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1. Introduction
Radium (Ra) isotopes have been used for decades to track sediment-water interactions, and provide a method to 
differentiate nutrient and trace metal inputs from shelves, rivers, and groundwater (e.g., Moore & Krest, 2004; 
Peterson et  al.,  2013; Tomasky-Holmes et  al.,  2013). While they themselves are soluble in seawater,  226Ra 
and  228Ra are supplied by the radioactive decay of their sediment-bound parent isotopes,  230Th and  232Th respec-
tively (Moore & Edmond, 1984). With half lives of 5.8 years for  228Ra and 1,600 years for  226Ra, the distribu-
tion of these isotopes in the marine environment is controlled by different factors (Elsinger & Moore, 1980; 
Rutgers van der Loeff et al., 2003; Webster et al., 1995). The half life of  226Ra is on the same order of magni-
tude as the global ocean overturning circulation, causing the distribution of  226Ra in the ocean to be primarily 
controlled by slow removal from the surface ocean and release from marine sediments (Rutgers van der Loeff 
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load, as well as Ra desorbed from suspended particles in river estuaries. This study quantifies river radium 
inputs into the Arctic Ocean using dissolved concentrations and desorption experiments on riverine sediment. 
We find that Arctic rivers may have removal processes impacting Ra transport through estuaries that have not 
been observed in other regions. We also estimate the total riverine Ra inputs to the global ocean by adding data 
from 20 major rivers. These findings show that ∼11% of all riverine Ra inputs to the global ocean come from 
Arctic rivers.
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et al., 2003; Webster et al., 1995). With a considerably shorter half-life, the distribution of  228Ra in the ocean is 
more restricted, the result being that  228Ra has much higher relative activities close to the source of its release, 
such as over continental shelves, river mouths, or near submarine groundwater discharge (Moore et al., 1986; 
Moore & Shaw, 2008). As such,  228Ra can be used to pinpoint solute sources from estuarine, fluvial, and shelf 
inputs to the open ocean (Moore et al., 1986; Moore & Krest, 2004; Moore & Todd, 1993; Rutgers van der Loeff 
et al., 1995).

Recent studies have found that the largest source of  228Ra to the Arctic Ocean comes from continental shelves 
and that shelf inputs have increased substantially over the past decade (Kipp, Charette, et al., 2018; Kipp, Sanial, 
et al., 2018; Kipp et al., 2019; Kipp et al., 2020; Rutgers van der Loeff et al., 2018). However, rivers are also an 
important Ra source and it is currently unknown whether they are similarly sensitive to changing fluxes. Phys-
ical and biogeochemical processes in the Arctic Ocean are uniquely dependent on riverine inputs, due to the 
fact that despite having just 1% of the ocean's volume, the Arctic Ocean receives 10% of global river discharge 
(McClelland et al., 2012). Such a large influx of freshwater helps create a highly stratified surface layer in the 
Arctic Ocean, limiting upwelling and increasing the biogeochemical influence of riverine inputs on the upper 
water column (Kipp et al., 2020; Klunder et al., 2012). Along with Ra, rivers in the Arctic are known to contain 
high organic matter (OM) concentrations, accounting for 25% of the dissolved organic carbon supply to the 
central Arctic Ocean (Wheeler et al., 1997). They have also been shown to be a major source of trace metals to 
the Arctic Ocean, such as iron (Fe) and manganese (Mn) (Charette et al., 2020; Klunder et al., 2012; Middag 
et al., 2011).

Despite the potential for Ra to differentiate inputs from shelves, rivers, and groundwater, few studies have specif-
ically investigated fluvial radium inputs to the Arctic Ocean. Radium can be both dissolved in rivers and released 
from suspended sediments in the estuarine mixing zone (Li et al., 1977; Rutgers van der Loeff et al., 2003). This 
desorption of Ra occurs along the salinity gradient as the fresh river water mixes with the ocean endmember, 
peaking at low to intermediate salinities (Elsinger & Moore, 1980; Li & Chan, 1979; Moore & Shaw, 2008; 
Webster et al., 1995). Rutgers van der Loeff et al. (2003) was one of the first studies to report dissolved radium 
measurements in major Arctic rivers (the Ob, Lena, and Yenisey rivers). Kipp et al. (2020) added North American 
river radium measurements (the Mackenzie and Yukon rivers). In another study, the authors used the weighted 
average of dissolved radium from three of these major rivers (Ob, Lena, and Mackenzie), as well as the exper-
imentally determined Mackenzie River desorption values with the recorded sediment load to make a scaled-up 
estimation of total  228Ra added to the Arctic Ocean due to fluvial inputs (Kipp, Charette, et  al., 2018; Kipp, 
Sanial, et al., 2018). However, it's known that sediment loads and other indicators like dissolved and particulate 
organic carbon are considerably different in North American rivers as opposed to Eurasian rivers, largely due 
to their distinct drainage basin characteristics (Amon et al., 2012; Holmes et al., 2002, 2012). These differences 
could impact the desorption of Ra from suspended sediments and have not been investigated for Eurasian rivers.

Using a combination of new and historical data, this paper aims to refine  228Ra riverine fluxes and present the 
first  226Ra riverine flux estimate to the Arctic Ocean. These estimates will aid in the use of Ra isotopes as tracers 
of sediment-derived material fluxes into this high latitude basin. This paper also helps establish baseline values 
for riverine Ra fluxes in the Arctic. As the Arctic warms in response to climate change, freshwater fluxes from 
rivers have been increasing (Déry et al., 2016; Haine et al., 2015; Holmes et al., 2002; Rawlins et al., 2010), and 
are projected to increase over the next few decades (Andreson et al., 2020; Wang et al., 2021). Greater understand-
ing of Ra transport is further necessary for understanding processes impacting Ra transport - such as increased 
permafrost thaw (Biskaborn et al., 2019; IPCC, 2021) and increased coastal erosion (Günther et al., 2013; Irrgang 
et al., 2022) - have also been documented. Finally, using data from major global rivers, we present a new global 
river Ra flux estimate which allows us to put our Arctic results into a broader context.

