N Journal of
Cur:)edcakt;cs)r CIinicaI
Epidemiology

oofet F - G N
ELSEVIER Journal of Clinical Epidemiology 150 (2022) 171—178

ORIGINAL ARTICLE

Bridging disconnected networks of first and second lines of biologic
therapies in rheumatoid arthritis with registry data: bayesian evidence
synthesis with target trial emulation

Sylwia Bujkiewicz™*, Janharpreet Singh”, Lorna Wheaton”, David Jenkins™",
Reynaldo Martina®, Kimme L. Hyrich®’, Keith R. Abrams™*"

“Biostatistics Research Group, Department of Health Sciences, University of Leicester, University Road, Leicester, LE] 7RH, UK
Centre for Health Informatics, Division of Informatics, Imaging and Data Science, Faculty of Biology, Medicine and Health, University of Manchester,
Manchester, UK
°NIHR Manchester Biomedical Research Centre, Manchester University NHS Foundation Trust, Manchester Academic Health Sciences Centre,
Manchester, UK
YVersus Arthritis Centre for Epidemiology, Centre for Musculoskeletal Research, The University of Manchester, Manchester, M13 9PL, UK
°Department of Statistics, University of Warwick, Coventry, CV4 7AL, UK
fCentre for Health Economics, University of York, York, YO10 5DD, UK

Accepted 20 June 2022; Published online 16 July 2022

Abstract

Objectives: We aim to use real-world data in evidence synthesis to optimize an evidence base for the effectiveness of biologic therapies
in rheumatoid arthritis to allow for evidence on first-line therapies to inform second-line effectiveness estimates.

Study Design and Setting: We use data from the British Society for Rheumatology Biologics Register for Rheumatoid Arthritis to
supplement randomized controlled trials evidence obtained from the literature, by emulating target trials of treatment sequences to estimate
treatment effects in each line of therapy. Treatment effects estimates from the target trials inform a bivariate network meta-analysis (NMA)
of first-line and second-line treatments.

Results: Summary data were obtained from 21 trials of biologic therapies including two for second-line treatment and results from six
emulated target trials of both treatment lines. Bivariate NMA resulted in a decrease in uncertainty around the effectiveness estimates of the
second-line therapies, when compared to the results of univariate NMA, and allowed for predictions of treatment effects not evaluated in
second-line randomized controlled trials.

Conclusion: Bivariate NMA provides effectiveness estimates for all treatments in first and second line, including predicted effects in
second line where these estimates did not exist in the data. This novel methodology may have further applications; for example, for bridging
networks of trials in children and adults. © 2022 The Author(s). Published by Elsevier Inc. This is an open access article under the CC BY
license (http://creativecommons.org/licenses/by/4.0/).
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What is new?

Key findings

e Using real world evidence (RWE) on the effective-
ness of biologic therapies in rheumatoid arthritis,
by applying a target trial emulation approach and
Bayesian evidence synthesis, we allowed for evi-
dence on first-line therapies to inform second-line
effectiveness estimates.

What this adds to what was known?

e Traditionally, data from randomised controlled tri-
als (RCTs) have been used to inform evidence
based decision making; however RCTs are typi-
cally carried out in either first or second line of
therapy.

e RWE increasingly is considered a valuable source
of evidence and it may offer long term follow up
of patients and their outcomes from multiple lines
of treatments.

What is the implication and what should change

now?

e Using RWD to make inferences about different
lines of therapy may aid trial design and potentially
policy decisions.

1. Introduction

The evidence base for healthcare decision-making tradi-
tionally consisted of data from randomized controlled trials
(RCTs), considered as a gold standard in evaluation of
health technologies. In recent years, there has been a
growing interest in the use of real-world data (RWD) from
observational studies in healthcare evaluation. Routinely
collected data, from electronic health records or patients’
registries, can provide useful information about effective-
ness of treatments, where data from RCTs may be sparse
or are not available at all for some treatment comparisons.
Considerable methodological research has focused on in-
clusion of RWD in evidence synthesis with the aim of over-
coming some limitations of RCT data [1—3]. The focus of
such research has been particularly in circumstances where
RCT evidence was sparse and combining RCT data with
RWD aimed to increase the evidence base to improve the
precision of effectiveness estimates [4] and sometimes
bridge disconnected networks.

