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Abstract: In smart cities, relief items distribution is a complex task due to the factors such as
incomplete information, unpredictable exact demand, lack of resources, and causality levels, to name
a few. With the development of Internet of Things (IoT) technologies, dynamic data update provides
the scope of distribution schedule to adopt changes with updates. Therefore, the dynamic relief
items distribution schedule becomes a need to generate humanitarian supply chain schedules as a
smart city application. To address the disaster data updates in different time periods, a dynamic
optimised model with a sliding time window is proposed that defines the distribution schedule
of relief items from multiple supply points to different disaster regions. The proposed model not
only considers the details of available resources dynamically but also introduces disaster region
priority along with transportation routes information updates for each scheduling time slot. Such
an integrated optimised model delivers an effective distribution schedule to start with and updates
it for each time slot. A set of numerical case studies is formulated to evaluate the performance of
the optimised scheduling. The dynamic updates on the relief item demands’ travel path, causality
level and available resources parameters have been included as performance measures for optimising
the distributing schedule. The models have been evaluated based on performance measures to
reflect disaster scenarios. Evaluation of the proposed models in comparison to the other perspective
static and dynamic relief items distribution models shows that adopting dynamic updates in the
distribution model cover most of the major aspects of the relief items distribution task in a more
realistic way for post-disaster relief management. The analysis has also shown that the proposed
model has the adaptability to address the changing demand and resources availability along with
disaster conditions. In addition, this model will also help the decision-makers to plan the post-disaster
relief operations in more effective ways by covering the updates on disaster data in each time period.

Keywords: dynamic scheduling; relief items distribution; disaster; humanitarian supply chain;
optimisation; sliding time window; smart cities

1. Introduction

Millions of citizens in several cities have been extremely affected by the growth of
disasters [1]. To minimize the impact of disaster, effective distribution of relief items be-
comes a crucial aspect of smart cities in humanitarian supply chain management to support
disaster survivors. However, after any disaster, constraints such as time, cost, priorities,
limited resources and asymmetric relief demand make the Relief Items Distribution (RID)
challenging [2]. In addition to these challenges, the available information immediately after
a disaster is highly irregular, which potentially affects the distribution relief management
strategies. For example, during the post-disaster relief management of the Tohoku disaster
of 2011 in Japan, it was observed that there had been a sudden demand for food and water,
particularly in areas that were not highly affected by the tsunami [3]. Information such
as vehicle availability, disaster region priority, available transportation routes and their
conditions are among the crucial factors for effective relief items distribution.
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In most of the disaster environments, supply points are equipped with limited re-
sources and have a direct impact on the efficiency of the distribution task [4]. Additionally,
for effective RID, the number of the affected population has always been the primary
concern [5]. To incorporate these issues in the RID model, the distribution of relief items
should consider the causality level and relief item demand across the disaster regions [6].
Consideration of the affected population rather than the total population in the distribution
task makes the distribution more rational regarding all the disaster regions. In other words,
the distribution plan must consider the number of disaster victims across all the disaster
regions, which can be the estimation, based on senses data [7]. It has also been argued that
the traditional distribution strategies mainly depend on static data rather than dynamic
data, which may lead to an imbalance between supply and demand for relief items over a
relief items distribution period [8].

Another concern in the disaster scenarios is setting distribution priorities, which
appear as one of the major objectives for decision-makers to balance disaster impact levels
in the distribution plan [9]. The other objective of any disaster relief distribution model is
to address the uncertainty and changing disaster information for each time period [10,11].
In other words, the distribution schedule must be planned iteratively with multiple time-
periods based on available information, relief items and other resources. Apart from
these, under disaster environments, road conditions and traffic flow changes dynamically,
which brings additional complexity to the distribution plan [12]. This complexity of the
relief items transportation path has a significant impact on routing vehicles; therefore,
the transportation routes should also be considered as an objective of the path selection
model [13].

Considering the different challenges that appeared for the implementation of RID
in disaster environments, there is a need for an effective RID model that can address the
discussed issues and make the distribution task operative. The aim of this study is to
develop an effective RID model that reflects the more realistic disaster scenarios and also
covers as many different disaster-related aspects as possible to help the decision-makers
in post-disaster relief items distribution management. In this paper, a dynamic relief
distribution model with a sliding time window is presented that generates an optimised
distribution schedule for each time slot based on the updated information. The initial
optimum distribution schedule is generated with the available information on disaster
regions, casualty levels, available resources and transportation routes. The schedule is
re-optimised at each time slot with the updated information. The main contributions of
this paper can be summarised as:

i. A fuzzy-based distance matrix is generated at each time slot that is applied for
route selection and vehicle routing. This fuzzy distance is calculated based on road
condition, road traffic load and the number of turns in the route. The fuzzy variable
gives a weighted fuzzified distance between locations and, hence, a fuzzified distance
matrix is used to find the shortest path between two points.

ii. The priority index of each disaster region is calculated based on casualty level and
wait time for relief items. The casualty level is defined based on the number of people
severely affected and the initial wait time is set to zero for each disaster region. The
priority index is calculated as the weighted sum of these individual priorities. At
each time slot, the casualty level is updated along with the wait time for receiving
relief items for each disaster region and, hence, the priority index is updated in each
time slot.

iii. The re-optimisation of distribution schedule with sliding time window based on the
time-varying updates of the disaster impact, relief items demand and other resource
information over a period.

In the presented RID model, the uncertainty of disaster impact, update in disaster
information, fuzzified distance matrix and priority index are combined into a single dy-
namic RID model to consider the aforementioned dynamic conditions. This dynamic RID
model generated relief items distribution schedules based on supply points information,
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the disaster region’s causality information and also road conditions. These considera-
tions in the model make the model as close to a realistic representation as possible of
humanitarian supply chain management after a disaster as a smart city application. The
performance measure of the model is analysed in terms of its applicability to reflect realistic
implementation in the humanitarian supply chain. The performance evaluation shows that
the proposed dynamic RID model reflects very close realistic distribution tasks covering
many post-disaster relief operation management aspects compared with the similar distri-
bution model used for the selected case study [14]. This also makes the decision-maker to
implement relief items distribution operation more effectively in disaster environment.

The rest of the paper is organised as follows: In Section 2, the state of the art in RID
is discussed. In Section 3, the solution approach for the dynamic RID model is presented.
In Section 4, computational experiments and results are presented. In Section 5, the
comparative performance analysis of dynamic RID models is described. In Section 6, an
observatory conclusion has been presented. Finally, in Section 7, discussion and directions
for future work have been presented.

2. Related Works

Over the years, many RID models have been used for the humanitarian supply in
disaster environments across different cities [15–17]. Mathematical [18,19] and compu-
tational [20,21] models have been used for the effective supply chain. However, there
have been many disaster instances where RID management went through different chal-
lenges. In this section, RID challenges and models that have used computation meth-
ods, mostly within the previous 10 years, are summarised. Different papers that high-
lighted the managerial, transportation, multi-objective and distribution time period aspects
have been reviewed. Review of the previous works are broadly categorised into the
following categories.

2.1. Managerail Aspects in RID

In order to maintain relief items distribution to support the disaster victim’s life, relief
items distribution is planned, implemented and managed by decision-makers. For the
effective distribution task, the RID schedules need to be generated based on the information
from the disaster-affected regions. For example, the case study of San Francisco showed
that in an emergency, relief item distribution needs to be well-managed in terms of infor-
mation gathering to enhance the efficiency of the relief operations [22]. The analysis of
this study has also shown that the RID model must cover the post-disaster relief operation
management aspect to make the distribution task effective. In addition, the study also
showed that all the information related to the disaster-affected regions, including road and
transportation constraints, needs to be well-managed to minimise the relief items distribu-
tion time. Analysing another disaster, the Haiti earthquake showed that there had been a
large number of casualties after the disaster, which had made the relief items distribution
management even more complex during the post-disaster disaster relief operations [23].

In a case study of the Nepal earthquake in 2015, it was shown that the relief items
distribution management had not been completely straightforward as had been planned,
as the expectations of disaster victims were not uniform [24]. A different study on the
Nepal earthquake showed that not all the victims received all the relief items they needed
because of the poor distribution design and management [25]. Some of the victims had
received only one type of relief item whereas some had received all kinds of relief items
they needed. Another study from the Nepal earthquake showed that there had also been
a time lag between the event and the arrival of relief items and the disaster event [26].
In these studies, one of the managerial issues has been the time lag, which has a direct
impact on disaster victims’ recovery management since the disaster victims need timely
relief support for their survival after the disaster. Consideration of the timing of relief
items supplies to the disaster regions is crucial, especially when the distribution plan is
being operated over multiple time periods. Inclusion of supply time or wait time has been
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missing in these approaches of humanitarian supply chain decision-making, which create
bias in the distribution towards some disaster regions.

