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recommendations is unclear. Existing methods weight model projections, then rank control
interventions using the combined projections, presuming model outputs are directly
comparable. However, the way each model represents the epidemiological system will
vary. We apply electoral vote-processing rules to combine model-generated rankings of
interventions. Combining rankings of interventions, instead of combining model projections,
avoids assuming that projections are comparable as all comparisons of projections are made
within each model. We investigate four rules: First-past-the-post, Alternative Vote (AV),
Coombs Method and Borda Count. We investigate rule sensitivity by including models that
favour only one action or including those that rank interventions randomly. We investigate
two case studies: the 2014 Ebola outbreak in West Africa (37 compartmental models) and
a hypothetical foot-and-mouth disease outbreak in UK (four individual-based models). The
Coombs Method was least susceptible to adding models that favoured a single action,
Borda Count and AV were most susceptible to adding models that ranked interventions
randomly. Each rule chose the same intervention as when ranking interventions by mean
projections, suggesting that combining rankings provides similar recommendations with
fewer assumptions about model comparability.

This article is part of the theme issue “Technical challenges of modelling real-life epidemics
and examples of overcoming these’.

Highlights

— When multiple models inform decisions it is not clear how to combine recommendations.

— Electoral vote-processing rules can combine ranks of interventions from model
projections.

— Combining ranks avoids assuming different model projections are directly comparable.

— In two outbreak examples, each rule chose the same interventions as when ranking mean
projection.

— The robustness of ranking interventions was affected by adding biased models.

— Adding additional noisy models had little impact on choice of intervention.

1. Introduction

Decision-making during disease outbreaks is often assisted by mathematical models that can
either generate forecasts of disease dynamics or compare the impact of control interventions.
Mathematical models of disease outbreaks can take many forms, and consulting an array of
models may mean sensitivity analyses across model assumptions naturally run in parallel (i.e.
by different modelling teams; e.g. [1]), important when time is short, and can lead to improved
forecast accuracy (e.g. [2]).

An abundance of models is present in the context of both human and animal health: Kao
[3] outlines at least four models used during the 2001 foot-and-mouth disease (FMD) outbreak
in the UK; Pomeroy et al. [4] cite 17 articles that use mathematical models of control based
on the FMD 2001 outbreak in the United Kingdom (UK); Eaton et al. [5] used 10 models to
forecast human immunodeficiency virus (HIV) incidence, prevalence and antiretroviral coverage
for the HIV epidemic in South Africa; Li ef al. [6] identified 37 mathematical models for Ebola
transmission in West Africa and provided projections of control interventions; and Shea et al. [1]
elicited projections from 16 modelling teams to inform county reopening strategies in the United
States (US) in the midst of the COVID-19 pandemic.

Many national and international consortia capitalize on the abundance of models by eliciting
projections from multiple modelling groups to help guide decision-making in real time. This
has been carried out in a number of contexts: the COVID-19 Scenario Modeling Hub [7], the
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COVID-19 Forecast Hub [8], Scientific Pandemic Influenza Group on Modelling, Operational sub-
group (SPI-M-O) for the Scientific Advisory Group for Emergencies (SAGE) in the UK [9], the
Vaccine Impact Modelling Consortium [10] and the Intergovernmental Panel on Climate Change
(e.g. [11]). A plurality of models can lead to challenges within the decision-making process:
concordance in model output may corroborate policy recommendations but where model outputs
are discordant it can be difficult to determine the best control intervention.

Models are often developed through a process of fitting to retrospective data; having done this
the suite of models may then be used to project future scenarios. There is a large and robust
literature about the former step; though in many cases (e.g. a novel (re)emerging outbreak)
such retrospective data do not yet exist and models are still useful in scenario analysis. In
this analysis, we focus on methods for combining the results of scenario projections to inform
decision-making. The consortia mentioned above synthesize model projections in a number of
ways to inform decision-making, typically using some form of model averaging (see below). We
posit that in the context of decision-making, where the focus is on using models to compare
different interventions, it may be preferable to first rank the interventions within each model’s
results and then combine rankings across different models to determine the best course of action.
We suggest this can be done with vote-processing rules, as are commonly used in electoral voting
systems. We first provide background on different approaches to synthesizing model projections,
investigate why this can cause issues in decision-making, and then outline vote-processing rules
in more detail.

In response to the plurality of mathematical models, ‘ensemble modelling’ methods have been
developed that synthesize output from multiple models. The idea that combining the results of
multiple models can yield better predictions than individual models (provided the component
models contain independent information) has been around for more than 50 years [12]. Ensemble
modelling may seek either a consensus (usually via some form of model weighting) or to
generate probabilistic ‘bounding boxes’ that represent uncertainty among the model predictions
[13]. While there is great value in representing uncertainty, decision-makers need to select a
preferred course of action, so we restrict the scope of our manuscript to methods for selecting
a consensus intervention. Consensus ensemble modelling combines distributions of predictions
from different models via a weighting scheme (hereafter ‘model averaging’). Ensemble modelling
approaches have been used in weather prediction and meteorology [14,15], to predict species
occurrence ecology [13,16], in fisheries [17], in epidemiology for FMD control [18,19] and
COVID-19 indicators and management [1,7,9]. While model ensembles have been shown to
outperform individual models, debate remains about the best way to combine and weight
models [13].

