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Abstract—Kalman filter based estimation is developed to mitigate phase distortions in a DP-16QAM optical communication system 

with significant equalization enhanced phase noise. It outperforms the Viterbi-Viterbi approach by 1.84 dB. 
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I. INTRODUCTION 
Optical transmission impairments have been mitigated individually to ensure the sufficient signal quality to meet dramatic increase 

of demands on data capacity. However, the interaction between laser phase noise (LPN) and chromatic dispersion (CD), namely, 
equalization enhanced phase noise (EEPN) [1, 2] will severely degrade the performance of nonlinear optical fiber transmission 
systems, while it cannot be well compensated using digital signal processing. EEPN will become more significant in the transmission 
systems with the increment of symbol rate, transmission distance, modulation format [1]. These factors are critical in next-generation 
long-haul core optical telecommunication infrastructure to support the high-volume data traffic in 5G and beyond networks [3]. It has 
been reported that the estimator using Kalman filter (KF) can compensate for phase fluctuations effectively with a low computational 
complexity [4]. In this work, a KF is developed in a 32-GBd dual-polarization 16-ary quadrature amplitude modulation (DP-16QAM) 
nonlinear optical communication system over a standard single mode fiber (SSMF) to mitigate the LPN and the EEPN. It is shown 
that the KF outperforms Viterbi-Viterbi (VV) estimator [5] by 1.84 dB at peak signal-noise ratios (SNRs).  

II. PRINCIPLE OF KALMAN FILTER BASED ESTIMATOR 

Considering a 16-QAM nonlinear coherent system shown in Fig. 1, the  received symbol  to the estimator can be formulated 

as , where  is the  transmitted symbol from the modulator, involves the phase fluctuations generated by the 
fiber nonlinearity (FNL) [6], the LPN, the EEPN, the amplified spontaneous emission (ASE) noise, and the interaction between FNL 
and ASE noise [7], and  includes the ASE noise, the EEPN, and the signal-EEPN interaction. KF is applied for the estimation of 

 from the received symbol . The state space model for the KF can be written as , and , 

where  and  are process and measurement noises, and their co-variances denoted by Q and R, respectively.  is the 

measurement variable, and . The prediction procedure of the KF-based estimator includes , and 

, where  is the error covariance. The measurement update steps are , , 

and .  is the Kalman gain. The final symbols recovered by the KF-based estimator is given by . 

III. . TRANSMISSION SETUP 
Numerical simulations have been carried out in a 32-GBd DP-16QAM optical communication system over a 2000 km SSMF with 

80 km fiber at each span. The simulation setup is described in Fig.1. The transmitted symbol sequences are fully random and 
independent in two polarizations. The signal propagation over the fiber is simulated based on the split-step Fourier solution of the 
Manakov equation. The noise figure of EDFA is 4.5 dB. At the coherent receiver (Rx), the received signals are mixed with a local 
oscillator (LO) laser carrier (a 100 kHz linewidth). An electronic dispersion compensation (EDC) or a digital backward propagation 
(DBP) module is applied to compensate for CD or FNL. An ideal carrier phase estimation (CPE), a KF-based estimator and a VV 
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CPE are applied, respectively, for the compensation of residual transmission distortions, e.g. LPN and EEPN. The laser frequency 
offset and the polarization mode dispersion (PMD) are neglected. 

 
Fig. 1. DP-16QAM optical fiber transmission system. NPS: Nyquist pulse shaping; PBS: polarization beam splitter; PBC: polarization beam combiner; EDFA: 
erbium-doped fiber amplifier. ADC: analog-to-digital converter. 

IV. RESULTS AND DISCUSSIONS 
As described in Fig. 2, markers on the left side represent simulation results. It is observed that the system applied with the KF-

based estimator achieves higher SNRs than the system using the ideal CPE in both cases of EDC and DBP. At the optimum power in 
the case of DBP (at 10 dBm), the peak SNR of KF is ~1.84 dB higher than that of the VV scheme. This indicates a strong capability 
of KF-based estimator in mitigating phase distortions. Their corresponding constellations at optimum launch powers are also shown 
on the right side. It can be found that the distortions in the KF scheme are smaller than those in the VV approach. 

 
 

 

Fig. 2. SNR of a DP-16QAM optical system applied with ideal CPE, KF and VV estimators (left), and their constellations at optimum launch powers (right). 
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