2.2. Transportation Aspects in RID

The road status after a disaster is one of the major components to be addressed in
the RID model. Because of the changed conditions of the road after the disaster, the
distribution of relief items to the demand regions in the affected area must be based on
real situations [27]. The transportation routes have a direct impact on the travel time and,
hence, on the relief item distribution time. The change in transportation conditions has
hampered the relief distribution task in post-disaster relief management [28]. This study
has shown that the damage on the routes needs to be analysed to find the best alternative
effective routes for transportation. The congestions on the transportation routes have
serious consequences on the transportation time of the relief items to the victims as the
vehicle’s travel time is directly related to the road traffic congestion. A severe problem
that usually occurs after a disaster is the destruction of some parts of the transportation
network. As a result, some roads and links may not be accessible, which directly affects the
transportation route. To analyse this, a scenario-based method has been used to cover the
uncertainty and dynamic road conditions with heterogeneous fleet vehicles [29]. However,
this model does not cover the vehicle selection criteria, which is crucial in an efficient
distribution model. The changing road conditions highlights the need for a distribution
model that covers the dynamic road conditions and the selection of appropriate vehicles
for each time period to get the optimal distribution plan.

In disaster environments, often, there is more than one means of transportation and
they vary in type, cost, capacity and speed. Decision-makers need to plan the distribution
system with a heterogeneous fleet of vehicles with varying cost, capacity and speed [30,31].
These varying parameters of any vehicles need to be considered for the vehicle’s trans-
portation planning. In disaster scenarios, it is often required to determine the optimal
combination of vehicles that will generate efficient ways to distribute relief items. Simul-
taneous optimisation with the vehicle composition and routing is required to fulfil the
demands [32,33]. The objectives are more often set as minimisation of travel time, associated
operational cost and maximum utilisation of the loading capacity of the vehicles. Finding
the optimum transportation routes are also useful for the relief distribution in disaster
environments as the optimum transportation routes had been advantageous in terms of
minimisation of travel time and associated operational cost. Different approaches had been
applied over the years to generate optimised routing schedules [34,35]. A constructive
heuristic approach with a local search [36] was applied for vehicle routing where a demand
sequence was generated by constructing a distribution schedule one-by-one, such that the
highest priority demand appeared first. The dynamic vehicle routing was incorporated
with real-time information to generate an optimised transportation schedule. The real-time
information-based routing system had an optimum result in comparison to the routing
based on static information [37]. Applying dynamic vehicle routing and distribution sched-
ule total operational cost decreased. A hybrid genetic algorithm-based search [38,39] was
applied that combined the local neighbour search with genetic algorithms to explore the
improved vehicle routing schedule. Minimisation of time and cost and maximisation of
the utilisation of vehicle capacity and early response time have been commonly used for
the vehicle selection task. However, all the objective functions have been not applied in a
single model.

2.3. Periodic Distribution Aspects in RID

Another concern in the disaster distribution plan is “how long the distribution should
be operated”? Studies have shown that the multi-period or periodic distribution models
had a better impact on the disaster regions in comparison to single period distribution [40].
Mahootchi and Golmohammadi [41] had applied dynamic distribution in terms of the static
distribution of relief items in multiple time-periods. The multiple time-period distributions
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raised another issue regarding the inclusion of the disaster information in the distribution
plan for a future time-period. The forecasting approach has been applied as one of the
ways to represent a dynamic condition where the information was anticipated with the
change of time [42]. Estimation methods [5,7,8] have also been applied to approximate the
relief demand based on the affected population in particular disaster regions. Sheu [43]
applied a dynamic relief items distribution model by utilising an estimation method for the
future time-period demand. However, in disaster environments, the distribution strategies
are often far from the estimation or forecasting because of the complexities such as unpre-
dictability and uncertainty associated with the next period. To deal with unpredictability
and uncertainty in a disaster environment, the probabilistic risk factor has been analysed
for prioritising distribution tasks considering the delay time crucial in defining priority [44].
A robust optimisation approach has been applied as one of the alternative methods to deal
with the uncertainty and find feasible solutions for humanitarian relief operations [45]. In
any RID model, if real-time updates have not been included in the distribution plan for
multiple time periods, it may hinder the efficiency of the model [46,47].

By analysing different models and corresponding challenges, it has been noted that
there is a need for a RID model that generates the dynamic relief items distribution sched-
ules considering future information, the availability of vehicles and other resources, which
is challenging. It has also been argued, in the literature, that the proper selection of re-
sources, transportation fleet and vehicle routing routes are the key components in dynamic
relief items distribution management. For effective dynamic modelling, the distribution
model needs to be comprised of past information and available current information along
with any future predictable or anticipated updates [48]. Additionally, for quick and efficient
relief distribution, it has been important to prioritise the disaster regions based on victims’
severity [49]. These studies have also highlighted that static models have been found to
be less effective in disaster scenarios as these models have not been able to update the
distribution task with the information update. From the analysis of the relief distribution
models in different disaster environments (case studies) operated in different cities, it has
also been discovered that there is a need for a dynamic optimised RID model to improve
the distribution of relief items tasks in disaster environments, considering the management
perspectives and more realistic relief operations. In the dynamic model, relief items distri-
bution management should consider the changing conditions as a basic requirement for
effective relief operations in disaster environments. In other words, dynamic relief items
distribution is the key to having effective distribution operations in disaster environments
as the information related to relief demand, available resources and travel routes change
with time.

3. Dynamic RID Model with Sliding Time Window

In this paper, a unique dynamic relief items distribution with a sliding time win-
dow has been applied to address the challenges of uncertainty and changing information
conditions after a disaster environment.

3.1. Sliding Time Window Optimisation

In a disaster environment, a multiple time period or periodic distribution model is
required to support the disaster victims over a longer period [40,41]. Tolooie et al. [50]
highlighted the need for a multi-period supply model, based on demand in each period, to
make the distribution more effective. In this paper, the sliding time window optimisation
has been applied to achieve optimal relief items distribution in each time period over a
longer duration. Sliding time window optimisation covers the dynamicity regarding the se-
lection of the optimum distribution schedule in each time period. In this proposedapproach,
at the starting time slot (time period), the distribution schedule starts with an optimum
distribution schedule based on the available information of the disaster region’s status,
location, demand and available resources, including the heterogeneous vehicle fleet at
supply points. At each time slot, the related information is updated, thus, the distribution
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schedules are re-optimised to cover the updated information. The basic flow diagram of
the sliding window concept is presented in Figure 1. This proposed multi-time slot with a
sliding window dynamic RID model will optimise the distribution schedule according to
the updated information.

Appl. Sci. 2022, 12, x FOR PEER REVIEW 6 of 25 
 

to make the distribution more effective. In this paper, the sliding time window optimisa-
tion has been applied to achieve optimal relief items distribution in each time period over 
a longer duration. Sliding time window optimisation covers the dynamicity regarding the 
selection of the optimum distribution schedule in each time period. In this proposedap-
proach, at the starting time slot (time period), the distribution schedule starts with an op-
timum distribution schedule based on the available information of the disaster region’s 
status, location, demand and available resources, including the heterogeneous vehicle 
fleet at supply points. At each time slot, the related information is updated, thus, the dis-
tribution schedules are re-optimised to cover the updated information. The basic flow di-
agram of the sliding window concept is presented in Figure 1. This proposed multi-time 
slot with a sliding window dynamic RID model will optimise the distribution schedule 
according to the updated information. 

In the first time slot window, the optimum distribution schedule is generated based 
on the available information, which includes: vehicles’ availability, disaster region prior-
ity and relief resources. However, only one time slot distribution strategy does not make 
the distribution plan effective since the disaster survivors required longer support in dis-
aster environments [51]. Considering this, in this sliding time window approach, opti-
mised distribution schedules for each time slot based on the demand, route condition, 
priorities and available resources. In this approach, the distribution plan starts with an 
optimised distribution schedule which is re-optimised on the following time slot, i.e., 
when the window slides to the next time slot, the distribution schedules are re-optimised 
and rescheduled. In the re-optimisation process, updated information on resources, 
routes, priorities, and vehicles’ availability along with the pre-planned schedule is used 
to generate a new optimised distribution schedule at the next time slot. 

 
Figure 1. Sliding Time Window Approach. 

3.2. Objective Function 
Three objective functions and subjected constraints are set for the dynamic RID 

model. The minimisation of unmet demand for relief items at all demand regions and the 
minimisation of total vehicles’ travel time for the distribution and minimisation of the 
total cost are the objectives defined for this model. The delay factor (service time) is also 
considered in the cases where any vehicle distributes relief resources to more than one 
demand region. For this model, a duration of 30 min is set as the delay time for the relief 
items distribution processing time at each intermediate demand region in the 

Figure 1. Sliding Time Window Approach.