In any multi-model project, questions arise over which models to include. We briefly address
three such concerns since addressing these concerns provides justification for investigating
approaches to aggregating output from models. We address the following three concerns: the use
of models beyond the ‘best-fitting” model, the absolute number of models to include and whether
any criterion should be applied to include or exclude models. Firstly, although data fitting is a
major part of modelling, and each individual modelling team needs to be concerned with model
fitting, typically the independent consortia that run multi-model exercises (mentioned above) will
be concerned with aggregation of model projections and will not focus on model calibration and
fitting (although they will still compare projections with data). Regardless of how well models fit
data and how they are calibrated, the question still remains as to how to combine model output—
the central question addressed in this work. Second and thirdly, we believe the question of how
many (and which) models to include in a multi-model project is an open question. There is also
not a clear consensus in the literature as to the number of models and complexity of models
to include, as this may depend on the objective of the multi-model project. Some research calls
for carefully chosen and curated models (e.g. [20]), while others suggest open calls are best given
(e.g. [21]). We cannot find justification in the literature for using a curation process but we provide
evidence against using a curation process. Should a curation process of which models to include
be carried out then it is not clear who is to decide which model is ‘appropriate’ to include and
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Table 1. A simple example decision-making problem.

Model 1 Model 2 Model 3 Model 4 average (mean)
predicted outcome 0 200 10 20 575
recommended action action1 action2 action1 action1 action2

we do not believe there is published evidence that the results from a curated group of models
would have better performance than using an open call. Without being transparent regarding
inclusion criteria, excluding models would introduce additional biases that will be based on
the subjectivity of the researcher(s) deciding on which models to include. To evidence this, for
instance, we highlight that the COVID-19 pandemic saw several models were initially repurposed
from influenza modelling (deemed appropriate by subject experts), yet SARS-CoV-2 was later
shown to have very different dynamics to influenza (e.g. in regard to children and the importance
of asymptomatic/pre-symptomatic transmission). Furthermore, there are studies in the expert
elicitation literature that experts do not provide better predictions than non-experts (e.g. [22]) and
that using a diversity of experts leads to better calibrated results. We believe this provides some
evidence for such a phenomenon to exist in modelling too and therefore supports using an open
call to increase the diversity of models and modelling teams.

Combining model output using model averaging raises important questions about the
recommended course of action. First, because the results are averaged, the recommended course
of action does not represent any ‘real” model, so it is difficult to relate the output to the model
inputs. While individual models may lack the diversity of assumptions of an averaged model set,
averaging may miss the opportunity to highlight model assumptions that may lead to differences
in recommendations. Essentially, the average model represents a new situation that may not be
at all representative of any of its component parts, and the severity of this is impossible to judge
until after the recommended action has been implemented. Second, the candidate models may
provide an output that has different units (due to different model assumptions) such that the
appropriate method to average results is unclear (this can be present even if model outputs are
ostensibly the same—e.g. the example on ‘hospitalized cases” below). Third, model averaging is
sensitive to outliers which can bias the results away from median performance.

Consider the following simplified example that illustrates some of these issues (table 1). Our
example consists of four models that are selecting between two actions. For the purposes of the
example, we aim to maximize the model outcome. We assume that all four models apply the
following simple decision rule: if the model outcome is less than 25, then select action 1; else
select action 2. All models are assumed to have equal support and therefore are given equal
weight in the average. Three of the four models recommend selecting action 1, yet the extreme
prediction of model 2 biases the model set and forces the average score to select action 2. This
seems at odds with the outcomes, because the averaged output recommends supporting the
action recommended by the outlier rather than the action supported by the majority of the models.
Looking at the discordance in the model results, we might expect that models 1, 3 and 4 are all
modelling a similar process and that model 2 is modelling a different process. Assuming that
we believe one of the modelled processes best describes the system, it seems desirable that the
averaged output should be similar to one of the two extremes. However, the averaged outcome
sits between the extremes, having no obvious relation to either the three models that agree (range
0-20), nor the extreme estimate of 200; this seems inconsistent with the inputs and begs the
question of what the averaged output means.

The example suggests that selecting actions from model averaging is vulnerable to the addition
of models that make extreme or discordant predictions.

When using epidemiological models to guide decision-making, the key question for decision-
makers is rarely “‘which model is correct?’, but instead ‘what is the best course of action?’. This is
an important distinction. For example, Li et al. [6] showed, in the context of Ebola control, that the
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Figure 1. Two paradigms for combining model outputs to compare control interventions: (a) combining projections of the
efficacy of control interventions across all models and ranking the ensemble predictions, and (b) combining rankings of control
interventions, generated within each model, using vote-processing rules (the approach outlined in this work; the figure using
the sum of ranks to make a final rank). In all graphs, the horizontal axis is meant to represent a metric such as the size of the
outbreak, which the decision-maker would like to minimize. (Online version in colour.)

absolute projections from models can vary wildly but estimates of the relative efficacy of different
control strategies can be highly concordant. Similarly, in the context of FMD control, Probert et al.
[23] illustrated that as an outbreak progresses, and we learn about the system under study, the
relative efficacy of control interventions can be resolved reasonably early in an outbreak despite
large scale differences in the absolute magnitude of projections at the same point in time.

How does one generate recommendations for the best course of action from multiple models?
A useful approach is to conduct sensitivity analyses: if all models suggest the same course of
action across different parameterizations then the decision is clear and there is no need for
combining models [6,24,25], but if models provide conflicting recommendations as to the best
intervention, another approach is required. Meteorological forecasts are rarely (if ever) used to
simulate control interventions but the ensemble prediction, using all combined model results,
can be used in ranking the impact of different control interventions (figure 1a).
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Another approach is to first rank interventions within each model and then synthesize
rankings of interventions across all models. Combining rankings of control interventions that
are generated from each model, therefore, provides an ‘ensemble of rankings’ (figure 1b). By
combining ordinal rankings of interventions across models, instead of the projections, we avoid
making assumptions regarding how units of the projections from each model relate to one another
(i.e. the comparability of model projections).

