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ABSTRACT (word count 259)  1 

Background: End-stage renal disease is associated with a high risk of cardiovascular events. It is 2 

unknown, however, whether mild-to-moderate kidney dysfunction is causally related to coronary 3 

heart disease (CHD) and stroke.   4 

Methods: Observational analyses were conducted using individual-level data from four population 5 

data sources (Emerging Risk Factors Collaboration, EPIC-CVD, Million Veteran Program, UK 6 

Biobank), comprising 648,135 participants with no history of cardiovascular disease or diabetes at 7 

baseline, yielding 42,858 and 15,693 incident CHD and stroke events, respectively, during 6.8 million 8 

person-years of follow-up. Using a genetic risk score (GRS) of 218 variants for estimated glomerular 9 

filtration rate (eGFR), we conducted Mendelian randomisation analyses involving 413,718 10 

participants (25,917 CHD and 8,622 strokes) in EPIC-CVD, Million Veteran Program, and UK 11 

Biobank.  12 

Results: There were U-shaped observational associations of creatinine-based eGFR with CHD and 13 

stroke, with higher risk in participants with eGFR values <60 or >105 mL/min/1.73m2, compared to 14 

those with eGFR between 60 and 105 mL/min/1.73m2. Mendelian randomization analyses for CHD 15 

showed an association among participants with eGFR <60 mL/min/1.73m2, with a 14% (95%CI, 3%-16 

27%) higher CHD risk per 5 mL/min/1.73m2 lower genetically-predicted eGFR, but not for those with 17 

eGFR >105 mL/min/1.73m2. Results were not materially different after adjustment for factors 18 

associated with the eGFR GRS, such as lipoprotein(a), triglycerides, hemoglobin A1c, and blood 19 

pressure. Mendelian randomization results for stroke were non-significant but broadly similar to 20 

those for CHD. 21 

Conclusions: In people without manifest cardiovascular disease or diabetes, mild-to-moderate 22 

kidney dysfunction is causally related to risk of CHD, highlighting the potential value of preventive 23 

approaches that preserve and modulate kidney function.   24 

 25 

Keywords: renal function, renal disease, cardiovascular diseases, coronary heart disease, stroke 26 

 27 

 28 



5  

  

CLINICAL PERSPECTIVE 29 

What is new?  30 

• In people without manifest cardiovascular disease or diabetes there is a non-linear causal 31 

relationship between kidney function and CHD. 32 

• Even mildly reduced kidney function is causally associated with higher risk of coronary heart 33 

disease with a possible risk threshold for eGFR value of around 75 ml/min/1.73 m2. 34 

• The impact of reduced kidney function on coronary heart disease is independent of traditional 35 

cardiovascular risk factors.   36 

 37 

What are the clinical implications? 38 

• Preventive approaches that can preserve and modulate kidney function can help prevent 39 

cardiovascular diseases 40 

• Given the non-linear causal relationship, it may be a preferable strategy to identify individuals in 41 

the population with mild-to-moderate kidney dysfunction and target them for renoprotective 42 

interventions alongside routine strategies to reduce cardiovascular risk.  43 

  44 
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Non-standard Abbreviations and Acronyms  45 

Cardiovascular diseases (CVD)  46 

Chronic kidney disease (CKD) 47 

Chronic Kidney Disease Epidemiology Collaboration (CKD-EPI) 48 

Coronary heart disease (CHD) a 49 

Emerging Risk Factors Collaboration (ERFC),  50 

Estimated glomerular filtration rate (eGFR) 51 

European Prospective Investigation into Cancer and Nutrition – Cardiovascular Disease Study 52 

(EPIC-CVD),  53 

Genetic risk score (GRS)  54 

Hazard ratios (HRs) Million Veteran Program (MVP),  55 

UK Biobank (UKB),  56 

  57 
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INTRODUCTION  58 

Chronic kidney disease (CKD), a major public health burden, affects more than 10% of the adult 59 

population globally.1,2 Kidney failure is associated with a high risk of cardiovascular diseases (CVD) 60 

and all-cause mortality.3-5 Strong associations have also been reported between non-dialysis 61 

dependent CKD and these outcomes both in people without manifest CVD and in patients with 62 

ischemic cardiovascular disease, heart failure, high blood pressure, or diabetes.2,6,7 These 63 

observations have led to guideline recommendations that patients with CKD should be regarded as 64 

being at very high risk of CVD.8,9 65 

   66 

It is not known, however, whether mild-to-moderate kidney dysfunction is causally relevant to CVD 67 

or if the increase in CVD risk associated with kidney dysfunction is related to changes in known risk 68 

factors, such as blood pressure and dyslipidemia, which seem to be a direct result of kidney 69 

dysfunction.10-12 An approach to help evaluate the causal relevance of kidney dysfunction to CVD is 70 

Mendelian randomization. Mendelian randomization uses genetic variants specifically related to a 71 

particular exposure to compare genetically-defined population subgroups with different average 72 

levels of the exposure. The independent segregation of alleles at conception means that these 73 

genetically-defined subgroups should not differ systematically with respect to confounding variables, 74 

creating a natural experiment analogous to a randomized trial. Therefore, compared with 75 

conventional observational analyses, Mendelian randomization analyses provide more reliable 76 

insights into causal relationships between risk factors and disease outcomes.13-14 77 

 78 

Previous Mendelian randomization analysis that have assumed a linear dose-response relationship 79 

between kidney function and CVD have reported null associations.14,15 However, observational  80 

analyses have reported U-shaped associations of CVD risk with creatinine-based estimated 81 

glomerular filtration rate (eGFR), a measure of kidney function. Therefore, drawing on multiple large-82 

scale population bioresources, we evaluated the causal relevance of eGFR to coronary heart 83 

disease (CHD) and stroke, using Mendelian randomization methods tailored to non-linear 84 
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relationships16-20, that require concomitant information on eGFR, genetic determinants of eGFR, and 85 

first-ever CVD outcomes in the same individuals.   86 

 87 

METHODS  88 

The data, code, and study material that support the findings of this study are available from the 89 

corresponding author on reasonable request. 90 

 91 

Study design and study overview  92 

This study involved inter-related components (Figure 1). First, we characterized observational 93 

associations between eGFR and incident CHD or stroke, using data from the Emerging Risk Factors 94 

Collaboration (ERFC),21 European Prospective Investigation into Cancer and Nutrition –95 

Cardiovascular Disease Study (EPIC-CVD),22 Million Veteran Program (MVP),23 UK Biobank 96 

(UKB),24 collectively involving 648,135 participants, who had serum creatinine measurements but no 97 

known CVD or diabetes at baseline. Second, we constructed a genetic risk score (GRS) for eGFR 98 

by computing a weighted sum of eGFR-associated index variants reported in a discovery GWAS  99 

from the CKDGen consortium comprising 567,460 European ancestry participants25, none of whom 100 

were from MVP, EPIC-CVD, or UKB.  Third, we used this GRS to conduct Mendelian randomization 101 

analyses in a total of 413,718 participants (i.e., EPIC-CVD, MVP, UKB), with concomitant individual-102 

level information on genetics, serum creatinine, and disease outcomes. Fourth, to assess the 103 

potential for interference by horizontal pleiotropy26 and explore potential mechanisms that could 104 

mediate associations between eGFR and CVD outcomes, we studied our GRS for eGFR in relation 105 

to several established and emerging risk factors for CVD.  106 

  107 

Data sources  108 

Information on each of the data sources used in the analysis is provided in the Expanded Methods. 109 

Briefly, ERFC, a global consortium of population cohort studies with harmonized individual-110 

participant data for multiple CVD risk factors, has included 47 studies with available information on 111 

serum creatinine, and diabetes status at recruitment.21 EPIC-CVD, a case-cohort study embedded 112 
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in the pan-European EPIC prospective study of over 500,000 participants, has recorded data on 113 

serum creatinine and imputed genome-wide array data from 21 of its 23 recruitment centers.22 MVP, 114 

a prospective cohort study recruited from 63 Veterans Health Administration medical facilities 115 

throughout the US, has recorded serum creatinine and imputed genome-wide array data are 116 

available for a large subset of its participants.23 UKB, a prospective study of 22 recruitment centers 117 

across the UK, has cohort-wide information on serum creatinine and imputed genome-wide array 118 

data.24 Relevant ethical approval and participant consent were already obtained in all studies that 119 

contributed data to this work. 120 

Estimation of kidney function   121 

Kidney function was estimated using creatinine-based eGFR, calculated using the Chronic Kidney 122 

Disease Epidemiology Collaboration (CKD-EPI) equation.27  Creatinine concentration was multiplied 123 

by 0.95 for studies where measurements were not standardized to isotope-dilution mass 124 

spectrometry.25,28 In a subset of participants with available data, kidney function was also defined 125 

using the CKD-EPI cystatin-C-based equation29 and albuminuria measured as spot urine albumin-126 

to-creatinine ratio (Expanded Methods).   127 

  128 

Observational analyses   129 

Primary outcomes were incident CHD and stroke. Details of endpoint definitions for each study are 130 

provided in Table S1. Participants in the contributing studies were eligible for inclusion in the current 131 

analysis if they met all of the following criteria: (1) aged 30-80 years old at recruitment; (2) had 132 

recorded information on age, sex, circulating creatinine, and diabetes status; (3) had a creatinine-133 

based eGFR of <300 mL/min/1.73 m2; (4) did not have a known history of CVD or diabetes at 134 

baseline; (5) had complete information on the following risk factors: smoking status, systolic blood 135 

pressure, total cholesterol, high-density lipoprotein cholesterol, and body-mass index; and (6) had 136 

at least 1 year of follow-up data following recruitment.  137 

  138 
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Hazard ratios (HRs) for associations of creatinine-based eGFR with incident CHD and stroke were 139 

calculated using Cox regression, stratified by sex and study center, and where appropriate, adjusted 140 

for traditional vascular risk factors (defined here as systolic blood pressure, smoking status, total 141 

cholesterol, high-density lipoprotein cholesterol, body-mass index) on a “complete-case” basis. To 142 

account for EPIC-CVD’s case-cohort design, Cox models were adapted using Prentice weights.30 143 

To avoid overfitting models, studies contributing fewer than 20 incident events to the analysis of a 144 

particular outcome were excluded from the analysis. Fractional polynomials were used to 145 

characterize non-linear relationships of creatinine-based eGFR with risk of CHD, and stroke, 146 

adjusted for age and CVD risk factors.31 Study-specific estimates for each outcome were pooled 147 

across studies using multivariable random-effects meta-analysis, using a reference point of 90 148 

mL/min/1.73 m2. When information on urinary biomarkers in UKB was available, participants were 149 

grouped into tenths based on levels of urinary albumin-to-creatinine ratio to assess the shapes of 150 

associations between urinary biomarkers and CVD risk, using participants without albuminuria as 151 

the reference group.32 152 

  153 

Genetic risk score for kidney function   154 

Using individual-participant data from EPIC-CVD, MVP and UKB, we calculated a genetic risk score 155 

