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Highlights 

 Dimensionality reduction extends the class of simulators a gaussian process can model 

 The emulator model accurately reproduces spatiotemporally varying inundation   

 Predictive uncertainty quantified utilising the gaussian process framework 

 Consistencies observed between emulator risk estimates and existing flood risks maps  

 Gaussian process model observed to outperform alternative approaches to emulation 
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Abstract  

The computational limitations of complex numerical models have led to adoption of statistical 

emulators across a variety of problems in science and engineering disciplines to circumvent the high 

computational costs associated with numerical simulations. In flood modelling, many hydraulic and 

hydrodynamic numerical models, especially when operating at high spatiotemporal resolutions, 

have prohibitively high computational costs for tasks requiring the instantaneous generation of very 

large numbers of simulation results. This study examines the appropriateness and robustness of 

Gaussian Process (GP) models to emulate the results from a hydraulic inundation model. The 

developed GPs produce real-time predictions based on the simulation output from LISFLOOD-FP 

numerical model. An efficient dimensionality reduction scheme is developed to tackle the high 

dimensionality of the output space and is combined with the GPs to investigate the predictive 

performance of the proposed emulator for estimation of the inundation depth. The developed GP-
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based framework is capable of robust and straightforward quantification of the uncertainty 

associated with the predictions, without requiring additional model evaluations and simulations. 

Further, this study explores the computational advantages of using a GP-based emulator over 

alternative methodologies such as neural networks, by undertaking a comparative analysis. For the 

case study data presented in this paper, the GP model was found to accurately reproduce water 

depths and inundation extent by classification and produce computational speedups of 

approximately 10,000 times compared with the original simulator, and 80 times for a neural 

network-based emulator.  

Keywords: Flood prediction, LISFLOOD-FP, Gaussian Process Emulator, Spatiotemporal outputs, 

Dimensionality reduction, Extreme event simulation 

 

1. Introduction  

Numerical modelling and simulations of flooding scenarios is a vital part of flood risk management, 

enabling timely planning and response to extreme climatic events. A range of complex numerical 

modelling techniques have been developed in the past decade to accurately simulate the flow-

structure interactions and the corresponding hydrodynamic structure. These models differ on 

factors such as scale, spatial resolution (e.g., global, continental, basin), numerical techniques, 

complexity as measured by the number of dimensions considered to model the flow (1D, 2D and 

3D), the underlying processes which lead to flooding events (i.e., inland and coastal flood), and the 

model outputs. Hence, there are significant differences between the capabilities, accuracy, and 

robustness of the available flood models. Much research has been conducted into reviewing the 

current hydrodynamic modelling strategies (Teng, et al., 2017; Bulti & Abebe, 2020), and assessing 

the performance of existing widely used flood models (Fewtrell et al., 2010; Zischg et al., 2017). 
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A primary drawback of the existing numerical simulations for flood modelling is the associated 

computational costs to generate results. Despite active research to enhance the computational 

capabilities of these models, accurate flood modelling at high spatiotemporal resolutions could still 

be prohibitively expensive. In most flood modelling studies, it is also desirable to understand the 

influence of varying the inputs on the outputs and simulate potential flooding scenarios. In-depth 

understanding of the uncertainty associated with the model outputs, and the model 

parameterisation is essential to establish a robust flood modelling framework. There are several 

approached to address these questions including sensitivity analysis (Borgonovo & Plischke, 2015; 

Oakley & O’Hagan, 2004; Daneshkhah & Bedford, 2013), uncertainty quantification (Soize, 2017; 

Ghanem et al., 2017), and model calibration (Lee et al., 2019; Kennedy & O’Hagan, 2001). However, 

these techniques generally require very large numbers of model runs, indicating that performing 

such tasks can become infeasible with even modest model computation times and so alternative 

modelling approaches are needed for robust and timely analysis of numerical models.  

One approach to mitigate the high costs associated with numerical flood modelling tools is to utilise 

parallel and GPU computing techniques (Sharif, et al., 2020; Morales-Hernandez, et al., 2021; Neal, 

et al., 2018; Abolfathi et al., 2018; Yeganeh-Bakhtiary et al., 2020). At high temporal and spatial 

resolutions, although parallel CPU and GPU implementations can significantly reduce the 

computation time, a single simulation of such models can take many hours to complete (Shaw, et al., 

2021). Despite the computational limitations, in many cases, numerical modelling is the most 

reliable tool for simulation and prediction of flooding and inundation especially when no alternative 

data-driven approaches (Van Steenbergen, et al., 2012; Abolfathi et al., 2016) can be utilised due to 

sparse empirical observations.  

The adoption of machine learning (ML) approaches (Mosavi, et al., 2018; Yang & Chang, 2020; Lin, et 

al., 2020) in flood modelling could alleviate the high computational costs associated with numerical 

modelling, allowing a wider range of scenarios to be considered in a reasonable amount of time and 
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with more realistic computational resources. The increasing dependence on numerical models for 

applications in science and engineering and their associated computational costs has led to the 

development and adoption of a new class of ML-based models, known as surrogate models or 

probabilistic ‘emulators’. 

An emulator is a statistical model that approximates the outputs of a, usually complex model, where 

the model can be considered as a deterministic input-output computer simulator (Sarri et al., 2012). 

The emulator considered in this paper is originated from model output (O’Hagan, 2006), where 

working with the convenient simulators representing complex mathematical models is 

computationally very expensive. An emulator should approximate the output of a simulator to a 

sufficient level of accuracy with a significant reduction in associated computational cost, and the 

required training datapoints. In recent years, several studies focused on the use of emulators for a 

range of numerical modelling outputs including Tsunami models (Sarri et al., 2012; Salmanidou et al., 

2017), flood models (Kabir et al., 2020), and climate projection models (Tran et al., 2019). A variety 

of modelling approaches have been examined for statistical emulation including Artificial Neural 

Networks (García-Alba et al., 2018; Wang et al., 2019), Polynomial Chaos Expansions (Massoud, 

2018; Moreno-Rodenas, et al., 2018) and Gaussian Processes (Conti et al., 2009; Chang et al., 2015; 

Longobardi et al., 2020;  Yang et al., 2018).  

Kabir et al. (2020) proposed a deep convolutional neural network (CNN) model to emulate flood 

simulation results from a numerical model to generate rapid predictions of inundation levels. 

Benchmarked against a support vector regression (SVR) model, Kabir et al. (2020) found the CNN 

model outperforms the SRV with respect to classification metrics such as precision and recall, and 

slightly underperforms with respect to regression metrics such as RMSE and Nash-Sutcliffe 

efficiency. However, when validating the model, only a very small subset of the locations in the 

domain were chosen to validate the model at which may not provide the most accurate assessment 

of the model performance. The proposed emulator was more than 20 times faster compared to the 
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underlying numerical model. However, while the computational improvements are significant 

relative to the original numerical model, the runtime of the emulator may still be prohibitively 

computationally expensive for tasks such as scenario modelling, sensitivity analysis, and uncertainty 

quantification. Kabir et al. (2020) further concluded that, in contrast to GP, the CNN-based approach 

can not readily quantify the uncertainty associated with the emulator predictions.  

There are several    ML-based techniques, which  have led to a variety of hybrid approaches to 

forecasting flood inundation depth utilising the computationally expensive physics-based numerical 

models and ML methodologies. These approaches often aim to reconstruct, or simplify, the 

modelling problem to make it more tenable for ML approaches and have had success in 

reconstructing inundation values (Yan et al., 2021; Zhou et al., 2021). However, in this study, a novel 

GP-based methodology is developed to emulate the outputs of a 2D hydraulic flood model, making 

as few modelling simplifications as possible. The proposed model will require far less model 

evaluations, and consequently significant reduction in the computational resources needed and 

model’s runtime. The numerical model used in this study is LISFLOOD-FP, originally developed by 

Bates & De Roo (2000) for flood inundation simulations. Due to the high number of model outputs to 

be considered, a dimensionality reduction scheme is developed on the output space to reduce the 

computational complexity of modelling with multi-output GP models. The proposed model has low 

computational costs and is capable of straightforward quantification of predictive uncertainty. The 

appropriateness and robustness of the developed multi-outputs GP model for predicting flood 

inundation depths is examined for a case study data in North Yorkshire, UK, and a direct comparison 

is made between the outlined GP methodology and CNN model proposed by Kabir et al. (2020). 

