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Constrained Consensus in State-Dependent Directed
Multiagent Networks

Yilun Shang

Abstract—In this paper, constrained consensus of a group of
continuous-time dynamical agents over state-dependent networks
is investigated. The communication network, modulated by an
asymmetric distance between agents, accommodates general
directed information flows. Each agent proposes a comfortable
range in a distributed manner, where they are inclined to agree
on the final equilibrium state. Based on Lyapunov stability theory
and robustness analysis, different conditions have been obtained
to guarantee convergence within the common comfortable range
when the network connectivity is fixed and time-varying. No
global information is required in the proposed nonlinear control
protocols. Furthermore, an opinion dynamics model has been
introduced incorporating both social observer effect and bounded
confidence phenomenon in the same state-dependent framework.
Relaxed consensus conditions have been derived under certain
symmetric assumptions. Finally, numerical examples have been
presented to verify the effectiveness of the theoretical results.

Index Terms—Consensus, state-dependent communication,
constraint, directed network, asymmetric distance.

I. INTRODUCTION

D ISTRIBUTED coordination of a system of interacting
agents which cooperate with each other via a commu-

nication network has attracted considerable attention in many
different fields. As a fundamental problem, consensus is to
ensure that all agents in the network converge to a common
value by designing a distributed strategy, which is called a
consensus protocol [1]. The consensus problem has found
a wide range of applications involving multiagent networks
performing some collective tasks, such as flocking of birds
or autonomous robots, vehicle platooning, attitude alignment
and social network decision making. Since the influential
theoretical works [1]–[3], a variety of linear and nonlinear
consensus protocols have been designed to achieve desired
consensus behaviors over fixed, switching and time-varying
networks [4]–[6].

In most of the existing literature on consensus problems,
the communication network among agents is assumed to be
fixed or time-dependent, regulated by an external switching
signal independent of the evolution of the agents. However,
in practical scenarios, there are many examples where the
network topology changes with the states of the agents. In
swarming and flocking of birds, individuals update their head-
ings by averaging their neighbors’ headings within a certain
Euclidean distance due to limited sensory capacity [7], [8]. A
similar phenomenon, called homophily, is prevalent in social
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opinion dynamics, where individuals select their interacting
neighbors by setting a threshold of their relative opinion
difference [9]. Another type of state-dependent communication
network resembles the law of gravity, where the weight of
an interaction link weakens (but never disappears) as the
distance between the states of the two agents increases. A well-
known example is the Cucker-Smale model [10]. In wireless
networks and mobile robotic systems, the link quality similarly
deteriorates as the distance between two agents increases [11].
Besides, genome systems [12] are also regarded as state-
dependent multiagent networks.

Although state-dependent multiagent networks are included
in a general framework of time-varying communication graphs
[13], [14], they have specific characteristics that are worth
deep investigation. In fact, the communication topology is
unknown a priori and cannot be solely chosen by individual
agents in a state-dependent multiagent network. For example,
food networks are not determined by individual species but
rather by the ecological evolution and its interaction with
environment; communication amongst a team of unmanned
aerial vehicles is influenced by multiple factors including
task objective, signal transmission mechanism, battery etc.
The communication weights on edges are determined endoge-
nously by the evolution of agents in the network, which is
essentially different from time-varying graphs regulated by ex-
ternal signals. In [15], both continuous-time and discrete-time
consensus problems have been studied over state-dependent
undirected networks, where the communication weights are
modulated by the distance between two adjacent agents. Suf-
ficient conditions are proposed to guarantee consensus based
upon the initial configuration of the multiagent network even
when some edges may be broken due to large state differences.
The work is extended to address finite-time consensus for
single integrator agents over state-dependent undirected graphs
containing some inherent communication links [16]. Based on
the analysis of the spectrum and eigenvector of the system,
the work [17] proposes a unifying framework for reaching
arithmetic, geometric and harmonic average consensus, where
the communication network is undirected and modulated by
distance. A distributed convex optimization problem has been
studied in [18] for a state-dependent undirected multiagent
network. In [19], mean square consensus has been tackled
for a multiagent system with white noises using event-trigged
strategies. The weights of the links are state-dependent in their
investigation allowing directed topology to satisfy detailed-
balanced conditions. Dealing with consensus over general di-
rected state-dependent networks is still a challenging problem.
This is one of the main motivations of the current paper.
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Another related issue in practical applications of consensus
problems is the existence of different system state constraints.
Cooperative agents in engineering or social systems often
have a safe or desired range of operation [20]. Examples
include the constraints of velocity and position of robots or
vehicles in formation control, attitude zones for spacecraft in
attitude alignment problems, and opinion or decision intervals
posed by individuals in social networks. The literature for state
constrained consensus problems is mainly along two different
lines: hard constraints and soft constraints. The former is more
restrictive in that it limits all transient states (often including
the initial states) of agents within a region by using the state
projections or barrier functions [21]–[24]. The latter allows
the trajectories to trespass the constraint sets and only control
the equilibrium points using robust consensus analysis [25]–
[27]. Only state-independent networks have been examined in
both categories. The constrained version of consensus is sig-
nificantly more difficult than the unconstrained consensus due
to the inherent nonlinearity of the constrained sets. Moreover,
when the communication network becomes state-dependent,
the presence of constraint sets will exert twofold influence
upon both states and network topology. To our knowledge, this
challenging problem has rarely been investigated in consensus
literature.

In view of the above considerations, in this paper we
introduce a theoretical framework for continuous-time dy-
namical agents to achieve constrained consensus in state-
dependent communication networks. Each agent can have a
constraint set that is only known to itself. Sufficient and
necessary conditions are proposed to guarantee convergence
when the communication network has fixed connectivity and
time-varying connectivity. We further apply our results to
a new class of opinion dynamics model featuring bounded
confidence and observer effect. Our technique relies on the
invariance principle and robustness analysis. The main novel-
ties are summarized as follows. (1) Our framework works for
both symmetric and asymmetric distance modulating functions
incorporating the information of constraint sets. In the previous
works (e.g. [15]–[19]) on state-dependent consensus protocols,
only symmetric distance and unconstrained state are allowed.
(2) Different from all the above works, the communication
network considered here is a general directed graph and the
detail-balanced condition [19] is not required. (3) The pro-
posed consensus strategy is purely distributed. This is different
from [17], where global information including eigenvectors of
the system is essential. (4) The results fall into the category
of soft constrained consensus, in which the initial states are
permitted to sit outside of the individual constraint sets.