While research to date has largely focused on exploita-
tion of RWD to mimic or replicate RCT data [5—7], we take
a step further to explore the use of RWD in a scenario of data
generation not typical for the RCT setting. In this article, we
explored how RWD can be used to optimize an evidence
base by using evidence on first-line therapies to inform

second-line effectiveness estimates in evidence synthesis.
When data from RCTs are available on effectiveness of a
particular treatment, but only in the first line of therapy, a
costly trial needs to be undertaken to also evaluate the effec-
tiveness of the new therapy used in patients as a second-line
treatment (or vice versa). We investigated the added value of
registry data, which provides evidence on both first and sec-
ond lines in each individual, when amalgamating these data
in a network of RCTs for both lines of therapies. We devel-
oped this approach for incorporating RWD into clinical and
health technology assessment decision-making using a case
study in rheumatoid arthritis (RA).

We made use of data from the British Society for Rheu-
matology Biologics Register for Rheumatoid Arthritis
(BSRBR-RA) to supplement the RCT evidence available
only for either first or the second line of therapy. We did
so by emulating target trials using the approach developed
by Hernan and Robins [7]. We estimated treatment effects
of biologic therapies based on the data in emulated target
trials, which we then used to inform a bivariate network
meta-analysis (NMA) model of first-line and second-line
treatments. The estimates from the registry data were used
to “bridge” disconnected networks for the two lines of
therapy. The American College of Rheumatology response
criteria (ACR20) were used as an outcome measure.

The remainder of this article is structured as follows.
Data sources and statistical methods are described in Sec-
tion 2. The results are presented in Section 3, which are fol-
lowed by discussion and conclusion in Section 4.

2. Methods
2.1. Data sources

2.1.1. Summary data from randomized controlled trials

Summary data from a literature review of RCTs of bio-
logic therapies in patients with RA were obtained for the
effectiveness of adalimumab, etanercept, infliximab, goli-
mumab, abatacept, and rituximab used as first-line biologic
therapies (in biologic naive patients) and the effectiveness
of golimumab and rituximab used as second-line biologic
therapies in patients who switched from a previous biologic
treatment. Data were obtained from 20 trials including 18
for the first-line treatments and two trials for second-line
treatments. A list of references for the trials is included
in the Supplementary Materials A. When constructing a
network, placebo arms with methotrexate as concomitant
therapy and the arms including a combination of metho-
trexate and placebo were treated as the same treatment
arm in the network. Methotrexate, used in many trials as
part of the combination therapy in the biologic arm, was
ignored (for some studies methotrexate was included as
concomitant therapy where percentage of patients with
addition of methotrexate varied across studies, similarly
as in the BSRBR-RA target trials).
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2.1.2. Registry data

We made use of data from the BSRBR-RA to supple-
ment randomized trial evidence. While RCTs included only
either first-line or second-line therapy, registry data pro-
vided evidence on both lines of therapy for each patient.
BSRBR-RA data consisted of 19,410 individuals, 15,636
of whom had data recorded on biologic treatment. The data
were used to emulate target trials of both lines of therapy.

2.2. Emulation of target trials

We used the BSRBR-RA data to emulate a series of trials of
first-line and second-line treatments for a range of biologic
therapies using a target trial approach [7]. In the first instance,
we specified the key components of the target trial protocol,
which (following recommendation by Hernan and Robins
[7]) included eligibility criteria, treatment strategies, assign-
ment procedures, the follow-up period, outcome, causal
contrast, and statistical analysis. Note that no RCT included
both lines of therapy in sequence, while the proposed protocol
of the target trial did include the treatment sequence. There-
fore, we did not aim for the emulated target trials to resemble
any existing RCT (an approach previously used in target trial
emulation).

2.2.1. Eligibility criteria

Study participants were aged 18 years or older, who had a
diagnosis of RA. Patients who were treated with a biologic
disease-modifying antirheumatic drug (DMARD) prior to
the registration with the BSRBR-RA were excluded.

2.2.2. Treatment strategies

Patients had to have received at least two lines of ther-
apy, which could be any of the biologic DMARDs or meth-
otrexate, which is a synthetic DMARD often used as a
combination therapy and/or control treatment in trials of
biologic therapies in RA patients. Data from patients who
switched from first-line biologic therapy to no therapy (or
to therapies that are neither biologic DMARDs nor metho-
trexate) were not included.