For example, if two independently developed epidemiological models make projections of
‘hospitalized cases’ of a disease, it may seem sound to combine projections from these models
on that metric for the same intervention. However, the term ‘hospitalized cases’ is non-specific
and may reflect a range of underlying assumptions by modelling groups; the common term
may provide a false sense of security as to how similar this outcome is in these two models (so-
called ‘linguistic imprecision” or ‘linguistic uncertainty’; [21,26]). Combining ‘hospitalized cases’
from these two models requires implicitly deciding how numbers from one model correspond
to numbers from another model. If the aim is to compare interventions, then relying on
within-model comparisons of ‘hospitalized cases” across interventions will keep any unforeseen
assumptions constant across such projections. Harmonizing model outputs will only become
more challenging as models increase in complexity and variability in complexity of contributing
models increases [1], for instance, including both compartmental and individual-based models.

Electoral voting systems, as used in the election of government officials, typically generate
a single winner, or a ranked list, from ordinal data of voters’ preferences (i.e. votes). Such
methods for combining rankings have been evaluated under various criteria, including the ability
to represent voters’ preferences, susceptibility to tactical voting (or ‘strategic voting’; whereby
a voter may not vote for their first preference to avoid a particular outcome; [27]), ease of
understanding, and ease of use/computation (see references under each vote-processing rule in
Methods).

In this paper, we apply four vote-processing rules, as used in electoral voting systems, to
process the rankings of control interventions in two case studies of infectious disease outbreaks
where projections of multiple models are used to inform decision-making. Our analysis is
specifically used to recapitulate the situation that many consortia find themselves in: being
tasked with resolving decision-making guidance from contributions of multiple models or
modelling groups. The four vote-processing rules we use are (i) First-past-the-post (FPP), (ii)
Borda count, (iii) Coombs method, (iv) Alternative Vote (AV) (details of each vote-processing rule
are provided in the Methods section). We believe this is the first published example of aggregating
the rankings of interventions (not aggregating projections) from output of infectious disease
models.

Each of the vote-processing rules investigated are single-winner voting systems that are
applied using either a single list of ranked interventions (Borda Count, Coombs Method, AV), or
using a list of approved interventions that pass some criteria (FPP). Each method for combining
votes is outlined in the Methods below. Other vote-processing rules have been highlighted in
environmental decision-making [28] and are also amenable to the approach we present here.

Several desirable properties of rank-based vote-processing rules have been discussed in the
literature. We highlight four of these properties that contrast benefits and drawbacks of the
vote-processing rules used in this analysis: universal domain, majority consistency, Condorcet
consistency and homogeneity (table 2). ‘Universal domain’ is the property that the vote-
processing rule produces a winner (or a tie) for all possible rankings that may occur [29]. We
force all ‘votes” from each model to be an ordered list (as outlined in the Methods), including a
preference for each intervention available, so we do not consider a situation where the universal
domain requirement is not met. ‘Majority consistency’ in a voting rule is the property that
if an intervention is the preferred choice by a majority of votes, then the rule will pick the
same winner under the rule in question. At face value, this seems like a reasonable property
for a voting system to have. However, many scoring systems that determine a winner based
upon a score that is calculated as a function of their votes do not possess this property (for
example, see Borda Count, below). The property of ‘Condorcet consistency’ is determined by
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Table 2. Properties of vote-processing rules. A black circle indicates that the vote-processing rule possesses that property, no
symbol indicates the vote-processing rule does not possess that property.

vote-processing rule majority consistency Condorcet consistency homogeneity

looking at all pairwise comparisons of interventions and then determining if any intervention
would win if pitted against any other intervention (based upon majority rule) [29,30]. Such an
intervention is called the ‘Condorcet winner’ but does not always exist. A vote-processing rule
that also chooses the Condorcet winner is said to possess Condorcet consistency. ‘Homogeneity”
in a rank-based vote-processing rule is the property that the same winner will be determined if
any number of multiples of the same sequence of votes is provided (proportions of preferences
matter, not absolute numbers of preferences). Note that there is a literature on properties of
vote-processing rules and that there are several other properties that we have not outlined here
(e.g. [28,29]).

Throughout this document we use the term ‘rank” or ‘rankings’ to refer to the numerical
ordering of interventions according to some management objective (i.e. minimize outbreak
duration) that is generated by comparing the projections of interventions from a single model
(ranks may take non-integer values, e.g. in the case of ties). We use the term ‘vote’ to refer
to the ranks after they have been processed to resolve any ties (votes can be considered as
vectors of integers), and a vote is made up of ‘preferences’ (first preference, second preference,
last preference, etc.). We use the term ‘winner’ to refer to the output of applying a vote-
processing rule to a sample of votes (in the case studies presented, a “‘winner’ is a type of control
intervention).

2. Methods

(a) Case studies

We use data from two previously published analyses that use multiple models to inform decision-
making. The first case study modelled a hypothetical outbreak of FMD in a county resembling
Cumbria in the UK [31]. Data were generated from four spatial, stochastic, simulation models
that have been used in preparedness planning of various governments: the North American
Animal Disease Spread Model in the US (NAADSM), AusSpread in Australia, Interspread Plus
in New Zealand and The Warwick Model in the UK. We included this case study to contrast
model structures to the second case study (all compartmental models) and to highlight the impact
of model stochasticity, given all of the models included in this example included stochasticity
in the projections they contributed. Each model used the same starting conditions for the
outbreak, the same landscape and modelled the outcomes of five interventions for controlling
the outbreak, recording the final number of animals culled and the duration of the outbreak. The
following interventions were simulated: culling of infected premises only (IP), culling of infected
premises and dangerous contacts (IPDCs), ring culling at 3km around infected premises (RC),
ring vaccination at 3km around infected premises (V03) and ring vaccination at 10 km around
infected premises (V10). The control interventions of RC, V03 and V10 all included culling of both
infected premises and culling of premises deemed dangerous contacts also. A fifth model only
simulated four of the interventions. The analysis presented in this work requires all models to
be able to model each intervention so that ordinal ranks are comparable across models (so-called
‘partial ballots’, where each model would vote on different subsets of interventions are mentioned

~
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later in the paper), and so this fifth was excluded from the analysis. Each model simulated each
intervention 100 times. The value of 100 replicates is somewhat arbitrary in this instance; it is only
used as an example of when there are multiple simulations for each model. There is no standard
recommendation for the appropriate number of iterations and the number used in practice may
be limited by computational resources. All models are anonymized, and data are available from
the following repository: https://github.com/p-robot/objectives_matter. See Probert et al. [31]
for further details of the simulations.