The rest of the paper is organized as follows. Some prelim-
inaries and the model formulation is introduced in Section
II. Constrained consensus over state-dependent networks is
investigated in Section III for fixed connectivity and in Section
IV for time-varying connectivity. In Section V, the application
to an opinion dynamics model is presented. The simulation
results are illustrated in Section VI. The conclusion is drawn
in Section VII.

II. PROBLEM FORMULATION

A. Graph theory and system model

The underlying communication network of n interacting
agents can be described by a directed graph G = (V, E), where
the node set V = {1, 2, · · · , n} represents the agents and the
edge set E ⊆ V × V indicates the information flow among
them. In particular, for a node i ∈ V , the neighborhood of i
is denoted by Ni = {j : (j, i) ∈ E}, which consists of all
agents that can send information to i. The adjacency matrix
of G is denoted by E = (eij) ∈ Rn×n, where eij = 1 if
(j, i) ∈ E and eij = 0 otherwise. Therefore, the number of
neighbors (i.e. degree) for agent i is |Ni| =

∑
j∈V eij . A

path from node i to node j is a sequence of distinct edges
(i, i1), (i1, i2), · · · , (ik, j) in E . The graph G is called strongly
connected if for any pair of nodes i, j (j 6= i), there is a
path from i to j. G is quasi-strongly connected if there exists
a node i (called root), which can reach any other node in
G. Strong connectivity implies every node is a root. If G
is undirected, both strongly connectivity and quasi-strongly
connectivity are equivalent to the connectivity. Namely, any
node can be reached from any other node in a connected graph.

For each node i ∈ V , let xi(t) ∈ R be the state of i at time
t ≥ 0. The node i is associated with a constraint set θi =
[θi, θi], which can be chosen arbitrarily. Define a saturation
function ρi : R → R by ρi(z) = θi if z < θi, ρi(z) = z if
θi ≤ z ≤ θi, ρi(z) = θi if z > θi. We assume each agent
will transmit a disguised state to its neighbors by using the
saturation function. The interval θi can be interpreted as, for
example, comfortable opinion range in social interaction [28]
and limited detection range or channel capacity for an agent
in mobile networks [29].

To describe the dynamical evolution of agents, we introduce
a non-negative non-increasing function b : R → R satisfying
one of the assumptions below. Using b as a modulating func-
tion over the communication network, the weighted adjacency
matrix can be defined as A(t) = (aij(t)) ∈ Rn×n, where

aij(t) = eijb((xi − ρj(xj))2). (1)

The evolution of xi(t) ∈ R is characterized by

ẋi(t) =
∑
j∈Ni

aij(t)(ρj(xj(t)) − xi(t)), (2)

where i ∈ V and t ≥ 0. The saturation functions only action
on the neighbors of agent i in (2). In the social interaction
scenario, this means that a neighboring agent j tends to only
express some mild opinions (i.e. avoid expressing extreme
opinions) to agent i; see Section V for an application in
opinion dynamics.

The communication weight in (1) depends on the network
topology G and the state evolution of the system. As each
neighbor j of i transmits the saturated information ρj(xj)
to i, the function b effectively adjusts the network topology
based on the distance between two adjacent states. The non-
increasing property of b is used to characterize the coupling
strength between nodes, which weakens as the distance be-
tween them increases. A discussion of higher-dimensional
space can be found at the end of Section IV. We will also
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consider a specific form of b for opinion dynamics in Section
V.
Remark 1. Due to the existence of the constraint set θi, the
distance measure no longer exerts symmetric effect on agents
i and j unless in the trivial case of θi = R for all i ∈ V . The
previous analysis methods e.g. in [15], [16] are not applicable
as they highly rely on the unconstrained conditions.

Fig. 1. Schematic of the system formulation.

Let GA(t) be the graph commensurate with the weighted
adjacency matrix A(t) in the sense that aij(t) > 0 if and only
if (j, i) is an edge in GA(t). Clearly, GA(t) is a subgraph of
G, regulated by the evolution of the system (2) as depicted in
Fig. 1.

We assume the function b satisfies one of the following
conditions.
Assumption 1. For any z ≥ 0, b(z) > 0 and b(0) is finite.
Moreover, b(z) is non-increasing and Lipschitz continuous.
Assumption 2. For any z ≥ 0, b(0) is finite, b(z) > 0 for
z < B and b(z) = 0 for z ≥ B, where B > 0 is a constant.
Moreover, b(z) is non-increasing and Lipschitz continuous.

The property of b in Assumption 1 is similar to the law of
gravity as the modulation function will remain positive while
decline as the distance increases [14]. Assumption 2 has a
cut-off point. When the difference is larger than the threshold,
b becomes zero. An example of this type of b is discussed
in opinion dynamics in Section V. We will see in Section IV
that the parameter B is not a global information; it can be
circumvented by using individual Bij for i, j ∈ V . The two
scenarios will be analyzed in Sections III and IV, respectively.
Remark 2. The system (1) and (2) is put forward under
the implicit assumption that a node can access its own true
state. If this is not the case, the system may well be writ-
ten as ẋi(t) =

∑
j∈Ni

aij(t)(ρj(xj(t)) − ρi(xi(t))), where
aij(t) = eijb((ρi(xi) − ρj(xj))2), i, j ∈ V . The consensus
behavior of such a system is much more straightforward to
observe at least in the case of undirected network topology
G. The idea is sketched as follows. When G is undirected, by
setting x̃i(t) = ρi(xi(t)), the model reduces to a symmetric
diffusive system ˙̃xi(t) =

∑
j∈Ni

aij(t)ρ̇i(t)(x̃j(t) − x̃i(t)),
where A(t) = (aij(t)) ∈ Rn×n is symmetric and ρ̇i can
be approximated by a smooth function with support set
[θi − ε, θi + ε] for some ε → 0+. The consensus then
follows from the arguments for state-dependent consensus in
[15] and a standard topology uncertainty result (e.g. [30]). To
accommodate the intrinsic asymmetry as well as directedness
in our system (1) and (2), a very different argument is required.