(GRS)33 weighted by the conditional effect-estimated of the genetic variants associated (P<5x10-8) 156 

with creatinine-based eGFR in CKDGen,25 a global genetics consortium that has published GWAS 157 

summary statistics for creatinine-based eGFR. Of the 262 variants associated with creatinine-based 158 

eGFR, 37 were excluded due to ancestry-heterogeneity as reported in CKDGen,25 4 were excluded 159 

due to associations (P<5x10-8) with vascular risk factors as reported in previous GWAS studies (i.e., 160 

smoking status, alcohol consumption, education attainment),34 and 3 were excluded due to 161 

missingness in at least one of the contributing studies, leaving 218 variants for the primary GRS for 162 

creatinine-based eGFR.   163 

  164 

In sensitivity analysis, we constructed two restricted GRSs using 126 and 121 genetic variants that 165 

were likely to be relevant for kidney function on the basis of their associations with cystatin-C-based 166 
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eGFR,35 and blood urine nitrogen (BUN)25, respectively. Sensitivity analysis was also conducted 167 

using a GRS that included all 262 trans-ancestry eGFR-associated index variants. Furthermore, to 168 

evaluate traits that could mediate or confound (through horizontal pleiotropy) the associations 169 

between genetically-predicted eGFR and outcomes, we tested associations of GRSs for eGFR with 170 

a range of cardiovascular risk factors in UKB and EPIC-CVD, and with 167 metabolites measured 171 

using targeted high-throughput NMR metabolomics (Nightingale Health Ltd) in UKB.   172 

 173 

Mendelian randomization analyses   174 

To account for the non-linear relationship between eGFR and risk of CVD outcomes in observational 175 

analyses, we performed a stratified Mendelian randomization analysis, using methods previously 176 

described.16-20 For each participant, we calculated the residual eGFR by subtracting the genetic 177 

contribution determined by the GRS from observed eGFR. Participants were grouped based on their 178 

residual eGFR into 5-unit categories between 45 to <105 mL/min/1.73 m2, plus <45 and ≥105 179 

mL/min/1.73 m2. By stratifying on residual eGFR we compare individuals in the population who would 180 

have an eGFR in the same category if they had the same genotype and reduce the potential 181 

influence of collider bias. We then calculated Mendelian randomization estimates for each eGFR 182 

category using the ratio method with the GRS as an instrumental variable, adjusting for age, age-183 

squared, sex, study center, the first 10 principal components. Stratum-specific estimates were 184 

combined across studies using fixed-effect meta-analysis and plotted as a piecewise-linear function 185 

of eGFR, with point-wise confidence intervals calculated by resampling the stratum-specific 186 

estimates. Detailed methods describing statistical analysis are in the Expanded Methods. Analyses 187 

used Stata 15.1 and R 3.6.1.  188 

  189 
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RESULTS  190 

Among the 648,135 participants without history of CVD or diabetes at baseline, the mean age was 191 

57 years, 57% were men, and 4.4% had creatinine-based eGFR <60 mL/min/1.73 m2 (Table 1, 192 

Tables S2-S3). During 6.8 million person-years of follow-up, there were 42,858 incident CHD 193 

outcomes and 15,693 strokes. Up to 413,718 European-ancestry participants from EPIC-CVD, MVP 194 

and UKB contributed to the main genetic analyses (Figure 1). Distributions of serum creatinine 195 

concentration and creatinine-based eGFR were broadly similar across studies (Figures S1-2).  196 

  197 

Observational associations of eGFR with cardiovascular outcomes  198 

For both CHD and stroke, there were U-shaped associations of creatinine-based eGFR. Compared 199 

with participants with creatinine-based eGFR values between 60 and 105 mL/min/1.73m2, risks of 200 

both CHD and stroke were higher in people with eGFR <60 or >105 mL/min/1.73 m2 (Figure 2 and 201 

Figure S3). The shapes of these associations did not change substantially after adjustment for 202 

several traditional risk factors (Figure 2). Associations were similar in men and women, in clinically 203 

relevant subgroups (i.e., smokers, people with obesity, or hypertension; Figure S4), in the different 204 

studies contributing to this analysis (Figure S5), and when participants with a history of diabetes or 205 

missing information on cardiovascular risk factors were included (Figures S6-S7). Similar 206 

associations were also observed for ischemic stroke (Figure S3). 207 

  208 

In the 338,044 participants in UKB with available data on serum cystatin C and urinary albumin-209 

creatinine ratio, there were broadly similar associations of CHD or stroke with cystatin-C-based 210 

eGFR as creatinine-based eGFR equations - but only when eGFR values were lower than 211 

approximately 90 mL/min/1.73 m2. However, there was no evidence of higher risk of CHD in 212 

participants with cystatin-C-based eGFR values above 105 mL/min/1.73 m2 (Figure S8), in contrast 213 

with creatinine-based eGFR values above 105 mL/min/1.73 m2. Levels of urinary microalbumin and 214 

urinary albumin-creatinine ratio showed approximately linear associations with risk of CHD and 215 

stroke, which were somewhat attenuated after adjustment for traditional risk factors (Figure S9). 216 



13  

  

Compared with participants with a creatinine-based eGFR of 75 to<90 mL/min/1.73 m2 and without 217 

albuminuria, participants with albuminuria had higher risk of CHD and stroke (Figure S10).    218 

  219 

Mendelian randomization of genetically-predicted eGFR with cardiovascular outcomes    220 

The GRS for eGFR (Table S4) explained 2.0% of variation in creatinine-based eGFR in EPIC-CVD, 221 

2.2% in MVP, and 3.2% in UKB. A one SD increase in the GRS for eGFR was associated with 0.18 222 

SD higher creatinine-based eGFR (Table S5 and Figure S11). The GRS for eGFR was not 223 

associated with body-mass index, diabetes, smoking status, or LDL-cholesterol concentrations, but 224 

showed modest associations with lipoprotein(a), triglycerides, blood pressure, and hemoglobin A1c 225 

measurement (Figure S11). Modest associations were also observed between the GRS for eGFR 226 

and triglyceride-related lipoprotein subclasses in a subset of participants with available data (Figure 227 

S12).   228 

 229 

In non-linear Mendelian randomization analysis, we observed a curvilinear relationship between 230 

genetically-predicted eGFR and CHD (Figure 3). Among participants with eGFR <60 mL/min/1.73 231 

m2, each 5 mL/min/1.73 m2 lower genetically-predicted eGFR was associated with 14% (95% CI: 232 

3%-27%) higher risk of CHD (Table 2). There was no clear evidence of association among 233 

participants with eGFR above 75 mL/min/1.73 m2 (Figure 3). Similar, but not statistically significant, 234 

associations were observed for stroke (Table 2, Figure 3). Overall, stratum-specific localized 235 

average causal estimates and non-linear Mendelian randomization estimates were compatible 236 

across the studies contributing to this analysis (Table S6, Figure S13). Similar associations were 237 

observed in analyses that adjusted for systolic blood pressure, lipoprotein(a), hemoglobin A1c, and 238 

triglycerides (Figure S14), included participants with a history of diabetes at baseline (Figure S15), 239 

or used ischemic stroke as the stroke outcome (Figure S16). Results were also similar using GRSs 240 

for cystatin-C-based eGFR, BUN, or variants associated with creatinine-based eGFR regardless of 241 

ancestry heterogeneity (Figure S17).   242 

  243 
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DISCUSSION  244 

In analyses combining genetic, biomarker and clinical data in about 640,000 participants, our study 245 

has suggested that in people without manifest cardiovascular disease or diabetes even mildly 246 

reduced kidney function are causally associated with higher risk of CVD outcomes. Our results 247 

provide novel etiological insights and highlight the wider potential value of preventive approaches 248 

that can preserve and modulate kidney function.   249 

  250 

First, our study estimated a dose-response curve for genetically-predicted eGFR and CHD, 251 

identifying an eGFR value of around 75 ml/min/1.73 m2 as a possible risk threshold. The causal 252 

relationship of kidney function with CHD is, therefore, non-linear in shape, in contrast with those for 253 

blood pressure and LDL-cholesterol, which each have log-linear relationships with CHD risk across 254 

their range of values. An implication of this finding is that, in contrast with population-wide strategies 255 

to improve blood pressure and LDL-cholesterol levels, it may be a preferable strategy to identify 256 

those in the population with mild-to-moderate kidney dysfunction and target them for renoprotective 257 

interventions alongside routine strategies to reduce cardiovascular risk. For example, the use of 258 

renoprotective interventions such as renin angiotensin aldosterone system inhibitors,36 and inhibitors 259 

of sodium-glucose cotransporter 2 might provide a potential means to do so.37 Our findings 260 

encourage further evaluation of such agents in patients with CKD without manifest cardiovascular 261 

disease or diabetes.38,39 262 

  263 

Second, we found that our GRS for eGFR was modestly associated with several established and 264 

emerging CVD risk factors, including plasma concentration of pro-atherogenic lipids (e.g., 265 

lipoprotein(a), triglycerides, triglycerides-related lipoprotein sub-classes), hemoglobin A1c values 266 

and blood pressure, consistent with previous studies.11,40 However, adjustment for such factors did 267 

not materially alter the associations between eGFR and atherosclerotic CVD, indicating that they are 268 

unlikely to mediate or confound the associations between genetically-predicted kidney dysfunction 269 

and CHD or stroke, and limiting the likelihood that results are subject to influences of horizontal 270 

pleiotropy. These results suggest that the impact of reduced kidney function on CVD is independent 271 



15  

  

of traditional cardiovascular risk factors and underscores the potential importance of direct 272 

preservation of renal function to prevent CVD, in addition to control of known risk factors.   273 

  274 

Third, our data help to resolve controversies about the relevance to CHD of higher-than-average 275 

eGFR. In contrast with the observation that higher-than-average creatinine-based eGFR values are 276 

associated with higher CHD risk at above 105 mL/min/1.73 m2, we found genetically-predicted higher 277 

eGFR values were not associated with CHD risk in this same group. This discordance implies 278 

different pathophysiological meanings of creatinine-based eGFR values above 105 mL/min/1.73 m2 279 

(which may represent a transient state of hyperfiltration before progression to poorer kidney function 280 

and CKD) and genetically-predicted higher eGFR values (which represent a lifelong tendency toward 281 

exposure to better kidney function). This explanation is supported by our findings showing that the 282 

association between higher creatinine-based eGFR values and higher CHD risk was principally in 283 

participants who had albuminuria (and, therefore, pre-existing kidney damage) at entry into the study.  284 

 285 

Fourth, our results are broadly consistent with a causal relationship between eGFR and stroke. The 286 

lack of statistically significant findings in our Mendelian randomization analysis for stroke outcomes 287 

principally reflects our study’s lower power to evaluate a genetic risk score with stroke compared to 288 