In the first time slot window, the optimum distribution schedule is generated based
on the available information, which includes: vehicles’ availability, disaster region pri-
ority and relief resources. However, only one time slot distribution strategy does not
make the distribution plan effective since the disaster survivors required longer support
in disaster environments [51]. Considering this, in this sliding time window approach,
optimised distribution schedules for each time slot based on the demand, route condition,
priorities and available resources. In this approach, the distribution plan starts with an
optimised distribution schedule which is re-optimised on the following time slot, i.e., when
the window slides to the next time slot, the distribution schedules are re-optimised and
rescheduled. In the re-optimisation process, updated information on resources, routes,
priorities, and vehicles’ availability along with the pre-planned schedule is used to generate
a new optimised distribution schedule at the next time slot.

3.2. Objective Function

Three objective functions and subjected constraints are set for the dynamic RID model.
The minimisation of unmet demand for relief items at all demand regions and the minimi-
sation of total vehicles’ travel time for the distribution and minimisation of the total cost
are the objectives defined for this model. The delay factor (service time) is also considered
in the cases where any vehicle distributes relief resources to more than one demand region.
For this model, a duration of 30 min is set as the delay time for the relief items distribution
processing time at each intermediate demand region in the transportation route. A number
of variables, as listed in Table 1, are defined to formulate the RID problem as follows:

i. Minimisation of unmet demand for relief items (f1):

Min f1 (RS) = Nc−∑Nv
i=1 ∑jxi

j=1 fδd(rij), 1 ≤ jxi ≤ kmax

ii. Minimisation of total time spent (f2):

Min f2 (RS) = ∑Nv
i=1 ∑jxi

j=1 Tij + 30 ∗ nVt + Toffset, 1 ≤ jxi ≤ kmax
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where n is the total number of vehicle tours with multiple demand regions. Subject to:

f(x) =

{
∑

j
α=1 D(fdx,dy(ri,j−1),fdx,dy(ri,j))

Φi ,
0, Others

if ri,j−1 and ri,j /∈ Φ

iii. Minimisation of total vehicles’ transportation cost (f3):

Min f3 (RS) = ∑Nv
i=1 Ψi

Table 1. Variables and description used in the model.

Variables Description

Nc Total demand for relief items in disaster regions.

Vt Vehicle tours with multiple demand regions.

rij
Assigned DRs in resource (RS) with the jth tour of to the ith vehicle, along with
attributes DR; d, dx, dy.

fδd(rij) A function that gives the partial relief items at rij demand regions.

fdx, dy(rij) A function that returns the location of rij demand region.

Vt The vehicle assigned for transportation.

Nv Number of vehicles assigned in relief items scheduling.

kmax Maximum missions planned in resource scheduling.

jxi Executable missions of the assigned ith vehicle.

Φi The velocity of the ith vehicle.

Ψi Cost of the ith vehicle.

Tij Time spent between demand regions rij−1 and rij of the ith vehicle.

Toffset Offset time for the vehicle before starting the next journey.

RS Routing Schedule.

In this dynamic RID model, the following assumptions are postulated:

1. The geographical location of disaster regions and supply points are known.
2. The total affected population of the disaster regions are known.
3. Relief items demand is proportional to the population suffering in the corresponding

disaster regions.
4. Heterogeneous relief items are bounded in a single bundle and can be loaded into

any vehicle.
5. Connecting links between disaster regions and supply points along with correspond-

ing distances are known.

3.3. Dynamic Path Calculation Using Fuzzy Logic

In general, the shortest distance route is selected while making the selection from
the supply point to the disaster region. Normally, it is assumed that the travel time is
proportional to the distance between two locations. However, a disaster may damage the
condition of the roads, which eventually impacts the humanitarian relief operations [52].
Therefore, due to the change in road conditions, the travel time and the selection of routes
based on prior information in disaster environments may not be the optimal choice, as
other factors such as road traffic condition, road geographical status, and road conditions
are also crucial in defining travel time. An iterative best route selection strategy in each
time slot is required based on updated information about the road conditions.

In this dynamic distribution model, a fuzzified distance matrix has been used to
identify travel time more realistically. The fuzzified distance matrix is a modification of the
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traditional distance matrix where the crisp distances between locations are changed into
the fuzzified distance. Three fuzzy input variables (Road Condition, Traffic Condition and
Number of Turns) and one fuzzy output variable (Weight Factor) are used in the dynamic
RID model. There has not been any sufficient appropriate data available for defining the
fuzzy memberships and rules for this paper. However, there has been evidence that in the
absence of sufficient data, the appropriate knowledge base is useful in defining the fuzzy
system [53].

In this model, based on research works on road traffic conditions after disaster envi-
ronments [54,55] and generalised knowledge from the literature, the three most appropriate
fuzzy variables, values (listed in Table 2) and forty fuzzy rules are defined. These fuzzy
variables reflect the generalised circumstances with different levels of travel route status
after the disaster. Four fuzzy levels for each fuzzy variable have been applied to describe
the road status. Each of these parameters has been fuzzified with different linguistic sets.
The trapezoidal membership function is selected for each input and output parameter. For
each fuzzy variable, the universe is defined in the range [0 100] and the membership value
in the range [0 1]. Fuzzy values are defined by their corresponding range in the universe
as shown in the plot in Figure 2. These ranges are defined in terms of the condition of
the fuzzy variables. For example, for Arc turns, the range [0 15] is defined as very low,
range [5 45] and so on as listed in Table 2.

Table 2. List of fuzzy variables and values.

Fuzzy Variables/
Values

Road Condition Very poor Poor Average Good

[0 20] [10 55] [40 80] [75 100]

Traffic Condition Low Average Heavy Obstructed

[0 20] [10 50] [35 70] [65 100]

Number of Turns Very low Low Medium High

[0 15] [5 45] [30 70] [60 100]

Weight Factor Very low Low Medium High

[0 25] [10 45] [35 80] [60 110]
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Appropriate fuzzy rules are synthesised considering all parameters with the relevant
importance in disaster environments. Some of the synthesized rules are presented below:
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Example of the Fuzzy rules
If Arc_condition = V-poor and Arc_load = Obstructed and Arc_turns = High
Then Weight_factor = V_low.
If Arc_condition = Poor and Arc_load = Average and Arc_turns = Average
Then Weight_factor = Low.
If Arc_condition = Average and Arc_load = Low and Arc_turns = V_low
Then Weight_factor = High.
If Arc_condition = Good and Arc_load = Average and Arc_turns = Average
Then Weight_factor = Medium.
If Arc_load = Average or Arc_turns = Average
Then Weight_factor = Low.
Defuzzification is applied to get a value of weight factor by applying an inferred fuzzy

reasoning. The standard Centre of Gravity method is used for the approximation of the
distribution of the fuzzy sets. After defuzzification, each crisp arc length in the distance
matrix is changed into a fuzzified distance matrix. This fuzzified distance matrix is used to
find the shortest equivalent route between any two links by applying the Floyd–Warshall
algorithm as this algorithm has better performance in finding the all-pairs shortest paths in
the dense graph [56]. The fuzzified distance and its impact on travel time are illustrated in
the following example.

Example:

Distance between supply point 30 to disaster region 1: 20.75 km
Vehicle speed: 40 km per hour
Travel Time (based on: traditional distance/vehicle speed): 31.12 min

Assume fuzzy variables as:

Arc-Condition = Poor, Arc-Load = Heavy, Arc-Turns = High
Arc-Weight-Factor (Applying fuzzy variables and rules): 0.357
Effective length: 20.75 + 20.75 ∗ (1 − 0.357): 34.092 km
(based on the synthesised fuzzy system)
Travel Time (based on: fuzzified distance/vehicle speed): 46.68 min

From the above example, it has been clearly observed that the travel distance and,
hence, the travel time is changed because of the changed condition of the routes. This
signified that for an effective travel plan, all the routes’ travel time needs to be calculated
as an effective travel time.

3.4. Heterogeneous Vehicles Routing (HVR)

In the dynamic relief items distribution model, a variant of the VRP considering a
heterogeneous fleet with a limited number of vehicles at supply points is applied. The
objective of HVR is defined to select the vehicle sets and routes from the supply points
by optimising the selection criteria. In this model, the best-fit method is applied as the
selection criteria for the vehicle selection at each supply point in each time slot. The best-fit
selection gives the most suitable vehicle settings based on the relief item demand volume
and the vehicle’s loading capacity for distribution. For the HVR, the following assumptions
are applied to the constraints set:

i. Only the disaster regions with non-negative relief demand are considered for vehicle
routing at each time slot.

ii. Thirty minutes duration is set as the delay (service) time for unloading relief items
from a vehicle in a disaster region.

iii. Additional thirty minutes duration is set as offset time for each vehicle after a round
trip. This offset time is defined for vehicle refueling, cleaning and other small main-
tenance work. Any vehicle is available for the next trip after the roundup time with
round trip journey time + service time + offset time.
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For the HVP, four categories of vehicles have been considered with their cost, capacity
and speed. A synthesised value on vehicle cost, capacity and speed are considered for each
vehicle type as presented in Table 3.

