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Abstract 18 

Background The bootComb R package allows researchers to derive confidence intervals 19 

with correct target coverage for arbitrary combinations of arbitrary numbers of 20 

independently estimated parameters. Previous versions (< 1.1.0) of bootComb used 21 

independent bootstrap sampling and required that the parameters themselves are 22 

independent - an unrealistic assumption in some real-world applications. 23 

Findings Using Gaussian copulas to define the dependence between parameters, the 24 

bootComb package has been extended to allow for dependent parameters. 25 

Implications The updated bootComb package can now handle cases of dependent 26 

parameters, with users specifying a correlation matrix defining the dependence structure. 27 

While in practice it may be difficult to know the exact dependence structure between 28 

parameters, bootComb allows running sensitivity analyses to assess the impact of parameter 29 

dependence on the resulting confidence interval for the combined parameter. 30 

Availability bootComb is available from the Comprehensive R Archive Network 31 

(https://CRAN.R-project.org/package=bootComb). 32 

Introduction 33 

The bootcomb R package Henrion (2021) was recently published. This package for the 34 

statistical computation environment R (R Core Team, 2021) allows researchers to derive 35 

confidence intervals (CIs) with correct coverage for combinations of independently 36 

estimated parameters. Important applications include adjusting a prevalence for estimated 37 
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test sensitivity and specificity (e.g. Mandolo et al. (2021)) or combining conditional 38 

prevalence estimates (e.g. Stockdale et al. (2020)). 39 

Briefly, for each of the input parameters, bootComb finds a best-fit parametric distribution 40 

based on the confidence interval for that parameter estimate. bootComb then uses the 41 

parametric bootstrap to sample many sets of parameter estimates from these best-fit 42 

distributions and computes the corresponding combined parameter estimate for each set. 43 

This builds up an empirical distribution of parameter estimates for the combined parameter. 44 

Finally, bootComb uses either the percentile or the highest density interval method to derive 45 

a confidence interval for the combined parameter estimate. Full details of the algorithm are 46 

given in Henrion (2021). 47 

A key point of the algorithm is that the best-fit distributions for the different parameters are 48 

sampled from independently. This requires the parameters to be independent. This may not 49 

be a realistic assumption in some real-world applications. 50 

While for most practical applications the input parameters are typically estimated from 51 

independent experiments (otherwise the combined parameter could be directly estimated), 52 

the parameters themselves may not be independent. This is for instance the case when 53 

adjusting a prevalence for the diagnostic test’s sensitivity and specificity. The latter two 54 

parameters are not independent: higher sensitivity can be achieved by lowering specificity 55 

and vice versa. 56 

If the experiments estimating these parameters are sufficiently large, then the violation of 57 

the assumption of parameter independence may only have negligible impact on the resulting 58 

confidence interval for the combined parameter. However, for the sake of general 59 
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applicability and to allow running sensitivity analyses, the author felt it was beneficial to 60 

extend bootComb to handle dependent parameters. 61 

Methods 62 

Copulas are multivariate distribution functions where the marginal probability distribution 63 

of each variable is the uniform distribution on the interval [0,1]. Copulas allow to specify the 64 

intercorrelation between random variables. An important probability theory result, Sklar’s 65 

Theorm (Sklar, 1959), states that any multivariate probability distribution can be expressed 66 

in terms of its univariate marginal distributions and a copula defining the dependence 67 

between the variables. 68 

Mathematically, let 𝑋ଵ, 𝑋ଶ… ,𝑋ௗ be 𝑑 random variables and define 𝑈௜ = 𝐹௜(𝑋௜), 𝑖 = 1,… , 𝑑. 69 

Then the copula 𝐶 of (𝑋ଵ, … , 𝑋ௗ) is defined as the joint cumulative distribution function of 70 