The second case study generated data from 37 stochastic compartmental models that were
recapitulations of models used in the 2014 Ebola outbreak in West Africa [6]. These models
were all compartmental models, but varied widely with regards to model structure and
parameterization. Details of each of the models are published in Li ef al. [6]. Models reported
mean caseload from simulations in a population of 10000 individuals using the same starting
conditions. In this case study there was only a single projection for each intervention. Each
model made caseload projections under five interventions: reducing community transmission
by 30% (RCT; e.g. by providing sanitation kits, improved contact tracing, stronger self-isolation
of sick individuals), reducing funeral transmission by 30% (RFT; e.g. by encouraging safer burial
practices), reducing hospital transmission by 30% (RHT; e.g. by improving the use of personal-
protective equipment by healthcare workers, and reducing hospital visits), reducing mortality
ratio by 30% (RMT; e.g. reducing the case fatality ratio by improved clinical care), increasing
hospitalization proportion by 30% (IHP; e.g. increasing hospital usage by increasing the number
of hospital beds, or improving contact tracing) and no management (NM). See Li et al. [6] for
further details of the models and the interventions; the data are available from the following
repository: https://github.com/p-robot/voting_systems_epi_analysis.

(b) Generating votes from model projections

In order to apply vote-processing rules to model output, votes were generated from within-model
rankings of interventions. For the Ebola case study, there was one projected value per intervention
from each model (the mean projected caseload for that intervention) and there were no ties in
these mean values, so votes and the within-model rankings of interventions were synonymous.

For the FMD case study there are multiple simulations per model and there are ties in rankings
of several of the interventions. In order to generate a list of ‘votes” we randomly grouped output
from the models into sets, where each set has the output from one of each of the interventions.
As model output was generated 100 times, we obtained 100 such sets for each model. Within
the results for each model, for each of these 100 replicates we then ranked each intervention
according to the final number of cattle culled (minimum final number of cattle culled gets the first
ranking) and according to outbreak duration (minimum outbreak duration gets the first ranking).
In all cases, ties in the minimum number of cattle culled were resolved by first ranking on
outbreak duration. If a preference in the best intervention was still tied, randomization was used
to resolve ties. Similarly, for a primary objective of minimizing outbreak duration, ties were first
resolved using a secondary objective of minimizing cattle culled, and then using randomization.
Randomization has been documented as being used in case of ties in real elections [32]. Each
model then contributes 100 “votes” which were combined across all models using electoral vote-
processing rules (so four models contributed 400 ‘votes” overall). We note that distilling model
output to ranks will ignore the predictive performance of models (a commonly used approach to
weight models in an ensemble), however, vote-processing rules could still be applied to a set of
votes generated in proportion to such predictive weights.

(c) Vote-processing rules

We describe and apply four voting systems for combining recommendations across models,
outlined below.
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(i) First-past-the-post

In FPP systems, voters choose a single best intervention. The intervention with the most votes
wins. This rule is also called plurality voting or simple majority.

This system of counting votes finds the majority favourite, and implementation of this system
is simple and intuitive. FPP has been criticized that votes may be seen as ‘wasted’ [33,34], in the
sense that if there are many possible interventions, only one will get selected and preferences for
any other intervention is not included. In electoral systems, FPP has been criticized for resulting in
majoritarian governments where only two large parties dominate elections and coalitions are rare.
Using this system to resolve conflicts between recommendations of different interventions from
models will ignore input from all models that do not have a high proportion of first preference
votes; information from additional models is wasted. This method requires that models can
generate a single, best intervention (in contrast to other methods that require models generate a
complete ranked list of interventions). FPP does not possess the Condorcet Consistency property.

FPP is used to elect the Members of Parliament of the House of Commons of the United
Kingdom [35], to elect executive and legislative representatives in the United States [27] and to
pass some measures in the United States Senate [36].

(i) Borda Count

Under the Borda Count method, each intervention is given points based upon voting preferences.
If there are A different interventions then an intervention is given A points for each first preference
vote, A —1 points for each second preference vote and so on. Points are then tallied for each
intervention and the intervention with the highest number of votes is declared a winner [29,37].

The Borda Count method is easy to implement and simple to understand. Borda Count does
not possess the properties of majority consistency or Condorcet consistency, and can be influenced
by the number of votes being counted. Borda Count can be thought of as a scoring system, which
have been criticized before in decision-making contexts [38].

Several examples of Borda Count in environmental decision-making are given in Burgman
et al. [28] and a variation of Borda Count is used in the Eurovision song contest to select a
winner [39].

(iii) Coombs Method

Under the Coombs Method, first preference votes are counted. If an intervention has an absolute
majority (greater than 50%) of first preferences, then that intervention is declared the winner. If
no winner is declared then the intervention with the highest proportion of last preference votes
is eliminated [29]. The algorithm for the Coombs Method then continues with multiple rounds of
counting and elimination (as above) until a winner is found. The Coombs Method possesses all
the properties of a vote-processing rule that we outline.