2.2.3. Assignment procedures

Patients were grouped into treatment arms as per the
sequence of treatment in two lines of therapy. These groups
of patients (sequence treatment arms) were matched to
form experimental and control treatment groups. Matching
was conducted based on size of the trial, ensuring well-
balanced treatment contrasts, with methotrexate always
taken as the control treatment and rituximab as an experi-
mental treatment. Other biologic therapies could be used
as either experimental treatment or control. The matching
procedure had to ensure unique treatments in experimental
and control arms for each line. The process is schematically
described in Figure 1. This procedure resulted in target tri-
als of two lines of therapy recorded on the same patients
who switched treatment in both treatment arms. For

example, patients in the experimental arm receiving first-
line adalimumab switched to infliximab and those in the
control arm receiving first-line etanercept switched to
methotrexate, thus resulting in the first-line comparison of
adalimumab vs. etanercept and in the second-line compar-
ison of infliximab vs. methotrexate. Since patients were not
randomly allocated, we assumed no unmeasured confound-
ing at baseline conditional on a number of prognostic fac-
tors measured at baseline or initiation of each treatment
that could influence the response. The prognostic factors
included age, gender, duration of the disease, serology (be-
ing positive for rheumatoid factor), and 28-joint count dis-
ease activity score (DAS-28).

2.2.4. The follow-up period

The minimum follow-up time had to ensure that data
were collected 24 weeks after initiation of each line of ther-
apy. Start of the second-line therapy varied depending when
patients needed to switch to second-line treatment, which
was typically due to either a lack of response or adverse
reactions.

2.2.5. Outcome

Patients were assessed as per ACR20 response criteria,
which classified them as responders if they had at least
20% improvement as per ACR criteria. Due to a large num-
ber of missing values on some of the components of ACR
within BSRBR-RA data (the register did not capture patient
pain or physician global score), the definition of response
was relaxed allowing patients to be classed as responders
if they had at least 20% improvement in at least one of
the joint count components (tender or swollen joint count)
and at least one of the remaining five components of the
ACR measure (physician global assessment, patient global
assessment, pain, health assessment questionaire, erythro-
cyte sedimentation rate [or C-reactive protein]) [8].

2.2.6. Causal contrast and statistical analysis

Baseline characteristics for each group were summa-
rized to ensure that the covariates were similarly distributed
across the treatment arms. The numbers of responders were
then adjusted for covariates using inverse probability
weighting with propensity scoring (IPW-PS) [9,10]. A
schematic causal diagram with potential confounders, taken
into account in the analysis, is included in Figure B1 of the
Supplementary materials B. We estimated the per-protocol
effect in all emulated trials.

2.3. Bivariate network meta-analysis

A univariate random effect NMA was used to model data
on second line of therapy using RCT data alone, BSRBR-
RA data alone (with both adjusted and unadjusted
BSRBR-RA data), and combined data from RCTs and the
register. We then used bivariate NMA to model jointly
the treatment effects on ACR20 for first and second lines
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Fig. 1. Schematic diagram representing the process of matching
sequence treatment arms. Each row represents patients assigned to a
unique treatment sequence depicted by different colors. Gray arrows
on the left hand side show how the sequence treatment groups were
matched to ensure a balance in terms of the size of each arm and that
for both lines the treatment in each arm was different. ADA, adalimumab;
ETA, etanercept; IFX, infliximab; RTX, rituximab; MTX, methotrexate.

of therapies. A standard approach to any multivariate meta-
analysis is to use a hierarchical model with a multivariate
normal distribution used to describe variability at two
levels: within-study (where the correlation occurs due to
the modeled multivariate quantities, such as treatment ef-
fects on multiple outcomes, being measured in the same in-
dividuals) and between-studies (where the correlation is a
result of heterogeneity between the average -effects,
measured on each outcome in each study, varying across
studies due to, for example, differences in population or
treatment doses). Accounting for the within-study correla-
tion is important in such analysis [11]. However, modeling
jointly non-normal outcomes, such as binomial responses,
would require transforming data, which can lead to biased
results [12]. Papanikos et al. carried out a simulation study
showing that when the within-study correlation is weak, a
multivariate meta-analysis model with independent bino-
mial likelihoods is preferable [13]. An exploratory analysis
of the BSRBR-RA dataset, estimating the within-study cor-
relation using the bootstrapping approach [14,15], showed
that the within-study correlation between the treatment ef-
fects for the two lines of therapy transformed onto the log
odds ratio (OR) scale was close to zero. We, therefore,
adapted the approaches to multivariate/bivariate NMA by
Achana et al. [16] and Bujkiewicz et al. [17] by assuming
independent binomial likelihoods at the within-study level,
as in Papanikos et al. [13], to model the proportions of re-
sponders to treatment in each line of therapy. To predict
treatment effects in the second line when data are only
available for the therapy in first line, additional assumptions
of exchangeability needed to be made, where instead of
placing prior distributions on basic parameters, we added
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Fig. 2. Network diagram for (A) the RCT data, (B) BSRBR-RA data,
and (C) combined data; first-line treatments (left) and second-line
treatments (right).