2. Materials and Methods
2.1. Dissolved Riverine Ra Concentrations

Radium samples were collected in the Ellice River in August and September 2017, the Kolyma River in June and 
September 2019, and the Buskin, Sustina, Matanuska, and Knik Rivers (hereafter referred to as Southern Alaska 
Rivers) in September 2019 (Figure 1). The Ellice River is located in Nunavut, Canada, on the mainland side of 
the Canadian Arctic Archipelago. The Kolyma River is a major river in Siberia, draining into the East Siberian 
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Sea and represents the largest Arctic river basin underlain by continuous permafrost. The Buskin River is located 
on Kodiak Island, AK, while the Sustina, Matanuska, and Knik Rivers drain into Cook Inlet near Anchorage, AK. 
The samples were collected using either a bilge or well pump and the river water was passed through a 1 or 5 μm 
prefilter to remove suspended sediment before being filtered at <1 L/min onto Mn-coated acrylic fiber. The fiber 
was rinsed with Ra-free MilliQ water to remove any salts or sediment, then partially dried.

Samples with low activities (<0.4 dpm) were analyzed for  228Ra via  228Th ingrowth using a delayed coinci-
dence counter (RaDeCC) (Moore, 2008), as described in Charette et al. (2015). Briefly, when  228Ra is extracted 
onto the Mn fiber,  228Th is extracted in parallel. Using the initial concentration of  228Th and the concentration 
of  228Th after 1–2 years, measured via RaDeCC, along with the decay constants of  228Th and  228Ra, the initial 
concentration of  228Ra can be calculated. Low activity samples were analyzed for  226Ra via  222Rn emanation (Key 
et al., 1979), as described in Charette et al. (2015). Fibers were placed in a fiber holder that was then flushed with 
He for 5 min at 250 mL/min, sealed, and left for two weeks before analysis via  222Rn ingrowth and scintillation 
counting. These two methods were used for low activity samples due to better method sensitivity than gamma 
counting (Charette et al., 2001), which was used for samples with high activities (>0.4 dpm per sample). For 
this method, the fibers were ashed (880°C, 16 hr), homogenized, capped with epoxy resin, and left for >3 weeks 
to obtain secular equilibrium between  226Ra and its daughter radionuclides. The samples were then counted in 
a well-type gamma spectrometer for  228Ra (via  228Ac at 338 keV) and  226Ra (via  214Pb at 351.9 keV) (Charette 
et al., 2001).

2.2. Desorption Experiments

Suspended sediment from the Southern Alaskan Rivers was collected in September 2019 using a bilge pump 
to filter water through a 1 μm Hytrex filter. The filters were sealed in plastic bags and kept refrigerated until 
desorption experiments were performed. Bottom sediment from the Kolyma River was collected in summer 2018 
from the Northeast Science Station in Cherskiy between July 23 to August 3. River bed sediment was sampled 
using a Van Veen grab-sampler and a stainless steel spoon, and stored in Whirl-Pak® bags. All samples represent 
recently deposited sediment rich in silt and clay in more quietly flowing locations of the river or delta. Within 

Figure 1. Map of Arctic with Arctic river drainage basins defined according to the methodology of Lammers et al. (2001) 
and labeled according to receiving marginal sea. North American drainage basins are represented in shades of red while 
Eurasian drainage basins are in blue. Arctic rivers with radium data are labeled at each river's mouth with white circles. 
Drainage basin and river names can be found in key.
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12 hr after collection, sediments were frozen (−20°C) and remained so during transport. Sediment was thawed 
and dried before desorption experiments were performed in January and February 2022.

Desorption experiments were performed on suspended and recently deposited sediments from the Kolyma River 
and the Southern Alaskan Rivers. Two methods of desorption were performed based on the collection method of 
the suspended sediment. First, coastal seawater from Vineyard Sound was collected and filtered by the Environ-
mental Systems Laboratory in Woods Hole, MA. The filtered seawater was then passed through manganese-oxide 
coated fibers (2 packed holders, 10 g each) at a flow rate of 0.5 L min −1 in order to remove Ra from the water. For 
each desorption experiment, 20 L of this filtered, Ra-free seawater was chilled to 4–6°C. For samples collected 
on cartridge filters, the filter was removed from its plastic bag and placed in an appropriately sized cartridge 
filter holder. A peristaltic pump circulated the filtered seawater through the filter at a rate of 1.25 L min −1 for 
6 hr. This flow rate and length of time was chosen following preliminary experiments (S5.2) which showed that 
more radium was desorbed after 3 hours, but no significant increases in radium desorption occurred in exposures 
lasting longer than 6 hours. After 6 hr, the cartridge holders were removed and the seawater was filtered through 
Mn-coated acrylic fiber at a flow-rate ≤0.5 L min −1 for 3 hr. The fibers were treated and analyzed for radium 
isotopes using the same methods as the dissolved fibers (see above). The cartridge filters were ashed (500°C, 
16 hr) in order to obtain the sediment weight for each sample.

The second method was performed on loose, recently deposited sediment from the Kolyma River, collected in 
2018. Prior to the experiment, the sediment was packed into gamma counting vials and capped with a plastic 
vial cap. The sediment was then gamma counted using the same method as above, in order to get the bulk sedi-
ment  226Ra and  228Ra totals. The loose sediment (10–11 g) was then added to the seawater and was shaken every 
15 min for 6 hr. The water was then filtered through two acrylic fiber filters to remove sediment, followed by a 
Mn-coated acrylic fiber (≤0.5 L min −1) to collect Ra. The fibers were treated and analyzed for radium isotopes 
using the same methods as the dissolved fibers (see above). The percentages of Ra desorbed were then calculated 
by dividing the desorbed Ra values by the bulk Ra activities.