Alternative versions of the Coombs Method have been proposed that do not include a check
of whether a majority is found and start by eliminating interventions [29]. However, such
modifications to this method do not possess majority consistency and we do not consider them
further. We are not aware of real-world applications of the Coombs Method but include it to
contrast the other rules as it possesses all the properties in table 2.

(iv) Alternative Vote

Using the AV method each vote is a ranked list of interventions. All first preferences are tallied;
if an absolute majority of voters (greater than 50%) choose a single intervention as their first
preference then counting stops and this intervention is chosen as the winner. If no winner is
found, then the intervention with the smallest proportion of first preferences is eliminated. For
each vote that ranked the eliminated intervention as first preference, these first preference votes
are transferred to the intervention that was ranked as the next highest preference [29,33]. The
algorithm continues with rounds of counting and elimination until a winner is found. This
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method can also be described as the single transferable vote (STV) when only choosing one option
[29,32]. It is also called Instant Run-off Voting (in the US) or Preferential Voting (in Australia) [40].
The Coombs Method differs from the AV in how interventions are eliminated in each round: AV
eliminates interventions with the least proportion of first preference votes, the Coombs Method
eliminates interventions with the highest proportion of worst preference votes [41].

The AV method has been noted as being susceptible to tactical voting by eliminating a
candidate via secondary preferences [40]. The AV method does not possess the property of
Condorcet consistency.

The AV method has been used to elect the Australian House of Representatives since 1918, in
Irish Presidential elections [42], and to elect chairs of select committees in the House of Commons
in the UK [35].

(d) Sensitivity analyses

Analyses of multiple models can be complicated in a number of ways, including sensitivity to
the addition of new models. To test the robustness of using voting systems to select actions from
model sets, we investigated the effect of adding two different types of pathological models to the
final ballot of votes to see how this would affect the choice of a winner.

First, we investigated adding models that randomly allocate preferences to each intervention.
This approach represents the extreme case of adding non-informative models, i.e. models that
have no predictive ability, and aims to address concerns that adding such models may sabotage
multi-model analyses. For each case study, we added N models with randomly allocated
preferences (and for each objective within the FMD case study), where N ranged from 1 to M, and
M was 10 times the size of the original cohort of models (M =50 in the FMD case study, M =370in
the EV case study). For a fixed number of added models, N, we repeated the experiment 100
times and report the proportion of times that each intervention is chosen as the winner using
each vote-processing rule. In the FMD case study we added votes in multiples of 100 (as per the
contributions of each original model) whereas in the Ebola case study we added single votes.

Second, we investigated the impact of adding ‘biased” models to the original cohort of models
in each case study. We defined a ‘biased” model as that which favoured a single intervention for
every vote (i.e. gave 100% of first preferences to a single model). This situation may arise in the
context of mathematical modelling in a number of ways, for instance when several models have a
similar structure (e.g. the cohort of models is dominated by compartmental models) and thereby
could all favour a single intervention. This is similar to investigating the susceptibility of a rule to
tactical voting. Beyond the biased intervention, these models would allocate preferences towards
the other interventions randomly. For each case study, we added B ‘biased” models, where B
ranged from 1 to C, where C was the size of the original cohort of models (C=4 and C=37in
the FMD and Ebola case studies, respectively). For a fixed number of added ‘biased” models, N,
we repeated the experiment 100 times and report the proportion of times that each intervention
is chosen as the winner using each vote-processing rule. We repeated this experiment for each
candidate—that is, adding models that favoured each of the candidate interventions in turn.

The inclusion of the two sensitivity analyses highlights the impact that adding additional
models can have on the overall winner, and from which it may be possible to comment on the
impact of model stochasticity on these vote-processing rules: at one extreme, highly stochastic
models that randomly choose the best intervention, and at the other extreme models with very
small stochasticity that always choose the same best action.

Python code for generating ‘votes’ from model output, and for implementing each
of the voting systems, is documented in a Python module available at https://github.
com/p-robot/voting_systems. The complete analysis in this manuscript, which uses the
voting_systems module, is available at: https://github.com/p-robot/voting_systems_epi_
analysis. The voting_systems Python package is tested using the pytest package, includes 71
tests, and the complete analysis requires Python greater than 3.6. The 71 tests in the package run
each vote-processing rule through 10-20 different example ballots, comparing expected outputs
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Table 3. Percentage of votes of each preference (columns) for each control intervention (rows) from 100 simulations from four
models in a hypothetical FMD outbreak in a county in the UK. Two objectives are presented for ranking model projections:
minimizing total cattle culled and minimizing outbreak duration. Control interventions are infected premises culling (IP),
infected premises culling and dangerous contacts culling (IPDC), ring culling at 3 km around infected premises (R3), ring
vaccination at 3 km (V3) and 10 km (V10) around infected premises. For instance, 16.3% of votes had IP culling as their first
preference for minimizing cattle culled.

objective intervention
minimize total cattle culled (head) IP 16.3 19.5 31.0 14.8 183
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with those generated by the code. The github repository includes a slide deck illustrating the
algorithms of the four vote-processing rules and an illustration of a subset of the tests used to
validate the coded algorithms of the vote-processing rules.

3. Results

In the FMD case study, all vote-processing rules returned the same winner for an objective
of minimizing total cattle culled—ring vaccination at 10km. FPP (majority rule) chose ring
vaccination at 10 km as the best control intervention since 42.1% of votes chose this as their first
preference (table 3). Borda Count gave highest points to ring vaccination at 10 km (1635 points),
followed by vaccination at 3km (1527 points), IP culling (1200 points), IPDC (935 points) and
finally ring culling at 3km (688 points). The AV and the Coombs Method both eliminated the
same series of interventions until ring vaccination at 10 km had a majority. Table 3 summarizes
the proportion of votes in which each intervention had a particular ranking and therefore also
highlights the impact of stochasticity in model output (all models in the FMD case study are
stochastic).