2. Methods 

2.1. Numerical Flood Modelling 

Numerical flood models simulate the interactions of water flow with the surrounding environment 

using partial differential equations (PDEs) that govern the motion of the fluid flow. Many open-
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source models exist for modelling flood in two dimensions (i.e. spatial coordinates) including 

LISFLOOD, LISFLOOD-FP, MIKE-FLOOD and TELEMAC-2D. These models have been successfully 

validated for modelling inland and coastal flooding scenarios (Pinos & Timbe, 2019; Dong, et al., 

2018; Abolfathi, et al., 2018). This study adopts LISFLOOD-FP , a two-dimensional hydraulic model 

(hereafter, 2D flood model), capable of utilising high resolution topographic data for simulating flood 

inundation depths in challenging urban settings. The accuracy of LISFLOOD-FP for predicting 

inundation levels is validated by several studies (e.g., Shustikova et al., 2019; O’Loughlin et al., 2019). 

2D flood models make the simplifying assumption that the depth of the water is shallow compared 

with the magnitude of the other spatial dimensions and as a result, vertical variations in flow and 

velocity structure can be ignored. The shallow water equations are commonly used as the governing 

equations of 2D flood models to determine the interactions between fluid flow and the 

environment. LISFLOOD-FP simplifies the problem of simulating 2D flow by decoupling the flows in  𝑥 

and 𝑦 directions and treats the simulation of 2D flow as a series of calculations in one dimension 

through the cell face boundaries (Shustikova et al., 2019). The governing equations used for flow 

modelling in this study including the conservation of mass (Eq. 1), and momentum (Eq. 2) are 

represented as follows:  

𝜕𝑄

𝜕𝑥
+

𝜕𝐴

𝜕𝑡
= 𝑞, #(1)  

𝑆0 −
𝑛2𝑃

4
3𝑄2

𝐴
10
3

−
𝜕ℎ

𝜕𝑥
= 0, #(2)  

Where 𝑄 is the volumetric flow rate in the channel, 𝐴 denotes the cross-sectional area of the flow, 𝑞 

is the flow into the channel from other sources (e.g., precipitations, wastewater discharge), 𝑆0 is the 

bed slope, 𝑛 denotes the Manning’s roughness coefficient, 𝑃 is the wetted perimeter of the channel, 

and ℎ stands for the flow depth. The numerical model adopted in this study discretises the 

governing equations over square-type Eulerian grids, by discretising the domain into a rectangular 
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grid of 𝐻 × 𝑊 cells. The model uses an adaptive numerical time stepping scheme to determine ∆𝑡. 

Fluid flow between two cells is described as a function between the cells over time: 

𝑑ℎ𝑖,𝑗

∆𝑡
=

𝑄𝑥
𝑖−1,𝑗

− 𝑄𝑥
𝑖,𝑗

+ 𝑄𝑦
𝑖,𝑗−1

− 𝑄𝑦
𝑖,𝑗

∆𝑥∆𝑦
#(3)  

where ℎ𝑖,𝑗 is the water free surface height at cell (𝑖, 𝑗), ∆𝑥 and ∆y are the cell size in the 𝑥 and y 

direction, , and 𝑄𝑥
𝑖,𝑗

 and 𝑄𝑦
𝑖,𝑗

 are the volumetric flow rates between cells in the floodplain. The 

reader should refer to Bates & De Roo (2000) for a full explanation of the governing equations and 

numerical implementation. 

Flood simulations with LISFLOOD-FP requires parameterisation with a topographic dataset, boundary 

conditions describing fluid flows into and out of the model domains, choice of numerical solvers, and 

other case-specific parameters such as friction coefficients. In this study, assuming 𝐷 sources of 

time-varying boundary conditions, LISFLOOD-FP can be considered as a function, 𝒇(𝒙(𝑡)), taking 

inputs, 𝒙(𝑡) ∈ ℝ𝐷, describing the time-varying boundary conditions at time 𝑡. The outputs generated 

at each simulation timestep is a matrix of inundation depths 𝒀(𝑡) = 𝒇(𝒙(𝑡)) ∈ ℝ𝐻×𝑊 for a 

rectangular modelling domain of 𝐻 × 𝑊 cells, where 𝑌𝑖𝑗
(𝑡)

 denotes the water level in cell (𝑖, 𝑗) at 

time 𝑡. However, for mathematical convenience, the matrices, 𝑌(𝑡) are flattened into vectors 

𝒚(𝑡) ∈ ℝ𝐻𝑊 as illustrated in Fig. (1). Therefore, a single flood simulation with 𝑇 timesteps can be 

described by the dataset 𝒟 = {(𝑿, 𝒀)|𝑿 ∈ ℝ𝑇×𝐷 , 𝑌 ∈ ℝ𝑇×𝐻𝑊}, where 𝑿 = {𝒙(𝒕)}
𝑡=1

𝑇
 and 𝒀 =

{𝒚(𝑡)}
𝑡=1

𝑇
 are matrices corresponding to the row-wise aggregation of each 𝒙(𝒕) and 𝒚(𝑡).  

 

Fig. (1): Flattening water depth matrices  𝒀(𝒕) into 1D vectors 𝒚(𝒕). 
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2.2. Gaussian Processes 

A Gaussian Process is a stochastic process defined as a collection of random variables, any finite 

number of which have a joint Gaussian distribution (Rasmussen & Williams, 2006). In other words, a 

GP can be simply considered as a generalisation of the multivariate Gaussian distribution, retaining 

many convenient mathematical properties of the multivariate Gaussian distribution. However, 

instead of being defined over finite-length vectors and parameterised by a mean vector and 

covariance matrix, a GP is defined over functions and parameterised by mean and covariance 

functions. A GP is a (possibly infinite) distribution that is fully specified by its mean function 𝑚(𝒙(𝑖)) 

and its kernel-covariance function 𝑘(𝒙(𝑖), 𝒙(𝑗)), referred to as the kernel function. For a real process 

𝑓(𝒙(𝑖)),  such as a numerical model taking boundary conditions 𝒙(𝑖) at time 𝑡 = 𝑖 as outlined in 

Section 2.1, the mean and kernel functions can be written as: 

𝑚(𝒙(𝑖)) = 𝐸[𝑓(𝒙(𝑖))], #(4)  

𝑐𝑜𝑣(𝒙(𝑖), 𝒙(𝑗)) = 𝑘(𝒙(𝑖), 𝒙(𝑗)) = 𝐸 [(𝑓(𝒙(𝑖)) − 𝑚(𝒙(𝑖))) (𝑓(𝒙(𝑗)) − 𝑚(𝒙(𝑗)))] . #(5)  

Leading to the prior distribution over functions,  

𝑓(𝒙(𝑖)) ~ 𝐺𝑃 (𝑚(𝒙(𝑖)), 𝑘(𝒙(𝑖), 𝒙(𝑗))) , #(6)  

which can be read as some function 𝑓(. ), at a given location in the input space 𝒙(𝑖), is distributed as 

a GP with mean function 𝑚(. ) and kernel function 𝑘(. , . ). A real kernel is a symmetric function 

which can approximately be considered to provide a metric of ‘similarity’ between two points 𝒙(𝑖) 

and 𝒙(𝑗). Eq. (6) outlines a prior distribution over target functions and encapsulates the prior beliefs 

about the space of functions from which the target function 𝑓(. ) could be drawn from. In practice, 

mean functions and kernel functions are replaced with finite length mean vectors, 𝜇 = 𝟎, and 
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covariance matrices, 𝐾, whose entries are 𝐾𝑖𝑗 = 𝑘(𝒙(𝑖), 𝒙(𝑗)). It should be noted that zero mean 

function assumption is common in ML applications, and this does not limit the mean of the posterior 

to zero (for further details see Rasmussen and Williams, 2006). The flexibility of GPs comes from the 

choices of kernel functions and their parameterisations. These choices will determine the properties 

of candidate functions such as smoothness and variability. 