B. Robust consensus

Recall GA(t) is a time-varying and state-dependent graph.
Given a constant δ > 0, an edge (j, i) is called an δ-edge
of GA(t) on time interval [t1, t2) if

∫ t2
t1

aij(t)dt ≥ δ. We say
GA(t) is a quasi-strongly δ-connected graph if there is τ > 0
such that for any t ≥ 0, the δ-edges of GA(t) on [t, t + τ)
form a quasi-strongly connected graph. The following result
is a special case of Theorem 4.1 in [31].
Lemma 1. Let t̂ ≥ 0 and δ > 0. Consider the following system
over GA(t):

ẋi(t) =
n∑

j=1

aij(t)(xj(t) − xi(t)) + yi(t),

i ∈ V, t ≥ t̂, (3)

where yi(t) is piecewise continuous. Assume GA(t) is
quasi-strongly δ-connected. For any ε > 0, there is
η > 0 such that if maxi∈V supt≥t̂ |yi(t)| ≤ η, then
lim supt→∞ maxi,j∈V |xi(t) − xj(t)| ≤ ε.

III. STATE-DEPENDENT CONSTRAINED CONSENSUS:
FIXED CONNECTIVITY

We consider the constrained consensus of the system (2),
where the modulating function satisfies Assumption 1. This
indicates the connectivity is dominated by the topology of G
since b is always positive.

Denote by x(t) = (x1(t), x2(t), · · · , xn(t))T ∈ Rn, where
T represents the transpose. Let θ = maxi∈V θi and θ =
mini∈V θi. Clearly, ∩i∈Vθi = [θ, θ] if it is not empty. Our
first result assumes that G is undirected.
Theorem 1. Consider the multiagent network G with the
dynamics in (2). Suppose that G is undirected, connected and
[θ, θ] 6= ∅. Under Assumption 1, for any x(0) ∈ Rn there exists
some ĉ ∈ [θ, θ] satisfying limt→∞ xi(t) = ĉ for any i ∈ V .
Proof. We define two locally Lipschitz continuous func-
tions φ(x(t)) = max{maxi∈V xi(t), θ} and ψ(x(t)) =
min{mini∈V xi(t), θ}. Let V (x(t)) = φ(x(t))−ψ(x(t)) ≥ 0.
To investigate the monotonicity of V and apply the Lyapunov
theory, we first have a look at φ(x) along the system (2).

Suppose that φ(x(s)) > θ at some time s ≥ 0. By the
continuity, maxi∈V xi(t) > θ for t ∈ [s, s+ε) for some ε > 0.
Let I(t) = {j : xj(t) = maxi∈V xi(t)} 6= ∅. For a continuous
function y(t) ∈ R, the upper right Dini derivative is defined
as

D+y(t) = lim sup
δt→0+

y(t + δt) − y(t)
δt

. (4)

Differentiating φ(x(s)) along the trajectory of (2) yields

D+φ(x(s)) =D+ max
i∈V

xi(s) = max
i∈I(s)

ẋi(s)

= max
i∈I(s)

∑
j∈Ni

aij(s)(ρj(xj(s)) − xi(s)). (5)

For any î ∈ I(s), xî(s) > θ and xî(s) ≥ xj(s) for
j ∈ V . Since θ ≤ θj for j ∈ V , we know that θ < xj(s)
implies xj(s) ≥ ρj(xj(s)) and that θ ≥ xj(s) implies
θj ≥ ρj(xj(s)) for j ∈ V . Therefore, ρj(xj(s)) ≤ xî(s).
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Using (5) and Assumption 1 that b is a positive function, we
have D+φ(x(s)) ≤ 0.

Suppose that φ(x(s)) = θ at some time s. By the definition
of φ(x) and the above comment, we have φ(x(t)) = θ
for t ≥ s. Combining these know that φ(x(t)) is non-
increasing for t ≥ 0. By applying the analogous argument to
ψ(x), we conclude that ψ(x(t)) is non-decreasing for t ≥ 0.
Consequently, D+V (x(t)) ≤ 0 for t ≥ 0.

Recall that V (x(t)) is locally Lipschitz continuous. If the
vector field specified by (2) is written as ẋ(t) = ϕ(x(t)), the
upper right Dini derivative of V along ϕ is

D+V (x) = lim sup
δt→0+

V (x + δtϕ(x)) − V (x)
δt

. (6)

It is known that [32, p.353] D+V (x)|x=x(t̂) =
D+V (x(t))|t=t̂. Let S = {x ∈ Rn : D+V (x) = 0}.
We can show that S ⊆ [θ, θ]n. In fact, if this is not the
case, we have some vector x̂ = (x̂1, x̂2, · · · , x̂n)T ∈ S and
x̂ 6∈ [θ, θ]n. Without loss of generality, assume that there is
a node i ∈ V satisfying x̂i = maxj∈V x̂j > θ. Consider a
solution x(t) for the system (2) originating from x(0) = x̂.
Let Î = {j ∈ V : x̂j = x̂i} 6= ∅. By Assumption 1 and the
connectivity of G, the value of any node in Î will be dragged
down by nodes outside of Î or the upper bound θ as the
system evolves. Hence, at some s > 0 we have xj(s) < x̂i

for all j ∈ V since (2) is an averaging system and φ(x(t))
is non-increasing. This means φ(x(s)) < φ(x(0)). However,
any trajectory starting from x̂ ∈ S should remain in S. We
obtain a contradiction. This shows that S ⊆ [θ, θ]n must hold
true.

In view of LaSalle’s invariance principle, the set of accu-
mulation points should be contained in S and hence in [θ, θ]n.
This means x(t) → [θ, θ]n as t → ∞. By the definition of
the constraint sets, for any ε > 0, there is some time s > 0
such that |xi(t) − ρi(xi(t))| < ε for all t ≥ s and i ∈ V . The
multiagent system (2) can be cast as

ẋi(t) =
∑
j∈Ni

aij(t)(xj(t) − xi(t)) + yi(t), (7)

where

yi(t) =
∑
j∈Ni

aij(t)(ρj(xj(t)) − xj(t)) (8)

for t ≥ 0 and i ∈ V . Hence, for any ε > 0, there is some time
s > 0 such that |yi(t))| < ε for all t ≥ s and i ∈ V . There
exists a constant c > 0 satisfying |xi(t) − ρj(xj(t))| ≤ c for
t ≥ 0. By Assumption 1, b((xi(t)−ρj(xj(t)))2) ≥ b(c2) > 0.
Since G is connected, GA(t) is quasi-strongly b(c2)-connected.
By Lemma 1, for any ε > 0, we have

lim sup
t→∞

max
i,j∈V

|xi(t) − xj(t)| ≤ ε. (9)

Letting ε → 0 in (9), we know that limt→∞ xi(t)−xj(t) = 0
for i, j ∈ V .