(𝑈ଵ, … , 𝑈ௗ): 71 

𝐶(𝑢ଵ, … , 𝑢ௗ) = 𝑃𝑟(𝑈ଵ ≤ 𝑢ଵ, … , 𝑈ௗ ≤ 𝑢ௗ) 72 

Assume that the marginal distributions, 𝐹௜(𝑥) = 𝑃𝑟[𝑋௜ ≤ 𝑥], 𝑖 = 1,… , 𝑑 are continuous. 73 

Then, via the probability integral transform (Angus, 1994), the random vector (𝑈ଵ, 𝑈ଶ, … , 𝑈ௗ) 74 

has marginals that are uniformly distributed on [0,1]. 75 

bootComb makes use of the fact that the above can be reversed: given a sample (𝑢ଵ, … , 𝑢ௗ), 76 

a sample for (𝑋ଵ, … , 𝑋ௗ) can be obtained by (𝑥ଵ, … , 𝑥ௗ) = ቀ𝐹ଵ
ିଵ(𝑢ଵ), … , 𝐹ௗ

ିଵ(𝑢ௗ)ቁ. The inverse 77 

functions 𝐹௜
ିଵ(𝑢) will be defined if the marginals 𝐹௜(𝑥) are continuous. For the use of 78 
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bootComb, where users input confidence intervals for an estimated numeric parameter, this 79 

will always be the case. 80 

bootComb will proceed as follows to generate samples from a multivariate distribution of 𝑑 81 

dependent variables: 82 

• Estimate best-fit distributions 𝐹ଵ, … , 𝐹ௗ  for each of the 𝑑 parameters 𝑋ଵ, … , 𝑋ௗ given 83 

the lower and upper limits of the estimated confidence intervals for each parameter. 84 

• Sample (𝑧ଵ, … , 𝑧ௗ) from a multivariate normal distribution 𝒩(𝟎, 𝛴) where the 85 

variances in 𝛴 are all 1. 86 

• Since the marginals of this normal distribution are all 𝒩(0,1), compute 𝑢௜ = 𝛷(𝑧௜) 87 

where 𝛷 is the cumulative distribution function of the standard normal. 88 

• Finally, for each 𝑖 = 1, … , 𝑑, compute 𝑥௜ = 𝐹௜
ିଵ(𝑢௜) where 𝐹௜  is the best-fit marginal 89 

distribution of parameter 𝑖. 90 

The resulting vector (𝑥ଵ, … , 𝑥ௗ) will be a sample from the multivariate distribution of 91 

(𝑋ଵ, … , 𝑋ௗ). Note that the dependence structure was completely specified through the 92 

covariance matrix 𝛴 (since the variances are assumed to be 1, this really is a correlation 93 

matrix) and marginal distributions for each parameter were specified by 𝐹௜ , 𝑖 = 1,… , 𝑑. 94 

Results 95 

I repeat the 2 examples from Henrion (2021) here, but look at the effect of specifying a 96 

dependence between the input parameters. 97 
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All examples below use the highest density interval (HDI) method (input argument 98 

method="hdi") to derive the final confidence interval. Whether this or the percentile method 99 

is used is a user choice. The HDI derived interval will be the narrowest interval with the 100 

desired coverage and the probability density will always be higher within that interval than 101 

outside it. To note however that the HDI may not be a single interval but a set of intervals if 102 

the density is multimodal. In this case, the single interval returned by bootComb will be too 103 

wide. For this reason, users should always inspect the histogram of the sampled combined 104 

parameter when using the HDI method. 105 

1. HDV prevalence in the general population 106 

With an application to hepatitis D and B viruses (HDV and HBV respectively) from Stockdale 107 

et al. (2020), Henrion (2021) showed how to use bootComb to obtain a valid confidence 108 

interval for 𝑝̂௔ு஽௏, the prevalence of HDV specific immunoglobulin G antibodies (anti-HDV) 109 

in the general population. 110 

HBV is a pre-condition for HDV and hence to derive 𝑝̂௔ு஽௏ Stockdale et al. (2020), obtained 111 

estimates of the prevalence of surface antigen of the hepatitis B virus (HBsAg), 𝑝̂ு஻௦஺௚ =112 