By combining the prior distribution with the observed dataset, the space of candidate functions is 

constrained to only contain functions which interpolate (exactly or approximately) the training 

datapoints, obtaining a posterior distribution over the function of interest. It is more common in 

practice to have a collection of noisy observations of some target function, 𝑦(𝑖) = 𝑓(𝒙(𝑖)) + 휀, 

where 휀 is additive independently identically distributed Gaussian noise with variance 𝜎𝑛
2. The prior 

on the noisy observations can be rewritten as: 

𝐾𝑖𝑗 = 𝑘(𝒙(𝑖), 𝒙(𝑗)) + 𝛿𝑖𝑗𝜎𝑛
2, #(7)  

where  𝛿𝑖𝑗 = 1 if 𝑖 = 𝑗, otherwise 𝛿𝑖𝑗 = 0, and  

𝑐𝑜𝑣(𝒚) = 𝐾(𝑋, 𝑋) + 𝜎𝑛
2𝐼, #(8)  

where 𝑿 ∈ ℝ𝑁×𝐷 is the design matrix consisting of 𝑁 training instances, which here represents the 

numerical timesteps in flood simulations, in which each row corresponds to  𝒙(𝑖) ∈ ℝ𝐷.  

Therefore, given a set of observations (𝑿, 𝒚), where 𝑿 is the previously mentioned design matrix 

and 𝒚 = {𝑦𝑖}𝑖=1
𝑁  is a vector of noisy training outputs, a joint prior distribution over observed outputs, 

𝒚, and predicted outputs, 𝒇∗ at a set of test inputs 𝑋∗, can be defined as: 

[
𝒚
𝒇∗

] ~𝒩 (𝟎, [
𝐾 + 𝜎𝑛

2𝐼 𝐾∗

𝐾∗
𝑇 𝐾∗∗

]) , #(9)  

where, 

𝐾 ∈ ℝ𝑁×𝑁 = 𝑘(𝑋, 𝑋), #(10)   

𝐾∗ ∈ ℝ𝑁×𝑁∗ = 𝑘(𝑋, 𝑋∗), 
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𝐾∗
𝑇 ∈ ℝ𝑁∗×𝑁 = 𝑘(𝑋∗, 𝑋 ), 

𝐾∗∗ ∈ ℝ𝑁∗×𝑁∗ = 𝑘(𝑋∗, 𝑋∗) 

By conditioning the prior distribution on the observed data, the posterior distribution of zero-mean 

Gaussian process over the test inputs is given as: 

                                                               𝒇∗|𝒚, 𝑋, 𝑋∗~𝒩(𝝁∗, Σ∗)                                                                     (11) 

where, 

𝝁∗ = 𝐾∗
𝑇(𝐾 + 𝜎𝑛

2𝐼)−1𝒚#(12)  

Σ∗ = 𝐾∗∗ − 𝐾∗
𝑇(𝐾 + 𝜎𝑛

2𝐼)−1𝐾∗#(13)  

Eq. (11) shows that, within the GP framework, prediction is equivalent to the construction of a full 

multivariate Gaussian posterior distribution over function values at new unseen points in the input 

space. Hence, 𝝁∗ can be considered as the mean prediction and Σ∗ the variance associated with the 

mean prediction.  

 

Learning the hyperparameters 

In the GP modelling framework, assuming a zero-mean, training the model means choosing an 

appropriate kernel function and using the training data to optimise the kernel’s hyperparameters.  

The default kernel used in GP regression models is the Squared Exponential (SE) kernel:  

𝑘(𝒙(𝑖), 𝒙(𝑗)) = 𝜎2 exp (−
‖𝒙(𝑖) − 𝒙(𝑗)‖

2𝑙2 ) , #(14)  

where 𝜎2is the output variance, determining the average distance of the function from the mean 

value, and 𝑙 is the lengthscale which determines how quickly the function varies and determines 

how the covariances decay with distance between points. The SE kernel function generalises well to 

many applications, yet it makes assumptions about smoothness which often are not realistic. In this 

study, a zero-mean function and the Matern3/2 kernel function are used for the development of the 
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GP model. The Matern3/2 kernel is a stationary kernel, operating only on the Euclidean distance 

between points, with origins in spatial statistics and is commonly used for modelling physical 

processes (Rasmussen & Williams, 2006). Furthermore, preliminary testing showed the Matern3/2 

(Eq. 15) to outperform the SE for the flood modelling context addressed in this study.  

𝑘(𝒙(𝑖), 𝒙(𝑗)) = 𝐶3
2

(𝑑) = 𝜎2 (1 +
√3‖𝒙(𝑖) − 𝒙(𝑗)‖

2

𝑙
) exp (−

√3‖𝒙(𝑖) − 𝒙(𝑗)‖
2

𝑙
) + 𝜎𝑛

2𝛿𝑖𝑗 , #(15)  

where 𝛿𝑖𝑗 = 1  if 𝑖 = 𝑗, otherwise 𝛿𝑖𝑗 = 0. The kernel’s hyperparameters, denoted by 𝜽 =

(𝜎2, 𝑙, 𝜎𝑛
2),  are determined through Maximum likelihood estimation with respect to each 

hyperparameter. Where 𝜎2 is the variance parameter, 𝑙  is the length-scale, and 𝜎𝑛
2 is a Gaussian 

noise parameter.  

To estimate kernel hyperparameters the log marginal likelihood is maximised with respect to the 

hyperparameters. Given that prior distribution over observations can be expressed as 𝒚~𝑁(𝟎, 𝐾 +

+𝜎𝑛
2𝐼), the log marginal likelihood, explicitly conditioned on kernel hyperparameters, can be written 

as:  

log 𝑝(𝒚|𝑋, 𝜽) = −
1

2
𝒚𝑇(𝐾 + 𝜎𝑛

2𝐼)−1𝒚 −
1

2
log|𝐾 + 𝜎𝑛

2𝐼| −
𝑛

2
log 2𝜋 . #(16)  

By taking partial derivatives with respect to each hyperparameters the marginal likelihood can be 

maximised as:  

𝜕

𝜕𝜃𝑗
log 𝑝(𝒚|𝑋, 𝜽) =

1

2
𝒚𝑇𝐾𝑦

−1
𝜕𝐾𝑦

𝜕𝜃𝑗
𝐾𝑦

−1𝒚 −
1

2
𝑡𝑟 (𝐾𝑦

−1
𝜕𝐾𝑦

𝜕𝜃𝑗
) , #(17)  

where 𝐾𝑦 = 𝐾 + 𝜎𝑛
2𝐼 and 𝑡𝑟 is the trace operator. Performing this operation scales with 𝑂(𝑁3) 

computational complexity from the inversion of 𝐾𝑦 matrix.  

 

2.3. Dimensionality Reduction 
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With the LISFLOOD-FP model, the outputs describe inundation across the study area for each 

timestep. When constructing a statistical emulator, a collection of 𝐾 design floods {𝒟𝑖}𝑖=1
𝐾 , where 

𝒟𝑖 = (𝑿𝑖 ∈ ℝ𝑇𝑖×𝐷, 𝒀𝑖 ∈ ℝ𝑇𝑖×𝐻𝑊), consisting of 𝑇𝑖 timesteps, where 𝐻 is the number of cells in the 

model in the 𝑥-direction and 𝑊 in the 𝑦-direction is used to train and validate the emulator. The 

input-output data matrices from each design flood are aggregated into new input-output matrices, 

𝑿 ∈ ℝ𝑁×𝐷 and 𝒀 ∈ ℝ𝑁×𝐻𝑊, with a new number of aggregated timesteps 𝑁 = 𝑇1 + ⋯ + 𝑇𝐾. For 

numerical simulators operating at high spatiotemporal resolutions, this can result in very large 

values of 𝐻𝑊 and 𝑁. 