As we already know {xi(t)}t≥0 for any given i ∈ V is a
bounded function with all possible accumulation points of it
sit in [θ, θ], let ĉ ∈ [θ, θ] be such an accumulation point (for
a given i). If θ = θ, the theorem is proved. In the following,

we assume θ < θ since by assumption [θ, θ] 6= ∅. For any
ε > 0, there is some sufficiently large time s > 0 satisfying
|xi(s) − ĉ| ≤ ε for all i ∈ V by (9). We now proceed under
three cases.

Case 1). Suppose that θ < ĉ < θ. In this case, we
choose ε small enough so that θ < ĉ − ε ≤ xj(s) ≤
ĉ + ε < θ for all j ∈ V . Define the consensus space
C = span{c1n : c ∈ R}, where 1n ∈ Rn is the all-one
vector. It is direct to check that the orthogonal projection of
x(t) over C is PC(x(t)) := 1

n

( ∑
i∈V xi(t)

)
1n. Let f(t) =

x(t) − PC(x(t)) ∈ Rn. If the limit of the Euclidean norm
limt→∞ ‖f(t)‖ = limt→∞(f(t)Tf(t))

1
2 = 0, Theorem 1 is

proved in this case. What remains to show is

lim
t→∞

‖f(t)‖ = 0. (10)

Define a function W (t) = 1
2f(t)Tf(t). Denote by L(t) =

(lij(t)) ∈ Rn×n the Laplacian matrix of GA(t), where lij(t) =
−aij(t) for i 6= j and lii(t) =

∑
j∈V aij(t). Note that

PC(L(t)x(t)) = L(t)PC(x(t)). We obtain for t ≥ s,

Ẇ (t) =f(t)Tḟ(t)

=(x(t) − PC(x(t)))T(−L(t)x(t) + L(t)PC(x(t)))

=
(
x(t) − 1

n

( ∑
i∈V

xi(t)
)
1n

)T

·
(
− L(t)x(t) + L(t)

1
n

( ∑
i∈V

xi(t)
)
1n

)
= − x(t)TL(t)x(t) ≤ 0, (11)

by using the system dynamics (2), the condition that θ <
xi(s) < θ for all i ∈ V and L(t)1n = 1T

nL(t) = 0. Hence,
‖f(t)‖ ≤ ‖f(s)‖ for t ≥ s.

Let λ(L(t)) ≥ 0 be the second smallest eigenvalue of
L(t) and γ = (γ1, γ2, · · · , γn) ∈ Rn be the associated
unit eigenvector. By direct calculation we know that |xi(t) −
xj(t)| ≤

√
2‖f(t)‖ ≤

√
2‖f(s)‖; see also [33, Lem. 1]. By

the Rayleigh-Ritz theorem, we obtain

λ(L(t)) =
1
2

∑
i,j∈V

eijb((xi(t) − xj(t))2)(γi − γj)2

≥b(2‖f(s)‖2)
2

∑
i,j∈V

eij(γi − γj)2

=
b(2‖f(s)‖2)

2
γTLγ

≥b(2‖f(s)‖2)
2

λ(L), (12)

where L is the Laplacian matrix of G and λ(L) is the second
smallest eigenvalue of L. By the connectivity of G, we know
that λ(L) > 0 and hence λ(L(t)) has a positive lower bound
by (12). Let H0(L(t)) represent the set of all eigenvectors of
L(t) associated with the zero eigenvalue (which is a simple
eigenvalue because GA(t) is connected in this case). A direct
application of the Rayleigh-Ritz theorem shows that

x(t)TL(t)x(t) ≥ λ(L(t))‖x(t) − PH0(L(t))(x(t))‖2. (13)
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Since GA(t) is connected, H0(L(t)) = C. In view of (11), (12)
and (13), we have for t ≥ s,

Ẇ (t) = − xT(t)L(t)x(t)

≤− λ(L(t))‖x(t) − PC(x(t))‖2

= − λ(L(t))‖f(t)‖2 < 0 (14)

when ‖f(t)‖ 6= 0. This indicates (10) must be true and this
case is concluded.

Case 2). Suppose that ĉ = θ. In this case, we choose
a small ε such that θ < xj(s) ≤ ĉ + ε for all j ∈ V .
Since φ(x(t)) is non-increasing and bounded from below by θ,
φ(x(t)) converges to some limit, say c′, where c′ ≥ ĉ. Letting
ε → 0, we obtain that c′ = ĉ. Applying the same argument in
the beginning of this proof, we see that maxi∈V xi(t) is non-
increasing for t ≥ s and hence has a limit. This limit must be
c′, and hence is ĉ. In light of (9), mini∈V xi(t) also converges
to ĉ, which concludes the proof in this case.

Case 3). Suppose that ĉ = θ. By symmetry, this case can
be proved analogously as in Case 2). 2

Remark 3. In Theorem 1 we assumed that G is undirected.
This combined with Assumption 1 indicates that GA(t) has
a bidirectional topology, i.e., the two orientations of an edge
may have different weights but they must appear and disap-
pear simultaneously. Moreover, if the state-dependent weight
between nodes i and j in (1) is redefined in a symmetric form

aij(t) = eijb((xi − xj)2), (15)

the above proof still applies. In this case, GA(t) becomes
undirected if G is undirected.

When G is directed, we will need to use the cut-balance
condition proposed in [13]. Namely, there is a constant c ≥
1 such that for any t ≥ 0 and ∅ 6= S ⊂ V , the following
condition holds:

1
c

∑
i∈S,j 6∈S

aji(t) ≤
∑

i∈S,j 6∈S

aij(t) ≤ c
∑

i∈S,j 6∈S

aji(t). (16)

Theorem 2. Consider the multiagent network G with the
dynamics in (2). Suppose that G is directed, strongly connected
and [θ, θ] 6= ∅. If Assumption 1 holds and the cut-balance
condition (16) holds for GA(t), for any x(0) ∈ Rn there exists
some ĉ ∈ [θ, θ] satisfying limt→∞ xi(t) = ĉ for any i ∈ V .
Proof. Most part of the proof of Theorem 1 is applicable
in the current situation. As G is strongly connected, the part
essentially different from the above proof lies in Case 1). Here,
L(t) is no longer a symmetric matrix and the original approach
is no longer applicable. However, it is shown in [13, Thm. 1]
that the system

ẋi(t) =
∑
j∈Ni

aij(t)(xj(t) − xi(t)), t ≥ 0 (17)

can achieve consensus as long the weights {aij(t)}i,j∈V
satisfy (16). Under the condition of Case 1), we consider the
solution x(t) starting from t = s and readily conclude that
limt→∞ xj(t) = ĉ for all j ∈ V . This complete the proof in
Case 1). The rest of the proof is largely the same. 2

Remark 4. It’s worth noting that the condition (16) is required
for GA(t). But under Assumption 1, this can be conveniently

guaranteed by, for example, requiring the set symmetry con-
dition on G; c.f. [13, p.217]. Namely, for any subset S ⊂ V ,
there are two nodes i ∈ S and j 6∈ S satisfying (i, j) ∈ E if
and only if there are two nodes î ∈ S and ĵ 6∈ S satisfying
(ĵ, î) ∈ E . Some simple examples satisfying the topology
conditions in Theorem 2 is shown in Fig. 2. Also note that the
detail-balanced condition proposed in [19] is a special case of
the weighted average-preserving condition [13, Prop. 1], which
further is a special case of (16).