Table 3. Vehicle parameters of each type at supply points.

Parameter Type-1 Type-2 Type-3 Type-4

Cost/Hour (£) 1000 1500 2200 3500

Capacity (kg) 4000 3000 2500 2000

Speed (kmph) 40 50 60 80

3.5. Priority Indexing

During post-disaster humanitarian relief task, ensuring equity in distribution to all
disaster regions in a comparable way is required to enhance the effectiveness of the distribu-
tion task [6]. In some RID models, a trade-off between distribution quantitative measures
in terms of distribution time, operational cost, response time and reliability have been
applied by implementing rational and optimised distribution [44,57]. The study showed
that response time and the number of victims, distribution time, operational cost, demand
satisfaction and resource allocations are among the objectives for an effective distribution
task [58]. However, with the variations in urgency levels, prioritisation of disaster areas is
more important [59]. However, there has not been any unique single approach for prioriti-
sation. Researchers have applied different approaches for defining disaster region priority,
such as fuzzy clustering [43,60], multi-attribute decision-making [61] and relative priority
rules using time windows [62].

The inclusion of priorities in generating distribution sequences reflects more realistic
relief item distribution in disaster environments as it first delivers the relief items to the
disaster regions with a higher priority. However, in doing so, the disaster regions with low
priority have a long wait for relief items. With the long wait, the conditions in those regions
may get worse. Therefore, a balanced distribution is required that addresses the long
wait issues such that low-priority disaster regions’ wait time is within a reasonable limit.
Therefore, applying wait-time priority as one of the components of deciding the priority
index makes the distribution highly effective, covering the distribution of relief items to all
the disaster regions over time. In this paper, two priorities: causality level priority (based
on the ratio of the affected population to the total population) and wait-time priority (based
on the relief item last available at the disaster region) are implemented. These two priorities
are calculated for each disaster region and, hence, the weighted priority is calculated by
combining the two priorities at each time slot.

Priority Index = w1 ∗ casualty factor (normalised) + w2 ∗ wait-time (normalised)

where w1 + w2 = 1.
Adjusting the weights of these two priorities is another challenge as there is no unique

weight adjustment approach defined. However, research has shown that there has been a
temporary adjustment of resources to the disaster regions with higher casualty [59–65], which
shows casualty level has a higher impact on disaster management. Considering the higher
importance of casualty, the weight for casualty is set with a value of 0.75 whereas the weight
for wait-time is set at 0.25. Normalisation on each factor is applied in the range [0 1] where
the maximum value is set to 1 and other values are divided by the corresponding maximum
value. The casualty index is calculated as a ratio of the severe causality population to the total
affected population in the demand regions. In general, victim conditions get worsen with
time. To adjust this condition on priority, the exponential function is chosen to reflect the
disaster victims’ situations with wait-time. These two priorities are combined with weight
factors to evaluate priorities regarding priority index as a single weighted priority scheduling
model. The sum of the three weight factors is set as 1.
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3.6. Evolutionary Search

An evolutionary search is applied to find the optimised disaster regions sequence for
the distribution schedule. Chromosome structure (representing each gene as a disaster
region), encoding and decoding are applied as:

Coding and Decoding

In this paper, a disaster region-based representation is applied to generate a chromo-
some where the genes of the chromosomes describe the disaster regions sequence that needs
relief from the nearest supply points. For the solution space, the greedy search strategy
starts from the first gene of the chromosome with the local search where the disaster region
finds the nearest supply point for the dispatch of relief items. When any vehicle tour is
planned with extra relief items, the demand of the individual demand region is updated
accordingly in the sequence.

A sample chromosome representation of demand sequence:

12, 19, 1, 8, 13, 4, 28, 23, 17, 20, 26, 11, 29, 6, 27, 14, 24, 22, 3, 7, 10, 25, 15, 18, 5, 9, 16, 21

For the evolutionary search, the population size is set with 60 solutions (population)
for each generation. Random sequences of disaster regions are generated as parent chromo-
somes in the population pool at the initial state. After the first generation, the population
pool is filled with solutions with multiple criteria. Elitism is used for selecting the best 10%
of solutions based on distribution time and operational cost ranking from the current gener-
ation to the next generation. The remaining individuals are decided based on tournament
selection. Two-point crossover with a repair is applied to avoid any possible conflict in gene
exchange during the crossover. This allows removing chromosomes with the faulty gene
regarding repetition of the same gene or missing any gene in the chromosome encoding.
This multi-criteria population’s selection gives diversity in the population set. Different
mutation rates ranging from 0.01 to 0.1 are applied during the implementation of the evolu-
tionary algorithm. After several simulations run, a 0.05 value is set as the mutation rate for
this evolutionary search. In each iteration of the evolutionary search, for each chromosome
encoding, the greedy heuristic search is applied to find the nearest demand region from the
selected supply source on each round of relief item scheduling-based distance matrix.

4. Computational Experiments

To design and analyse the RID models, simulation techniques have been applied to
evaluate the distribution models’ effectiveness as the simulation techniques provide greater
precision [66]. For the computational experiment, information is synthesised based on the
case study and related parameters presented in different disaster case studies [14,67–69].
Disaster regions and supply point locations have been created analogous to the Chi-Chi
earthquake in Taiwan [14]. The disaster region’s data such as population and travel routes
are considered as it is in the case of the Chi-Chi earthquake. At first, a static distribution
model is applied and analysed to justify why the dynamic RID model is required for
effective relief item distribution, hence, different ways of implementation of the dynamic
distribution model are considered based on information availability.

4.1. Static RID Model with Limited Vehicles

After a disaster environment, mostly, supply points have a limited number of available
vehicles. Therefore, the effectiveness of the distribution plan depends on the available
number of vehicles. In this model, the distribution plan is generated under the static condi-
tion to reflect the impact and benefits of a dynamic RID model in a disaster environment.
The number of vehicles of each type at each supply point is synthesised. With the limited
vehicles and static distribution, the available vehicles can carry relief items only to a few
numbers of disaster regions.
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Distribution time is calculated by applying the relation: total distance travel/vehicle
speed + service time. The operational cost is calculated as vehicle cost per hour times with
the number of hours the vehicle is being used. For the complete distribution schedule, total
distribution time and total operational cost are calculated to measure the performance of
the distribution schedule. Since the unit of time and cost are different, we applied normali-
sation to both time and cost. The minimum sum of the normalised distribution time and
operational cost is considered the optimised distribution schedule. After 70 generations,
the best distribution schedule has:

Total distribution time: 8.60 h
Total operational cost: £ 17,882.86

The demand status of all disaster regions after the complete distribution schedule has
been analysed. It has been observed that with the utilisation of all available vehicles, all
the disaster regions do not get the relief items they needed as there was only a limited
number of vehicles available. Under the static condition, the simulation result showed that
some of the demand regions get their demand fulfilled, some get only partial, whereas
some do not get any relief items as can be observed in Figure 3. Unmet demand supply is
the major limitation of this approach, which shows that static relief distribution planning
with a limited number of vehicles is not an effective approach in a disaster condition.
However, optimisation of distribution time and operational cost can be applied by altering
the sequence of the distribution sequence. The optimisation distribution sequence finds the
minimised distribution time and operational cost of the distribution of relief items with
the available resources. To overcome this unmet relief item, demand in disaster region
supply points need enough vehicles. However, in most disaster environments, there is
always a limitation on the available number of vehicles. Therefore, a static RID model
with enough vehicle conditions reflects an infeasible option in most disaster cases. This
limitation reflects that the dynamic RID model is essential for relief item distribution in
disaster environments.
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4.2. Dynamic RID Scheduling

A dynamic scheduling model is required to generate a complete distribution sequence
by re-utilising the vehicles over the period to distribute the relief items to all disaster
regions. In a dynamic RID model, either static information or dynamic information can be
used for the generation of the distribution schedule. Both static and changing information
scenarios are analysed in the dynamic RID model. Each component is analysed in the
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model before applying the proposed dynamic distribution model with fuzzy travel distance,
multi-priority and sliding time window.

4.2.1. Dynamic RID Scheduling with Static Information

In this dynamic RID model, static information is used to generate a complete set
of distribution schedules covering the demand fulfilment across all the disaster regions.
Here, the statistic information represents the situation where information updates are not
considered while generating the complete distribution sequence over multiple periods
to meet all the relief item demands across all the disaster regions. A limited number of
heterogeneous fleet vehicles is considered. Distribution time is calculated as the summation
of travel distance divided by vehicle speed, 30 min of service time for unloading items
at a disaster region and an additional 30 min is considered as an offset time for a vehicle
to be available for the next journey after completing a round trip. An hourly time slot is
applied for dynamic scheduling; therefore, any vehicle’s next availability time is considered
by rounding up to the nearest next hour after adding travel time, offset time and rest
period. Normalisation on time and cost is applied while implementing optimisation on
the selection of the optimum sequence since the corresponding units of time and cost
are different.