To overcome computational issues arising from modelling a very high-dimensional output using GPs, 

a dimensionality reduction (DR) scheme is first developed and applied to the outputs of LISFLOOD-FP 

simulations, making the construction of a GP-based statistical emulator more feasible. Principal 

Component Analysis (PCA) decomposition is implemented using a randomised implementation of 

Single Value Decomposition (SVD) (Halko et al., 2011; Feng et al., 2018).  This transformation 

produces a lower-dimensional dataset of latent features, 𝒁 ∈ ℝ𝑁×𝐷∗
, to replace the original dataset 

𝒀 ∈ ℝ𝑁×𝐻𝑊. The output features in the original dataset correspond to the water depths in cells of 

the output domain, and so it can be expected that there will exist significant linear spatial 

correlations in the data, a structure which PCA can effectively represent in a lower-dimensional 

space (Cheng et al., 2022). Furthermore, PCA relies on linear transformations allowing it to scale 

easily to very high-dimensional datasets and has a computationally efficient decoding process to 

reconstruct the original observations from the latent features.  

 

2.4.  PCA-GP development  

For standard GP regression problems, only functions of the form 𝑓: ℝ𝐷 → ℝ  are considered, such 

that when performing GP regression, a scalar output, 𝑦(𝑖), is regressed onto a vector valued input 

𝒙(𝑖). This type of GP regression scales cubically with the number of training instances, 𝑂(𝑁3), which 
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means the GP has the order of 𝑁3 time complexity or express the runtime in terms of how quickly it 

grows relative to the size of the input, as the size of input gets larger. However, after the 

construction of the latent feature dataset, 𝒁, there are 𝐷∗ outputs to be modelled and so 

construction of the emulator is equivalent to a vector valued regression problem in which the 

mapping 𝒇: ℝ𝐷 → ℝ𝐷∗
 is learned. Approaches for vector valued GP regression have been explored 

and methods such as the linear model of coregionalization (LMC) have been proposed (Alvarez et al., 

2012). However, exact implementation of these methods would result in the computational 

complexity of 𝑂((𝐷∗ ∙ 𝑁)3).  

Using the reduced dataset, 𝒁, a collection of independent single output GPs (SOGP) is utilised to 

model each latent feature independently given that applying PCA constructs a collection of 

orthogonal latent features, possibly removing correlations between output features. The exact 

implementation of this methodology will scale with 𝑂(𝐷∗ ∙ 𝑁3) computational complexity. As it is 

evident, the computational time of SOGP is at least (𝐷∗)2 time faster than the LCM method. Fig. (2) 

illustrates the computational complexity of alternative approaches to vector valued GP regression 

for a varying number of features, 𝐷∗, using a baseline of 𝑁 = 1000 training instances. This figure 

implicitly highlights how infeasible a naive implementation of the original dataset would be for 

which  𝐷∗ ≈ 800,000.  
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Fig. (2): Computational complexity analysis of the LCM model (Alvarez et al., 2012) and the SOGP model developed in 
this study in terms of  the number of output features and training points. The univariate GP's complexity is also 
highlighted. A baseline of N=1000 training instances is used for the calculations. 

Fig. (3) shows a graphical representation of the GP model with 𝐷 input features and 𝐷∗ independent 

output features, mapping each input vector to a scalar via a GP 𝑓𝑗 for 𝑗 = 1, . . . , 𝐷∗. For each GP in 

this model, a zero-mean function and the Matern3/2 kernel function are used with the 

hyperparameters for each determined as outlined in Section 2.2.  

 

Fig. (3): Graphical Representation of GP model for 𝑫 input features and 𝑫∗ independent latent outputs. 
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2.5. Validation Metrics 

When building statistical emulators, the primary concerns are predictive accuracy and time taken to 

generate new predictions. In this study, the modified versions of the root mean squared log-error 

(RMSLE) and root mean squared error (RMSE), defined by Eqs. (18) and (19), respectively, will be 

used for assessing regression performance.:   

𝑅𝑀𝑆𝐿𝐸 = √
∑ (log 𝑦Ω𝑖

− log �̂�Ω𝑖
)

2
Ω

|Ω|
, #(18)  

𝑅𝑀𝑆𝐸 = √
∑ (𝑦Ω𝑖

− �̂�Ω𝑖
)

2
Ω

|Ω|
, #(19)  

where for each simulation, Ω is the set of cell indexes in which either LISFLOOD-FP or the GP 

emulator predict an inundation value greater than 0 at any time-step. This reduces the number of 

cells averaged over, providing a more realistic error metric because most of the cells will never see 

any inundation, causing the average error to be reduced. Furthermore, the log-error is used as well 

as ordinary RMSE,  as it could give a more realistic weighting to the errors. Given that the relative 

error of prediction is more important than the absolute value, and  the error should be weighted 

accordingly. For instance, in a deep section of the river, the emulator’s prediction error may be large 

in an absolute sense, but this might not be the case when scaled against the true value. Whereas in 

the floodplain, where inundation is lower, a small absolute error could represent a significant 

difference in the interpretation of the results.  

 

The model’s ability to correctly classify wet/dry cells is also assessed. To convert regression 

predictions into a classification task, an inundation threshold (𝑐) is applied as a binary classifier to 

determine if a cell is wet or dry:  

𝑦 = {
1, 𝑦 > 𝑐
0, 𝑦 ≤ 𝑐

#(20)  
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Different values of 𝑐 were trialled including 0.05m, 0.1m and 0.3m. A threshold of 𝑐 = 0.3 is  

recommended following the flood risk assessment conducted by Aldridge et al. (2016), in which it 

was concluded that properties intersecting a flood depth of 0.3m would be determined as flooded. 

Having established a binary classification scheme, an assessment of classification performance is 

conducted using true positive rate (TPR), false positive rate (FPR), and F1 score, defined by Eqs. (21)-

(23), respectively: 

𝑇𝑃𝑅 =
𝑇𝑃

𝑇𝑃 + 𝐹𝑁
, #(21)  

𝐹𝑃𝑅 =
𝐹𝑃

𝐹𝑃 + 𝑇𝑁
, #(22)  

𝐹1 =
𝑇𝑃

𝑇𝑃 +
1
2

(𝐹𝑃 + 𝐹𝑁)
, #(23)  

where 𝑇𝑃 and 𝑇𝑁 are the number of true positives and negatives, respectively, 𝐹𝑃 and 𝐹𝑁 are the 

number of false positives and negatives, respectively.  

 

3. Case Study   

3.1. Site description and modelling domain 

The GP modelling framework developed in this study is adopted for a case study of urban flood 

modelling in Tadcaster, UK. Tadcaster is a town situated between York and Leeds in the Northeast of 

England. The town is prone to flooding from the river Wharfe which is running through the centre of 

the town. In December 2015 (Fig. (4)), in the aftermath of Storm Frank, the town faced its worst 

flood in recorded history during which many of businesses and homes were evacuated and the 

town’s critical infrastructure (e.g., bridge and roads) suffered major damages from the force of the 

flood waters. As a result of the extensive flood damages from the 2015 Storm Frank, a £10m flood 

defence scheme was proposed to enhance the flood resilience of the town for extreme climatic 
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events. However, the project execution and completion has been delayed until 2026 due to 

‘modelling inaccuracies’ (The York Press, 2021). Hence, this study examines the performance of the 

proposed GP-based emulator for flood scenario modelling of Tadcaster with the aim of producing 

instantaneous inundation predictions and allowing for the quantification of uncertainty surrounding 

the model predictions. Fig. (5) illustrates the 3.6km2 study domain that is considered for the case 

study in this paper.  