3.5%, and the conditional prevalence of anti-HDV given the presence of HBsAg, 113 

𝑝̂௔ு஽௏|ு஻௦஺௚ = 4.5%: 114 

• 𝑝̂ு஻௦஺௚ = 3.5% with 95% CI (2.7%, 5.0%). 115 

• 𝑝̂௔ு஽௏|ு஻௦஺௚ = 4.5% with 95% CI (3.6%, 5.7%). 116 

Assuming these 2 parameters to be independent, Henrion (2021) derived a 95% confidence 117 

interval for the estimate 𝑝̂௔ு஽௏ = 𝑝̂௔ு஽௏|ு஻௦஺௚ ⋅ 𝑝̂ு஻௦஺௚ using bootComb, (0.11%, 0.25%). 118 
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If, however, the 2 input prevalences are not independent, e.g. if anti-HDV is more common 119 

among people with presence of HBsAg the higher the population prevalence of HBsAg is, 120 

then that assumption of independence would not hold. We can investigate how strong an 121 

effect dependence of the parameters can have on the resulting confidence estimate. For 122 

example, let us run the same example using bootComb with specifying the following 123 

covariance matrix for the bivariate normal copula: 124 

𝛴 = ቀ
1   0.5
0.5   1

ቁ 125 

library(bootComb) 126 
 127 
combFunEx<-function(pars){pars[[1]]*pars[[2]]} 128 
bootComb(distributions=c("beta","beta"), 129 
         qLowVect=c(0.027,0.036), 130 
         qUppVect=c(0.050,0.057), 131 
         combFun=combFunEx, 132 
         Sigma=matrix(byrow=TRUE,ncol=2,c(1,0.5,0.5,1)), 133 
         doPlot=TRUE, 134 
         method="hdi", 135 
         N=1e6, 136 
         seed=123) 137 

This yields the 95% confidence interval (0.10%, 0.26%), a slightly wider interval – which 138 

makes sense, as the positive correlation means it is more likely for pairs of bootstrapped 139 

input parameters to be both near the upper (respectively lower) end of their confidence 140 

intervals. 141 

For this particular application, a dependence between both prevalence parameters, 𝑝̂ு஻௦஺௚ 142 

and 𝑝̂௔ு஽௏|ு஻௦஺௚, is unlikely and I have therefore not considered this example any further. 143 
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2. SARS-CoV-2 seroprevalence adjusted for test sensitivity and specificity 144 

Henrion (2021) gave an example of adjusting an estimated SARS-CoV-2 seroprevalence for 145 

the estimated sensitivity and specificity of the test assay. Specifically: 146 

• 84 out of 500 study participants tested positive for SARS-CoV-2 antibodies, yielding 147 

a seroprevalence estimate 𝜋ො௥௔௪ = 16.8% with exact binomial 95% CI 148 

(13.6%, 20.4%). 149 

• Estimated assay sensitivity: 238 out of 270 known positive samples tested positive 150 

𝑝̂௦௘௡ = 88.1%, 95% CI (83.7%, 91.8%). 151 

• Estimated assay specificity: 82 out of 88 known negative samples tested negative 152 

𝑝̂௦௣௘௖ = 93.2%, 95% CI (85.7%, 97.5%). 153 

Assuming the sensitivity and specificity to be independent, Henrion (2021) reported an 154 

adjusted seroprevalence estimate 𝜋ො = 12.3% with 95% CI (3.9%, 19.0%). 155 

However in this case, the assumption of independence is not fully realistic: there is a trade-156 

off between sensitivity and specificity of the test assay, and as such one would expect a 157 

negative dependence between the two parameters: sensitivity can be increased at the cost 158 

of decreased specificity and vice versa. 159 

Assuming that the sensitivity and specificity are negatively correlated with the copula 160 