CHD. It may also be due to etiological heterogeneity in stroke diagnoses (e.g., cardioembolic, small 289 

vessel disease and hemorrhagic subtypes may be less driven by atherosclerotic pathology than 290 

other ischemic stroke subtypes).41,42 291 

  292 

Our study had major strengths, including a large sample size, access to individual-participant data, 293 

use of genetic causal inference methods tailored to the evaluation of non-linear disease associations, 294 

and an updated GRS that explains more variation in eGFR than previous analyses.14 However, there 295 

are also potential limitations. First, Mendelian randomization assumptions state that the only causal 296 

pathway from the genetic variants to the outcome is via eGFR. Although we assessed the potential 297 

for interference by horizontal pleiotropy, there is the possibility of residual confounding by 298 

unrecognized effects of genotypes on other risk factors and by adaptation during early life to 299 
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compensate for genetically lower eGFR. Second, to reduce the scope for confounding by ancestry 300 

(population stratification), our analyses were limited to participants of European ancestries. This 301 

limitation means that our findings might not be applicable to other populations, and further studies 302 

on this topic are needed especially in non-European ancestry populations. Third, although serum 303 

creatinine is routinely used for estimating eGFR, true measurement of GFR requires the use of inulin, 304 

iohexol, or iothalamate. Assay of serum creatinine is liable to interference from other serum 305 

components (e.g., bilirubin, glucose),43,44 autoimmune activation,45 and is sensitive to changes in 306 

individuals’ muscle mass (e.g., sarcopenia). Assessment of cystatin C, an analyte that enables an 307 

alternative calculation of eGFR without the potential limitations of creatinine, was available only in a 308 

subset of the participants we studied. However, our genetic analyses restricted to genetic variants 309 

additionally associated with other biomarkers of kidney function showed consistent results with that 310 

for creatinine-based eGFR. Finally, we used the 2009 CKD-EPI equation to calculate eGFR. 311 

However, our analysis was limited to European ancestry populations, in which the 2009 and 2021 312 

CKD-EPI equations provide similar estimates of eGFR46.  313 

 314 

CONCLUSIONS 315 

In conclusion, in people without manifest cardiovascular disease or diabetes, mild-to-moderate 316 

kidney dysfunction was causally related to cardiovascular outcomes, highlighting the potential 317 

cardiovascular benefit of preventive approaches that improve kidney function.  318 
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Table 1: Study-level and participant-level characteristics of the contributing data sources  

 

  
ERFC  EPIC-CVD  UK Biobank  MVP  

Location  

47 cohorts 
from 19 

countries  

21 centers from  
8 European 

countries  

England,  
Scotland, and 

Wales  
United States  

Years of recruitment  1964-2008  1990-2002  2006-2010  2011-Present  

No. of participants  129,601  20,985  350,193  147,356  

Age at baseline  58.3 (8.9)  56.3 (9.0)  56.3 (8.1)  57.9 (11.9)  

Men   68,278 (52.7)  9,670 (46.1)  155,284 (44.3)  128,610 (87.3)  

Body-mass index, kg/m2   26.3 (4.3)  26.1 (4.0)  27.1 (4.6)  29.0 (5.5)  

Systolic blood pressure, mmHg  135 (20)  138 (21)  137 (19)  130 (16)  

Current-smoker  38,381 (29.6)  6,233 (29.7)  36,422 (10.4)  14,394 (9.77)  

HDL cholesterol, mmol/L   1.4 (0.4)  1.4 (0.4)  1.5 (0.4)  1.3 (0.4)  

Total cholesterol, mmol/L   5.8 (1.1)  6.2 (1.2)  5.8 (1.1)  4.8 (1.0)  

Creatinine, mg/dL  0.94 (0.22)  0.82 (0.23)  0.81 (0.18)  1.0 (0.4)  

eGFR, mL/min/1.73 m2  

    ≥105   

  

11,121 (8.6)  

  

3,113 (14.8)  

  

44,303 (12.7)  

  

17,988 (12.2)  

    90-<105  32,971 (25.4)  9,400 (44.8)  165,603 (47.3)  41,461 (28.1)  

    75-<90  44,654 (34.5)  5,524 (26.3)  100,351 (28.7)  46,200 (31.4)  

    60-<75  30,751 (23.7)  2,306 (11.0)  33,895 (9.7)  29,552 (20.1)  

    <60  10,105 (7.8)  642 (3.1)  6041 (1.7)  12,155 (8.2)  

   Mean eGFR   84.5 (16.6)  92.1 (14.8)  91.2 (13.1)  84.9 (18.1)  

Incident CHD events   10,390 (8.0)  7,638 (36.4)  13,863 (4.0)  10,967 (7.4)  

Incident stroke events  4,838 (3.7)  3,572 (17.0)  4,544 (1.3)  2739 (1.8)  

Data are n, n (%), or mean (SD). Participants with a history of diabetes or cardiovascular diseases at recruitment, or incomplete 

information on creatinine, BMI, SBP, smoking status, HDL cholesterol, or total cholesterol were excluded.  ERFC= Emerging Risk 

Factors Collaboration. EPIC-CVD= European Prospective Investigation into Cancer and Nutrition-Cardiovascular Disease. MVP= 

Million Veteran Program. eGFR= estimated glomerular filtration rate. CHD= coronary heart disease. HDL= high-density lipoprotein. 
  

  

  

  

  



 

Table 2: Mendelian randomization estimates per 5 mL/min/1.73 m2 lower genetically-predicted eGFR with risk of coronary heart disease and stroke   

 

eGFR mL/min/1.73m2  
Mean eGFR, 

mL/min/1.73m2  
No. of participants  

Coronary heart disease     Stroke  

No. of events  HR (95% CI)  
  No. of 

events  HR (95% CI)  

  <60    

  60 to <75  68.9  53,256  4314  1.08 (1.01, 1.15)    1318  1.14 (1.01, 1.28)  

  75 to <90  83.3  123,664  8229  1.05 (1.00, 1.10)    2565  0.97 (0.89, 1.06)  

  90 to <105  96.9  176,180  9973  1.01 (0.96, 1.05)    3582  1.06 (0.98, 1.14)  

  ≥105*  109.7  45,800  1652  0.91 (0.82, 1.02)    666  0.95 (0.79, 1.14)  

 HRs are shown per 5 mL/min/1.73 m2 lower genetically-predicted eGFR and are adjusted for age, age-squared, sex, study center, and the first ten principal components. *HRs in the group with eGFR above 

105 were shown per 5 mL/min/1.73 m2 higher genetically-predicted eGFR. Mean eGFR within each stratum was weighted by the number of participants from each contributing study, and MR estimates 

within each stratum were meta-analyzed using inverse variance weighting and fixed effects. 



 

Figure 1: Study design and overview  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

ERFC= Emerging Risk Factors Collaboration. EPIC-CVD= European Prospective Investigation into Cancer and Nutrition-

Cardiovascular Disease. MVP= Million Veteran Program. UKB= UK Biobank. CKDGen= CKD Genetics consortium. eGFR= 

estimated glomerular filtration rate. CVD= Cardiovascular disease. CHD= coronary heart disease. NMR= nuclear magnetic 

resonance. 

Observational association of renal 

function with incident CVD 

outcomes 

Element of analysis  Data sources 

CKDGen consortium  

Summary-statistics from 567,460 individuals.  

218 genetic variants were included, with no 

heterogeneity across ancestry, or no significant 

associations with confounders. 

Construction of genetic risk score 

for creatinine-based eGFR   

ERFC, EPIC-CVD, MVP, UKB 

648,135 participants, with information on serum 

creatinine measurements, and no prior history of 

cardiovascular disease or diabetes. 

42,858 incident CHD, and 15,693 stroke outcomes 

during follow-up.  

EPIC-CVD, MVP, UKB  

413,718 participants of European ancestry, with 

information on creatinine measurements, genotypes, 

and no prior history of cardiovascular disease, or 

diabetes; 

25,917 incident CHD, and 8622 stroke outcomes 

Non-linear Mendelian 

randomization analyses of 

creatinine-based eGFR and CVD 

outcomes  
EPIC-CVD, UKB  

Information on conventional and emerging vascular 

risk factors (e.g., systolic blood pressure, and 

lipoprotein(a)).  

79,413 participants of European ancestry; no prior 

history of cardiovascular disease or diabetes; with 

information on 167 NMR-metabolites (e.g., 

lipoprotein subfractions, and low molecular weight 

metabolites).  



 

Figure 2: Observational associations of eGFR levels with risk of coronary heart disease and stroke (n=648,135)  

  

  

Participants with missing information on age, and CVD risk factors (systolic blood pressure, total and high-density lipoprotein cholesterol, body-mass index, and smoking status) were excluded from the 
analyses. Hazard ratios were estimated using Cox regression, adjusting for age, and CVD risk factors (systolic blood pressure, total and high-density lipoprotein cholesterol, body-mass index, and smoking 
status), and stratified by sex and study center. The reference point is 90 mL/min/1.73 m2. Shaded regions indicate 95% confidence intervals. CVD= cardiovascular disease. eGFR= estimated glomerular 
filtration rate. 95% CI= 95% confidence interval.  
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 Figure 3: Associations of genetically-predicted eGFR with risk of coronary heart disease and stroke (n=413,718)  

 

  

  
The reference point is 90 mL/min/1.73 m2. Gradients at each point of the curve represented the localized average causal effect on coronary heart disease or stroke per 5 mL/min/1.73 m2 change in 

genetically-predicted eGFR. The vertical lines represent 95% confidence intervals. Analyses were adjusted for age, age-squared, sex, study center, and the first ten principal components. eGFR= estimated 

glomerular filtration rate. 95% CI= 95% confidence interval
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EXPANDED METHODS 

 

I. Description of contributing studies or consortium  

 

Emerging Risk Factor Collaboration  

Emerging Risk Factor Collaboration (ERFC) is a consortium of 112 prospective studies, involving a total 

of 1.2 million participants, that provided individual-level data.21 These studies were approximately 

population-based (i.e., did not select participants on the basis of having previous cardiovascular 

disease); recorded cause-specific mortality or vascular morbidity using accepted criteria; and had 

accrued more than 1 year of follow-up. Coronary heart disease (CHD) and stroke were defined in each 

contributing study. Sixty-two studies used standard definitions of myocardial infarction (MI) based on 

World Health Organization criteria. Fifty-six studies reported diagnosis of strokes on the basis of typical 

clinical features and characteristic changes on brain imaging, and all attempted to provide attribution of 

stroke pathological types. In registering fatal outcomes, all contributing studies used coding from the 

International Classification of Diseases (ICD) to at least 3 digits and ascertainment was based on death 

certificates. Data on serum creatinine measurements were available in 48 studies, and were harmonized 

at the ERFC coordinating centers in consensus with the individual study collaborators. Genetic 

information was not available for the current analysis on any of the contributing studies, and therefore 

ERFC was not included in the Mendelian randomization (MR) analysis. 