3. Results and Discussion
3.1. Radium in Arctic Rivers

3.1.1. Dissolved Radium Activities

Measured freshwater Ra concentrations in Arctic rivers (Table 1) range from 1.48 to 27.3 dpm/100 L (mean = 10.0 
dpm/100 L) for  226Ra and 2.52–40.9 dpm/100 L (mean = 16.9 dpm/100 L) for  228Ra. Averages for the Eurasian 
continent were 11.7 dpm/100 L for  226Ra and 19.3 dpm/100 L for  228Ra. These are higher than North American 
averages: 8.70 dpm/100 L for  226Ra and 11.7 dpm/100 L for  228Ra (Table 1). The range of Arctic dissolved Ra 
values we report are comparable to dissolved concentrations found in rivers worldwide (Table S5). In non-Arctic 
rivers, freshwater dissolved  226Ra values range from 2.74 to 24.5 dpm/100 L (global  226Ra mean = 7.6 dpm/100 L; 
including Arctic = 7.9 dpm/100 L) and  228Ra values range from 3.80 to 92.6 dpm/100 L (global  228Ra mean = 16.4 
dpm/100 L; including Arctic = 16.3 dpm/100 L). Our Arctic averages are slightly higher than global average 
concentrations (Figure 2), however we cannot discount the potential that this is due to insufficient sampling of 
Arctic freshwaters over the entire annual cycle. Arctic river discharge during the long winter season is typically 
low, followed by significant high discharge events during spring and moderate runoff over summer. The spring 
freshet event accounts for ∼50% of total annual discharge for the Kolyma and Yenisey rivers, and ∼30% for the 
Ob and Mackenzie rivers (Holmes et al., 2012). Significant seasonal changes in radium concentrations can occur 
over the hydrologic year as evidenced by measurements in the Mackenzie and Yukon rivers by Kipp et al. (2020). 
The majority of Ra measurements from Arctic rivers have been conducted during mid- to late-summer due to 
access and logistics, preventing us from using a weighted average based on seasonal river flow changes, which 
could impact our flux estimates.

3.1.2. Desorbed Radium From Suspended Sediments

To the best of our knowledge, this study presents the first radium desorption data for a Eurasian river. The total 
Ra present on the Kolyma sediments collected by this study were 1.6 ± 0.1 dpm/g for  226Ra and 2.1 ± 0.5 dpm/g 
for  228Ra. The amount desorbed was 0.33 ± 0.01 dpm/g for  226Ra and 0.39 ± 0.05 dpm/g for  228Ra. This results 
in a desorbable fraction of approximately 21% for  226Ra and 19% for  228Ra. The Mackenzie River has higher 
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desorption rates for both isotopes: 0.46 ± 0.06 dpm/g for  226Ra (14% desorbed) and 0.94 ± 0.25 dpm/g for  228Ra 
(30% desorbed) (Kipp, Charette, et al., 2018; Kipp, Sanial, et al., 2018; Kipp et al., 2020). The Southern Alas-
kan Rivers had the lowest desorption rates: 0.12 ± 0.05 dpm/g for  226Ra (14% desorbed) and 0.08 ± 0.02 dpm/g 
for  228Ra (10% desorbed). Sediment grain size and mineralogy are key factors controlling differences in radium 
desorption behavior between rivers. Given the contrasting characteristics of Eurasian and North American river 
basins, it is unsurprising that the Kolyma desorption values are notably different from those reported for the 
Mackenzie River. Eurasian rivers, such as the Kolyma, drain large areas of low-relief tundra and wetlands, result-
ing in low suspended particulate loads but high dissolved organic carbon concentrations (Amon et al., 2012). 
Rivers in North America, by contrast, often drain mountainous regions and forests, where bedrock composi-
tion differs and high erosion rates result in considerable inorganic material fluxes to the Arctic Ocean (Amon 
et al., 2012). These high inorganic fluxes support higher desorption rates for North America compared to Eurasia. 
However, more data is needed to determine if the contrasting desorption rates are representative of their respec-
tive continents.

3.1.3. Flocculation in Eurasian Rivers

Numerous studies in temperate river estuaries have shown non-conservative addition at low- to mid-salinities 
(e.g., Li & Chan, 1979; Key et al., 1985). Values within the salinity mixing zone of the estuary that fall above 
the conservative mixing line have been attributed to radium desorption from suspended sediment (Elsinger & 
Moore, 1984; Krest et al., 1999). More recently, it has been learned that some of this non-conservative addition 
could be due to groundwater inputs or sediment resuspension (Moore & Shaw, 2008). However, Ra desorption 
from suspended sediments is still considered to be the major contributor of river-derived Ra to the coastal ocean 
(Cho et al., 2018; Kwon et al., 2014; Le Gland et al., 2017); this includes the Mackenzie River estuary (Kipp 
et al., 2020; Figure 3a).

However, a study of the Ob and Lena Rivers showed the opposite trend: a 50% and over 90% decrease in the 
freshwater Ra isotope activities at low salinities in the Lena and Ob Rivers, respectively (Rutgers van der Loeff 
et al., 2003). No apparent addition or removal of Ra isotopes was observed within the estuaries following this 

Dissolved (dpm/100 L) Desorbed (dpm/g)

River  226Ra  228Ra  226Ra  228Ra Source

Yenisey (S) 3.25 ± 0.37 9.00 ± 1.34 Rutgers van der Loeff 
et al., 2003

Yenisey (W) 6.1 ± 0.7a 13.7 ± 2.1a

Lena (S) 7.02 ± 0.37b 16.32 ± 2.34 b Rutgers van der Loeff 
et al., 2003; Charkin 
et al., 2020

Lena (W) 13.1 ± 0.4 24.9 ± 0.9

Ob (S) 2.48 ± 0.37 b 4.66 ± 1.25 b Rutgers van der Loeff 
et al., 2003

Ob (W) 27.3 ± 0.61 40.9 ± 3.7

Mackenzie 17.37 ± 0.28 17.03 ± 1.02 0.47 ± 0.06 c 0.94 ± 0.25 c Kipp et al., 2020