 

Fig. (4): Tadcaster 2015 flood from Storm Frank where (a) Shows aerial imagery of the flood affected zone (source: 
Environment Agency), and (b) highlights an example of the extent of the damaged infrastructure (source: BBC, 2016) 

 

 

Fig. (5): Case study location in Tadcaster and the modelling domain for (a) map overlay and (b) satellite imagery overlay. 

 

3.2. Topographic data  

a) b) 
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LISFLOOD-FP was parameterised with a Digital Elevation Map (DEM) describing the topography of 

the modelling domain. The DEM was constructed using Digital Terrain Models (DTM) to capture the 

elevation of the underlying surface and then key geographical features and urban structures were 

reinserted to ensure accurate and realistic flow-routing in an urban environment. Flood modelling in 

urban environments requires high resolution spatial data, and therefore this study constructed the 

DEM with a 2m resolution, resulting in a two-dimensional Eulerian mesh of 876,204 cells. Fig. (6) 

compares elevation (in meters above the sea level) for the original DTM (Fig. (6a)) and the post-

processed DEM used in the flood model (Fig. (6b)).  

 

Fig. (6): The case study modelling domain elevation map for (a) the unprocessed DTM at 2m cell resolution, and (b) the 
post-processed DTM with buildings and urban infrastructures reinserted. 

 

3.3. Boundary conditions 

Time-varying point-source hydrographs, at upstream points at the North side of the domain, were 

used as the boundary conditions for each simulation scenario alongside a free boundary at the 

Southern downstream boundary. The hydrographs were determined using discharge data collected 

from a river monitoring station within the domain. From the empirical discharge data, a collection of 

candidate flood hydrographs was extracted as the basis for synthetic hydrographs. Then, by 

sampling peak-discharge values from a Pareto distribution fitted using historical Peaks-over-

a) b) 
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threshold data, the hydrographs were re-scaled to match the peak-discharge values.  This study 

focused on modelling extreme climatic events by oversampling from the upper tails of the peak-

discharge distribution to investigate scenarios with more severe flooding. This study simulates 14 

synthetic flood scenarios, described by datasets {𝒟𝑖}𝑖=1
14 , to investigate the extent of inundation and 

flood water depth across the domain. For each hydrograph, a discharge value is recorded for the 

river Wharfe at 15-minute intervals, and input to the numerical flood model.  

 

 

Fig. (7): 14 Synthetic hydrographs used as boundary to parameterise LISFLOOD-FP simulations 

 

3.4. LISFLOOD-FP Inundation Data   

Following implementation of the topographic features of the case study location, and the boundary 

conditions, the LISFLOOD-FP was used to simulate the flood for the synthetic hydrographs.   A 

spatially varying manning’s friction coefficient was applied with values determined based on the land 
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usage (Papaioannou et al., 2018). Fig. (8) presents the land cover map with the respective Manning’s 

coefficient values.  

 

Fig. (8): Land usage and associated Manning's coefficients. 

 

To minimize the potential uncertainty associated with the simulation results, an inundation 

threshold of 0.03m was applied, where an inundation less than 0.03m was assigned to 0. Following 

the completion of the simulations, the water depth inundation data was aggregated across 

simulations. The discharge value for time 𝑡 = 𝑖 along with the values at 𝑡 = 𝑖 − 𝑖, 𝑖 − 2, … , 𝑖 − 8 is 

used as training input for the GP emulator. These input features were then scaled to have zero mean 

and unit variance, resulting in aggregated inputs 𝑿 ∈ ℝ2624×9 and outputs 𝒀 ∈ ℝ2624×876204 for the 

construction of the emulator model, i.e. 2624 aggregated timesteps across all 14 simulations and 

876,204 features (cells) for each timestep. 

 

3.5. Latent Feature Dataset 
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The dimensionality reduction approach outlined in Section 2.2 was then applied to 𝒀 to produce a 

dataset of latent variables 𝒁 ∈ ℝ2624×𝐷∗
. It was determined to set 𝐷∗ ≔ 6 after experimentation 

found that the first six principal components were sufficient to explain 99% of the variance within 

the dataset. To assess the fit of this PCA decomposition, the RMSE between the original dataset and 

the reconstruction of the latent features back to the original features space was assessed (Eq. 24). 

The RMSE obtained was 0.018m meaning the reconstruction deviates from the original by 1.8cm on 

average.   

𝑅𝑀𝑆𝐸(𝒀, 𝜙−1 ∘ 𝜙(𝒀))#(24)  

Performing 10-fold cross-validation on the PCA transformation found the result obtained from Eq. 

(24) to be highly consistent across folds, showing the methodology generalises well to out-of-sample 

test instances. Fig. (9) illustrates the new dataset, 𝒁, plotting each of principal component values 

aggregated across all the hydrographs, the delineation between each of the 14 hydrographs is 

highlighted by the blue dashed lines. The unit of measurement on the 𝑦-axis can be ignored as the 

regression performance in the latent feature space is not interpreted.  
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Fig. (9): Aggregated outputs in the latent feature space corresponding to the first 6 principal components of the original 
dataset. Blue dashed lines delineate between 14 input hydrographs. 

 

Fig. (10) illustrates a visual representation of the complete methodology employed in this study to 

build and train the GP emulator for inland flood modelling, highlighting the sequential modelling 

process and data sources. Fig. (11) shows how the constructed emulator can then be employed to 

make predictions on unseen data as a replacement for the LISFLOOD-FP flood simulation model. 

 

Fig. (10): Data sources and sequential modelling process to build and train the GP emulator outlined in this study 

 

 

Fig. (11): Methodology to generate new predictions using GP emulator, replacing the original simulator with the 
emulator. 
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4. Results and Discussion  

4.1. Cross Validation Results  

To validate the GP model and assess out-of-sample performance, leave-one-out cross-validation 

(LOOCV) method was implemented whereby the GP-based emulator is trained on 13 synthetic 

hydrographs (Fig. (7)) and predictive performance is assessed on the remaining hydrograph, 

repeating this process for all 14 training examples. Fig. (12) illustrates the model’s regression 

performance, showing the test RMSLE and RMSE values for each held-out hydrograph. The mean 

RMSLE and RMSE values are 0.11 and 0.21, respectively. As expected, the RMSLE values are lower 

than the RMSE, and are theoretically expected to be a better estimate of the model’s error. 

Reasonable variance among the results from cross-validation testing is observed, with hydrographs 8 

being somewhat of an outlier. However, overall, ] consistency in performance across the test cases 

are evident.  

While good regression performance is important, the ability to correctly identify areas as wet/dry is 

essential for flood risk management and produce interpretable forecasts. As such, classification was 

also considered utilising the scheme outlined in Eq. (20). Fig. (13) shows the cross-validation 

classification performance, differentiating the model performance by the threshold value 𝑐 used. 

Table (1) provides a full breakdown of the mean (averaged across cross-validation folds) scores for 

each metric at each threshold. The scores remain relatively consistent across the threshold values 

with no value being clearly favourable. However, 𝑐 = 0.05 appears marginally better than the other 

values. Overall, the GP model clearly shows effectiveness at predicting whether cells will be wet or 

dry.  

Table (1): Cross-validation classification scores 

 𝒄 = 𝟎. 𝟎𝟓 𝒄 = 𝟎. 𝟏 𝒄 = 𝟎. 𝟑 

F1 0.940 0.941 0.937 
Recall 0.968 0.958 0.937 
FNR 0.0046 0.0058 0.0078 
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Fig. (12): Leave-one-out cross-validation scores for regression performance. 

 

Fig. (13): Cross-validation classification scores for varying discretisation thresholds. 
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Fig. (14): Cross-validation predictions for hydrograph 1 latent feature predictions with 95% confidence intervals. 

 

Fig. (15): Cross-validation predictions for hydrograph 12 latent feature predictions with 95% confidence intervals. 

. 

Figs. (14)-(15) illustrate regression performance in the latent feature space with 95% predictive 

intervals highlighted. A common feature of these plots is the ability of each GP to accurately predict 

the value of the first 3 principal components in each test case. The performance on the following 3 

components is more varied, and the model expresses greater uncertainty surrounding the 

predictions for these features as illustrated by the significantly wider confidence intervals. However, 

the earlier principal components capture most of the variance within the dataset and so accurate 
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prediction of these is significantly more important than accurate prediction of the latter 

components.  