 

Million Veteran Program  

Million Veteran Program (MVP) is a prospective biobank with ongoing recruitment from 63 Veterans 

Health Administration (VA) medical facilities that started in 2011.23 Participant questionnaires and 

linkage to Electronic Health Records (EHR) from the VA healthcare system, national death index (NDI), 

and Centers for Medicare and Medicaid Services (CMS) were used to define baseline exposures and 

case status.47-49 CHD was defined as ICD-9 410-414, or ICD-10 I20-I25 and stroke was defined as ICD-

9 430-431 or 433-434, or ICD-10 I60-I61 or I63, I69. Creatinine was extracted from EHR as the value 

closest but prior to enrolment up to a year. Anyone with CHD or stroke codes prior to enrolment were 

excluded, along with amputees and individuals on HIV medications.23 Genotyping was performed using 

an array similar to the UK Biobank Affymetrix Axiom array but with modifications tailored to the veteran 

population.47 Genotypes were imputed with Minimac3,48 using the 1000 Genomes Project reference 

panel (phase 3, version 5),49 after phasing by EAGLE v2 software.50 Ancestry was determined with 

HARE (harmonized ancestry and race/ethnicity) software, which allocates individuals into ancestry 

groups from a combination of self-identified race/ethnicity and genetic information.51 The VA central 
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institutional review board and site-specific Research and Development committees approved the Million 

Veteran Program study. 

 

 

UK Biobank 

Details of the design, methods, and participants of UK Biobank (UKB) have been described previously.52 

Briefly, participants aged 40 to 75 years identified through primary care lists were recruited across 22 

assessment centers throughout the UK between 2006 and 2010. At recruitment, information was 

collected via a standardized questionnaire and selected physical measurements. Data were 

subsequently linked to Hospital Episode Statistics (HES), as well as national death and cancer 

registries. HES uses ICD–9th and 10th Revisions to record diagnosis information, and Office of 

Population, Censuses and Surveys: Classification of Interventions and Procedures, version 4 (OPCS-

4) to code operative procedures. Death registries include deaths in the UK, with both primary and 

contributory causes of death coded in ICD-10.  CHD was defined as ICD-10 I20-I25 and stroke was 

defined as ICD-10 I60-I61 or I63, I64, I69. Genotyping was undertaken using a custom-built genome-

wide array of ~826,000 markers.24 Imputation to ~96 million markers was subsequently carried out using 

the Haplotype Reference Consortium and UK10K/1000Genomes reference panels.24 Clinical 

biochemistry markers, including blood creatinine, total cholesterol, HDL-cholesterol, urinary albumin, 

and urinary creatinine, were measured in bio-samples collected at baseline. Full details of the 

biochemistry sampling, handling and quality control protocol, and assay method has been described 

previously.53  

 

EPIC-CVD 

EPIC-CVD is a case-cohort embedded in the European Prospective Investigation into Cancer and 

Nutrition (EPIC), to advance understanding about the separate and combined influence of lifestyle, 

biochemical, and genetic factors in the development of cardiovascular disease.54 Briefly, between 1992 

and 2000, 519,978 participants were recruited to the EPIC prospective study across 23 centers in ten 

European countries, via population-based registers, blood donors, screening clinics. CHD and stroke 

cases were ascertained at each recruiting center through death registries, hospital discharge codes, 

self-reported by questionnaires or through active follow-up by correspondence with relatives for fatal 

events. Within each of the contributing EPIC centers, information has been collected and centrally 

harmonized at the EPIC-CVD Coordinating Centre on: i) a random sample of the original center-specific 

cohort (i.e., the “sub-cohort”), and ii) all incident CHD and stroke cases. Participants were genotyped 

using either the Illumina 660W-Quad BeadChip at the Wellcome Trust Sanger Institute or the Illumina 
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HumanCoreExome BeadChip at Cambridge Genomic Services. Samples from each array were then 

imputed separately to the Haplotype Reference Consortium panel,55 using IMPUTE2 software.56 

 

 

II. ERFC study acronyms  

Abbreviation Full Name 

ARIC Atherosclerosis Risk in Communities Study 

AUSDIAB Australian Diabetes, Obesity and Lifestyle study’ 

BRHS British Regional Heart Study 

BRUN Bruneck Study 

BWHHS British Women's Heart and Health Study 

CASTEL Cardiovascular Study in the Elderly 

CHS1 Cardiovascular Health Study - 1 

CHS2 Cardiovascular Health Study - 2 

COPEN Copenhagen City Heart Study 

DRECE Diet and Risk of Cardiovascular Disease in Spain 

EPESEBOS Established Populations for the Epidemiologic Study of the Elderly Studies, East Boston 

EPESEIOW Established Populations for the Epidemiologic Study of the Elderly Studies, Iowa 

EPESENCA Established Populations for the Epidemiologic Study of the Elderly Studies, North Carolina 

EPESENHA Established Populations for the Epidemiologic Study of the Elderly Studies, New Haven 

ESTHER Epidemiologische Studie zu Chancen der Verhutung und optimierten Therapie chronischer Erkrankungen in der 

alteren Bevolkerung 

GOH The Glucose Intolerance, Obesity and Hypertension Study 

GOTO13 Goteborg Study 1913 

GOTO43 Goteborg Study 1943 

GOTOW Population Study of Women in Göteborg, Sweden 

GRIPS Göttingen Risk Incidence and Prevalence Study 

HIMS Health in Men Study 

HISAYAMA Hisayama Study 

IKNS Ikawa, Kyowa, and Noichi Study 

KIHD Kuopio Ischaemic Heart Disease Study 

LASA Longitudinal Aging Study Amsterdam 

MATISS83 Progetto CUORE 

MATISS87 Progetto CUORE 

MESA Multi-Ethnic Study of Atherosclerosis 

MONICA_KORA3 MONICA/KORA Augsburg Survey S3 

MOSWEGOT MONICA Göteborg Study 

MPP Malmö Preventive Project 

MRCOLD MRC Study of Older People 

NHANESI National Health and Nutrition Examination Survey I 

NHANESIII National Health and Nutrition Examination Survey III 

NPHSII Northwick Park Heart Study II 

NSHS Nova Scotia Health Survey 

OSAKA Osaka Study 
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RANCHO Rancho Bernardo Study 

REYK Reykjavik Study 

RS_I The Rotterdam Study I 

SHHEC Scottish Heart Health Extended Cohort 

SHIP Study of Health in Pomerani 

TARFS Turkish Adult Risk Factor Study 

TOYAMA Toyama Study 

ULSAM Uppsala Longitudinal Study of Adult Men 

WCWC Wuertemberg Construction Workers Cohort 

ZUTE Zutphen Elderly Study 
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III. Estimators of glomerular filtration rates 

 

We used eGFR from serum creatinine predicted from CKD-EPI formula in the primary analyses, and 

where available, we compared results with eGFR estimated using other formulae.  

 

Estimating equations using serum creatinine in mg/dL (to convert serum creatinine in mmol/L to 

mg/dL, divide by 88.4): 

1. Chronic Kidney Disease Epidemiology Collaboration (CKD-EPI)57:  

eGFR =141× {min (
creatinine

𝑘
, 1)}

𝛼

× {max (
creatinine

𝑘
, 1)}

−1.209

× 0.993age × [1.018 if female]

× [1.159 if black] 

where 𝑘 = 0.7 and 𝛼 = −0.329 for females, and 𝑘 = 0.9 and 𝛼 = −0.411 for males.  

Estimating equations using serum cystatin C in mg/L27: 

1. CKD-EPI 

eGFR = 130 × (
cystatin C

0.8
)

𝛼

× 0.996age × [0.932 if female] 

where 𝛼 = −0.499 if cystatin C ≤ 0.8, and 𝛼 = −1.328 otherwise. 

 

Estimating equations using serum creatinine and serum cystatin C:  

1. CKD-EPI 

eGFR =135× {min (
creatinine

𝑘
, 1)}

𝛼

× {max (
creatinine

𝑘
, 1)}

−0.601

× (
cystatin C

0.8
)

𝛽

× 0.995age

× [0.969 if female] × [1.08 if black] 

where 𝑘 = 0.7 and 𝛼 = −0.248 for females, and 𝑘 = 0.9 and 𝛼 = −0.207 for males, and 𝛽 =

−0.375 if cystatin C ≤ 0.8, and 𝛽 = −0.711 otherwise 
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IV. Non-linear Mendelian randomization analysis  

 

Mendelian randomization (MR) methods typically assume that the exposure-outcome relationship is 

linear when estimating a causal association. However, large-scale prospective epidemiological studies 

among different populations, and the present study performed among participants without prior history 

of cardiovascular disease or diabetes, have demonstrated that there is a reversed J-shaped association 

between creatinine-based eGFR and risk of CHD and stroke. To account for the non-linear relationship 

when investigating the causal relevance of kidney function for risk of CHD, and stroke, we applied a 

tailored novel method, i.e., the non-linear MR approach.16-17,58 

 

Genetically-predicted eGFR and cardiovascular outcomes  

Within each study (i.e., EPIC-CVD, MVP, and UKB), we calculated the residual variation in creatinine-

based eGFR (henceforth, termed as IV-free eGFR) by subtracting the genetically-determined eGFR 

from the creatinine-based eGFR. The IV-free eGFR can be interpreted as the expected value of a 

participant’s eGFR if their GRS was 0. Based on the IV-free eGFR, all study participants were then 

stratified into 5-unit groups between 45-105 mL/min/1.73 m2, plus <45 and ≥105 mL/min/1.73 m2. Within 

stratum, linear MR estimates were calculated using the ratio method. These stratum-specific MR 

estimates are localized average causal effect (LACE) estimates and were pooled across studies using 

fixed-effects meta-analysis within each stratum. The stratum-specific MR estimates were plotted as a 

piecewise-linear function of eGFR, where the slope in each piece is the LACE estimate in that stratum. 

The estimated risk was plotted against the mean eGFR in each stratum, relative to the risk at 90 

mL/min/1.73 m2. Point-wise confidence intervals were calculated by re-sampling the MR estimates and 

re-calculating the full piecewise-linear shape. Interpretation of graphical representations of these non-

linear genetic associations must focus on the slope in the neighborhood of an eGFR value of interest, 

rather than comparisons of absolute risk made across the range of the eGFR distribution.  

 

Genetically-predicted eGFR and other vascular risk factors  

To assess the specificity of the GRSs for eGFR, we tested associations of GRSs with a range of vascular 

risk factors (e.g., systolic blood pressure, LDL-cholesterol, and diabetes status) in UKB and EPIC-CVD 

studies, and with 167 metabolites measured using targeted high-throughput NMR metabolomics 

(Nightingale Health Ltd) in UKB. The analyses were conducted among participants with no prior history 

of vascular diseases or diabetes, and not on lipid-lowering treatments. NMR-measured metabolites were 

standardized for comparison via rank-based inverse normal transformation. Linear regression was used 
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to relate GRSs to continuous traits, and logistic regression was used for binary outcomes, adjusted for 

age, age-squared, sex, study center, and the first ten principal components. 