Yukon 14.35 ± 0.42 19.51 ± 1.81 Kipp et al., 2020; This Study

Kolyma 3.08 ± 0.41 2.52 ± 0.89 0.26 ± 0.02 c 0.34 ± 0.07 c This Study

Ellice 1.48 ± 0.30 7.70 ± 1.54 This Study

St. Lawrence 2.55 ± 0.26 5.11 ± 0.51 0.32 ± 0.03 0.98 ± 0.10 Sérodes & Roy, 1983

Southern Alaska Rivers (Avg) 2.94 ± 0.42 3.88 ± 1.65 0.12 ± 0.05 c 0.08 ± 0.02c This Study

Greenland River and Ice Sheet 2.00 ± 0.02 23.00 ± 1.20 0.10 ± 0.03 0.42 ± 0.08 Linhoff et al., 2020

Note. Percent accounted for refers to how much annual discharge is accounted for based on our directly sampled rivers. (S) = Spring/Summer; (W) = Fall/Winter.
 aEstimated based on % flocculated in Lena river, which contains similar DOC values.  bEffective riverine endmember (by this studies’ authors) based on salinity gradient 
through estuary after initial flocculation.  cExperimentally determined through laboratory desorption experiments.

Table 1 
Measured Dissolved Ra Concentrations and Ra Desorption From Suspended Sediment in Arctic Rivers



Journal of Geophysical Research: Oceans

BULLOCK ET AL.

10.1029/2022JC018964

6 of 18

initial decrease (Figure 3b). This study attributed the rapid removal of Ra in these estuaries to the high concentra-
tions of dissolved organic carbon (DOC) present in these large Eurasian river systems, which have been shown to 
flocculate out of solution in the estuarine mixing zone (Rutgers van der Loeff et al., 2003).

Estuarine flocculation removal has also been reported for barium in the Ob and Yenisey Rivers (Ba; Guay & 
Falkner,  1998), which is known to behave similarly to Ra in riverine systems (Kipp et  al.,  2020; Moore & 
Edmond, 1984; Moore & Shaw, 2008). However, this process was observed only in samples collected during 
August, while samples collected in September showed no net removal. Due to the seasonality in removal, it 
was proposed that losses must be due to biological processes, or as a result of changing riverine organic matter 
composition between summer and fall (Guay & Falkner, 1998).

To gain a better understanding of this phenomenon, we examined two decades of seasonal measurements 
collected as part of the Arctic Great Rivers Observatory (Holmes et al., 2021; https://arcticgreatrivers.org/data/). 
We compared data for rivers previously reported to exhibit removal processes (Ob, Lena, & Yenisey) with those 
which have not (Kolyma, Yukon, & Mackenzie). We compared freshwater discharge, DOC, particulate organic 
carbon (POC), colored dissolved organic matter (CDOM), total suspended solids (TSS), particulate organic nitro-
gen (PON), nitrate (NO3 −), ammonium (NH4 +), temperature, alkalinity, and pH. Ice break up and thaw led to 
peaks in freshwater discharge, TSS, and DOC during June, with steady declines until winter baseline levels were 
reached in October or November across all rivers studied. Nutrients, such as organic nitrogen, followed opposing 
trends, likely due to uptake by microbes. DOC and CDOM concentrations were lower in our non-removal rivers 
(Kolyma, Yukon, and Mackenzie Rivers) relative to rivers where removal processes had been observed (Ob, 
Lena, and Yenisey), indicating that differences in organic matter concentrations and composition could be driving 
Ra removal processes in select Siberian rivers.

Figure 2. Box and whisker plot for Ra concentrations in fresh river water in Arctic rivers and major global rivers. It is 
important to note that the concentrations here reflect the actual freshwater concentrations, not the effective endmembers used 
in our input model for the Lena and Ob rivers. The outliers on the major global rivers plot are from the Parana and Uruguay 
river system.

https://arcticgreatrivers.org/data/
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3.2. Calculations of Pan-Arctic Radium Flux Estimates

This paper uses the International Hydrographic Organization (IHO) defini-
tion of the Arctic (IHO, 2001), which also includes the Bering Strait and the 
Greenland and Norwegian Seas. River drainage basins are defined follow-
ing the methodology of Lammers et al. (2001) and are referred to according 
to the receiving marginal sea (Figure 1). River discharge and sediment load 
values are shown in Figure 4 for gauged rivers (water discharge and sediment 
load estimates are provided in Supporting Information S1: Table S1).

Reported errors on Ra fluxes derived here represent those calculated for 
dissolved concentrations and desorption rates, and not for potential changes 
or variations in river discharge or sediment loads. Dissolved Ra concentra-
tions have previously been determined for the Lena, Ob and Yenisey rivers 
on the Eurasian side of the Arctic, the Mackenzie, Yukon and St. Lawrence 
rivers on the North American side, and the Greenland ice sheet and rivers 
(Table 1). Here, we add dissolved data from the Kolyma River on the Eura-
sian continent, and data for the Ellice River and four Southern Alaska Rivers 
from North America. Radium desorbed from suspended sediment was 
calculated using suspended sediment loads and desorption values (dpm/g 
suspended sediment) based on the appropriate continent. The Mackenzie 
River desorption value was used for most of North America, with the follow-
ing exceptions: the Bering Strait, where we used an average of the Macken-
zie River's and Southern Alaska Rivers' desorption values, and Hudson Bay, 
which utilized estuarine data from the St. Lawrence River. The desorption 
value used for the Eurasian drainage basins was derived from our measure-
ments from the Kolyma River.