4.2.2. Dynamic Scheduling with Fuzzy Distance

With the change in the road conditions after a disaster, the optimised vehicle routing
under normal circumstances may not be efficient after a disaster strike. A fuzzy distance
measure is implemented to find the best feasible routes in the disaster environment. In
this dynamic RID model, a fuzzy distance measure is incorporated to address vehicle
routing in more realistic conditions after any disaster where the distance matrix is modified
into a fuzzified distance matrix to find the effective shortest path for vehicle routing. The
fuzzified distance matrix is updated for each time slot with updated information on road
conditions. For each time slot, the shortest route between two points is found based on
fuzzified distance using the Floyd–Warshall algorithm.

4.2.3. Dynamic Scheduling with Varying Priority

To incorporate a more realistic distribution, multiple priorities are included in this
dynamic RID model. Causality index and wait-time index are applied for priority setting
of individual disaster regions. The causality index reflects the percentage of the popula-
tion who have been severely affected by the disaster, i.e., the causality index reflects the
population with high risk; whereas, the wait time is calculated by applying a timestamp at
each disaster region when it gets the relief items supplied. At first, the wait-time for each
disaster region is set to 0. At each time slot, the disaster region’s wait time is calculated
based on the time when the region last received the relief items. Normalisation on each
factor is applied in the range [0 1] where the maximum value is set to 1 and other values
are divided by the corresponding maximum value.

In this model, the priority factor is calculated for each time slot as a weighted sum of
casualty index and wait-time index as below:

Priority Factor = 0.75 ∗ Casualty Index (normalised) + 0.25 ∗Wait-time Index (normalised)

Each distribution sequence is evaluated based on total distribution time, operation
cost and priority factor. These three parameters are first normalised and then combined as
a weighted sum to find a weighted fitness value. Based on the weighted fitness value, each
distribution schedule is evaluated. The distribution schedule with the minimum weighted
fitness value is selected as the best distribution schedule.

Weighted fitness value = (distribution time (normalised) + operational cost (normalised) + priority factor (normalised))/3
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4.2.4. Dynamic Distribution Model with Fuzzy Travel Distance, Multi-Priority and Sliding
Time Window

Several distribution models have been applied to generate the distribution sched-
ule [67–72]. However, the major limitation of these distribution models has been the use
of static information. However, disaster scenarios are dynamic, which leads to including
past, current and future updates in the distribution plan [48]. Some dynamic models have
been implemented for short-term demand, covering the uncertainty of demand across
the disaster regions [70] and multiple stochastic periods [41], but these models are based
on the estimation of the future update based on present data. The use of estimation may
reduce the effectiveness of the distribution task as the actual data may be different than
the estimated data. The dynamic model is only effective if regular timely updates on re-
sources, transportation fleet and vehicle routing routes are implemented in the model [73].
An effective relief item distribution plan must be determined by considering all possible
demand scenarios [74]. Relief demand, available resources and route information changes
dynamically, therefore, the initial distribution plan needs to be optimised with the change
in information [67]. The inclusion of simultaneous factors for disaster relief operations
assists in implementing an efficient distribution plan [75].

Considering these limitations and needs, a combined dynamic RID model with fuzzy
distance and multi-priority with sliding time window is applied together in the proposed
model, which reflects the closest modelling of the real-time disaster environments where
the decision-makers must integrate the disaster region priority and road conditions for
vehicle transportation along with the changing information of each time-slot. To address
the need for multiple factors in a single model, this proposed model covers the disaster
conditions relief item distribution in the optimum possible way. The dynamic RID model
with fuzzy travel distance, multi-priority and sliding time window generates an optimised
distribution schedule at each time slot based on the information update. The optimised
distribution schedule at time slot 0 is generated with the available information. With the
information update at each time slot, the distribution schedule generated at the previous
time slot is re-optimised.

For the computational experiment, five time slots are selected for the relief item
distribution. Initial relief demand is assumed as of the Chi-Chi case study and additional
demand that appears in the next time slots are synthesised as listed in Table 4. In this
table, time slot 0 lists the initial demand, and time slot 1 to time slot 4 lists the additional
demand that appears across all the demand regions. Vehicle availability of each type at
each time slot is synthesised as listed in Table 5 (T0–T4). The optimum demand sequence is
found after optimising the demand sequence for 70 generations. The optimum demand
sequence at Time Slot 0 shows some of the disaster regions being served at Time Slot 0
(marked with bold font) whereas other demand regions in the sequence (marked with
normal font) receive relief items at another time slot, such as 1, 2 and so on. The number
of disaster regions being served at time slots 1, 2 and others depends on the number of
available vehicles at that particular time slot.

Best Plan Sequence (Time Slot 0): 27, 17, 11, 23, 9, 21, 16, 19, 12, 13, 18, 6, 4, 14, 26, 2, 1, 3, 25, 20, 7, 28, 10,
22, 8, 5, 15, 29, 24

The planned distribution sequence at Time Slot 0 might not be the optimum distri-
bution sequence at Time Slots 1, 2 and so on as the demand, priority, distance matrix
and available vehicles change in each time slot. Thus, re-optimisation of the distribution
schedule is applied based on the available updated resource information, the priorities of
each disaster region, available vehicles and route condition. The distance matrix is updated
with recent information on the road’s conditions.

The distribution sequences are re-optimised by applying the evolutionary algorithm
for 70 generations and, hence, the new optimum distribution sequences have been gen-
erated for the distribution at Time Slot 1. It has been observed that with the updated
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information, the optimum distribution sequence planned at Time Slot 0 had been changed
at Time Slot 1.

Best Plan Sequence (Time Slot 1): 24, 6, 12, 26, 15, 14, 27, 3, 25, 9, 29, 16, 2, 21, 10, 11, 20, 23, 5, 1, 18, 7, 28,
17, 8, 22, 13, 19, 4

Table 4. Demand status of disaster regions at different time-slots.

Demand

Disaster
Regions Time Slot 0 Time Slot 1 Time Slot 2 Time Slot 3 Time Slot 4

1 6500 2000 500 100 0

2 4000 500 0 100 0

3 6500 700 700 0 500

4 3800 800 1000 0 500

5 3900 1200 0 500 0

6 9800 1500 0 100 0

7 6500 900 500 200 0

8 4000 1000 0 500 0

9 6500 800 300 400 0

10 3800 1100 200 0 0

11 3900 900 1000 0 500

12 9800 1200 2000 0 0

13 6500 800 400 500 0

14 4700 700 300 0 0

15 7000 500 300 0 0

16 4800 400 200 0 0

17 4300 400 0 500 0

18 8800 500 200 200 0

19 7000 1200 500 0 0

20 3800 100 0 500 1500

21 5200 100 0 1000 0

22 8500 1000 500 1500 0

23 4200 200 0 0 500

24 8300 200 0 500 0

25 6500 100 0 500 0

26 4800 200 0 1000 1500

27 4700 200 0 600 200

28 10,800 1500 500 1500 500

29 6200 500 0 500 0
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Table 5. Vehicle count of each type at supply points (S1:S4), Time Slot 0.

Supply
Point Vehicle Type 1 Vehicle Type 2 Vehicle Type 3 Vehicle Type 4

T0/T1/T2/T3/T4 T0/T1/T2/T3/T4 T0/T1/T2/T3/T4 T0/T1/T2/T3/T4

S1 0/0/2/2/1 2/1/1/1/1 1/2/2/2/0 1/1/1/1/1

S2 2/1/1/1/0 0/0/0/0/1 1/1/2/2/0 1/1/1/1/1

S3 1/1/0/0/0 0/0/2/2/1 1/3/2/2/1 1/0/0/0/0

S4 2/1/1/1/1 1/1/2/2/1 0/0/1/1/1 1/1/1/1/0

Altogether, five time slots have been applied for the dynamic distribution of relief
items in this paper. A sample of the optimised distribution schedule after each time slot is
presented in Table 6. The optimum distribution schedule from each time slot is combined
which reflects the optimised distribution plan over the period. The combined distribution
schedule is as:

(Time Slot 0): 27, 17, 11, 23, 9, 21, 16, (Time Slot 1): 24, 6, 12, 26, 15, (Time Slot 2): 9, 21, 17, 20, 3, 10, 22, 8,
18, 1, (Time Slot 3): 26, 8, 4, 2, 24, 20, 18, 27, 13, 17, 15, 28, 6, 25, 29,

Best Plan Sequence (Time Slot 4): 3, 28, 23, 19, 7, 1, 11, 14, 20, 8, 5, 6, 9, 29, 2, 10, 12, 13, 18, 15, 17, 4, 22, 25,
24, 27, 16, 26, 21

Table 6. Sample of distribution schedule generated by the dynamic distribution model with multi-
priority, fuzzy travel distance and sliding window (Time Slot 0).