 



35 

 

Table S1: Definitions of coronary heart diseases and stroke  
 

Outcome (includes both fatal and non-fatal) ICD-10 codes  

All cardiovascular  I20-I25, I60-I64, I69 

Coronary heart disease  I20-I25 

All stroke  I60-I64, I69 

    Ischemic stroke  I63, I69.3 

    Intracerebral hemorrhage  I61, I69.1 

    Subarachnoid hemorrhage  I60, I69.0 

    Unclassified stroke † I64, I69.4 

† Unclassified stroke refers to ICD codes I64 (ICD-10), 436 (ICD-9) or earlier ICD equivalents, or strokes no specified as ischemic or 

hemorrhagic stroke in study specific codes. Corresponding ICD-6, 7 or 8 codes are used for ERFC studies that recorded outcomes using 

earlier ICD versions.  
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Table S2: Number of participants by eGFR category and contributing study  
 

Cohort Total 
creatinine-based eGFR categories, mL/min/1.73 m2  

<45 45-<60 60-<75 75-<90 90-<105 105-<120 >120 

ARIC         11,421                 64            1,271            5,134            3,719            1,054               164                 15  

AUSDIAB           8,307                 35               338            1,807            3,502            2,176               447                   2  

BRHS           6,406                 15               180            1,529            2,785            1,646               249                   2  

BRUN              756                   4                 20                 98               265               297                 72                  -    

BWHHS           2,503                 17               306            1,137               885               157                   1                  -    

CASTEL           1,793                 54               224               464               746               292                 10                   3  

CHS1           2,936               127               613            1,048               896               246                   6                  -    

CHS2              312                   9                 28                 91                 89                 75                 19                   1  

COPEN           6,569                 94               819            2,277            2,192            1,004               179                   4  

DRECE           2,058                   4                 27               312               762               663               265                 25  

EPESEBOS              437                 55               179               138                 61                   4                  -                    -    

EPESEIOW              708               112               304               193                 94                   5                  -                    -    

EPESENCA              609               105               260               197                 42                   5                  -                    -    

EPESENHA              341                 46               134               108                 43                   8                   2                  -    

ESTHER           3,995               134               372               646               984            1,425               349                 85  

GOH              867                 12                 42               200               248               257               106                   2  

GOTO43              723                  -                     1                 56               303               350                 12                   1  

GRIPS           5,645                 14               184            1,160            2,720            1,266               297                   4  

HIMS           1,823                 47               152               480               984               158                   2                  -    

HISAYAMA           2,236                 12               173               825               858               334                 34                  -    

IKNS           4,204                 12                 68               415            1,139            1,847               708                 15  

KIHD           1,792                   5                 13               209               627               796               137                   5  

LASA              124                   3                 26                 66                 27                   2                  -                    -    

MATISS83           2,403                 10                 70               297               576               899               479                 72  

MATISS87           1,876                 17                 46               268               500               669               341                 35  

MESA           5,696                 56               319            1,204            2,021            1,672               381                 43  

MONICA_KORA3           3,902                 16                 39               154               457            1,387            1,441               408  

MOSWEGOT              309                   5                 93               137                 63                 11                  -                    -    

NHANESIII           8,946               156               853            2,322            3,079            1,896               544                 96  

NSHS              913                   6                 16                 75               168               374               230                 44  

OSAKA           3,476                   9                 39               477            1,296            1,244               394                 17  
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RANCHO           1,406                 71               424               546               286                 76                   3                  -    

REYK         11,808                 38               388            2,640            4,650            3,551               529                 12  

RS_I           3,371                 18               213               915            1,434               777                 13                   1  

SHHEC           9,643                 23               282            2,402            4,270            2,276               383                   7  

SHIP           1,743                   4                 42               287               639               575               192                   4  

TARFS              561                   6                 17                 80               131               207               109                 11  

TOYAMA           4,303                   7                 10               103               695            2,040            1,405                 43  

ULSAM           1,728                   2                   2                 70               186               959               495                 14  

WCWC              551                  -                    -                   11               111               277               148                   4  

ZUTE              401                   9                 85               173               121                 13                  -                    -    

MVP       147,356            2,698            9,457          29,552          46,200          41,461          15,176            2,812  

EPICCVD         20,985               139               503            2,306            5,524            9,400            2,942               171  

UKBIOBANK       350,193               809            5,232          33,895        100,351        165,603          43,124            1,179  

Data are number of participants.  
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Table S3: Characteristics of participants by categories of eGFR 
 

 Categories of eGFR (mL/min/1.73 m2) 

 <15 15-<30 30-<45 45-<60 60-<75 75-<90 90-<105 105-<120 >120 

Age 60.2 (4.7) 65.4 (4.4) 66.7 (3.6) 65.6 (3.7) 62.2 (4.1) 59.2 (4.5) 55.7 (4.3) 47 (3.5) 41.6 (3.2) 

Sex          

   Men 271 609 2,552 13,919 55,794 114,660 133,631 37,506 2,899 

   Women 58 193 1,395 9,945 40,710 82,069 115,804 33,882 2,238 

Creatinine 7.1 (1.7) 2.6 (0.3) 1.7 (0.1) 1.3 (0.1) 1.1 (0.1) 0.9 (0.1) 0.8 (0.1) 0.8 (0.1) 0.6 (0.1) 

Incident CHD events 90 142 523 2,693 8,303 13,614 14,619 2,706 168 

Incident stroke events 8 34 214 1,087 3,186 4,793 5,298 1,002 71 

BMI, kg/m2 26.4 (2.4) 27.4 (2.7) 27.7 (2.5) 27.8 (2.4) 27.8 (2.3) 27.5 (2.4) 27.3 (2.5) 27.3 (2.7) 27.1 (3) 

SBP, mmHg 137 (11) 138 (10) 137 (10) 135 (9) 134 (9) 132 (8) 131 (8) 127 (8) 126 (8) 

Smoking status          

   Not current 303 730 3,567 21,245 84,160 169,933 212,106 56,731 3,939 

   Current 26 72 380 2,619 12,344 26,796 37,329 14,657 1198 

HDL cholesterol, mmol/L 1.2 (0.2) 1.2 (0.2) 1.3 (0.2) 1.3 (0.2) 1.3 (0.2) 1.3 (0.2) 1.3 (0.2) 1.3 (0.2) 1.4 (0.2) 

Total cholesterol, mmol/L 5.0 (0.5) 5.0 (0.6) 5.2 (0.6) 5.3 (0.5) 5.3 (0.5) 5.3 (0.5) 5.3 (0.5) 5.1 (0.5) 5.0 (0.5) 

Data are n, or mean (SD). Participants with missing information on age, sex systolic blood pressure, total and high-density lipoprotein cholesterol, body-mass index, and smoking status were 

excluded. CHD= coronary heart disease. BMI= body-mass index. SBP= systolic blood pressure. HDL= high-density lipoprotein. eGFR= estimated glomerula filtration rate 
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Table S4: Variants used to make the genetic risk score for eGFR (using creatinine in the CKD-

EPI equation).  

 

 

RSID 
Chromosome and 

base pair 

Effect 

allele 

Other 

allele 

European ancestry Trans-ancestry 

Effect size 

(beta) 
SE 

Effect size 

(beta) 
SE 

rs11166440 1:100808363 A G 0.0021 0.0004 0.002 0.0003 

rs74748843 1:10730910 C T 0.006 0.0013 0.0048 0.0008 

rs12736457 1:113258293 C G 0.0056 0.0005 0.0054 0.0005 

rs3118119 1:150159616 T C 0.0031 0.0005 0.003 0.0005 

rs267738 1:150940625 G T 0.005 0.0004 0.0048 0.0004 

rs10159261 1:15912987 G T 0.0038 0.0004 0.0034 0.0003 

rs3845534 1:163738950 G A 0.0019 0.0003 0.0019 0.0003 

rs4656220 1:170649277 T C 0.0021 0.0004 0.002 0.0003 

rs1011731 1:172346548 G A 0.0019 0.0003 0.0019 0.0003 

rs3795503 1:180905694 T C 0.0022 0.0004 0.002 0.0003 

rs78444298 1:184672098 G A 0.0107 0.0014 0.0105 0.0014 

rs78329830 1:186769572 G A 0.0051 0.001 0.0054 0.0009 

rs12061708 1:18809916 G A 0.0027 0.0004 0.0026 0.0003 

rs3850625 1:201016296 A G 0.0048 0.0006 0.0046 0.0005 

rs2808454 1:207231751 A T 0.0019 0.0003 0.0019 0.0003 

rs75625374 1:208039431 C G 0.0043 0.0007 0.0045 0.0007 

rs7535253 1:214744893 T C 0.0023 0.0004 0.0021 0.0004 

rs2577134 1:220224321 T C 0.0021 0.0004 0.002 0.0003 

rs61830291 1:221001142 C A 0.0036 0.0006 0.0036 0.0006 

rs417237 1:228532195 T G 0.002 0.0004 0.0018 0.0003 

rs2749153 1:23699340 G A 0.003 0.0004 0.0033 0.0003 

rs2490391 1:243469669 C A 0.0025 0.0003 0.0024 0.0003 

rs688540 1:48002447 G A 0.0031 0.0006 0.003 0.0005 

rs17413465 1:55718708 A C 0.0025 0.0004 0.0025 0.0004 

rs1757915 1:56615809 A G 0.002 0.0004 0.0021 0.0003 

rs7536433 1:78023173 T C 0.0018 0.0004 0.0021 0.0004 

rs679843 1:78707493 T C 0.002 0.0004 0.0021 0.0003 

rs17050272 2:121306440 G A 0.0022 0.0004 0.0022 0.0003 

rs11694902 2:121988884 A G 0.0041 0.0005 0.0041 0.0005 

rs7425436 2:148759656 A G 0.0026 0.0004 0.0024 0.0003 

rs4664475 2:152387553 C T 0.002 0.0004 0.002 0.0003 

rs807624 2:15782471 T G 0.0034 0.0004 0.0032 0.0003 

rs35472707 2:169995581 C T 0.0075 0.0008 0.0073 0.0008 

rs187355703 2:176993583 C G 0.0101 0.0011 0.01 0.0011 

rs35284526 2:178121524 A C 0.0029 0.0004 0.0029 0.0003 

rs4666821 2:183077254 T G 0.0018 0.0003 0.002 0.0003 

rs4491726 2:18676276 A G 0.0032 0.0004 0.0032 0.0004 

rs60980181 2:188168567 T A 0.0029 0.0005 0.0027 0.0004 

rs1047891 2:211540507 C A 0.0065 0.0004 0.0065 0.0004 

rs1548945 2:217665788 T C 0.0037 0.0004 0.0036 0.0003 

rs1050816 2:220358198 T C 0.0029 0.0004 0.0026 0.0003 

rs35669853 2:227287718 A G 0.0026 0.0004 0.0024 0.0004 

rs13003198 2:234257105 T C 0.0017 0.0004 0.0018 0.0003 

rs2301343 2:40680149 G T 0.0023 0.0004 0.0023 0.0004 
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RSID 
Chromosome and 