In order to estimate total annual Ra fluxes from a river, the dissolved and 
desorbed inputs must be summed, as shown in Equation 1: 

𝐑𝐑𝐑𝐑𝐃𝐃𝐃𝐃𝐃𝐃,𝒊𝒊 =
(

𝑪𝑪𝒇𝒇𝒇𝒇,𝒊𝒊 ×𝑫𝑫𝒊𝒊

)

+ (𝑪𝑪𝒅𝒅,𝒊𝒊 × 𝑺𝑺𝑺𝑺𝒊𝒊) (1)

RaDis,i = total annual Ra inputs from river “i” (dpm y −1)

Cfw,i = dissolved freshwater Ra concentration in river “i” (dpm m −3)

Di = mean annual water discharge of river “i” (m 3 y −1)

Cd,i = Ra desorption from sediments in river “i” (dpm g −1)

SSi = mean annual sediment load of river “i” (g y −1)

To quantify the total river Ra flux to the Arctic Basin, we compared several 
scaling approaches. The most basic approach utilized average Ra data and 
total estimated water and sediment discharges for North America and Eurasia 

(Gordeev, 2006; Lammers et al., 2001), Greenland (Overeem et al., 2017), and Hudson Bay (Kuzyk et al., 2009). 
This approach took an average dissolved Ra concentration for all North American rivers with Ra data and multi-
plied it by the total North American river water discharge into the Arctic Ocean to estimate the dissolved flux. 
Similarly, it took the average North American sediment Ra desorption rate multiplied by the estimated sediment 
load from all North American Arctic rivers to derive the desorbed flux. Adding these terms together produced an 
averaged North American Arctic river Ra flux. This approach was repeated for Eurasia and Greenland, with the 
sum of the three results producing a pan-Arctic Ra river flux estimate that could account for broad differences 
between landmasses. This method was repeated using the median dissolved Ra concentrations and median sedi-
ment desorption rates, in case outliers were distorting the average.

While this approach is the most straightforward, it obscures any finer scale geographical differences that might 
be present. As a result, we used another approach that separated rivers based on their receiving marginal seas 
and scaled up by these drainage basins. For rivers with radium data and simple desorption behavior, Equation 1 

Figure 3. Ra concentrations and conservative mixing trends for two Arctic 
rivers. (a) values from the Mackenzie River estuary (North America), 
published by Kipp et al. (2020). Values above the conservative mixing line 
indicate inputs from groundwater or sediment desorption; (b) values from the 
Ob River estuary (Siberia), published by Rutgers van der Loeff et al. (2003). 
Intense flocculation removes most Ra from the Ob river at low salinities, 
requiring the use of a modified riverine end member that includes multiple 
processes (i.e., flocculation & desorption).
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was used without modification. Monitored rivers without radium data were grouped based on proximity and 
watershed similarity to a major river that did have radium values (Table S2); for these groupings, Equation 1 was 
used with the assumption that the nearby major river Ra values were similar to those in the unsampled river. For 
all unaccounted for river discharge into each marginal sea, Equation 2 was used to scale up the Ra flux based 
on percent of water discharge remaining, following methods used in other flux studies (McClelland et al., 2016; 
Wheeler et al., 1997):

���� =
∑

�
�����,� +

[

� +
(������ −

∑

� ��

������

)]

 (2)

RaMS = estimated total annual Ra inputs to select marginal sea (dpm y −1)

DBasin = total estimated riverine flux for select river drainage basin (m 3 y −1)

For the Yenisey, Ob, and Lena Rivers, where flocculation has been observed during summer, different Ra values 
were employed for the fraction of water discharged in the summer versus the winter (Table 1). Based on the DOM 
data, we assumed that flocculation removal was restricted to June, July, and August. Using monthly discharge 
data between 2004 and 2020 (Holmes et al., 2021), we found that the average summer discharge accounts for 
47% of the Yenisey River's annual discharge, 52% of the Ob's annual discharge, and 64% of the Lena's annual 
discharge. For this discharge we used the effective freshwater endmember Ra concentrations, after flocculation 
has led to some removal of Ra from the estuary, in order to calculate the summer Ra flux. For the remaining fall 
and winter discharge, we used Equation 1, with Cfw, i equaling the pure freshwater/pre-removal Ra concentrations 
for the three rivers. The pre-removal concentration for the Yenisey River was estimated based on the percent 
removal that occurs in the Lena River, given its similar DOC and CDOM fluxes.

3.3. Total Riverine Radium Inputs to the Arctic Ocean

3.3.1. Total Riverine Flux of Radium to the Arctic Ocean

For the geographical separation method, the total dissolved flux is estimated at (5.10 ± 0.25) × 10 14 dpm y −1 
for  226Ra and (9.9 ± 1.2) × 10 14 dpm y −1 for  228Ra (Table 2). The total desorbed flux from suspended sediments 
is estimated at (3.96 ± 1.50) × 10 14 dpm y −1 for  226Ra and (6.58 ± 2.87) × 10 14 dpm y −1 for  228Ra. The esti-
mated total annual riverine  226Ra and  228Ra fluxes to the Arctic Ocean are (9.06 ± 1.37) × 10 14 dpm y −1 and 
(16.5 ± 4.0) × 10 14 dpm y −1, respectively. The total inputs calculated by using the averaging and median methods 
are slightly less than those found using the geographical separation method (Table 2), and all  228Ra estimates fall 
slightly above the best estimate published by Kipp, Charette, et al. (2018); Kipp, Sanial, et al. (2018) but within 
their error: 12.6 × 10 14 dpm y −1 (range: 4.6–22.7 × 10 14 dpm y −1). Because of the good agreement between the 
methods, hereafter we will focus solely on the geographical separation method, since it allows us to better under-
stand regional variations in Ra fluxes.

Figure 4. Maps of the Arctic showing (a) river water discharge (m 3 y −1) and (b) sediment load (g y −1) for Arctic rivers with available river gauging and sediment load 
data (Refs: Table S1). Greenland water discharge is omitted from these figures as it also includes ice sheet contributions.



Journal of Geophysical Research: Oceans

BULLOCK ET AL.

10.1029/2022JC018964

9 of 18

Despite Eurasian runoff delivering 1.4 times the freshwater to the Arctic Ocean as from North America, it 
contributed 2.2 times less  226Ra and 2.0 times less  228Ra per year (Table 2). This is driven by lower relative 
sediment loads and desorption rates as compared to the North American rivers. Eurasian rivers derive just 29% 
of their  226Ra and  228Ra fluxes from desorption, while this process accounts for roughly 49% and 44% of North 
American  226Ra and  228Ra inputs, respectively. These differences are likely due to a combination of higher organic 
to mineral ratios in suspended material in Eurasian rivers (Amon et al., 2012) and seasonal Ra removal within 
certain estuaries (Rutgers van der Loeff et al., 2003).