SId DR SP VT NnDR ST ET

1 27 4 1 - 0 1

2 27 4 2 28 0 3

3 17 3 1 - 0 3

4 17 3 7 16 0 3

5 11 1 2 - 0 3

6 11 1 4 12 0 3

7 23 4 1 - 0 1

8 23 4 4 22 0 3

9 9 1 2 - 0 1

10 9 1 3 - 0 3

11 9 2 1 - 0 1
SId: Schedule Id, DR: Demand Region, SP: Supply Point, VT: Vehicle Type, NnDR: Next Nearest Demand Region,
ST: Start Time; ET: End Time. ET is the time (hour) when the vehicle completes its current tour.

The distribution schedules, listed in Table 6, describe the details of the distribution
plan. For example, the schedule-1 sequence is described as: for disaster region (DR) 27,
supply point (SP) 4 will supply relief items using vehicle type (VT) 1. This tour does not
have an additional tour since the vehicle does not have any free space. The vehicle’s journey
starts at the hour (ST) 0 and ends at the hour (ET) 1. Schedule-2 is described as DR 27
getting relief items from SP 4 using VT 2. In this schedule, an additional tour is planned
since the vehicle has free space as the demand at DR 27 is less than 90% of the capacity of
VT 2. The additional tour is planned for the next nearest demand region (NnDR) 28 from
the DR 14. The vehicle’s journey starts at the hour (ST) 0 and ends at the hour (ET) 3. The
other distribution schedules can be interpreted in the same way.
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5. Comparative Performance Analysis

For the comparative analysis of the model performance, ideally the models are com-
pared with each other by analysing performance parameters (in this case: total distribution
time and total operational cost as plotted in Figures 4 and 5, respectively), but the relief item
distribution conditions are not same in all these models. Therefore, the simple numerical
quantitative performance measure is not the best suitable option to compare the models.
To evaluate the model performance, the models are compared with their feasibility, their
effectiveness in the distribution of relief items and how closely the models are with the
real-case disaster environments.
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20, 27, 11, 17, 23, 12 

Dynamic Distribution Model 
with multi-priority, fuzzy 
travel distance and sliding 
window 

Time Slot 0: 
27, 17, 11, 23, 9, 21, 16, 19, 12, 13, 18, 6, 4, 14, 26, 2, 1, 3, 25, 20, 7, 28, 
10, 22, 8, 5, 15, 29, 24 

Time Slot 1: 
24, 6, 12, 26, 15, 14, 27, 3, 25, 9, 29, 16, 2, 21, 10, 11, 20, 23, 5, 1, 18, 7, 
28, 17, 8, 22, 13, 19, 4 

Time Slot 2: 
9, 21, 17, 20, 3, 10, 22, 8, 18, 1, 2, 27, 23, 13, 5, 4, 28, 25, 29, 26, 24, 19, 
15, 14, 11, 7, 12, 16, 6 

Time Slot 3: 
26, 8, 4, 2, 24, 20, 18, 27, 13, 17, 15, 28, 6, 25, 29, 19, 5, 21, 7, 9, 1, 11, 14, 
22, 3, 12, 10, 16, 23 

Time Slot 4: 
3, 28, 23, 19, 7, 1, 11, 14, 20, 8, 5, 6, 9, 29, 2, 10, 12, 13, 18, 15, 17, 4, 22, 
25, 24, 27, 16, 26, 21 

Best Plan Sequence 
(Time Slot 0): 27, 17, 11, 23, 9, 21, 16, (Time Slot 1): 24, 6, 12, 26, 15, 
(Time Slot 2): 9, 21, 17, 20, 3, 10, 22, 8, 18, 1, (Time Slot 3): 26, 8, 4, 2, 
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Figure 5. Operational cost plots of different dynamic RID Models.

For the analysis, the best distribution sequence after the 70 generations is selected as
a distribution plan as listed in Table 7. It can be observed that the distribution sequence
is not uniform. Each model generates a different optimum distribution sequence based
on available resources and disaster information. These models are an effective alternative
to the generated distribution schedule under different circumstances depending on the
information and resources available. The static limited vehicle scheduling model is the
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simplest way to make a distribution plan, but with the limited vehicle condition, it may not
be an effective method to distribute to all the disaster regions. To overcome the limitation
of the static distribution model, dynamic RID models have been applied.

Table 7. Optimum distribution sequence of RID models.

Distribution Model Demand Sequence: (Di: Disaster Regions)

Static RID model with limited vehicles 14, 2, 26, 16, 11, 4, 27, 28, 23, 5, 21, 12, 6, 1, 15, 3,
18, 17, 19, 29, 22, 25, 7,20, 10, 9,13, 8,24

Dynamic RID scheduling with static
information

27, 17, 11, 23, 9, 21, 16, 19, 12, 13, 18, 6, 4, 14, 26, 2,
1, 3, 25, 20, 7, 28, 10, 22, 8, 5, 15, 29, 24

Dynamic Scheduling with Fuzzy Distance 29, 7, 25, 18, 6, 10, 23, 9, 15, 27, 5, 28, 4, 19, 22, 8,
17, 21, 1, 26, 13, 2, 14, 12, 16, 20, 3, 11, 24

Dynamic Scheduling with varying Priority 13, 4, 24, 1, 7, 29, 26, 14, 10, 8, 2, 15, 28, 3, 18, 6, 5,
21, 25, 9, 16, 22, 19, 20, 27, 11, 17, 23, 12

Dynamic Distribution
Model with
multi-priority, fuzzy
travel distance and
sliding window

Time Slot 0: 27, 17, 11, 23, 9, 21, 16, 19, 12, 13, 18, 6, 4, 14, 26,
2, 1, 3, 25, 20, 7, 28, 10, 22, 8, 5, 15, 29, 24

Time Slot 1: 24, 6, 12, 26, 15, 14, 27, 3, 25, 9, 29, 16, 2, 21, 10, 11,
20, 23, 5, 1, 18, 7, 28, 17, 8, 22, 13, 19, 4

Time Slot 2: 9, 21, 17, 20, 3, 10, 22, 8, 18, 1, 2, 27, 23, 13, 5, 4,
28, 25, 29, 26, 24, 19, 15, 14, 11, 7, 12, 16, 6

Time Slot 3: 26, 8, 4, 2, 24, 20, 18, 27, 13, 17, 15, 28, 6, 25, 29,
19, 5, 21, 7, 9, 1, 11, 14, 22, 3, 12, 10, 16, 23

Time Slot 4: 3, 28, 23, 19, 7, 1, 11, 14, 20, 8, 5, 6, 9, 29, 2, 10, 12,
13, 18, 15, 17, 4, 22, 25, 24, 27, 16, 26, 21

Best Plan Sequence

(Time Slot 0): 27, 17, 11, 23, 9, 21, 16, (Time Slot
1): 24, 6, 12, 26, 15, (Time Slot 2): 9, 21, 17, 20, 3,
10, 22, 8, 18, 1, (Time Slot 3): 26, 8, 4, 2, 24, 20,
18, 27, 13, 17, 15, 28, 6, 25, 29, (Time Slot 4): 3,
28, 23, 19, 7, 1, 11, 14, 20, 8, 5, 6, 9, 29, 2, 10, 12,
13, 18, 15, 17, 4, 22, 25, 24, 27, 16, 26, 21

Four different dynamic models with different decision parameters have been applied.
In the first dynamic RID model, a static resource information condition is used. Optimised
distribution sequences, based on minimised distribution time and total operational cost,
have been presented as the distribution sequence. The generation of dynamic distribution
schedules maximises the use of vehicles and minimises the unmet demand. The model has a
limitation as it does not have rationalised distribution in terms of covering disaster regions’
priorities, though it has the advantage of simplicity from an implementation point of view.
In the second dynamic RID model, dynamic distribution schedules are generated with
fuzzified road conditions. Road conditions andtraffic conditions are used to get a fuzzified
equivalent travel distance. With the dynamic update on the fuzzified travel distance,
the shortest travel path has also been changed dynamically. The inclusion of a fuzzified
distance matrix reflects a highly realistic travel route selection in a disaster environment.
However, this model does not have rationalised distribution in terms of covering priorities,
which appears as a limitation of this model. The fuzzy rules are generated based on expert
opinions, which is also a limitation, as expert opinions may vary.