base pair 

Effect 

allele 

Other 

allele 

European ancestry Trans-ancestry 

Effect size 

(beta) 
SE 

Effect size 

(beta) 
SE 

rs10865189 2:43433257 C G 0.0025 0.0004 0.0024 0.0003 

rs2971880 2:54885640 T A 0.0026 0.0004 0.0024 0.0003 

rs10197255 2:67874553 A T 0.0018 0.0004 0.0018 0.0003 

rs6546869 2:73895765 A G 0.0061 0.0004 0.0059 0.0004 

rs2289746 3:105455955 C T 0.0016 0.0004 0.0019 0.0003 

rs9868185 3:121657593 A G 0.0027 0.0003 0.0026 0.0003 

rs10934754 3:125906237 T C 0.0017 0.0003 0.002 0.0003 

rs35320690 3:135932494 C T 0.0025 0.0004 0.0025 0.0004 

rs9828976 3:136536835 G C 0.0024 0.0004 0.0024 0.0004 

rs7624084 3:141093285 T C 0.0015 0.0003 0.0017 0.0003 

rs1397764 3:141750810 A G 0.0047 0.0004 0.0043 0.0003 

rs76272256 3:168888112 T C 0.0024 0.0005 0.0024 0.0004 

rs56065557 3:185354216 G C 0.003 0.0004 0.0029 0.0003 

rs9823161 3:193811168 A G 0.0021 0.0004 0.0022 0.0004 

rs6779998 3:30749965 G A 0.0019 0.0003 0.0017 0.0003 

rs3774726 3:63974477 C T 0.0023 0.0004 0.0021 0.0003 

rs3775932 4:10090930 C A 0.002 0.0003 0.0018 0.0003 

rs223471 4:103698786 C G 0.0028 0.0004 0.0028 0.0003 

rs55929207 4:109703549 C G 0.002 0.0003 0.0019 0.0003 

rs16874073 4:23743962 C T 0.0041 0.0008 0.0045 0.0007 

rs75501914 4:3449781 A G 0.0042 0.0008 0.0039 0.0006 

rs4864890 4:52686513 C T 0.0023 0.0004 0.0023 0.0004 

rs12509595 4:81182554 C T 0.0032 0.0004 0.0035 0.0003 

rs12777 5:131671662 C G 0.005 0.0009 0.005 0.0009 

rs11743174 5:148524820 T C 0.0019 0.0004 0.0019 0.0003 

rs3812036 5:176813404 C T 0.0069 0.0004 0.0065 0.0004 

rs13157326 5:34504277 G A 0.0027 0.0004 0.0027 0.0003 

rs495237 5:39950266 T G 0.0029 0.0004 0.0027 0.0003 

rs11746506 5:44812566 T C 0.0018 0.0004 0.0017 0.0003 

rs79760705 5:53298716 T G 0.0056 0.0006 0.0056 0.0005 

rs72759880 5:67750213 G T 0.0057 0.0005 0.0056 0.0005 

rs2010352 5:68656327 G A 0.0019 0.0003 0.0018 0.0003 

rs3797537 5:78322650 A G 0.0021 0.0004 0.0019 0.0003 

rs1857859 6:100894587 A G 0.0014 0.0004 0.0019 0.0003 

rs1268168 6:109008158 A G 0.0027 0.0004 0.0024 0.0003 

rs7740107 6:130374461 A T 0.0027 0.0004 0.0027 0.0004 

rs9375818 6:131882078 G A 0.0026 0.0004 0.0031 0.0004 

rs3822939 6:133849789 G A 0.0028 0.0003 0.0025 0.0003 

rs9397738 6:154986664 A G 0.0025 0.0005 0.0027 0.0004 

rs12207180 6:160633107 T A 0.0085 0.0005 0.0085 0.0005 

rs3765502 6:24354045 T C 0.0017 0.0006 0.0024 0.0004 

rs144100226 6:34180297 T C 0.006 0.0011 0.0059 0.001 

rs13200335 6:41690823 A C 0.0024 0.0003 0.0024 0.0003 

rs77915916 6:43287722 A T 0.0047 0.0006 0.0046 0.0006 

rs881858 6:43806609 G A 0.0056 0.0004 0.0054 0.0003 

rs720989 6:44765535 T G 0.0023 0.0004 0.0021 0.0004 

rs6458868 6:52630153 C T 0.0021 0.0004 0.002 0.0003 

rs3925003 6:55422618 C T 0.0019 0.0003 0.0018 0.0003 
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RSID 
Chromosome and 

base pair 

Effect 

allele 

Other 

allele 

European ancestry Trans-ancestry 

Effect size 

(beta) 
SE 

Effect size 

(beta) 
SE 

rs11755724 6:7118990 A G 0.0027 0.0004 0.0027 0.0004 

rs72912510 6:90118764 G A 0.002 0.0004 0.0024 0.0004 

rs3757387 7:128576086 T C 0.0029 0.0004 0.003 0.0003 

rs62435145 7:1286567 G T 0.0055 0.0004 0.006 0.0004 

rs62491533 7:129564134 C T 0.0027 0.0005 0.0027 0.0004 

rs10254101 7:151415536 C T 0.0068 0.0004 0.0068 0.0004 

rs12671694 7:155665959 T C 0.0028 0.0004 0.0025 0.0003 

rs868822 7:156252939 T G 0.0032 0.0004 0.0029 0.0003 

rs6968554 7:17287106 G A 0.0022 0.0004 0.0019 0.0003 

rs3750081 7:32930876 G T 0.0019 0.0004 0.0022 0.0003 

rs55773927 7:65337902 T C 0.002 0.0003 0.0019 0.0003 

rs41301394 7:75612803 T C 0.002 0.0004 0.0023 0.0003 

rs11783418 8:10841858 G A 0.002 0.0004 0.002 0.0004 

rs10098664 8:11417493 C T 0.0024 0.0004 0.0021 0.0003 

rs2954017 8:126476873 T C 0.0026 0.0004 0.0024 0.0003 

rs34861762 8:23748420 C T 0.0043 0.0003 0.0043 0.0003 

rs10102889 8:32435620 G C 0.005 0.0013 0.0036 0.0006 

rs2980423 8:8142575 C T 0.0025 0.0004 0.0023 0.0003 

rs1533059 8:8684953 A G 0.0028 0.0004 0.0025 0.0003 

rs2976178 8:87332552 G C 0.0027 0.0004 0.0025 0.0003 

rs35353426 8:9297246 C T 0.0026 0.0004 0.0026 0.0004 

rs1321917 9:119324929 G C 0.0025 0.0003 0.0023 0.0003 

rs7024579 9:139100413 T C 0.0023 0.0004 0.0023 0.0004 

rs28404308 9:140103272 A T 0.0027 0.0005 0.0024 0.0004 

rs12377027 9:20554583 G A 0.0027 0.0005 0.0026 0.0005 

rs13287724 9:33169034 T A 0.0029 0.0006 0.003 0.0006 

rs544169 9:33956791 A G 0.0024 0.0004 0.0022 0.0003 

rs284859 10:104573017 T G 0.0027 0.0004 0.0026 0.0004 

rs1536225 10:105202318 G T 0.0019 0.0004 0.0021 0.0003 

rs6481598 10:29781798 C G 0.0023 0.0004 0.0024 0.0004 

rs7072591 10:35150364 A G 0.0019 0.0004 0.0019 0.0003 

rs8474 10:51026705 C G 0.0019 0.0003 0.002 0.0003 

rs10821905 10:52646093 A G 0.0039 0.0004 0.0037 0.0004 

rs7475348 10:69965177 T C 0.0027 0.0004 0.0031 0.0003 

rs12240572 10:75016365 T A 0.0034 0.0007 0.0032 0.0006 

rs816850 10:79252446 G C 0.002 0.0004 0.002 0.0004 

rs7095954 10:82209232 T A 0.0019 0.0003 0.0018 0.0003 

rs9420446 10:88880689 T C 0.0022 0.0005 0.0023 0.0004 

rs80282103 10:899071 A T 0.0081 0.0006 0.0078 0.0006 

rs2068888 10:94839642 G A 0.0026 0.0003 0.0024 0.0003 

rs4918943 10:97278922 G A 0.0023 0.0005 0.0022 0.0004 

rs6589750 11:119326726 A G 0.0017 0.0004 0.002 0.0003 

rs10790452 11:121584931 T C 0.002 0.0004 0.002 0.0003 

rs11564722 11:2178330 T C 0.0038 0.0004 0.0033 0.0004 

rs63934 11:2789062 A G 0.0042 0.0004 0.0041 0.0004 

rs963837 11:30749090 C T 0.0055 0.0004 0.0057 0.0003 

rs61897431 11:47427667 T C 0.0028 0.0004 0.0029 0.0004 

rs7127946 11:48250675 T C 0.0023 0.0004 0.0023 0.0003 
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RSID 
Chromosome and 

base pair 

Effect 

allele 

Other 

allele 

European ancestry Trans-ancestry 

Effect size 

(beta) 
SE 

Effect size 

(beta) 
SE 

rs2727040 11:49057603 C T 0.0026 0.0006 0.0026 0.0004 

rs1813937 11:50468801 T C 0.0019 0.0004 0.0022 0.0004 

rs1541937 11:5578558 C A 0.0029 0.0004 0.0029 0.0004 

rs1783827 11:57409538 G A 0.0021 0.0004 0.002 0.0003 

rs948493 11:65552154 C T 0.0032 0.0004 0.0033 0.0003 

rs11237450 11:78023356 A C 0.003 0.0005 0.0032 0.0004 

rs117113238 12:12209203 A G 0.0039 0.0006 0.0039 0.0006 

rs10846157 12:15325031 C A 0.0036 0.0004 0.0034 0.0004 

rs632887 12:3392351 A G 0.0033 0.0004 0.0032 0.0003 

rs11062167 12:364739 G A 0.0042 0.0003 0.0039 0.0003 

rs4238020 12:4616642 T C 0.0028 0.0005 0.0029 0.0005 

rs2634675 12:48740855 A G 0.0028 0.0004 0.0025 0.0003 

rs12313306 12:57751854 T C 0.0031 0.0004 0.0029 0.0004 

rs41284816 13:50655989 G T 0.0079 0.0012 0.0078 0.0012 

rs500830 13:72348768 T C 0.0026 0.0003 0.0029 0.0003 

rs61993680 14:100752644 C A 0.0022 0.0004 0.0019 0.0003 

rs72683923 14:50735947 C T 0.0076 0.0014 0.0074 0.0013 

rs6574652 14:81870100 C T 0.0019 0.0003 0.0017 0.0003 

rs1028455 14:88829975 A T 0.0021 0.0004 0.002 0.0003 

rs17184313 14:93102251 C T 0.0028 0.0005 0.0029 0.0005 

rs12913015 15:39305443 T C 0.0028 0.0004 0.0027 0.0003 

rs6492982 15:41399951 C T 0.0032 0.0004 0.0033 0.0004 

rs1994887 15:57793765 C A 0.0024 0.0004 0.002 0.0004 

rs956006 15:62808539 T C 0.0022 0.0004 0.0019 0.0003 

rs11071738 15:63580155 C T 0.0025 0.0003 0.0025 0.0003 

rs11071939 15:67463391 C T 0.0038 0.0007 0.0039 0.0006 

rs351237 15:74477239 G A 0.0018 0.0004 0.0018 0.0003 

rs2472297 15:75027880 T C 0.0039 0.0004 0.0039 0.0004 

rs4886696 15:75664570 T A 0.0033 0.0004 0.0032 0.0004 

rs4886755 15:76298132 A G 0.0041 0.0003 0.0041 0.0003 

rs166906 15:76802175 T C 0.0039 0.0006 0.0033 0.0005 

rs17507300 15:83722059 A G 0.0024 0.0005 0.0024 0.0004 

rs7169629 15:85191274 C G 0.0019 0.0003 0.0018 0.0003 

rs59646751 15:99276521 G T 0.002 0.0004 0.0023 0.0003 

rs193538 16:16127916 G T 0.002 0.0004 0.002 0.0003 

rs438339 16:2003425 T C 0.0035 0.0007 0.0035 0.0006 

rs77924615 16:20392332 A G 0.0096 0.0005 0.0098 0.0004 

rs1635404 16:3747042 G T 0.0024 0.0004 0.0025 0.0004 

rs9932625 16:51735746 G A 0.003 0.0004 0.003 0.0003 

rs7203398 16:53189672 A C 0.0027 0.0004 0.0025 0.0003 

rs7185391 16:68323115 G T 0.0026 0.0004 0.0027 0.0004 

rs62053077 16:71643669 G T 0.0025 0.0004 0.0021 0.0004 

rs1858800 16:73024276 T C 0.0022 0.0004 0.002 0.0003 

rs154656 16:89708003 T A 0.0031 0.0003 0.003 0.0003 

rs28735420 17:12139964 T G 0.004 0.0008 0.0039 0.0006 

rs2349648 17:17017267 G T 0.0022 0.0004 0.0017 0.0003 

rs9891340 17:17543846 T C 0.0024 0.0004 0.0024 0.0004 

rs2440165 17:19428719 T C 0.0041 0.0004 0.004 0.0003 
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Chromosome and 