3.3.2. Arctic Riverine Fluxes Relative to Other Sources of Ra

Significant sources of Ra to the Arctic Ocean include advection through the Bering Strait and from the North 
Atlantic, diffusion from continental shelves, rivers, and ice-rafted sediment (Kadko & Muench,  2005; Kipp, 
Charette, et al., 2018; Kipp, Sanial, et al., 2018). Our  228Ra river flux accounts for 5.5% of all  228Ra inputs to the 
Arctic Ocean, with the largest input to the Arctic Ocean proper coming from continental shelves (92%; Kipp, 
Charette, et al., 2018; Kipp, Sanial, et al., 2018). Using the same methods as in Kipp, Charette, et al. (2018); 
Kipp, Sanial, et al. (2018) we estimate inputs for  226Ra, with activities of  226Ra isotopes that were measured on 
the 2015 U.S. GEOTRACES Arctic Transect (GN01) (for details, see Kipp, Charette, et al., 2018; Kipp, Sanial, 
et  al.,  2018). Briefly, Atlantic inflow was estimated to contain 6.3 Sv of water with a concentration of 7.43 
dpm/100 L (Besqcqynska-Moller et al., 2012; Rudels et al., 2015), the Bering Strait was estimated to contribute 
1.1 Sv with a concentration of 12.1 dpm/100 L (Woodgate et al., 2012), giving us advective inputs of 1.90 × 10 16 
dpm y −1. Shelf inputs were estimated using a shelf area of 7.94 × 10 12 m 2 (Jakobsson, 2002) and an activity of 
1,070 dpm m −2 y −1, for a total of 8.49 × 10 15 dpm y −1. Ice-rafted sediment activities were negligible. Conse-
quently, rivers account for 3.2% of  226Ra inputs to the Arctic Ocean proper, with shelves accounting for 29.8% 
and advection accounting for 67%.

Barium and Ba isotopes have previously been used to separate western versus eastern riverine inputs within 
the Arctic Ocean, while Ra isotope activity ratios (AR) have been used to track water masses within the Arctic 
Ocean (Kadko & Muench,  2005; Kipp, Charette, et  al.,  2018; Kipp, Sanial, et  al.,  2018; Kipp et  al.,  2019; 
Rutgers van der Loeff et al., 1995). North American rivers, including both dissolved and desorbed inputs, have 
a weighted  228Ra/ 226Ra AR of 1.56 while the Eurasian rivers have a weighted average of 1.84. These riverine 

Estimated Ra flux to Arctic Ocean (10 12 dpm/y)

Arctic Marginal Sea Annual discharge (10 11 m 3/y) Percent accounted for  226Ra Error Des. %  228Ra Error Des. %

CAA 2.02 16% 4.06 0.94 17.7 3.9

Barents Sea 4.46 60% 67.2 6.5 102 19

Beaufort Sea 4.18 74% 156 46 239 120

Bering Strait 3.12 72% 87.9 7.8 141 91

Chukchi Seaa 1.20 0% - - - -

East Siberian Sea 2.43 71% 15.3 1.6 16.4 18.9

Hudson Bay 9.68 2% 28.9 5.0 80.5 23.4

Kara Sea 12.3 91% 110 7 199 29

Laptev Sea 7.63 82% 73.2 3.1 152 24

Greenland 4.90 34.5 6.47 216 24

N. America Total 19.6 30% 601 49 49% 946 285 44%

Eurasia Total 28.0 78% 271 14 29% 484 89 29%

Pan-Arctic Total 52.5 62% 906 137 44% 1650 400 60%

Averaging Pan-Arctic Total 52.5 NA 750 50 44% 1640 180 53%

Median Pan-Arctic Total 52.5 NA 820 280 51% 1240 450 45%

Note. Data and methods can be found in supplementary information. Des. = Desorption; CAA = Canadian Arctic Archipelago.
 aChukchi Sea had no rivers matching the criteria.

Table 2 
Estimated Annual Riverine Ra Flux to Arctic Ocean by Ocean Basin



Journal of Geophysical Research: Oceans

BULLOCK ET AL.

10.1029/2022JC018964

10 of 18

ARs values are significantly lower than the AR ∼ 3.9 observed over the Laptev Shelf (Rutgers van der Loeff 
et al., 2003) and the AR ∼ 2.8 seen over the Chukchi shelf (Kipp et al., 2019; Vieira et al., 2019). This could 
allow differentiation between shelf and riverine Ra isotope inputs in certain regions of the Arctic Ocean, which 
has always been uncertain based on salinity alone (Kipp et al., 2019).

4. Arctic River Radium Fluxes in a Global Context
4.1. Total Riverine Flux of Radium to the Global Ocean

Ra data from 20 rivers were utilized, accounting for 50% of global riverine water discharge (Suzuki et al., 2018). 
Using the global median for riverine Ra concentrations and desorption rates (see Text S4), as well as global esti-
mates for water discharge and sediment inputs (Overeem et al., 2017), the estimated global river  226Ra and  228Ra 
inputs are (15 ± 2) × 10 15 dpm y −1 and (19 ± 2) × 10 15 dpm y −1, respectively, while the globally averaged 
estimate is somewhat higher: (17 ± 13) × 10 15 dpm y −1 and (27 ± 20) × 10 15 dpm y −1 for  226Ra and  228Ra, 
respectively (Table 3). Using an ocean basin approach, the annual  226Ra and  228Ra fluxes to the global ocean are 
(7.4 ± 5.0) × 10 15 dpm y −1 and (15.3 ± 3.8) × 10 15 dpm y −1, respectively (Table 3; Text S4). For this approach, 
the Atlantic Ocean contributes the largest percentage of riverine radium inputs, followed by the Indian and Pacific 
Oceans. The Arctic Ocean receives 12% of global riverine  226Ra inputs and 11% of  228Ra inputs, similar percent-
ages to global river discharge (McClelland et al., 2012). Considering the fact that the Arctic Ocean accounts for 
just 3% of the global ocean surface area, such high riverine Ra inputs result in rivers having a much larger impact 
on Arctic Ocean surface water Ra concentrations than would be observed in the Atlantic or Pacific Oceans.