Under an objective of minimizing outbreak duration, all vote-processing rules also returned
the same winner for an objective of minimizing outbreak duration—ring culling at 3km. FPP
(majority rule) chose ring culling at 3km as the winning intervention since 55.9% of votes chose
this intervention as their first preference (table 3). Borda Count gave highest points to ring culling
at 3km (1498 points), followed by vaccination at 10 km (1250 points), vaccination at 3km (1175
points), IPDC (1074 points) and finally IP culling (988 points). The AV and the Coombs Method
did not eliminate any candidate interventions as an absolute majority (55.9% of first preferences
for ring culling at 3km) was met in the first round.

Ranking interventions based upon mean projections of output across all models produced the
same results as using vote-processing rules (electronic supplementary material, table S1).

In the Ebola virus case study, all vote-processing rules returned the same winner for an
objective of minimizing caseload—RFT by 30%. FPP (majority rule) chose this as the winner since
59.5% of models chose this as their first preference (table 4). Borda Count gave highest points to
RFT by 30% (197 points), followed by RCT by 30% (191 points), reducing the mortality ratio by
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Table 4. Percentage of votes of each preference (columns) for each control intervention (rows) from 37 models of the 2014 Ebola
outbreak in 2014. Simulations were of caseload projections in a simulated population of 10 000 individuals. Control interventions
are reducing community transmission by 30% (RCT), reducing funeral transmission by 30% (RFT), reducing hospital transmission
by 30% (RHT), reducing mortality ration by 30% (RMT), increasing hospitalization proportion by 30% (IHP) and no management
(NM). For instance, 91.9% of votes had RCT as the first or second preference intervention.

objective
minimize caseload

30% (158 points), RHT by 30% (93 points), IHP by 30% (91 points) and finally RCT by 30% (47
points). The AV and the Coombs Method did not eliminate any candidate interventions as an
absolute majority (59.5% of first preferences for RFT) was met in the first round.

In the Ebola virus case study, ranking interventions based upon mean projections of output
across all models ranked reduction in community transmission (RCT) as the best intervention, in
contrast to using vote-processing rules (electronic supplementary material, table S2).

Figures of the raw model projections in each case study are provided in electronic
supplementary material, figures S1 and S2.

(@) Ties

In generating votes from model projections, ties may occur. Ties in rankings occurred in 20% of
total votes in the FMD case study when ranking on projections of total cattle culled. This was
largely driven by the results from one model (most models had less than 5% of rankings causing
ties). Of those that needed to be resolved via a secondary objective (outbreak duration), 32.93%
were still tied (6.77% overall) and had to have ties resolved via randomization. That is, for 6.77%
of the 100 model replicates that were used to form votes, there was no clear preference in the best
control intervention for minimizing total cattle culled even after a secondary ranking on outbreak
duration. There were no ties in the rankings of projections of caseload in the 37 Ebola models.

(b) Sensitivity of voting rules to addition of successive models that rank
interventions randomly

Adding models that ranked interventions in a random order made no difference to the chosen
winning intervention under all voting rules until differences caused by stochasticity were larger
than the original absolute difference in tallies of preferences (figure 2). This threshold depended
upon the vote-processing rule, the metric upon which interventions were being ranked (the
objective) and the tally of votes for the additional interventions in the original cohort of models
(i.e. those tallies in tables 3 and 4). In the FMD example, Borda Count and the Coombs
Method seemed most susceptible to the effect of adding additional models with randomly
allocated rankings. Under these two rules it took the smallest number of models added until
the recommended intervention was changed and both rules resulted in the largest proportion
of adjustments when a large number of models were added. FPP was least susceptible to the
addition of random models, due to the large differences in first and second preferences in
the original cohort of votes (table 3). The Coombs Method and the AV gave almost identical
results under an objective of minimizing cattle culled but quite different patterns when ranking
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Figure 2. Sensitivity of recommended control intervention under different vote-processing rules when successive models with
randomly allocated rankings of interventions are included in an ensemble, FMD case study. Within each panel, the horizontal
axis is the number of additional models with randomly allocated rankings that have been added, the vertical axis shows the
proportion of times, within 100 simulated experiments, that each control intervention was recommended as the best. Rankings
are combined from five interventions from a number of model (four models plus a number of additional models that rank
intervention randomly, as shown on the horizontal axis) of FMD and using four vote-processing rules (panel columns). Output is
shown across three different control objectives (panel rows; that is, the metric upon which control interventions were ranked).
Interventions have been stacked in a consistent manner (as shown in the order in the legend). (Online version in colour.)

interventions on outbreak duration. This is due to the distribution of first and last preferences in
the data (since these two rules differ in whether candidates are removed on ‘least number of first
preferences’ or ‘largest number of worst preferences’). That is, in table 3 the proportion of first and
last preferences under cattle culled are perfectly inversely correlated (first preferences are ordered
RC <IPDC <IP < V3 < V10 whereas last preferences are ordered RC > IPDC > IP > V3 > V10) but
under an objective of outbreak duration, the orderings of the first and last preferences are not
so aligned. Overall, all vote-processing rules were reasonably robust to the addition of random
models—even after 10 times the number of models in the original cohort were added in the FMD
case study, the same control intervention was chosen over 60% of the time under all voting rules
as was chosen when no ‘random’ models were added.

Within the Ebola case study, FPP was most resilient to the addition of randomly ranked models
(figure 3). Borda Count was highly susceptible to the addition of extra models with ‘RCT by 30%’
as the second most common choice of a winner due to the large proportion of 2nd preference
votes for this intervention and therefore a large Borda Count score (table 3). The Coombs Method
and AV provided similar results.