base pair 

Effect 

allele 
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allele 

European ancestry Trans-ancestry 

Effect size 

(beta) 
SE 

Effect size 

(beta) 
SE 

rs2411192 17:34882998 T A 0.0024 0.0003 0.0024 0.0003 

rs227731 17:54773238 T G 0.0018 0.0004 0.0018 0.0003 

rs35662455 17:56755223 C G 0.003 0.0005 0.003 0.0005 

rs9903801 17:58915261 C G 0.0049 0.0005 0.0047 0.0004 

rs9895661 17:59456589 T C 0.0074 0.0005 0.0069 0.0004 

rs8866 17:65373979 G C 0.0018 0.0004 0.0018 0.0003 

rs883541 17:66449122 G A 0.0023 0.0004 0.0022 0.0003 

rs1719934 18:5585158 A G 0.0028 0.0003 0.0026 0.0003 

rs2974751 19:13053034 A C 0.0019 0.0004 0.0018 0.0003 

rs7251730 19:36997147 T C 0.0024 0.0004 0.0024 0.0003 

rs78241494 19:37649748 C T 0.0031 0.0004 0.003 0.0004 

rs113445505 19:38157969 T C 0.0038 0.0004 0.0037 0.0003 

rs34647824 19:50138143 C A 0.002 0.0004 0.0021 0.0004 

rs62187537 20:1333060 T C 0.0038 0.0007 0.0039 0.0007 

rs1041606 20:14677788 C T 0.002 0.0004 0.0021 0.0004 

rs6087579 20:32985155 G A 0.003 0.0003 0.0028 0.0003 

rs2273684 20:33529766 T G 0.0033 0.0003 0.0032 0.0003 

rs17216707 20:52732362 C T 0.0052 0.0005 0.0051 0.0004 

rs2235826 20:56143169 T A 0.0033 0.0005 0.003 0.0004 

rs72629024 20:62152519 C G 0.0034 0.0006 0.0035 0.0005 

rs4408777 20:62706105 G A 0.0021 0.0004 0.0021 0.0003 

rs1509117 20:8303120 A T 0.0025 0.0004 0.0024 0.0004 

rs2823139 21:16576783 G A 0.0027 0.0004 0.0026 0.0003 

rs2834317 21:35356706 G A 0.0031 0.0005 0.0035 0.0005 

rs2244237 21:37818141 T G 0.0027 0.0004 0.0027 0.0004 

rs131263 22:30133045 T C 0.0023 0.0004 0.0024 0.0004 

rs80576 22:36539804 G A 0.0027 0.0005 0.0028 0.0005 

rs4820324 22:38599857 G C 0.0023 0.0004 0.0023 0.0003 

rs112880707 22:40884662 T C 0.0056 0.0006 0.0052 0.0005 

rs738527 22:43112961 T C 0.0031 0.0004 0.0032 0.0003 

SE= standard error. Weights were taken from the discovery GWAS of the CKDGen study.20 
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Table S5: Pairwise Pearson correlations of GRSs for eGFR and body-mass index, by study 

 

Creatinine-

based eGFR 
BMI GRS GRS (Cys) GRS (BUN) 

UKB      

   GRS 0.1730* -0.0037    

   GRS (Cys) 0.1447* -0.0031 0.8003*   

   GRS (BUN) 0.1378* 0.0009 0.7626* 0.7661*  

   GRS (Raw) 0.2005* -0.0039 0.8898* 0.7062* 0.6731* 

EPIC-CVD 
   

  

   GRS 0.1357* -0.0203    

   GRS (Cys) 0.1183* -0.0037 0.7954*   

   GRS (BUN) 0.1025* -0.0199 0.7591* 0.7564*  

   GRS (Raw) 0.1598* -0.0079 0.8851* 0.6972* 0.6612* 

MVP  
  

  

   GRS 0.1475* -0.0021    

   GRS (Cys) 0.1267* 0.0029 0.8032*   

   GRS (BUN) 0.1240* -0.0034 0.6507* 0.6626*  

   GRS (Raw) 0.1670* -0.0058 0.8894* 0.7090* 0.6934* 

GRS was constructed using 218 European-specific eGFR (creatinine-based) associated genetic variants (n=567,460). GRS (Cys) included 

127 genetic variants (out of the 218 genetic variants included in the GRS for eGFR) that were additionally associated with cystatin-C-based 

eGFR (n=460,826). GRS (BUN) included 121 genetic variants (out of the 218 genetic variants included in the GRS for eGFR) that were 

additionally associated with blood urine nitrogen (n=416,178). GRS (Raw) included all the 262 eGFR-associated index variants in CKDGen 

trans-ancestry analysis (n=765,348). * Bonferroni-corrected significance (P<0.01). GRS= genetic risk score. eGFR= estimated glomerular 

filtration rate. BMI= body-mass index. 
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Table S6: Mendelian randomization estimates of each 5 mL/min/1.73 m2 lower genetically-predicted eGFR with risk of coronary 

heart disease and stroke  

 

eGFR within 

studies,  Mean eGFR, 

mL/min/1.73m2 
No. of participants 

Coronary heart disease  Stroke 

mL/min/1.73m2 No. of events HR (95% CI)  No. of events HR (95% CI) 

EPIC-CVD 
 

 
     

  < 60 50.1 533 266 1.52 (1.09, 2.13) 

 

103 2.30 (1.32, 4.02) 

  60 - 74 69.1 1979 847 1.10 (0.94, 1.29) 

 

322 1.13 (0.86, 1.49) 

  75 - 89 83.3 4953 1760 1.08 (0.97, 1.21) 

 

777 1.01 (0.85, 1.20) 

  90 - 104 97.6 8787 2619 1.11 (1.00, 1.23) 

 

1382 1.01 (0.88, 1.16) 

  ≥105* 111.0 3569 658 0.85 (0.71, 1.02) 

 

376 0.83 (0.64, 1.09) 

MVP 
       

  < 60 50.6 9241 1146 1.18 (1.04, 1.34) 

 

250 1.10 (0.84, 1.44) 

  60 - 74 68.3 22,916 2008 1.06 (0.97, 1.16) 

 

484 1.17 (0.97, 1.41) 

  75 - 89 82.9 34,890 2752 1.05 (0.97, 1.14) 

 

587 0.92 (0.78, 1.09) 

  90 - 104 96.4 30,130 2285 0.94 (0.86, 1.02) 

 

514 1.10 (0.91, 1.33) 

  ≥105* 111.7 8085 316 0.98 (0.77, 1.24) 

 

79 1.41 (0.87, 2.27) 

UK Biobank  
       

  < 60 52.4 5044 337 0.84 (0.66, 1.08) 

 

138 1.03 (0.70, 1.53) 

  60 - 74 69.4 28,361 1459 1.10 (0.97, 1.23) 

 

512 1.11 (0.91, 1.34) 

  75 - 89 83.5 83,821 3717 1.04 (0.97, 1.11) 

 

1201 0.98 (0.87, 1.11) 
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  90 - 104 97.0 137,263 5069 1.00 (0.94, 1.07) 

 

1686 1.07 (0.96, 1.20) 

  ≥105* 109.1 34,146 678 0.94 (0.79, 1.11) 

 

211 0.97 (0.71, 1.31) 

Combined  
       

  < 60 51.2 14,818 1749 1.14 (1.03, 1.27) 

 

491 1.19 (0.97, 1.47) 

  60 - 74 68.9 53,256 4314 1.08 (1.01, 1.15) 

 

1318 1.14 (1.01, 1.28) 

  75 - 89 83.3 123,664 8229 1.05 (1.00, 1.10) 

 

2565 0.97 (0.89, 1.06) 

  90 - 104 96.9 176,180 9973 1.01 (0.96, 1.05) 

 

3582 1.06 (0.98, 1.14) 

  ≥105* 109.7 45,800 1652 0.91 (0.82, 1.02) 

 

666 0.95 (0.79, 1.14) 

HRs are shown per 5 mL/min/1.73 m2 lower genetically-predicted eGFR and are adjusted for age, age-squared, sex, study center, and the first ten principal components. *HRs in the group with 

eGFR above 105 were shown per 5 mL/min/1.73 m2 higher genetically-predicted eGFR. Mean eGFR within each stratum was weighted by the number of participants from each contributing 

study, and MR estimates within each stratum were meta-analyzed using inverse variance weighting and fixed effects. 

 

Figure S1: Distributions of creatinine measurements by study  
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Figure S2: Distributions of measured eGFR by study 

 

Participants with eGFR levels greater than 300 mL/min/1.73 m2 were excluded from the analysis.  
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Figure S3: Observational associations of creatinine-based eGFR with risk of coronary heart disease and stroke (n=648,135) 

 

Participants with missing information on age, sex, systolic blood pressure, total and high-density lipoprotein cholesterol, body-mass index, smoking status were excluded from the analysis. 

Hazards ratios were estimated using Cox regression, adjusted for age, sex and study centre, where appropriate. The eGFR was estimated using creatinine-based CKD-EPI formula. The 

categories of eGFR are <15, 15-<30, 30-<44, 45-<60, 60-<75, 75-<90, 90-<105, 105-<120, and ≥120 mL/min/1.73 m2. The reference category is 75-<90 mL/min/1.73 m2. Hazards ratios were 

plotted against the mean eGFR in each category. Sizes of the boxes are proportional to the inverse of the variance of the log risk within that specific group. Vertical lines represented 95% 

confidence intervals.  
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Figure S4: Observational associations of creatinine-based eGFR with risk of coronary heart disease and stroke by sex, smoking, 

adiposity and hypertension. 