correlation parameter 𝜌 = −0.5 between these two parameters, using the extension of 161 

bootComb we can now account for the dependence of the parameters: 162 

adjPrevSensSpecCI( 163 
    prevCI=c(0.136,0.204), 164 
    sensCI=c(0.837,0.918), 165 
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    specCI=c(0.857,0.975), 166 
    Sigma=matrix(byrow=TRUE,ncol=3,c(1,0,0,0,1,-0.5,0,-0.5,1)), 167 
    doPlot=TRUE, 168 
    prev=84/500, 169 
    sens=238/270, 170 
    spec=82/88, 171 
    seed=123) 172 

The reported confidence interval is now (3.8%, 19.4%) - marginally wider than when the 173 

dependence was ignored. 174 

If we additionally specify returnBootVals=TRUE in the function call, we can extract and plot 175 

the sampled pairs of sensitivity and specificity values to check the dependence structure. 176 

This is shown on Figure 1: as the correlation parameter 𝜌 in the copula between the 177 

sensitivity and specificity is decreased from 0 to -1, the dependence between both 178 

parameters becomes more and more pronounced as one would expect. 179 

This shows that a simple correlation matrix specified for the Gaussian copula results in this 180 

case in a non-trivial dependence structure between two beta-distributed variables, 181 

respecting the specified marginal distributions. 182 

We can also visualise the effect on the estimated confidence interval, as shown on Figure 2. 183 

We can see that in this case, with a negative correlation, the width of the CI increases at the 184 

correlation becomes stronger. However, looking at the scale of the y-axis we see that this is 185 

just a marginal effect. 186 

A more substantial effect of parameter dependence is obtained when we also allow the 187 

measured prevalence 𝜋௥௔௪ to be correlated with sensitivity (𝑝௦௘௡௦; positive correlation) and 188 

specificity (𝑝௦௣௘௖; negative correlation). Specifically, we can specify the following correlation 189 

matrix for the parameters ൫𝜋௥௔௪, 𝑝௦௘௡௦, 𝑝௦௣௘௖൯: 190 

https://doi.org/10.1017/exp.2022.13 Published online by Cambridge University Press

https://doi.org/10.1017/exp.2022.13


Accepted Manuscript 

𝛴 = ൭
1   0.3  −0.3
0.3   1  −0.5

−0.3 −0.5 1
൱ 191 

adjPrevSensSpecCI( 192 
    prevCI=c(0.136,0.204), 193 
    sensCI=c(0.837,0.918), 194 
    specCI=c(0.857,0.975), 195 
    Sigma=matrix(byrow=TRUE,ncol=3,c(1,0.3,-0.3,0.3,1,-0.5,-0.3,-0.5,1)), 196 
    doPlot=TRUE, 197 
    prev=84/500, 198 
    sens=238/270, 199 
    spec=82/88, 200 
    seed=123) 201 

In this case, the reported confidence interval is (4.7%, 18.2%). This CI is 11% narrower than 202 

when the dependence structure was ignored – a substantial effect for practical purposes. 203 

Conclusions 204 

The R package bootComb has been extended and, using Gaussian copulas, it can now handle 205 

the case of dependent input parameters. For many applications, the effect of dependence 206 

between the parameters will be marginal or even negligible, but this is not always the case. 207 

The package now allows users to do sensitivity analyses to assess the effects of a miss-208 

specified dependence structure between the parameters that are being combined. 209 

At the time of publication, the most recent version of bootComb was 1.1.2. 210 

Figure captions 211 

Figure 1: Scatterplots showing the bootstrapped values of sensitivity and specificity for 212 

different strenghts of dependence (from independence to perfect correlation) between 213 
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sensitivity and specifity. The empirical kernel density estimate for the bivariate distribution in 214 

each case is shown as orange contour lines. 215 

 216 

Figure 2: Width of the estimated confidence interval as a function of inreased strength of the 217 

negative correlation between sensitivity and specificity. 218 
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