 

Fig. (16): Hydrograph 7 Maximum Depth across flood events, with a threshold of 0.3m to highlight inundation, (a) 
Maximum Inundation calculated by LISFLOOD-FP, and (b) Maximum Inundation calculated by GP emulator. 

 

 

Fig. (17): Hydrograph 9 Maximum Depth across flood events, with a threshold of 0.3m to highlight inundation, (a) 
Maximum inundation calculated by LISFLOOD-FP, and (b) Maximum inundation calculated by GP emulator. 

 

Figs. (16)-(17) illustrate results of flood modelling for hydrographs 7 and 9 during the cross-

validation process (the data from these simulations is held out for testing while the model trains on 

the other 13 hydrographs), respectively, in the original feature space after projecting predictions on 
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the latent feature space back to the high-dimensional space. The maximum water depth in each cell 

across the entire simulation is plotted, and then a water depth threshold of 0.3m is applied to the 

cells. If the maximum inundation across the flood event is greater than 0.3m the cells is highlighted 

and left blank otherwise.  

 

Fig. (18): Mean inundation error between LISFLOOD-FP and the GP emulator with inundation averaged across time for 
testing on hydrograph 9 during cross-validation. 
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Fig. (19): Mean inundation error between LISFLOOD-FP and the GP emulator with inundation averaged across time for 
testing on hydrograph 14 during cross-validation. 

 

Figs. (18-19) illustrates the difference between the average water depth produced from LISFLOOD-

FP simulation and the predictions by the GP emulator. This allows the exploration of the average 

prediction error on a cell-by-cell basis. Similar results are observed in both scenarios with the GP 

model’s error being approximately 0 for very large sections of the inundated areas, and smaller 

areas of higher errors was observed. In both cases, the areas of higher error correspond to the areas 

with more complex urban topography which are in closest proximity to the river reaches. To improve 

future model performance in similar scenarios, the training data could be chosen such that a wide 

range of inundation scenarios in these areas is observed.  

 

4.2 Benchmarking  

To robustly assess the performance of the proposed GP model against alternative methods of 

statistical emulation, the CNN model (Fig. (20)) outlined in Kabir et al. (2020) was reconstructed for 

this study to make a direct comparison of predictive performance between the two methodologies.  
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Fig. (20): The reconstructed CNN model proposed in Kabir et al., (2020) for the case study introduced in Section3. 

 

Performing the same approach to cross-validation by training 14 different CNNs, each time holding 

one hydrograph out as validation data, a direct comparison of GP and CNN model performance can 

be made. Table (2) shows the cross-validation regression performance, and Table (3) describes the 

classification performance of each model.  

Table (2): Cross-validation regression performance  

 RMSLE RMSE 

GP 0.112 0.209 
CNN 0.122 0.232 

 

Table (3): Cross-validation classification performance 

𝑐 = 0.05 F1 Recall FNR 

GP 0.940 0.967 0.0046 
CNN 0.940 0.960 0.0051 

𝑐 = 0.10    

GP 0.941 0.958 0.0058 
CNN 0.940 0.955 0.0061 

𝑐 = 0.30    

GP 0.937 0.936 0.0078 
CNN 0.935 0.935 0.0081 
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Although performance of both models is quite similar, the results show that the GP model 

outperforms CNN with respect to both regression and classification. These results confirm the 

findings of previous studies in terms of the ability of deep learning methodologies to tackle these 

complex predictive tasks. However, this study proves the capability of the proposed GP methodology 

to outperform alternative emulations, which cannot be directly evaluated for uncertainty 

quantification. The proposed GP model is also far more robust for scenario modelling compared to 

alternative emulators when the computational costs is significant (See Section 4.3).  

 

4.3 Model Runtimes 

Table (4) outlines training time, run time, and model size (i.e., number of cells in modelling domain) 

for the original LISFLOOD-FP simulator, the GP-based emulator developed in this study, and the CNN 

emulator reconstructed for this study. The run-time is calculated as the time taken to generate new 

predictions for a simulation with 250 timesteps of 15-minutes. The results show a significant 

reduction in runtime when using the GP emulator proposed in this study over the CNN. However, for 

both methods of statistical emulation, very significant reductions in runtime are observed as 

compared with the original numerical model. The GP emulator is shown to be 80 times faster than 

the CNN model adopted for the considered case study. 

Table (4): Computational time requirements  

Model Training Time (s) Runtime (s) 
No. 

Cells  

LISFLOOD-FP - 9,900 876,204 
CNN Emulator (Current Study) 600 80 876,204 
GP Emulator (Current Study) 226 1 876,204 

 

Constructing emulators has considerable developmental cost, given that training data are generated 

from the original numerical model which can be costly. Although this computational cost is common 

for all surrogate models, the GP model can be efficiently trained with considerable limited training 
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datapoints which makes it a very cost-efficient emulator. Furthermore, modelling decisions need to 

be made during development of surrogate models (e.g., network structure for a CNN, or kernel for a 

GP). The training times in Table (4) only represent the time taken to estimate model 

hyperparameters. However, the overall development time associated with emulator construction is 

higher due to data collection, model training, and validation.  

 

5. Application of GP Emulator for flood predictions   

As an example of replacing the efficient GP-based emulator with the simulator, a flood was 

simulated using an estimated 1000-year return period synthetic hydrograph. Using the previously 

constructed peak discharge distribution (see Section 3.3), the estimated peak discharge was 

750m3/s. For reference, the estimated peak discharge in the 2015 flood was 480m3/s. A candidate 

synthetic hydrograph was scaled to match this estimated peak discharge value, as shown in Fig. (21).  

 

Fig. (21): Hypothetical 1000-year return period flood hydrograph. 
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Fig. (22): Latent variable mean predictions with corresponding 95% confidence intervals. 

 

Fig. (22) shows the GP’s prediction for the 1000-year return period event in the latent feature space. 

Comparing the predictions made in this instance with those seen previously in Figs. (14) and (15), it 

can be observed that there is far greater uncertainty associated with these predictions as illustrated 

by the much wider confidence intervals, even among the first 3 principal components where 

accurate prediction was observed previously. The uncertainty observed in the latent feature space 

for this set of data can be associated with the fact that the emulator did not observe a training 

instance like the 1000-year return period hydrograph.   

                  



35 
 

 

Fig. (23): (a) Blue illustrates inundation extent (>0.3m) estimated from GP Emulator applied to hypothetical 1000-year 
flood and grey illustrates EA Flood Zone 2, and (b) Inundation depths corresponding to estimated 1000-year flood event. 

 

Fig. (23a) illustrates the inundation resulted from 1000-year flood event, with Fig. (23b) discretising 

this into sections of different inundation depths. The grey boundary illustrates the estimated area 

within the modelling domain that has a 0.1% or greater risk of flooding each year (as provided by the 

UK’s Environment Agency). Overlayed in blue is the estimated inundated extent predicted from the 

GP model tested on the hydrograph described in Fig. (22). Different representations of the 

underlying processes or initial conditions of the model will propagate differences through the 

simulation and can result in varied outputs. For instance, the GP emulator models a flash-flood type 

scenario in which no previous inundation is present whereas the Environment Agency likely models 

on a longer timeframe and accounts for additional variables such as previous inundation and soil 

moisture content. However, there are also clear similarities and consistencies between these 

predictions which suggests that the proposed GP emulator model’s predictions (and the estimation 

of a 1000-year flood) are in line with those of the Environment Agency.  