Fig. 2. Examples of strongly connected and set symmetric network G.

Remark 5. The strongly connectivity condition of G in The-
orem 2 cannot be generalized to quasi-strongly connectivity.
Suppose that G is quasi-strongly connected with node i being
the root. If Ni = ∅ and the initial state xi(0) 6∈ [θ, θ], then
the constrained consensus will fail since the state of i never
changes. It is clear that the strongly connectivity of G is not
only sufficient but a necessary condition, namely, any root
node should be reachable.

IV. STATE-DEPENDENT CONSTRAINED CONSENSUS:
TIME-VARYING CONNECTIVITY

When the modulating function satisfies Assumption 2, the
communication topology GA(t) could be more sparse than the
underlying topology of G. This gives rise to a time-varying
connectivity depending on the states of the system (2). Recall
that x(t) = (x1(t), x2(t), · · · , xn(t))T ∈ Rn, θ = maxi∈V θi

and θ = mini∈V θi.
The following lemma characterizes the strong connectivity,

which will be useful in the proof of Theorem 3.
Lemma 2. If the number of ordered pairs of nodes not
connected by a directed edge in G = (V, E) is less than n−1,
then G is strongly connected.
Proof. If G is not strongly connected, then we can divide the
node set V into two nontrivial parts V1 and V2. Without loss
of generality, we assume there is no edge from V1 to V2. Let
|V1| = k and |V2| = n − k with 1 ≤ k ≤ n − 1. Define a
function ϕ(k) = k(n − k) meaning the number of ordered
pairs of nodes (i, j), where i ∈ V1, j ∈ V2, and (i, j) 6∈ E .
As the minimum of ϕ(k) is attained at k = 1 or k = n − 1,
we conclude that the number of ordered pairs of nodes not
connected by a directed edge in G is at least n − 1. 2

Theorem 3. Consider the multiagent network G with the
dynamics in (2). Suppose that G is directed, strongly connected
and [θ, θ] 6= ∅. Assume that the cut-balance condition (16)
holds for GA(t) and

∑
i,j∈V

∫ (xi(0)−ρj(xj(0)))
2

0

eijb(s)ds

< (n − 1)
∫ B

0

b(s)ds, (18)
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where B is given in Assumption 2. Under Assumption 2,
for any x(0) ∈ Rn there exists some ĉ ∈ [θ, θ] satisfying
limt→∞ xi(t) = ĉ for any i ∈ V .
Proof. We can follow the similar argument in Theorem 1 by
defining two locally Lipschitz continuous functions φ(x(t)) =
max{maxi∈V xi(t), θ} and ψ(x(t)) = min{mini∈V xi(t), θ}.
As in Theorem 1, we can show that the upper right Dini deriva-
tives D+V φ(x(t)) ≤ 0 and D+ψ(x(t)) ≥ 0 for t ≥ 0. Conse-
quently, define the Lyapunov candidate V (x(t)) = φ(x(t)) −
ψ(x(t)) and D+V (x(t)) = D+φ(x(t)) −D+ψ(x(t)) ≤ 0 for
t ≥ 0.

Define the set S = {x ∈ Rn : D+V (x) = 0}. We will show
by a contradiction argument that S ⊆ [θ, θ]n. If this is not true,
there is a vector x̂ = (x̂1, x̂2, · · · , x̂n)T ∈ S and x̂ 6∈ [θ, θ]n.
Without loss of generality, we assume that there exists a node
k ∈ V satisfying x̂k = maxj∈V x̂j > θ. Consider a solution
x(t) for the multiagent system (2) starting from x(0) = x̂.
Let Î = {j ∈ V : x̂j = x̂k} 6= ∅. Recall G is strongly
connected. We apply the energy function method [34] and
define for t ≥ 0,

U(x(t)) =
∑

i,j∈V

∫ (xi(t)−ρj(xj(t)))
2

0

eijb(s)ds. (19)

Differentiating the function (19) using (1) and (2) gives rise
to

U̇(x(t)) =2
∑

i,j∈V
eijb((xi(t) − ρj(xj(t)))2)

· (xi(t) − ρj(xj(t)))
(
ẋi(t) − ẋj(t)1{xj(t)∈[θj ,θj ]}

)
=2

∑
i,j∈V

aij(t)(xi(t) − ρj(xj(t)))

·
(
ẋi(t) − ẋj(t)1{xj(t)∈[θj ,θj ]}

)
= − 4ẋ(t)Tẋ(t) ≤ 0. (20)

Therefore, for t ≥ 0 we have∑
i,j∈V

∫ (xi(t)−ρj(xj(t)))
2

0

eijb(s)ds

≤U(x(0))

=
∑

i,j∈V

∫ (xi(0)−ρj(xj(0)))
2

0

eijb(s)ds

<(n − 1)
∫ B

0

b(s)ds, (21)

by using the condition (18). By Assumption 2, this indicates
that there is less than n−1 pair of nodes that are not connected
by a directed edge in GA(t). In view of Lemma 2, GA(t) is
strongly connected for t ≥ 0. Hence, the value of any node in
Î will be dragged down by nodes outside of Î or the upper
bound θ as the system evolves. At some s > 0 we have
xj(s) < x̂i for all j ∈ V since (2) is an averaging system
and φ(x(t)) is non-increasing. Therefore, φ(x(s)) < φ(x(0)).
On the other hand, any trajectory starting from x̂ ∈ S would
remain in S. This leads to a contradiction. We then conclude
S ⊆ [θ, θ]n as desired.