In the third dynamic RID model, multiple priorities in terms of casualties and wait-
time have been used. The priority has been calculated in each time slot with the updated
information. Hence, the optimised sequences have been generated for the distribution of
relief items covering multiple priorities. However, this model has a limitation in terms of
static shortest path selection for vehicle transportation. The advantage of this model is that
it covers heterogenous vehicles in the distribution plan along with the causality priority.
In the fourth dynamic RID model, the strengths of all the discussed models are combined
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which makes the presented dynamic RID model as close to a disaster case of RID modelling
as possible. This combined model uses fuzzified distance, multi-priorities and dynamic
update with the sliding time window to generate a distribution sequence. The model starts
with an optimised initial relief item distribution sequence. With updates in information, the
initially planned sequence may not be the best distribution sequence in the next time slot.
Therefore, the distribution sequence is re-optimised in each time slot dynamically with
the updated information on disaster impact, road conditions and vehicle availability. The
initial RID schedule is planned on the basis of stored information of the disaster regions
in terms of population, road links and available resources. The major challenge of this
model is the collection of updates in time as the information gathering after any disaster
is challenging. However, it possesses the advantage that this model has the scope of any
update in the next time slot during the re-optimisation of the RID schedules.

6. Conclusive Observations

Even though numerous strategies have highlighted the general relief item distribution
tasks after a disaster across different cities with some limitations, the presented dynamic
model covers different aspects such as disaster information updates, road conditions after
the disaster, selection of the best feasible vehicles from the heterogeneous vehicles fleet
and disaster region priorities, which are either missing or not properly addressed. After
any disaster, these aspects reflect a realistic scenario and the inclusion of these aspects in
the RID model enhances the effectiveness of the distribution task. In this paper, the aim
has been to develop a dynamic RID model that reflects the realistic scenario as closely as
possible after a disaster for the humanitarian supply chain as an application for smart cities.
This makes the model highly practically feasible to implement for relief item distribution
after a disaster. Four different theoretical and practical aspects of the dynamic RID model
are highlighted, which validate why this model is a decidedly effective alternative model
for the humanitarian supply chain for smart cities.

6.1. Selection of Vehicles

For the distribution task, the selection of vehicles has been one of the key components
in enhancing the effectiveness of the distribution task. Many of the distribution models
consider one kind of vehicle only, which is more often not the case of vehicle availability at
the supply points after any disaster. Besides this, the road conditions and constraints, and
relief demands also vary from one affected region to another which makes the single-type
vehicles distribution plan less effective. Because of these, for the effective implementation
of the relief distribution, the RID model must include the selection of vehicles from the
heterogeneous vehicles fleet. The dynamic model used in this paper includes heterogeneous
vehicles, which makes it a practically highly feasible option to distribute relief items.
Moreover, the model applies an optimum feasible selection of vehicles based on demands
across disaster regions that optimise vehicle use.

6.2. Road Conditions

The shortest route for transportation has been applied in theory and practice for
many years to minimise the travel time and, hence, the response time in the disaster relief
operation. However, after any disaster scenario, the road condition changes, which directly
affects the travel time. Therefore, in practice, the distribution model must consider the road
conditions after the disaster to make the estimation of travel time between the supply point
and disaster regions more realistic. One of the practical approaches to overcoming this is to
use a fuzzy variable that reflects different road conditions while finding the best feasible
travel route. The dynamic model applied in this paper covered the varying road conditions,
one of the major driving components in a distribution plan, to reflect a post-disaster roads
condition. Fuzzified distance matrix is calculated based on road conditions to reflect the
effective travel time. This inclusion of fuzzified effective distance reflects a more realistic
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and practical approach to finding the effective shortest distance between supply points and
disaster regions.

6.3. Priority-Based Distribution

In general, the distribution models generated a distribution schedule for all the regions.
The generalised distribution plan is not rational in disaster scenarios as the number of
affected people and level of impact varies from one region to another. Prioritisation of the
disaster regions in the distribution plan is required to support the victims who have been
severely affected. One of the practical challenges in prioritisation is how to consider all
the disaster regions in the distribution plan and avoid bias towards the severely affected
regions. It has been observed that the condition of the less affected disaster regions worsens
if there has been no relief distribution for a longer period [2]. This highlights that, in
practice, any distribution model must consider the wait-time of all the disaster regions.
The proposed dynamic model includes multiple priorities in terms of disaster impact
severity and wait-time of all the disaster regions at all time-periods while generating
the distribution schedule. This inclusion of multiple priorities makes the distribution
rationalised and practically very effective, which is also very crucial in disaster conditions.

6.4. Dynamic Modelling

Over the years, several distribution models have been used aiming to achieve effective
distribution. More often, those models have considered static information to generate
the distribution schedule. However, the presented disaster scenarios are highly uncertain
and information is not static. Therefore, the static RID models are less suitable in disaster
scenarios. In practice, the dynamic models are the best-suited models as the dynamic model
adopts the changing information over time and generates a distribution plan accordingly.
The major advantage of the dynamic RID model is the generation of the distribution sched-
ule with the updated information on available vehicles, other resources, road conditions
and disaster region priority at any particular time slot. Combining multiple components in
a single model has reflected a closer realistic condition for relief item distribution under
disaster conditions. The inclusion of dynamicity in the distribution task is best suited for
decision-makers in disaster relief management operations.

7. Discussion and Future Research Directions

Under a disaster environment, in any smart city, the information related to disaster
impact, connecting routes and other available resources change dynamically, which has an
impact on generating an optimal distribution schedule. With the emergence of the use of IoT
technologies for data gathering in smart cities, the influential parameters for a RID model
in a disaster environment can be updated accurately and timely. The generation of effective
relief item distribution schedules with the updating information is crucial in effective relief
management opearations. Robustness of relief item distribution schedules concerning
uncertainty of demand, transportation link complexity and changing priorities is as equally
important as other factors for relief item distribution management in a disaster environment.
This uncertainty adds additional challenges to the RID management. Additionally, with the
increase in the complexity of finding the best feasible transportation link for vehicle routing,
the complications of effective distribution planning have increased. With the consideration
of transportation link conditions and capacity in distribution planning, the presented RID
model enhances the effectiveness of humanitarian supply chain management. In addtion,
the RID model often lacks consideration of the priority aspects. The inclusion of multiple
priorities in the presented dynamic RID model distribution schedule provides a rational
distribution of relief items across all the disaster points. This rationalised distribution
balances the distribution task, reflecting the effecitveness of RID management. Along
with rational distribution, multi-objective and heterogeneous fleet vehicle transportation
often appeared to be other challenges. These two additional aspects, multi-objective and
heterogeneous fleet vehicle, have also been included to cover the more realistic scenarios



Appl. Sci. 2022, 12, 8358 21 of 24

of relief item distribution after any disaster. Modelling RID with heterogeneous vehicles
allows to optimise the distribution time and operaional cost as the model chooses the
best-fit vehicles for the relief item distribution. Often, a disaster requires a longer period
of support to bring the disaster victim’s life back normal conditions. Considering this,
in the presented dynamic model, multiple time slots with the updated information on
disaster impact level, updated vehicle information, available resources and road condition
are considered for the distribution of relief item re-optimisation of the distribution schedule
at each time slot gives the mulit-period distribution as an optimised solution for a longer
run as well.

With the inclusion of these major components, the presented dynamic RID model
appeared as an effective model in post-disaster humanitarian supply chain management.
The comparative study showed that the different models have their advantages and dis-
advantages. However, the presented dynamic RID model with fuzzified distance and
multi-priorities with a sliding window reflected the best feasible condition that covered
many of the components that have an impact on the generation of the distribution schedule.
The presented dynamic models have advantages over the model used for the case study
scenarios model [14] as it brings the dynamicity on disaster condition updates and available
resoources to each time-period. Concerning managerial aspects, covering many disaster
impact components in one model makes the disater relief operation task more effective
than the traditional models. The major advantage of the presented dynamic RID model is
that it starts with an initial optimised distribution schedule and re-optimised on each time
slot with the updated information for all the components.

In future research, the proposed dynamic distribution model can be incorporated with
real-time data collection mechanisms such as GIS mapping, satellite imaging, social media
data mining and IoT sensor implementation. Use of GIS mapping and satellite imaging will
help to identify the most affected disaster regions. The GIS mapping and satellite imaging
information will help to set priorities for the disaster regions. Additionally, any blockages
or disruptions of the transportation routes will be analysed in a more effective way to find
the best feasible route for transportation. Any update on the disruption of the route can be
incorporated to redefine the transportation route that is re-optimising the travel route if
needed. Monitoring real-time updates on demographic information with the inclusion of
these techniques will provide better mobilisation of resources at disaster regions. It can
be useful for vehicle location information that can be applied to make the distribution
model more dynamic. Use of GIS and satellite imaging can be used at any stage of disaster
management, starting from the preparedness to the post-disaster management.