The differences in maximum inundation between GP predictions at the upper and lower bounds of 

predicted 95% confidence intervals are analysed (Fig. 24). These intervals are calculated using the 

variance values predicted by the GP emulator in the latent feature space. Since GPs define a 
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distribution over function values at test inputs using a Gaussian framework, there is a mean 

prediction and corresponding variance estimates. For each test instance 𝑥𝑖
∗, the upper and lower 

95% confidence interval values are defined as:  

𝐶𝐼 = 𝜇(𝑥𝑖
∗) ± 2𝜎(𝑥𝑖

∗)#(24)  

Fig. (24) show that most of the difference between inundation estimates is limited to less than 0.5m. 

However, in some sections, such as the river channel, inundation differences of greater than 1m 

between predictive interval bounds can be observed. These values can be considered to illustrate 

predictive uncertainty by the GP-based emulator.  

 

Fig. (24): Predicted inundation difference between upper and lower 95% confidence interval bounds. 
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6. Conclusions  

A multi-output Gaussian Process-based statistical emulator was proposed for the emulation of high-

dimensional outputs from a numerical flood simulator. The standard univariate GP regression 

methodology is extended to the multi-output case by producing a collection of univariate GPs to 

model each output feature independently. The GP model was developed to approximate the results 

of a coupled hydraulic flood model (i.e., LISFLOOD-FP), and significantly reduce the computational 

costs associated with numerical flood modelling at high spatiotemporal resolutions. To overcome 

the methodological issues surrounding the use of very high-dimensional data in GP modelling, a 

computationally efficient dimensionality reduction scheme was utilised.  

The appropriateness and robustness of the proposed model is examined for a case study of a flood 

prone region in the UK. Topographical and hydrological data is collected and preprocessed to 

produce a realistic, high-resolution Digital Elevation Model and a collection of synthetic hydrographs 

to parameterise and run the LISFLOOD-FP simulations. Inundation data, in the form of water levels 

across the modelling domain over time, is generated from the numerical simulator which is then 

used to build and train the GP-based emulator.  

The GP emulator was assessed against a CNN emulator by performing the cross-validation to ensure 

no over-fitting occurs in either model, and to assess each methodology’s ability to generalise to out-

of-sample tests. During these tests the performance of both the dimensionality reduction scheme 

and the GP-based emulator were found to be robust. The GP method outperformed the CNN 

emulator with respect to both regression and classification. Furthermore, the runtime for GP 

emulator was very significant reduced compared with the original numerical model and the CNN 

emulator. 

 Demonstrating the GP’s high predictive accuracy, fast runtimes, and readily available quantification 

of predictive uncertainty, this study demonstrates the robustness and appropriateness of the 

proposed GP emulator as a more efficient method of probabilistically emulating complex physics-
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based models over alternative approaches such as the CNN-based emulator. However, a statistical 

emulator is very sensitive to its experimental design. Choosing a representative sample of training 

data remains vital to building an emulator that can generalise well to out-of-sample tests. Therefore, 

the choice of training data should be carefully considered, and the training dataset should be as 

large (comprehensive) as possible, while considering the associated cost of collecting new training 

data.  

It should be noted that each emulator is case-specific and so cannot be transferred to alternative 

scenarios in which different geographical areas are considered. Modelling a new scenario involves 

considerable further development time for the original simulator as well as the collection and 

processing of input data and simulation time. However, the GP emulator methodology proposed 

here can be easily translated to any scenario in which high-resolution spatiotemporal data is being 

generated from a highly complex model or processes (i.e., not just 2D inundation modelling). 

Furthermore, there are likely to be constraints to the spatiotemporal extent that emulators can 

effectively reproduce, especially with a GP methodology’s computationally expensive training cost. 

However, this study demonstrated GP’s high degree of accuracy for a very high spatial-resolution 

model with over 800,000 discrete cells.  

The developmental cost of building emulators can be very high and therefore consideration should 

be given to whether an emulator is necessary in the first place. However, for cases where the 

underlying model’s computational cost is prohibitive to real-time forecasting or for tasks requiring 

large numbers of simulations (i.e. scenario modelling), a GP-based emulator is an efficient modelling 

alternative finding a suitable balance between accuracy and complexity, and this study shows GPs to 

outperform competing methods of emulation. 

 

Declaration of Competing Interest 

                  



39 
 

The authors declare that they have no known competing financial interests or personal relationships 

that could have appeared to influence the work reported in this paper. 

References 

Abolfathi, S., Yeganeh-Bakhtiari, A., Hamze-Ziabari, S. M., Borzooei, S., (2016). Wave runup 
prediction using M5′ model tree algorithm. Ocean Engineering, 112. Pp. 76-81. 
DOI:10.1016/j.oceaneng.2015.12.016 
 
Abolfathi, S., Shudi, D., Borzooei, S., Yeganeh-Bakhtiari, A., & Pearson, J. (2018). Application of 
smoothed particle hydrodynamics in evaluating the performance of coastal retrofit structures. Coastal 
Engineering Proceedings, (36), 109-109. 
 
Alvarez, M. A., Rosasco, L., & Lawrence, N. D. (2012). Kernels for vector-valued functions: A 
review. Foundations and Trends® in Machine Learning, 4(3), 195-266. 
 
BBC. Tadcaster bridge work starts after flood collapse. (2016). Available at 
https://www.bbc.co.uk/news/uk-england-york-north-yorkshire-35401832. Accessed on 09/11/2021. 
 
Bates, P. D., & De Roo, A. P. J. (2000). A simple raster-based model for flood inundation                    
simulation. Journal of hydrology, 236(1-2), 54-77. 
 
Bulti, D. T., & Abebe, B. G. (2020). A review of flood modeling methods for urban pluvial flood 
application. Modeling earth systems and environment, 6(3), 1293-1302. 

 
Chang, E. T., Strong, M., & Clayton, R. H. (2015). Bayesian sensitivity analysis of a cardiac cell model 
using a Gaussian process emulator. PloS one, 10(6), e0130252. 
 
Cheng, Z., Li, M., Jia, G., & Shi, Z. (2022). Adaptive Gaussian Process with PCA for prediction of 
complex dispersion relations for periodic structures. European Journal of Mechanics-A/Solids, 93, 
104547. 
 
Conti, S., Gosling, J. P., Oakley, J. E., & O'Hagan, A. (2009). Gaussian process emulation of dynamic 
computer codes. Biometrika, 96(3), 663-676. 
 
Daneshkhah, A., & Bedford, T. (2013). Probabilistic sensitivity analysis of system availability using 
Gaussian processes. Reliability Engineering & System Safety, 112, 82-93. 

 
Dong, S., Salauddin, M., Abolfathi, S., Tan, Z. H., & Pearson, J. M. (2018). The influence of 
geometrical shape changes on wave overtopping: a laboratory and SPH numerical study. In Coasts, 
Marine Structures and Breakwaters 2017: Realising the Potential (pp. 1217-1226). ICE Publishing. 

 
EA. Tadcaster Flood Alleviation Scheme (FAS) Information Page. Available at: 
https://consult.environment-agency.gov.uk/yorkshire/tadcaster-flood-alleviation-scheme/. Accessed on 
09/11/2021. 
 
Feng, X., Xie, Y., Song, M., Yu, W., & Tang, J. (2018, November). Fast randomized PCA for sparse 
data. In Asian conference on machine learning (pp. 710-725). PMLR. 

 
Fewtrell, T. J., Duncan, A., Sampson, C. C., Neal, J. C., & Bates, P. D. (2011). Benchmarking urban 
flood models of varying complexity and scale using high resolution terrestrial LiDAR data. Physics and 
Chemistry of the Earth, Parts A/B/C, 36(7-8), 281-291. 

 

                  



40 
 

García-Alba, J., Bárcena, J. F., Ugarteburu, C., & García, A. (2019). Artificial neural networks as 
emulators of process-based models to analyse bathing water quality in estuaries. Water 
research, 150, 283-295. 

 
Ghanem, R., Higdon, D., & Owhadi, H. (Eds.). (2017). Handbook of uncertainty quantification (Vol. 6). 
New York: Springer. 

 
Halko, N., Martinsson, P. G., & Tropp, J. A. (2009). Finding structure with randomness: Stochastic 
algorithms for constructing approximate matrix decompositions. 