another level of hierarchy to the model as in Bujkiewicz
et al [17]. The details of both models are included in the
Supplementary materials C

3. Results
3.1. Summary of data and the network structure

Summary data were obtained from 20 RCTs of biologic
therapies with 18 trials for first-line treatment (including
adalimumab, etanercept, infliximab, golimumab, abatacept,
and rituximab) and two for second-line treatment
(including golimumab and rituximab). BSRBR-RA data
included 12,657 individuals given first-line biologic thera-
pies at the time of registration. Follow-up data included
112,983 observations, which was on average 8.93 follow-
ups per individual. For a large proportion of the visits,
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Table 1. Results of a univariate fixed effects NMA of biologic therapies used as second-line treatments using data from RCTs alone, represented as
ORs with 95% Crls. Left-hand-side estimates correspond to the results of fixed effects NMA (upper triangle) and direct evidence (lower triangle)
and the right-hand-side results are from the random effects NMA. ORs from the direct evidence are accompanied with 95% confidence intervals

Fixed effects

Random effects

Treatment MTX GOL RTX MTX GOL RTX

MTX 2.73 (1.68, 4.31) 4.84 (3.14, 7.25) 6.41 (0.21, 33.4) 11.34 (0.37, 59.4)
GOL 2.62 (1.64, 4.19) 1.88 (0.95, 3.36) 15.7 (0.05, 64.3)
RTX 4.68 (3.08, 7.1) -

methotrexate was recorded as a concomitant therapy to a
biologic treatment. Target trial emulation using the
BSRBR-RA data led to generation of six target trials of bio-
logic therapies in two lines. The distribution of the covari-
ates in the target trials are listed in Table B1 of
Supplementary materials B.

Figure 2a shows the network structure of RCT data for
the first and second lines of therapy and Figure 2b illus-
trates the network structure of target trials emulated from
BSRBR-RA data for both lines of therapy. For the target tri-
als, both treatment lines correspond to the same trial, in
contrast to the RCTs which report only either first or second
line of treatment. To emphasize this in Figure 2, we used
the same color of the network edges for both treatment
lines for the target trials, in contrast to the RCTs where
different colors of edges for different treatment lines repre-
sent different trials. In this article, we aimed to demonstrate
the value of the registry data in estimating the effect of the
biologic therapies when used as second-line treatments.
The network of RCT data for the second-line therapy was
particularly sparse, including only two trials, for golimu-
mab and rituximab. BSRBR-RA data gave additional infor-
mation about adalimumab, etanercept, infliximab, and
rituximab used as second-line therapies. The network struc-
ture for RCT and BSRBR-RA data combined is shown in
Figure 2c. The information on the number of studies for
each treatment contrast, line of therapy, and the type of
study is also included in Table B2 of the Supplementary
materials B.

3.2. Results of network meta-analyses

The results of all NMAs represent ORs with 95% cred-
ible intervals (Crls), corresponding to ACR20 response. Re-
sults of NMAs of RCT data for the biologic therapies used