(c) Sensitivity of voting rules to addition of successive models biasing a single model

For both case studies, the number of biased models that were needed to add to change the winner
(figures 4 and 5, electronic supplementary material, figure S3) largely reflected the distribution of
first preferences votes in the original cohort (tables 3 and 4). That is, in both case studies, biased
models only mattered in situations where they were favouring an intervention that already had
reasonable support (such as the second most favoured intervention). In the FMD case study, for
an objective of minimizing outbreak duration, one to two biased models were required to change
the winner for all voting methods (figure 4). For an objective of minimizing cattle culled, the
intervention with the second largest proportion of first preference votes is ring vaccination at
3km (30.3%; table 3) and it was the intervention that was chosen as the winner most quickly
(i.e. with the smallest number of additional models added) (electronic supplementary material,
figure S3).
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Figure 3. Sensitivity of recommended control intervention under different vote-processing rules when success models with
randomly allocated rankings of interventions are included in an ensemble, Ebola case study. Within each panel, the horizontal
axis is the number of additional models with randomly allocated rankings that have been added, the vertical axis shows the
proportion of times, within 100 simulated experiments, that each control intervention was recommended as the best. Rankings
are combined from six interventions from 37 models of Ebola and using four vote-processing rules (panel columns). Interventions
have been stacked in a consistent manner (as shown in the order in the legend). (Online version in colour.)
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Figure 4. Chosen recommended intervention under a range of vote-processing rules when additional biased models are
included in a multi-model analysis of FMD. Results shown for an objective of minimizing outbreak duration. Biased models
are defined as those which favour only one intervention as best and randomly rank the other interventions. Within each panel,
the horizontal axis is the number of biased models added, the vertical axis is the per cent of time a chosen intervention is chosen
as the winner under a particular vote-processing rule (columns). Rows denote the intervention that was biased (indexed as in
the legend). The first and second most preferred models in the underlying data are ring culling (3 km) and ring vaccination
(10 km) (table 3). (Online version in colour.)
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Figure 5. Chosen recommended intervention under a range of vote-processing rules when additional biased models are
included in a multi-model analysis of Ebola. Biased models are defined as those which favour only one intervention as best and
randomly rank the other interventions. Within each panel, the horizontal axis is the number of biased models added, the vertical
axisis the per cent of time a chosen intervention is chosen as the winner under a particular vote-processing rule (columns). Rows
denote the intervention that was biased (indexed as in the legend). (Online version in colour.)

In the Ebola case study, Borda Count was highly susceptible to the addition of biased models
to the original cohort of models (figure 5). Borda Count adjusted the winner earlier than the other
vote-processing rules and included more uncertainty in its choice of winning intervention. This
highlights how the allocation of second and third preferences within votes has a large impact
when using the Borda Count method.

4. Discussion

We present the application of electoral vote-processing rules for combining rankings of control
interventions when multiple epidemiological models are used to make projections of different
interventions. Combining rankings of interventions from each model may be desirable compared
to directly comparing projections from different models for a number of reasons. Firstly,
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no implicit assumptions are made regarding the comparability of projections across models.
Directly comparing or averaging model outputs based upon common language terms, such
as ‘hospitalized cases’, belies the potentially vastly different calculations and assumptions that
lead to these separate outputs. Such differences are likely to be more prevalent as model
complexity increases and the variability in model complexity increases within ensembles of
models. Secondly, we allowed models to ‘vote’ on the performance of control interventions
under different control objectives, thereby keeping hidden assumptions constant across such
projections. Thirdly, by not combining projections across models we avoid models with very
large (or small) projections from undue influence on the aggregate (e.g. mean) projection. We
applied the approach in two case studies, one in human and one in animal health, that differed
in how this method was applied: one allowed each model to ‘“vote” multiple times (via stochastic
model replicates), the other allowed models to vote once (using the mean projected value). The
two illustrated approaches are not an exhaustive list of ways in which vote-processing rules
can be applied to model output but are illustrative of the issues and benefits of this general
approach.

In each case study, each of the four vote-processing rules we investigated selected the same
preferred control intervention. FPP (or ‘plurality voting’) was most resilient to the process of
adding additional models with randomly ranked interventions. Borda Count, a scoring rule,
was generally most susceptible to adding random models, with susceptibility to changing
winner depending particularly on the second preferences (the unsuitability of scoring rules in
a decision-making context has been highlighted elsewhere; e.g. [38]). The Coombs Method and
AV had similar patterns when adding random models but, again, the outcome depended on the
distribution of first and last preference votes (as this is how these rules decide which candidates
to remove). Including biased models that favoured a single intervention only mattered in our
analysis when the second most favourite intervention was the biased intervention. Borda Count,
a scoring rule, was the most susceptible to the addition of biased models in our case studies.
Although the four vote-processing rules selected the same control intervention as the winner in
the two case studies we investigated, we do not believe this is a universal property of applying
vote-processing rules to output from epidemiological models, and believe this to be specific to the
presented case studies.

Ranking based upon overall mean projection of interventions produced the same results as
the vote-processing rules for the FMD case study but a different ranking in the Ebola virus
case study, where the intervention of ‘RCT” had the lowest mean projected caseload. This result
underscores the utility of preserving comparisons in control interventions to only be within-
model comparisons by combining rankings of interventions generated by models. Using rankings
in this manner avoids model-averaged projections being unduly influenced by outliers, and
allows the second (and later) preferences of models for particular control interventions to have an
influence on the final recommendation.