By LaSalle’s invariance principle, the set of accumulation
points is contained in S. Hence, x(t) → [θ, θ]n as t → ∞.
For any ε > 0, there is some time s > 0 such that |xi(t) −
ρi(xi(t))| < ε for all t ≥ s and i ∈ V . We rewrite the system
(2) as

ẋi(t) =
∑
j∈Ni

aij(t)(xj(t) − xi(t)) + yi(t), (22)

where

yi(t) =
∑
j∈Ni

aij(t)(ρj(xj(t)) − xj(t)) (23)

for t ≥ 0 and i ∈ V . For any ε > 0, there is some time s > 0
such that |yi(t))| < ε for all t ≥ s and i ∈ V . There exists a
constant c > 0 satisfying |xi(t) − ρj(xj(t))| ≤ c for t ≥ 0.
Since GA(t) is strongly connected, it must be quasi-strongly
δ-connected for some δ > 0. It follows from Lemma 1 that
for any ε > 0, we obtain

lim sup
t→∞

max
i,j∈V

|xi(t) − xj(t)| ≤ ε. (24)

We obtain limt→∞ xi(t) − xj(t) = 0 for all i, j ∈ V by
choosing ε → 0 in (24).

As in the proof of Theorem 1, let ĉ ∈ [θ, θ] be an
accumulation point of {xi(t)}t≥0 for a given i. If θ = θ, the
theorem is proved. In the following, we assume θ < θ. For
any ε > 0, there is some time s > 0 satisfying |xi(s)− ĉ| ≤ ε
for all i ∈ V by (24). We then consider three cases as in the
proof of Theorem 1. The treatment of Case 1) is analogous
to Theorem 2 thanks to the cut-balance condition. The Case
2) and Case 3) can be shown exactly as in Theorem 1. The
proof is complete. 2

Remark 6. Note that the above Remarks 4 and 5 are still
valid here. Moreover, although a common B is chosen in
Assumption 2, the above proof works in the same way by
taking B = maxi,j∈V{Bij} if the modulating function b
in (1) allows heterogeneous cut-offs. Therefore, the strategy
proposed here is essentially distributed.
Remark 7. In addition to the directedness consideration, the
current network topology is more general in that we allow a
general underlying graph G while previous works such as [15],
[16] require that G is a complete undirected graph.

In the above, the state space of agents is assumed to be
one-dimensional. It may be interesting in some applications
to consider a higher-dimensional space with xi ∈ RN and a
hypercube constraint θi :=

∏N
k=1[(θi)k, (θi)k] ⊂ RN , where

N ≥ 1, i ∈ V , and (·)k represents the k-th component of an
N -dimensional vector. Define a higher-dimensional saturation
function ρi : RN → RN by (ρi(z))k = (θi)k if (z)k < (θi)k,
(ρi(z))k = (z)k if (θi)k ≤ (z)k ≤ (θi)k, (ρi(z))k = (θi)k if
(z)k > (θi)k for every k = 1, 2, · · · , N . Our system takes the
same format of (2) as

ẋi(t) =
∑
j∈Ni

aij(t)(ρj(xj(t)) − xi(t)) := gi(x(t)) (25)

and the coupling weight is naturally given by

aij(t) = eijb(‖xi − ρj(xj)‖2), (26)
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where x = (xT
1 , · · · , xT

n)T ∈ RnN . The previous argu-
ment towards consensus is no longer applicable here in gen-
eral as there can be different nodes brought in the ranges
[maxi∈V(θi)k,mini∈V(θi)k] for differen k, which invalidates
the robustness analysis. Nevertheless, we can show that the
system (25) is still cooperative in the following sense.
Definition 1. [35] The system (25) is called cooperative if
w1

i ¹ w2
i for all i ∈ V implies x1

i (t) ¹ x2
i (t) for all i ∈ V

and t ≥ 0, where w1
i = ((w1

i )1, · · · , (w1
i )N )T ∈ RN , w2

i =
((w2

i )1, · · · , (w2
i )N )T ∈ RN , x1

i (0) = w1
i and x2

i (0) = w2
i .

Here, w1
i ¹ w2

i means (w1
i )k ≤ (w2

i )k for all 1 ≤ k ≤ N .
It is known that (25) is cooperative if the following Kamke-

Muller condition [35, Thm. 12.11] holds: For any i ∈ V ,
if w1 = (w1T

1 , · · · , w1T
n )T ¹ w2 = (w2T

1 , · · · , w2T
n )T and

w1
i = w2

i , then gi(w1) ¹ gi(w2). To show the Kamke-
Muller condition, we fix i ∈ V . Since w1 ¹ w2, we have
ρj(w1

j ) ¹ ρj(w2
j ) for all j ∈ V by the definition of the

saturation function. Employing aij(t) ≥ 0 and w1
i = w2

i , we
obtain

gi(w1) =
∑
j∈Ni

aij(t)(ρj(w1
j ) − w1

i )

¹
∑
j∈Ni

aij(t)(ρj(w2
j ) − w2

i ) = gi(w2), (27)

which concludes the proof.

V. APPLICATION TO AN OPINION MODEL WITH BOUNDED
CONFIDENCE AND OBSERVER EFFECT

In this section, we introduce an opinion dynamics model
featuring bounded confidence and social observer effect. In
opinion dynamics with scalar opinion space, each individual
holds a value, called opinion. Individuals tend to only interact
and compromise with others only if their opinion difference is
less than a threshold. This phenomenon is often known as an
example of social homophily theory [36] and has been studied
extensively in opinion dynamics literature under the name
’bounded confidence’ during the last few decades [9], [34].
Another well-known psychological phenomenon affecting so-
cial opinion expression is the observer effect or Hawthorne
effect, which recognizes the behavioral change of individual
in social interactions in the presence of observers [37], [38].
In these situations, individuals tend to express neutral/mild
opinions within certain boundaries. Although there have been
numerous empirical results, analytical model has been recently
introduced in [28] by incorporating a comfortable range for
individual’s expression opinion.

To incorporate both the bounded confidence and observer
effect in our state-dependent multiagent networks, we consider
the following dynamics for each agent i ∈ V:

ẋi(t) =
∑
j∈Ni

eij1{|xi(t)−ρj(xj(t))|<D}

· (ρj(xj(t)) − xi(t)) (28)

for t ≥ 0. Here, eij represents again the communication
weight of the original network topology G and D is the
bounded confidence threshold, where the two agents interact
with each other only when their opinion difference is less

than D. The saturation function is defined as in Section II to
provide a comfortable range [θi, θi] for individual i modelling
the observer effect. For simplicity, we write the indicator
function in (28), which strictly speaking should be replaced
by a Lipschitz continuous function approximating the indicator
function. In this section, we stick to this notation for ease of
presentation.