Another component that can be added to this research is the use of social media
as a data source. Use of social media has increased over the years. The information
available through social media will be very useful to understand the severity of the disaster.
The data from social media such as Facebook and Twitter can be analysed using text
mining or image mining to extract knowledge about the disaster. This knowledge can be
implemented to identify disaster region priority and route conditions. Furthermore, as a
future enhancement of this dynamic distribution model, IoT devices can be integrated into
this dynamic relief items distribution system. The real-time update on disaster information
using IoT devices can be implemented in developing the distribution schedule. The
inclusion of these techniques will further enhance the effectiveness of the distribution
model with the accurate and timely collection of data and making relief item distribution
more effective.
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6. Erbeyoğlu, G.; Bilge, Ü. A robust disaster preparedness model for effective and fair disaster response. Eur. J. Oper. Res. 2020,
280, 479–494. [CrossRef]

7. Nie, G.; Gao, J.; Su, G. Models on rapid judgment for the emergent rescue needs during earthquake–by analysis on post earthquake
events. Resour. Sci. 2001, 23, 69–76.

8. Lin, A.; Wu, H.; Liang, G.; Cardenas-Tristan, A.; Wu, X.; Zhao, C.; Li, D. A big data-driven dynamic estimation model of relief
supplies demand in urban flood disaster. Int. J. Disaster Risk Reduct. 2020, 49, 101682. [CrossRef]

9. Nejat, A.; Brokopp Binder, S.; Greer, A.; Jamali, M. Demographics and the Dynamics of Recovery: A Latent Class Analysis of
Disaster Recovery Priorities after the 2013 Moore, Oklahoma Tornado. Int. J. Mass Emergencies Disasters 2018, 36, 23–51.

10. Singh, R.K.; Gupta, A.; Gunasekaran, A. Analysing the interaction of factors for resilient humanitarian supply chain. Int. J. Prod.
Res. 2018, 56, 6809–6827. [CrossRef]

11. Setiawan, E.; Liu, J.; French, A. Resource location for relief distribution and victim evacuation after a sudden-onset disaster. IISE
Trans. 2019, 51, 830–846. [CrossRef]

12. Pel, A.J.; Bliemer, M.C.J.; Hoogendoorn, S.P. A review on travel behaviour modelling in dynamic traffic simulation models for
evacuations. Transportation 2012, 39, 97–123. [CrossRef]

13. Yuan, Y.; Wang, D. Path selection model and algorithm for emergency logistics management. Comput. Ind. Eng. 2009, 56, 1081–1094.
[CrossRef]

14. Chang, F.-S.; Wu, J.-S.; Lee, C.-N.; Shen, H.-C. Greedy-search-based multi-objective genetic algorithm for emergency logistics
scheduling. Expert Syst. Appl. 2014, 41, 2947–2956. [CrossRef]

15. Rocchi, A.; Chiozzi, A.; Nale, M.; Nikolic, Z.; Riguzzi, F.; Mantovan, L.; Gilli, A.; Benvenuti, E. A Machine Learning Framework
for Multi-Hazard Risk Assessment at the Regional Scale in Earthquake and Flood-Prone Areas. Appl. Sci. 2022, 12, 583. [CrossRef]

16. Jung, D.; Tran Tuan, V.; Quoc Tran, D.; Park, M.; Park, S. Conceptual framework of an intelligent decision support system for
smart city disaster management. Appl. Sci. 2020, 10, 666. [CrossRef]

17. Alizadeh, R.; Nishi, T.; Bagherinejad, J.; Bashiri, M. Multi-period maximal covering location problem with capacitated facilities
and modules for natural disaster relief services. Appl. Sci. 2021, 11, 397. [CrossRef]

18. Rajak, S.; Vimal, K.; Arumugam, S.; Parthiban, J.; Sivaraman, S.K.; Kandasamy, J.; Duque, A.A. Multi-objective mixed-integer
linear optimization model for sustainable closed-loop supply chain network: A case study on remanufacturing steering column.
Environ. Dev. Sustain. 2022, 24, 6481–6507. [CrossRef]

19. Abdussalam, O.; Trochu, J.; Fello, N.; Chaabane, A. Recent advances and opportunities in planning green petroleum supply
chains: A model-oriented review. Int. J. Sustain. Dev. World Ecol. 2021, 28, 524–539. [CrossRef]

20. Tirkolaee, E.B.; Sadeghi, S.; Mooseloo, F.M.; Vandchali, H.R.; Aeini, S. Application of Machine Learning in Supply Chain
Management: A Comprehensive Overview of the Main Areas. Math. Probl. Eng. 2021, 2021, 1476043. [CrossRef]

21. Angarita-Zapata, J.S.; Alonso-Vicario, A.; Masegosa, A.D.; Legarda, J. A taxonomy of food supply chain problems from a
computational intelligence perspective. Sensors 2021, 21, 6910. [CrossRef] [PubMed]

22. Kabra, G.; Ramesh, A.; Arshinder, K. Identification and prioritization of coordination barriers in humanitarian supply chain
management. Int. J. Disaster Risk Reduct. 2015, 13, 128–138. [CrossRef]

23. Blecken, A.; Hellingrath, B.; Dangelmaier, W.; Schulz, S.F. A humanitarian supply chain process reference model. Int. J. Serv.
Technol. Manag. 2009, 12, 391–413. [CrossRef]

24. Radianti, J.; Hiltz, S.R.; Labaka, L. An Overview of Public Concerns During the Recovery Period after a Major Earthquake: Nepal
Twitter Analysis. In Proceedings of the 2016 49th Hawaii International Conference on System Sciences (HICSS), Koloa, HI, USA,
5–8 January 2016; pp. 136–145.

25. Paul, B.K.; Acharya, B.; Ghimire, K. Effectiveness of earthquakes relief efforts in Nepal: Opinions of the survivors. Nat. Hazards
2017, 85, 1169–1188. [CrossRef]

http://doi.org/10.1016/j.seps.2021.101165
http://doi.org/10.1007/s00170-015-7923-3
http://doi.org/10.1016/j.tra.2014.08.003
http://doi.org/10.1016/j.ijdrr.2015.03.005
http://doi.org/10.5194/nhess-12-3533-2012
http://doi.org/10.1016/j.ejor.2019.07.029
http://doi.org/10.1016/j.ijdrr.2020.101682
http://doi.org/10.1080/00207543.2018.1424373
http://doi.org/10.1080/24725854.2018.1517284
http://doi.org/10.1007/s11116-011-9320-6
http://doi.org/10.1016/j.cie.2008.09.033
http://doi.org/10.1016/j.eswa.2013.10.026
http://doi.org/10.3390/app12020583
http://doi.org/10.3390/app10020666
http://doi.org/10.3390/app11010397
http://doi.org/10.1007/s10668-021-01713-5
http://doi.org/10.1080/13504509.2020.1862935
http://doi.org/10.1155/2021/1476043
http://doi.org/10.3390/s21206910
http://www.ncbi.nlm.nih.gov/pubmed/34696123
http://doi.org/10.1016/j.ijdrr.2015.01.011
http://doi.org/10.1504/IJSTM.2009.025815
http://doi.org/10.1007/s11069-016-2627-z


Appl. Sci. 2022, 12, 8358 23 of 24

26. Hall, M.L.; Lee, A.C.K.; Cartwright, C.; Marahatta, S.; Karki, J.; Simkhada, P. The 2015 Nepal earthquake disaster: Lessons learned
one year on. Public Health 2017, 145, 39–44. [CrossRef]

27. Ahmadi, M.; Seifi, A.; Tootooni, B. A humanitarian logistics model for disaster relief operation considering network failure and
standard relief time: A case study on San Francisco district. Transp. Res. Part E Logist. Transp. Rev. 2015, 75, 145–163. [CrossRef]

28. Chaudhary, P.; Vallese, G.; Thapa, M.; Alvarez, V.B.; Pradhan, L.M.; Bajracharya, K.; Sekine, K.; Adhikari, S.; Samuel, R.; Goyet, S.
Humanitarian response to reproductive and sexual health needs in a disaster: The Nepal Earthquake 2015 case study. Reprod.
Health Matters 2017, 25, 25–39. [CrossRef]

29. Hu, S.; Han, C.; Dong, Z.S.; Meng, L. A multi-stage stochastic programming model for relief distribution considering the state of
road network. Transp. Res. Part B Methodol. 2019, 123, 64–87. [CrossRef]

30. Leung, S.C.H.; Zhang, Z.; Zhang, D.; Hua, X.; Lim, M.K. A meta-heuristic algorithm for heterogeneous fleet vehicle routing
problems with two-dimensional loading constraints. Eur. J. Oper. Res. 2013, 225, 199–210. [CrossRef]

31. Jiang, J.; Ng, K.M.; Poh, K.L.; Teo, K.M. Vehicle routing problem with a heterogeneous fleet and time windows. Expert Syst. Appl.
2014, 41, 3748–3760. [CrossRef]

32. Bettinelli, A.; Ceselli, A.; Righini, G. A branch-and-cut-and-price algorithm for the multi-depot heterogeneous vehicle routing
problem with time windows. Transp. Res. Part C Emerg. Technol. 2011, 19, 723–740. [CrossRef]
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