The global estimates are in good agreement with literature estimates for  228Ra (fluxes ranging from 12–37 × 10 15 
dpm y −1 (Cho et al., 2018; Kwon et al., 2014; Le Gland et al., 2017), and  226Ra (estimate equaling 11.7 ± 5.3 × 10 15 
dpm y −1 (Xu et al., 2022)). The latter study utilized a Monte Carlo simulation with average  226Ra concentrations 
from 13 rivers and average desorption values from 8 rivers to derive their riverine  226Ra flux estimate. The 
discrepancy between our two approaches is much larger for the global estimates than it was for the Arctic esti-
mates. The range in dissolved  226Ra concentrations for the 30 rivers with available data was 1.48–24.3 dpm 100 
L −1. For  228Ra the range is even larger: 2.4–92.6 dpm 100 L −1. Thus, high outliers in these ranges drive up the 
global average and the median may not accurately capture this range. For the rest of our discussion, the globally 
averaged value is treated as an upper limit of potential riverine Ra inputs to the global ocean, while the ocean 
basin method is treated as a more realistic estimate.

4.2. Global Riverine Fluxes Relative to Other Sources of Ra

To place our global radium river fluxes in context, we compare it to other major sources of radium to the global 
ocean (Figure 5). Estimates for  228Ra from SGD range from (85 ± 7) × 10 15 dpm y −1 (Le Gland et al., 2017) to 

Estimated Ra flux to Global Ocean (10 14 dpm/y)

Ocean Basin Annual discharge (10 12 m 3/y) Percent accounted for  226Ra Error Des. %  228Ra Error Des. %

Atlantic 17.3 67% 27.3 16.2 49.6 12.6

Pacific 8.25 18% 17.5 11.6 46.3 8.0

Indian 3.80 54% 17.8 20.8 38.4 13.1

Arctic 5.25 62% 9.06 1.37 16.5 4.0

Baltic Sea 0.46 2% 0.15 0.04 0.21 0.03

Combined: Black Sea, Red Sea, and Mediterranean 1.09 5% 1.36 0.16 1.67 0.34

Global total 37.0 50% 73.2 50.2 79% 150 40 76%

Averaging global total 37.0 NA 170 130 83% 270 200 79%

Median global total 37.0 NA 150 20 85% 190 20 74%

Note. Des. = Desorption

Table 3 
Estimated Global Annual Riverine Ra Flux to Ocean
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approximately 130 × 10 15 dpm y −1 (Cho et al., 2018; Kwon et al., 2014). SGD inputs of  228Ra are thus 5 to 9 times 
higher than the  228Ra flux from rivers. For continental shelf sediments, Le Gland et al. (2017) estimated that  228Ra 
fluxes fall between (9.9–150) × 10 15 dpm y −1, while Kwon et al. (2014) estimated this flux at 55 × 10 15 dpm 
y −1. Depending on the estimate,  228Ra inputs from the shelves could either be on par with riverine inputs or up 
to 10 times greater. Dust can be neglected as it contributes <1% of  228Ra inputs to the ocean (Kwon et al., 2014; 
Le Gland et  al.,  2017). A conservative estimate therefore places  228Ra inputs from rivers around 10% of the 
total  228Ra inputs to the global surface ocean.

Most studies have assumed that <10% of  226Ra inputs to the ocean are sourced from rivers based on the flux 
required to close the ocean mass balance for  226Ra (Ku & Luo, 1994, 2008). For SGD, Xu et al. (2022) reported 
a  226Ra flux of 24 ± 7 × 10 15 dpm y −1. Our estimate, which used the global median groundwater  228Ra/ 226Ra 

Figure 5. Boxplot of major Ra sources to the global ocean. (a) annual  226Ra inputs to the global ocean (dpm/y). (b) 
annual  228Ra inputs to the global ocean (dpm/y), omitting deep ocean inputs. SGD = Submarine Groundwater Discharge.



Journal of Geophysical Research: Oceans

BULLOCK ET AL.

10.1029/2022JC018964

12 of 18

AR (2.28; Charette & Moore,  2022) applied to the previously discussed 
model-derived  228Ra SGD inputs, results in a flux range for  226Ra from 
SGD of 37  ×  10 15–57  ×  10 15 dpm y −1. Using a continental shelf area of 
2.73 × 10 13 m 2, a  228Ra flux from the shelves of (55 ± 50) × 10 15 dpm y −1 
(Kwon et al., 2014; Le Gland et al., 2017), and a continental shelf sediment AR 
of 1.5 (Moore & Shaw, 1998), we get a shelf  226Ra flux of (37 ± 33) × 10 15 
dpm y −1, in good agreement with the value of 42 × 10 15 dpm y −1, estimated 
by Xu et al. (2022). Deep sea sediment inputs have high errors, with diffu-
sive fluxes ranging from 15 dpm m −2 y −1 to 2100 dpm m −2 y −1 (Costello 
et  al.,  2015). Using an intermediate diffusive flux estimate of 1,057 dpm 
m −2  y −1 and a deep sea sediment area of 2.81  ×  10 14  m 2 (Cochran & 
Krishnaswami, 1980) we get a  226Ra deep sea sediment flux of ∼300 × 10 15 
dpm y −1. Finally, hydrothermal vents are thought to supply  226Ra to the ocean 
at a rate between 2–6 × 10 15 dpm y −1 (Dymond et al., 1983; Kipp, Sanial, 
et  al.,  2018). Taken together, our estimate places  226Ra inputs from rivers 
around 2% of the total  226Ra inputs to the global ocean.

4.3. The Importance of Dissolved and Desorbed Inputs

Based on this study and other recent work, desorbed radium inputs domi-
nate riverine radium fluxes to the global ocean (Kwon et al., 2014; Le Gland 
et al., 2017). This viewpoint was informed by early studies of radium desorp-
tion in rivers, where desorption was inferred from estuary mixing gradients 

(Elsinger & Moore, 1980; Li et al., 1977). It is now understood that submarine groundwater discharge can be 
a major source of radium to river estuaries (e.g., Krest et al., 1999; Luek & Beck, 2014). This process likely 
resulted in overestimates of the desorption Ra source during the formative years of radium studies in rivers. 
During these early studies, a proposed estimate of 2 dpm  228Ra/g for desorbable radium became popular and has 
since been used in numerous studies and models to estimate desorption inputs to the ocean (Kwon et al., 2014; 
Le Gland et al., 2017; Moore et al., 2008).