It is easy to see that Assumption 2 for the modulating
function is satisfied. The following result is an immediate
corollary of Theorem 3.
Corollary 1. Consider the multiagent network G with the
dynamics in (28). Suppose that G is strongly connected and
[θ, θ] 6= ∅. Assume that the cut-balance condition (16) holds
for GA(t) and∑

i,j∈V
eij · min{D2, (xi(0) − ρj(xj(0)))2}

< (n − 1)D2. (29)

For any x(0) ∈ Rn there exists some ĉ ∈ [θ, θ] satisfying
limt→∞ xi(t) = ĉ for any i ∈ V .
Proof. This can be obtained by using Theorem 3 and taking
b(s) = 1{s<D2} and D2 = B. 2

The condition (29) can be further relaxed if the multiagent
system (28) satisfies the following symmetric condition.
Assumption 3. θi = θ and θi = θ for all i ∈ V . There exists a
constant c such that the initial states satisfy xi(0)+xj(0) = c
for any i, j ∈ V and i + j = 1 + n.

To establish the constrained consensus result, we need the
follow lemma regarding network connectivity.
Lemma 3. Consider the multiagent network G with the
dynamics in (28). Suppose that G is a complete graph and
n ≥ 4. Under Assumption 3, for any t ≥ 0 if the number of
ordered pairs of nodes not connected by a directed edge in
GA(t) is less than 2n − 3, then GA(t) is strongly connected.
Proof. We first claim that xi(t)+xj(t) = c for any i+j = 1+n
and t ≥ 0. In fact, fix t ≥ 0. For any i + j = 1 + n, using
(28) and the condition that G is complete, we obtain

ẋi(t) + ẋj(t) =
∑

k∈Ni

aik(t)(ρk(xk(t)) − xi(t))

+
∑
l∈Nj

ajl(t)(ρl(xl(t)) − xj(t)), (30)

where aik(t) = 1{|xi(t)−ρk(xk(t))|<D} and ajl(t) =
1{|xj(t)−ρl(xl(t))|<D}. Let Ni(t) represent the neighborhood
of agent i at time t in GA(t). If the state symmetric condition
in Assumption 3 holds at time t, namely, xi(t) + xj(t) = c
for i + j = 1 + n, then the neighborhoods of i and j are
symmetric, i.e., for any k ∈ Ni(t) there is a l ∈ Nj(t)
satisfying k+ l = 1+n. Moreover, the right-hand side of (30)
satisfies aik(t) = ajl(t). This further implies ẋi(t)+ẋj(t) = 0.
Therefore, if we start from t = 0, then Assumption 3
guarantees that xi(t) + xj(t) = c for i + j = 1 + n holds
for all t ≥ 0.

Fix t ≥ 0 and suppose GA(t) is not strongly connected.
Since the states are always symmetric, the node set V can be
divided into three nontrivial parts V1, V2 and V3 with |V1| = k,
|V2| = n−2k, and |V3| = k, where k ≥ 1 We first consider V1
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and V2. Without loss of generality, we assume there is no edge
from V1 to V2. Define a function ϕ(k) = k(n− 2k) meaning
the number of ordered pairs of nodes (i, j), where i ∈ V1,
j ∈ V2, and (i, j) is not an edge in GA(t). The minimum of
ϕ(k) is ϕ(1) = n − 2. Similarly, we can consider V2 and
V3, which contribute n− 2 ordered pairs. Considering V1 and
V3, we obtain 1 ordered pair. Combining them together, the
number of ordered pairs of nodes not connected by a directed
edge in GA(t) is at least (n− 2) + (n− 2) + 1 = 2n− 3. This
proves Lemma 3. 2

Theorem 4. Consider the multiagent network G with the
dynamics in (28). Suppose that G is a complete graph and
[θ, θ] 6= ∅. Under Assumption 3, we have the following.

(1) When n = 2 and n = 3, GA(0) is strongly con-
nected if and only if there exists some ĉ ∈ [θ, θ] satisfying
limt→∞ xi(t) = ĉ for any i ∈ V .

(2) When n ≥ 4, assume that the cut-balance condition (16)
holds for GA(t) and∑

i,j∈V
min{D2, (xi(0) − ρj(xj(0)))2} < (2n − 3)D2. (31)

There exists some ĉ ∈ [θ, θ] satisfying limt→∞ xi(t) = ĉ for
any i ∈ V .
Proof. When n = 2, without loss of generality we assume
x1(0) ≤ x2(0). Assume GA(0) is strongly connected. If
θ ≤ x1(0) ≤ x2(0) ≤ θ, ẋ1(t) = 1{|x1(t)−ρ2(x2(t))|<D} ·
(ρ2(x2(t))−x1(t)) ≥ 0. This implies x1(t) is non-decreasing.
Similarly, x2(t) is non-increasing. Moreover, x2(t)−x1(t) ≥ 0
holds for all t ≥ 0. Therefore, GA(t) is strongly connected for
all t ≥ 0. Using the same proof of Theorem 3, we obtain
the constrained consensus. For the other scenarios of x1(0),
x2(0), θ and θ, the same proof also holds true.

On the other hand, suppose GA(0) is not strongly connected.
Without loss of generality, we assume |x1(0) − ρ2(x2(0))| ≥
D. Thus ẋ1(t) = 0. We choose x1(0) 6∈ [θ, θ]. Clearly,
constrained consensus can not be achieved.

When n = 3, without loss of generality we assume
x1(0) ≤ x2(0) ≤ x3(0). Hence, Assumption 3 implies
x2(0) = (x1(0) + x3(0))/2. The system dynamics and the
analysis in Lemma 3 indicate ẋ2(t) = 0 for t ≥ 0. Moreover,
ẋ1(t) = 1{|x1(t)−ρ2(x2(t))|<D} · (ρ2(x2(t)) − x1(t)) ≥ 0.
This implies x1(t) is non-decreasing. Similarly, x2(t) is non-
increasing. As in the case n = 2, we obtain the constrained
consensus.

On the other hand, suppose GA(0) is not strongly connected.
Without loss of generality, we assume |x1(0) − ρ2(x2(0))| ≥
D. Thus ẋ1(t) = 0. Since we already know that ẋ2(t) = 0,
constrained consensus can not be achieved.

When n ≥ 4, the result can be shown analogously as
Theorem 3 but now by virtue of Lemma 3. 2

Remark 8. In Theorem 4, although G is required to be a
complete graph, the actual communication topology GA(t) can
be sparser as it is regulated by the states of agents. This helps
highlight the relevance of the proposed model since not each
pair of agents in realistic networks will exchange information
even the two agents are physically connected. We also note that
this restrictive condition on the network topology is employed
to relax the initial opinion configuration (29) in Corollary 1.

