise battery ageing.
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