To date, few studies have attempted to directly quantify Ra isotope desorption from riverine suspended sediment 
(Table 1; Table S5). However, with few exceptions, these desorption studies reported values below both the 2.0 
dpm/g estimate and the theoretical approach by Webster et al. (1995). For the 20 rivers utilized in our global 
calculation, the range of desorbable  226Ra is 0.21–2.74 dpm/g (mean = 1.08 dpm/g) and the range for  228Ra is 
0.39–5.97 dpm/g (mean = 1.63 dpm/g) (Table S5). For rivers where desorption experiments were not performed, 
the upper limit theoretical values from Webster et al. (1995) were used (n = 3) or the desorption rate was calcu-
lated based on estuarine inputs (n = 5). Both of these methods are likely to overestimate actual desorption contri-
butions, highlighting the importance of performing desorption experiments, rather than relying on an average 
value from the literature, or on current theoretical models which do not take differences in mineralogy into 
account.

While rivers with large amounts of suspended sediment do tend to have inputs dominated by desorption, the story 
is more complex. Whether a river contributes more dissolved or desorbed radium depends on several factors, 
including the dissolved concentration, the desorbable radium per gram, and importantly, the suspended sedi-
ment concentration. Our data synthesis suggests that sediment load is more important to total riverine radium 
inputs than discharge (Figure 6). For example, despite the Congo River having 1.4 dpm/g more desorbable  226Ra 
than the Amazon, the Amazon has a greater proportion of  226Ra inputs from desorption because its suspended 
sediment load is 27 times higher. In contrast, smaller rivers tend to contribute proportionally higher amounts of 
dissolved radium. Rivers in this study had a range of relative dissolved inputs: 14%–99.9% with an average of 
55% for  226Ra and 11%–99.9% with an average of 56% for  228Ra. As a result, it is most important to consider these 
factors when looking at individual river and coastal systems, since the overall weighted dissolved inputs to the 
global ocean remain low at 21% and 24% for  226Ra and  228Ra, respectively.

5. Conclusions
This study quantified riverine  226Ra and  228Ra fluxes into the Arctic Ocean and provides the first Ra desorption 
data for Eurasian rivers. It was found that North America contributes the majority of Ra from riverine fluxes to 

Figure 6. Total annual radium inputs compared to sediment load for major 
global rivers. The slopes are 1.1 (R 2 = 0.88) for  226Ra and 2.0 (R 2 = 0.74) 
for  228Ra.
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the Arctic Ocean: 66% of  226Ra and 57% of  228Ra. This is due to larger suspended sediment inputs and higher 
desorption rates in North American rivers. Some Eurasian rivers' Ra inputs are also decreased due to organic 
matter flocculation in their estuaries, which can scavenge Ra before it reaches the coast. On a global scale, the 
Arctic Ocean collects a proportionate amount of Ra compared to its riverine inputs of 11%–12% the global total.

River and sediment inputs to the Arctic Ocean have increased over past decades due to warming temperatures 
and changing atmospheric moisture patterns, and are expected to increase in the future as warming continues 
(Andreson et al., 2020; Wang et al., 2021). Higher temperatures have also led to declining summer sea ice cover 
(Grosfeld et al., 2015; Serreze et al., 2006), more extensive permafrost thaw (Biskaborn et al., 2019; IPCC, 2021), 
and faster rates of coastal erosion (Günther et al., 2013; Irrgang et al., 2022). There is also evidence of increas-
ing pore water exchange rates from continental shelves (Kipp, Charette, et al., 2018; Kipp, Sanial, et al., 2018; 
Rutgers van der Loeff et al., 2018), which may be linked to increased wave action and vertical mixing on shelves 
associated with the diminishing ice cover (Carmack & Chapman, 2003; Rainville & Woodgate, 2009; Williams & 
Carmack, 2015). Recently, groundwater has also been shown to be an important source of nutrients to the Arctic 
Ocean (Charkin et al., 2017; Connolly et al., 2020; Lecher, Chien, & Paytan, 2016; Lecher, Kessler, et al., 2016). 
This source is also predicted to increase with warming temperatures (Connolly et al., 2020; Nielson et al., 2018). 
All of these changes are expected to increase Ra inputs to the Arctic Ocean, which would impact the relative 
contributions of Ra sources, including that for rivers.

Although this study provides a baseline estimate for Ra contributions from rivers, future work is needed to 
capture changes in Ra fluxes as climate-driven changes occur in hydrology, groundwater supply and changing 
OM supply to coastal systems. Seasonal variability in Ra concentrations need to be further constrained, particu-
larly during the high flow spring freshet. More work is also needed to determine whether desorption rates are 
consistent throughout continents, or whether rivers vary significantly. Finally, a better understanding is needed 
of the removal processes in Eurasian rivers. This is particularly important in terms of climate change, as warm-
ing temperatures and changing watershed conditions are shifting OM properties and distributions across coastal 
interfaces.

Data Availability Statement
Data from the Kolyma River, the Southern Alaskan Rivers, and previously unpublished submarine groundwa-
ter discharge data have been archived at the Biological and Chemical Oceanography Data Management Office 
(Biological and Chemical Oceanography Data Management Office (BCO-DMO). Dissolved radium data 
from these rivers can be found at https://www.bco-dmo.org/dataset/878527 [See citation below (Charette & 
Bullock, 2022b)]. Desorption data from these rivers can be found at https://www.bco-dmo.org/dataset/878663 
(Charette & Bullock, 2022a). The submarine groundwater global database can be found at https://www.bco-dmo.
org/dataset/878519 (Charette & Moore, 2022). These data are also available as supporting information.
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