The presented analysis shed light on how model stochasticity may affect outcomes of using
vote-processing rules. Model stochasticity is partially taken into account in two ways: (i) by
inclusion of the FMD case example, and (ii) by including the sensitivity analyses. First, we
included the FMD example to highlight the impact of model stochasticity, given all of the models
included in that example are stochastic and therefore included stochasticity in the projections
they contributed (table 3 summarizes the proportion of votes in which each intervention had a
particular ranking and therefore highlights the impact of this stochasticity). Second, the inclusion
of two sensitivity analyses highlights the impact that adding additional models can have on the
overall winner, from which one may deduce the impact of stochasticity on these vote-processing
rules—at one extreme, highly stochastic models that randomly choose the best intervention and
at the other extreme models with very small stochasticity that always choose the same best action.
The impact of parameter uncertainty is much harder to gauge in our analysis since each case study
includes numerous models and each model has a different number of parameters.

Considering voting rules for evaluating epidemic interventions across multiple models
suggests several exciting avenues for future research. As yet, we can offer no guidance on how
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many models may be needed to inform decision-making. Vote-processing rules will become
unpredictable with very few models (in which case we have illustrated the use of model replicates
with stochastic models) to generate votes, but what is the minimum for stable results? We have
implemented four vote-processing rules that are simple to compute and commonly used but
many other vote-processing rules exist and are used in decision-making (e.g. [28]); a thorough
exploration would provide guidance on what approaches are best used in specific situations.
It may also be valuable to assess the best approach when we have a blend of deterministic
and stochastic models, or when we may have both stochastic and parametric uncertainty, as is
common in wide-ranging multi-model elicitations. Although we do not provide criteria for which
models to include (that is not the topic of this research, see [1,20]) and that models may have
very different assumptions, we believe our study provides some evidence for including a range
of models when making aggregate predictions. This is in line with other studies in the expert
elicitation literature that showed using broadly defined expert groups led to better calibrated
results [22].

We highlighted several relevant properties of the vote-processing rules when applied to output
from epidemiological models but several additional properties may be of interest [29]. Lucidity,
or how straightforward the rule is to understand, is important in communicating results to
policymakers and the public. The ease of computing what constitutes a “vote” is also important
in communicating results to stakeholders in the decision-making process. We only considered
two methods of generating votes from model output: (i) where a ‘vote” is a ranking of control
interventions and (ii) where a ‘vote’ is a single preferred control intervention. Both methods
for generating votes could be modified in different ways, such as using different functions for
determining a single preferred control intervention (e.g. [31]). The computational overhead in
generating votes, and also in processing votes, is particularly relevant if these techniques are to be
used for real-time decision-making. However, the computational overhead of the vote-processing
rules that we present is negligible compared with the computational overhead of running each
individual model. Finally, resistance to tactical voting is another desirable property of vote-
processing rules [29]. Tactical voting, when ranking model outcomes, may occur deliberately or
accidentally, for example, through the addition of new models that are insufficiently different
from models in the existing set, and it is, therefore, worth considering the situations in which a
vote-processing rule may be susceptible to tactical voting (e.g. see discussion surrounding Borda
Count in Methods). Our investigation of biased and random models suggests that substantial
interference is required to change the best decision in our case studies, but in examples where
the difference between the first- and second-ranked actions is close, additional scrutiny should
be applied to avoid biases in the model set influencing the result. Leave-one-out cross validation
(i.e. computing the best decision in the absence of each model in the ensemble) is a simple test to
confirm the influence of a single model on the results and would be a good check to perform in
the case where model bias is suspected.

We considered situations where each model contributed the same number of ‘votes” and
that ‘votes” are generated from model replicates. There are many ways in which votes could
be generated from model output. If the models are related or if there is reason to weight one
model differently from other models, these methods could still be applied by generating a number
of replicates in proportion to each model’s ‘weight” (for instance a weight according to their
predictive accuracy).

Further, we have only illustrated a decision-making process where choice of intervention
neatly falls into a discrete set of choices. This is a simplification of real decision-making for the
purposes of illustrating a technique. There are clearly decisions that do not easily fall into different
categories as we have investigated here. In both case studies, the distribution of first preferences
favoured a single model in the original cohort of models. The impact of using different vote-
processing rules will become more apparent when the differences between interventions is more
nuanced.

The techniques we present did not deal with partial or truncated ballots [43,44]. We
investigated sensitivity analyses when models consistently ‘bias’ a single first preference but did
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not investigate when models may consistently ‘bias” a single worst preference. Voting methods
exist for the situation where some models may not be able to evaluate all control interventions
(e.g. [6,31]), so-called truncated polling. The dominant methods for assigning votes to truncated
ballots assume that all candidates (or models) were available to the voter, but that the voter simply
did not express votes for some candidates [45]. This is not the case when models cannot evaluate
all control interventions, which is more analogous to some voters having only a restricted set of
candidates to choose from (e.g. partial ballots). To our knowledge, the voting literature does not
consider this situation and tools for evaluating winners in this situation do not exist. A useful
extension to this work would be to develop methods for assigning votes to model sets that
consider subsets of control interventions.

We have only considered the situation where a single winner was to be chosen. However,
methods also exist for choosing multiple interventions at once, such as the STV method.

One of the arguments for application of voting methods is to avoid direct comparison of model
projections. However, combining ranks of interventions across models will compare control
interventions and these are also subject to interpretation (e.g. linguistic uncertainty in control
interventions in [1,21]) and so this does not detract from the need for communication to modellers
to be very specific with regards to the details of the control interventions being modelled.

In summary, by comparing ranking of interventions instead of directly comparing
projections of models we avoid potentially combining metrics that are not representing the
same epidemiological measure. Comparing rankings means that all comparisons of absolute
projections are kept as within-model comparisons. The methods presented here provide another
fast and straightforward avenue for comparing the output from epidemiological modelling
exercises, particularly in the case where there are multiple models informing a decision-making
process. Voting methods represent another useful approach in the modeller’s toolbox to be used
in concert with other established ensemble modelling approaches. Given that multi-model efforts
are becoming increasingly common [1,3,4,5,7,21], best methods to collate and interpret their
outputs for decision-makers is essential.
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