VI. NUMERICAL SIMULATIONS

In this section, we present some numerical examples to
illustrate the theoretical results.
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Fig. 3. Constrained consensus for Example 1: Constraint sets with initial
and final states indicated by circles and crosses, respectively, for initial
condition (a) x(0) = (2, 1,−2, 4)T and (b) x(0) = (3, 0,−1, 1)T. The
state trajectories in the case (a) are shown in (c) and the state trajectories in
the case (b) are shown in (d).

Example 1. In this example we consider the constrained
consensus with fixed connectivity. Consider the network G
with the node set V = {1, 2, 3, 4} as shown in the right panel
of Fig. 2. Take θ1 = [−2, 1], θ2 = [−3, 2], θ3 = [0, 3], and
θ4 = [−1, 2]. Hence, the intersection is [θ, θ] = [0, 1]. We
choose the modulating function following the Cucker-Smale
model as b(s) = 1/(1+ s) for s ≥ 0. It is direct to check that
the conditions in Theorem 2 are satisfied. We show the state
evolution of the multiagent network (2) in Fig. 3(c) with initial
condition x(0) = (2, 1,−2, 4)T (see Fig. 3(a)) and Fig. 3(d)
with initial condition x(0) = (3, 0,−1, 1)T (see Fig. 3(b)). As
one would expect from Theorem 2 that constrained consensus
has been achieved.

Several observations are worth remarking. Firstly, in the
case (a) the final consensus value is at 1 but in the case
(b) the final consensus value is at 0.952. This means that
the equilibrium can be in the interior of the set ∩i∈V [θi, θi]
as well as on its boundary. Secondly, the trajectories of the
agents are allowed to trespass their respective constraint sets.
For example, the initial state of agent 1 is outside the interval
[−2, 1] in both cases. Thirdly, the evolution does not need
to be monotonic. For example, in the case (a), the agent 2
starts from x2(0) = 1 and even ends in the same state but the
transient trajectory deviates from 1.
Example 2. Next, we consider the constrained consensus with
time-varying connectivity. Using the same network G as in Ex-
ample, we redefine the modulating function as b(s) = 1−s/3
for s ≤ 3 and b(s) = 0 for s > 3. Choose the same initial
configuration x(0) = (3, 0,−1, 1)T as in Example 1. It is
direct to check that the conditions in Theorem 3 are satisfied.
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Fig. 4. Constrained consensus for Example 2: The state trajectories under
the initial condition x(0) = (3, 0,−1, 1)T.
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Fig. 5. Constrained consensus for Example 3: (a) Constraint sets with
initial and final states indicated by circles and crosses, respectively for initial
condition x(0) = (−2,−1, 0, 1, 2)T; (b) The state trajectories for the 5
agents.

We display in Fig. 4 the time evolution of the multiagent
network (2). The constrained consensus has been achieved in
line with the theoretical prediction.

Comparing Fig. 4 with Fig. 3(d), we observe that the
influence of network connectivity on the time evolution on
the agents. The dynamic evolution of network connectivity not
only alters the transient trajectories but the final equilibrium:
In Example 1 the equilibrium is 0.952 whereas in the current
situation it is 1.
Example 3. In this example, we consider an opinion dynamics
model satisfying Assumption 3. Let G be a complete graph
with n = |V| = 5 agents. Let [θ, θ] = [0, 1] and consider the
following system dynamics

ẋi(t) =
5∑

j=1

b((xi(t) − ρj(xj(t)))2)

· (ρj(xj(t)) − xi(t)) (32)

for i ∈ V , where the function b is defined as follows:

b(s) =

 1, 0 ≤ s < D2 − 0.1;
−10 · (s − D2), D2 − 0.1 ≤ s < D2;
0, s ≥ D2.

(33)

Let the initial states be x1(0) = −2, x2(0) = −1, x3(0) = 0,
x4(0) = 1, x5(0) = 2, and choose D = 3. It is direct to check
the conditions in Theorem 4 are satisfied, where inequality
(31) gives 54 < 63.

We observe from Fig. 5 that constrained consensus has been
achieved with the final value around 0.266. It is worth noting
that although the network G are the initial conditions are sym-
metric and the constrained sets are identical, the time evolution
of the states is not symmetric. This highlights the important
influence of asymmetric distance modulating functions, which
incorporate system states and affect the trajectories in turn.
Example 4. Finally, we consider an animal social network
formed by n = 13 sociable weavers in Kimberley, South
Africa [39]. The graph G shown in Fig. 6(a) is connected.
Take θi = [−1, 1] for all i ∈ V and hence [θ, θ] =
[−1, 1]. Choose the modulating function b(s) = 1/(1 + s)
for s ≥ 0 as in Example 1. The conditions in Theorem
1 all hold. We show the state evolution of the multiagent
network (2) in Fig. 6(b) with initial condition x(0) =
(−2.5, 1, 0.5, 0.2,−1.6,−1, 3,−2,−0.3, 1.5, 2,−3, 2.4)T. As
one would expect, the constrained consensus has been
achieved.
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Fig. 6. (a) Social weaver network G in Example 4. (b) State trajectories for
the agents in V = {1, 2, · · · , 13}.

Note that the network G can be viewed as two subgroups
V1 = {1, 2, · · · , 5} and V2 = {6, 7, · · · , 13} linked by a
bridge. We interestingly observe a two-stage-like consensus
seeking process, where consensus tends to first reach within
each group and then among both groups. It is also worth noting
that the consensus speed here is much lower than the above
examples even the density here is larger than that in Fig. 2(b).
This is presumably due to the larger network size as more
agents need to converge to a common state.

VII. CONCLUSION

In this paper, constrained consensus problem over state-
dependent multiagent systems has been solved. The communi-
cation network depends on the system states incorporating the
modulating functions in an asymmetric manner. This allows
us to consider more general directed state-dependent networks.
Different conditions have been obtained to ensure constrained
consensus when the connectivity of the multiagent network is
fixed as well as time-varying. The strategies introduced here
do not rely on global information of the network. We also
proposed an opinion dynamics model featuring the observer
effect and bounded confidence phenomenon. Note that in the
current framework, all agents are assumed to be corporative.
However, in reality there may be misbehaving agents. Fault
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tolerance and resilient consensus in the state-dependent mul-
tiagent networks would be interesting future works.
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