 
Kabir, S., Patidar, S., Xia, X., Liang, Q., Neal, J., & Pender, G. (2020). A deep convolutional neural 
network model for rapid prediction of fluvial flood inundation. Journal of Hydrology, 590, 125481. 
 
Kennedy, M. C., & O'Hagan, A. (2001). Bayesian calibration of computer models. Journal of the Royal 
Statistical Society: Series B (Statistical Methodology), 63(3), 425-464. 

 
Lee, G., Kim, W., Oh, H., Youn, B. D., & Kim, N. H. (2019). Review of statistical model calibration and 
validation—from the perspective of uncertainty structures. Structural and Multidisciplinary 
Optimization, 60(4), 1619-1644. 

 
Lin, Q., Leandro, J., Wu, W., Bhola, P., & Disse, M. (2020). Prediction of maximum flood inundation 
extents with resilient backpropagation neural network: case study of Kulmbach. Frontiers in Earth 
Science, 332. 
 
Longobardi, S., Lewalle, A., Coveney, S., Sjaastad, I., Espe, E. K., Louch, W. E., ... & Niederer, S. A. 
(2020). Predicting left ventricular contractile function via Gaussian process emulation in aortic-banded 
rats. Philosophical Transactions of the Royal Society A, 378(2173), 20190334. 

 
Massoud, E. C. (2019). Emulation of environmental models using polynomial chaos 
expansion. Environmental Modelling & Software, 111, 421-431. 

 
Morales-Hernández, M., Sharif, M. B., Kalyanapu, A., Ghafoor, S. K., Dullo, T. T., Gangrade, S., ... & 
Evans, K. J. (2021). TRITON: A Multi-GPU open source 2D hydrodynamic flood model. Environmental 
Modelling & Software, 141, 105034. 

 
Moreno-Rodenas, A. M., Bellos, V., Langeveld, J. G., & Clemens, F. H. (2018). A dynamic emulator 
for physically based flow simulators under varying rainfall and parametric conditions. Water 
research, 142, 512-527. 

 
Mosavi, A., Ozturk, P., & Chau, K. W. (2018). Flood prediction using machine learning models: 
Literature review. Water, 10(11), 1536. 

 
Neal, J., Dunne, T., Sampson, C., Smith, A., & Bates, P. (2018). Optimisation of the two-dimensional 
hydraulic model LISFOOD-FP for CPU architecture. Environmental modelling & software, 107, 148-
157. 
 
O'Loughlin, F. E., Neal, J., Schumann, G. J. P., Beighley, E., & Bates, P. D. (2020). A LISFLOOD-FP 
hydraulic model of the middle reach of the Congo. Journal of hydrology, 580, 124203. 
 
O’Hagan, A. (2006). Bayesian analysis of computer code outputs: A tutorial. Reliability Engineering & 
System Safety, 91(10-11), 1290-1300. 

 
Oakley, J. E., & O'Hagan, A. (2004). Probabilistic sensitivity analysis of complex models: a Bayesian 
approach. Journal of the Royal Statistical Society: Series B (Statistical Methodology), 66(3), 751-769. 
 
 

Papaioannou, G., Efstratiadis, A., Vasiliades, L., Loukas, A., Papalexiou, S. M., Koukouvinos, A., ... & 
Kossieris, P. (2018). An operational method for flood directive implementation in ungauged urban areas. 
Hydrology, 5(2), 24. 

                  



41 
 

 

Pinos, J., & Timbe, L. (2019). Performance assessment of two-dimensional hydraulic models for 
generation of flood inundation maps in mountain river basins. Water Science and Engineering. 12. 
11-18. 10.1016/j.wse.2019.03.001. 

 
Williams, C. K., & Rasmussen, C. E. (2006). Gaussian processes for machine learning (Vol. 2, No. 3, 
p. 4). Cambridge, MA: MIT press. 

 
Salmanidou, D. M., Guillas, S., Georgiopoulou, A., & Dias, F. (2017). Statistical emulation of 
landslide-induced tsunamis at the Rockall Bank, NE Atlantic. Proceedings of the Royal Society A: 
Mathematical, Physical and Engineering Sciences, 473(2200), 20170026. 

 
Sarri, A., Guillas, S., & Dias, F. (2012). Statistical emulation of a tsunami model for sensitivity analysis 
and uncertainty quantification. Natural Hazards and Earth System Sciences, 12(6), 2003-2018. 

 
Sharif, M. B., Ghafoor, S. K., Hines, T. M., Morales-Hernändez, M., Evans, K. J., Kao, S. C., ... & 
Gangrade, S. (2020, June). Performance Evaluation of a Two-Dimensional Flood Model on 
Heterogeneous High-Performance Computing Architectures. In Proceedings of the Platform for 
Advanced Scientific Computing Conference (pp. 1-9). 

 
Shaw, J., Kesserwani, G., Neal, J., Bates, P., & Sharifian, M. K. (2021). LISFLOOD-FP 8.0: the new 
discontinuous Galerkin shallow-water solver for multi-core CPUs and GPUs. Geoscientific Model 
Development, 14(6), 3577-3602. 

 
Shustikova, I., Domeneghetti, A., Neal, J. C., Bates, P., & Castellarin, A. (2019). Comparing 2D 
capabilities of HEC-RAS and LISFLOOD-FP on complex topography. Hydrological Sciences 
Journal, 64(14), 1769-1782. 

 
Soize, C. (2017). Uncertainty quantification. Springer International Publishing AG. 

 
Teng, J., Jakeman, A. J., Vaze, J., Croke, B. F., Dutta, D., & Kim, S. J. E. M. (2017). Flood inundation 
modelling: A review of methods, recent advances and uncertainty analysis. Environmental modelling 
& software, 90, 201-216. 

 
Tran, G. T., Oliver, K. I., Holden, P. B., Edwards, N. R., Sóbester, A., & Challenor, P. (2019). Multi-
level emulation of complex climate model responses to boundary forcing data. Climate 
Dynamics, 52(3), 1505-1531. 

 
Van Steenbergen, N., Ronsyn, J., & Willems, P. (2012). A non-parametric data-based approach for 
probabilistic flood forecasting in support of uncertainty communication. Environmental Modelling & 
Software, 33, 92-105. 

 
Wang, J., Balaprakash, P., & Kotamarthi, R. (2019). Fast domain-aware neural network emulation of 
a planetary boundary layer parameterization in a numerical weather forecast model. Geoscientific 
Model Development, 12(10), 4261-4274. 
 
Yan, X., Mohammadian, A., & Khelifa, A. (2021). Modeling spatial distribution of flow depth in fluvial 
systems using a hybrid two-dimensional hydraulic-multigene genetic programming approach. Journal 
of Hydrology, 600, 126517. 
 
 
Yang, J., Jakeman, A., Fang, G., & Chen, X. (2018). Uncertainty analysis of a semi-distributed 
hydrologic model based on a Gaussian Process emulator. Environmental Modelling & Software, 101, 
289-300. 
 
Yang, S. N., & Chang, L. C. (2020). Regional inundation forecasting using machine learning 
techniques with the internet of things. Water, 12(6), 1578. 

                  



42 
 

 
Yeganeh-Bakhtiary, A., Houshangi, H., and Abolfathi, S. (2020). Lagrangian two-phase flow modeling 
of scour in front of vertical breakwater. Coastal Engineering Journal, 62:2, 252-266, 
DOI:10.1080/21664250.2020.1747140. 

 
Zhou, Y., Wu, W., Nathan, R., & Wang, Q. J. (2021). A rapid flood inundation modelling framework 
using deep learning with spatial reduction and reconstruction. Environmental Modelling & 
Software, 143, 105112. 
 
Zischg, A. P., Mosimann, M., Bernet, D. B., & Röthlisberger, V. (2018). Validation of 2D flood models 
with insurance claims. Journal of hydrology, 557, 350-361. 
 

 

                  



43 
 

Graphical abstract 

 

 

                  