 

Participants with missing information on age, sex, systolic blood pressure, total and high-density lipoprotein cholesterol, body-mass index, smoking status were excluded from the analysis. 

Hazards ratios were estimated using Cox regression, adjusted for age, sex and study centre. The categories of eGFR are <30, 30-<44, 45-<60, 60-<75, 75-<90, 90-<105, 105-<120, and ≥120 

mL/min/1.73 m2. The reference category is 75-<90 mL/min/1.73 m2 in females, non-smokers, participants with no history of diabetes, or hypertension in the respective panels. Hazards ratios 
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were plotted against the mean eGFR in each category. Sizes of the boxes are proportional to the inverse of the log risk in that specific group. Vertical lines represented 95% confidence 

intervals. Hypertension was defined as recorded prior history of hypertension or systolic blood pressure ≥140 mm Hg and diastolic blood pressure ≥90 mm Hg.  
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Figure S5: Observational associations of creatinine-based eGFR with risk of coronary heart disease and stroke, by contributing 

study 

 

Participants with missing information on age, sex, systolic blood pressure, total and high-density lipoprotein cholesterol, body-mass index, smoking status were excluded from the analysis. 

Hazards ratios were estimated using Cox regression, adjusted for age, and systolic blood pressure, total and high-density lipoprotein cholesterol, body-mass index, and smoking status, and 

stratified by sex and study center, where appropriate. The eGFR was estimated using creatinine-based CKD-EPI formula. The categories of eGFR are <15, 15-<30, 30-<44, 45-<60, 60-<75, 

75-<90, 90-<105, 105-<120, and ≥120 mL/min/1.73 m2. The reference category is 75-<90 mL/min/1.73 m2. Hazards ratios were plotted against the mean eGFR in each category, with vertical 

lines representing 95% confidence intervals.  
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Figure S6: Observational association of creatinine-based eGFR with risk of coronary heart disease and stroke, irrespective of 

diabetes status at recruitment (n=732,808) 

 

Participants with missing information on age, sex, systolic blood pressure, total and high-density lipoprotein cholesterol, body-mass index, smoking status were excluded from the analysis. 

Hazards ratios were estimated using Cox regression, adjusted for age, and systolic blood pressure, total and high-density lipoprotein cholesterol, body-mass index, and smoking status, and 

stratified by sex and study center. eGFR was estimated using creatinine-based CKD-EPI formula. The reference point is 90 mL/min/1.73 m2. Shaded regions indicate 95% confidence intervals. 
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Figure S7: Observational association of creatinine-based eGFR with risk of coronary heart disease and stroke, with / without 

complete information on vascular risk factors  

 

 

 

Incomplete-case included participants with information on age, sex, creatinine measurements; and complete-case included participants with complete information on age, sex, creatinine 

measurement, systolic blood pressure, total and high-density lipoprotein cholesterol, body-mass index, smoking status. Hazards ratios were estimated using Cox regression, adjusted for age, 

and systolic blood pressure, total and high-density lipoprotein cholesterol, body-mass index, and smoking status, and stratified by sex and study center. eGFR was estimated using creatinine-

based CKD-EPI formula. The reference point is 90 mL/min/1.73 m2. Shaded regions indicate 95% confidence intervals. 
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Figure S8: Observational associations of eGFR, estimated using creatinine or cystatin-C, with risk of coronary heart disease and 

stroke 
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Participants with missing information on age, sex, systolic blood pressure, total and high-density lipoprotein cholesterol, body-mass index, smoking status were excluded from the analysis. 

Hazards ratios were estimated using Cox regression, adjusted for age, and systolic blood pressure, total and high-density lipoprotein cholesterol, body-mass index, and smoking status, and 

stratified by sex and study center. The reference point is 90 mL/min/1.73 m2. Shaded regions indicate 95% confidence intervals. 
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Figure S9: Observational associations of urinary albumin and urinary albumin-creatinine ratio with risk of coronary heart disease 

and stroke in UK Biobank 

 

Participants with missing information on age, sex, systolic blood pressure, total and high-density lipoprotein cholesterol, body-mass index, smoking status were excluded from the analysis. 

Participants were divided into deciles based on their detectable urinary albumin value (i.e., ≥6.7 mmol/L), with an extra category grouping those with urinary albumin below the detection limit 

(indicated as no albumin). The group with no albumin measurements was the reference category. Hazards ratios were estimated using Cox regression, and plotted against the mean levels of 

the urinary marker in each category. Sizes of the boxes are proportional to the inverse of the variance of the log risk within that specific group. Vertical lines represent 95% confidence intervals. 

Dashed lines above and below 1 indicated the 95% confidence interval for the reference category calculated using the method of floating absolute risk.  
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Figure S10: Observational association of creatinine-based eGFR with risk of coronary heart 

disease and stroke in UK Biobank, by presence of urinary microalbumin 

 

Participants with missing information on age, sex, systolic blood pressure, total and high-density lipoprotein cholesterol, body-mass index, 

smoking status were excluded from the analysis. Hazards ratios were estimated using Cox regression, adjusted for age, and stratified by 

sex. Full adjustment included further adjustment for systolic blood pressure, body-mass index, total cholesterol, HDL cholesterol, smoking, 

and use of lipid-lowering treatments. eGFR was estimated using creatinine-based CKD-EPI formula. The categories of eGFR are <15, 15-

<30, 30-<45. 45-<60, 60-<75, 75-<90, 90-<105, 105-<120, and ≥120 mL/min/1.73 m2. The reference category is 75-<90 mL/min.1.73 m2 with 
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no urinary microalbumin. Hazards ratios are plotted against the mean eGFR within that category, and vertical lines represent 95% 

confidence interval. 
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Figure S11: Associations of the genetic risk scores for eGFR with kidney function biomarkers and traditional vascular risk factors 

 

 

GRS was constructed using 218 eGFR (creatinine-based) associated genetic variants reported in CKDGen (n=567,460). GRS (Cys) included 127 genetic variants (out of the 218 genetic variants 

included in the GRS for eGFR) that were additionally associated (P<5x10-8) with cystatin-C-based eGFR (n=460,826). GRS (BUN) included 121 genetic variants (out of the 218 genetic variants 

included in the GRS for eGFR) that were additionally associated (P<5x10-8) with blood urine nitrogen (n=416,178). The analyses were conducted in UKB and restricted to participants of European 

ancestry, not on lipid-lowering treatment, without prior history of cardiovascular diseases or diabetes at baseline, where appropriate. Analyses were adjusted for age, age-squared, sex, study 

centre, the first ten principal components. For continuous traits, general linear regression was used to estimate SD differences in all traits (after rank inverse normal transformation) per 1 SD. 

higher GRS. For binary traits, logistic regression was used to estimate log odds ratio differences per 1 SD. higher GRS.  Results were shown for each per 5-SD higher in GRS. SD= standard 

derivation. GRS= genetic risk score.
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Figure S12: Associations of the GRSs for eGFR with 167 NMR-measured metabolites  

 

 

 

 

GRS was constructed using 218 eGFR (creatinine-based) associated genetic variants (n=567,460). GRS (Cys) included 127 genetic variants 

(out of the 218 genetic variants included in the GRS for eGFR) that were additionally associated with cystatin-C-based eGFR (n=460,826). 

GRS (BUN) included 121 genetic variants (out of the 218 genetic variants included in the GRS for eGFR) that were additionally associated 

with blood urine nitrogen (n=416,178). The analyses were conducted in a subset of UK Biobank study (n=79,413), with European ancestry, 

not on lipid-lowering treatments, and had no prior history of diabetes or vascular disease at baseline. Estimates were adjusted for age, age-

squared, sex, study center, the first ten principal components. Points shown represent estimates for each metabolite per SD higher GRSs that 

fell below Bonferroni-corrected significant (P<3.0x10-4). XXL= chylomicrons and extremely large. XL= extra large. L= large. M= medium. S= 

small. XS= very small. VLDL= very low-density lipoprotein. LDL= low-density lipoprotein. HDL= high-density lipoprotein. TG= triglycerides. P= 

particle concentrations. C= cholesterol. FC= free cholesterol. EC= esterified cholesterol. PL= phospholipids. L= total lipids. D= particle size. 

FA= fatty acids. LA= linoleic acid. PUFA= polyunsaturated fatty acids. MUFA= monounsaturated fatty acids. 
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Figure S13: Mendelian randomization estimates of genetically-predicted eGFR with risk of coronary heart disease and stroke 

(n=413,718) 

 

The reference point is 90 mL/min/1.73 m2. Gradients at each point of the curve represent the localized average causal effect on coronary heart disease or stroke per 5 mL/min/1.73 m2 change 

in genetically-predicted eGFR. Vertical lines represent 95% confidence intervals. Analyses were adjusted for age, age-squared, sex, study center, and the first ten principal components.



65 

 

Figure S14: Mendelian randomization estimates of genetically-predicted eGFR with risk of coronary heart disease, stroke, and 

ischemic stroke, adjusted for other factors (n=408,021) 

 

 

Stratum-specific localized average casual effect estimates were adjusted for age, age-squared, sex, study center, and the first ten principal components, with additional adjustment for vascular 

traits associated with the eGFR GRS, (systolic blood pressure, lipoprotein [a], hemoglobin A1c, and triglycerides). To maximize the number of participants with complete information on those 

vascular traits, we used genetically-predicted lipoprotein (a),20 genetically-predicted hemoglobin A1c,21 and genetically-predicted triglycerides,22 instead of the measured levels. The reference 

point is 90 mL/min/1.73 m2. Gradients at each point of the curve represent the localized average causal effect on coronary heart disease or stroke per 5 mL/min/1.73 m2 change in genetically-

predicted eGFR. Vertical lines represent 95% confidence intervals.  
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Figure S15: Mendelian randomization estimates of genetically-predicted eGFR with risk of coronary heart disease and stroke, 

irrespective of diabetes status at recruitment (n=463,051)  
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The reference point is 90 mL/min/1.73 m2. Gradients at each point of the curve represent the localized average causal effect on coronary heart disease or stroke per 5 mL/min/1.73 m2 change 

in genetically-predicted eGFR. Vertical lines represent 95% confidence intervals. 
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Figure S16: Mendelian randomization estimates of genetically-predicted eGFR with risk of coronary heart disease, stroke, and 

ischemic stroke (n=413,718) 

 

The reference point is 90 mL/min/1.73 m2. Gradients at each point of the curve represent the localized average causal effect on coronary heart disease or stroke per 5 mL/min/1.73 m2 change 

in genetically-predicted eGFR. Vertical lines represent 95% confidence intervals. 
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Figure S17: Mendelian randomization estimates of genetically-predicted eGFR with risk of 

coronary heart disease, stroke, and ischemic stroke, by different GRSs  

 

 

The reference point is 90 mL/min/1.73 m2. Gradients at each point of the curve represent the localized average causal effect on coronary 

heart disease or stroke per 5 mL/min/1.73 m2 changes in genetically-predicted eGFR. Vertical lines represent 95% confidence intervals.
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