as second-line treatments are shown in Table 1. To comply
with the GRADE guidelines [18], we compare the results
from the NMA in the upper triangle (left-hand-side part
of the table) with the direct effects in the lower triangle.
The NMA results were obtained using the fixed-effects
NMA model, as only two RCTs were included. On the
right-hand-side of the table included are the results of the
random effects meta-analysis for the purpose of like-with-
like comparisons with the results of more complex analyses
discussed below that used the random effects NMAs.
Before combining the RCT data with the BSRBR-RA data,
we carried out NMA of BSRBR-RA data alone, using both
adjusted (with IPW-PS) and unadjusted data for compari-
son. The results of these analyses, shown in Table 2, did
not appear very different, suggesting a good balance of co-
variates across the treatment arms in the target trials.
Results of two univariate NMAs of biologic therapies
used as second-line treatments using combined data from
the RCTs and BSRBR-RA (both adjusted and unadjusted)
are shown in Table 3. Including the registry data allowed
for estimation of treatment effects for second-line biologic
therapies which were not included in the RCT network.
There was also some improvement in the precision of
treatment effect estimates for those already included in
the RCT data (when comparing the results from random ef-
fects NMA of the RCT data). For example, comparing rit-
uximab with methotrexate gave OR = 11.3 (95% Crl: 0.4,
59.4) when using RCT data alone, while addition of the
registry data resulted in OR = 3.9 (0.5, 14.9), thus reducing
the uncertainty by 76% in terms of the width of the credible
interval. This is expected considering inflated intervals
around effects obtained from the random effects NMA of
only two RCTs. The results of NMAs combining data from
the RCTs and BSRBR-RA were, however, inflated when
compared with those from NMA of the registry data alone.

Table 2. Results of a univariate NMA of biologic therapies used as second-line treatments using data from BSRBR-RA alone, adjusted using IPW-PS
(upper triangle) and unadjusted (lower triangle), represented as ORs with 95% Crls

ETA IFX RTX

Treatment MTX ADA

MTX 3.04 (0.31, 11.7)
ADA 2.98 (0.32, 11.01)

ETA 3.89 (0.91, 11.3) 3.74 (1.19, 14.9)
IFX 9.31 (0.09, 25.4) 1.8 (0.09, 7.28)
RTX 3.03 (0.07, 10.0) 0.69 (0.07, 2.56)

3.94 (0.89, 11.7)
3.77 (0.18, 15.5)

5.46 (0.02, 10.4)
1.63 (0.02, 4.22)

10.37 (0.08, 25.5)
1.73 (0.08, 7.08)
5.23 (0.02, 10.5)

0.66 (0.15, 1.92)

2.87 (0.06, 10.5)
0.68 (0.07, 2.64)
1.45 (0.01, 4.44)

0.7 (0.15, 2.06)
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Table 3. Results of a univariate NMA of biologic therapies used as second-line treatments using combined data from RCTs and BSRBR-RA adjusted
using IPW-PS (upper triangle) and unadjusted (lower triangle), represented as ORs with 95% Crls

Treatment MTX ADA ETA IFX GOL RTX

MTX 5.03 (0.59, 19.4) 4.26 (0.71, 14.4) 10.3 (0.45, 47.1) 5.1 (0.3, 22.8) 3.86 (0.45,14.9)
ADA 4.9 (0.59, 18.7) 2.04 (0.09,9.51) 2.99(0.13,13.9) 2.74(0.05,12.6) 1.14(0.13,4.37)
ETA 4.24 (0.72,14.3) 2.06 (0.1, 9.48) 5.16 (0.09, 22.9) 2.53 (0.06, 11.5)  1.79 (0.08, 8.13)
IFX 10.6 (0.49, 48.9) 3.21(0.15, 14.7)  5.19 (0.1, 23.7) 3.2 (0.02, 13.7 0.76 (0.12, 2.6)

GOL 5.09 (0.31,22.7) 2.64(0.05,12.6) 2.66(0.06,11.4) 3.27(0.02, 12.6) 3.46 (0.06, 15.8)
RTX 3.85(0.46, 14.8) 1.16(0.14,4.43) 1.78(0.08, 8.04) 0.72(0.12,2.44) 3.35(0.06, 15.4)

This was due to the increase in the between-study heteroge-
neity, from between-study standard deviation of 0.7 (0.14,
1.81) from the NMA of registry data alone to 0.93 (0.37,
1.86) from NMA of the combined data for the adjusted
results.

The results of a bivariate NMA combining data from
RCTs and BSRBR-RA of biologic therapies in both lines
of therapy are shown in Table 4, with the results using
the “‘standard” bivariate NMA model in the upper triangle
and the results from the analysis assuming exchangeability
of the effects of the biologic therapies in the lower triangle.
In both analyses, the adjusted data were used for the
emulated target trials. Combining data from the first and
second lines of therapy through the use of the bivariate
NMA led to a decrease in uncertainty for many of the indi-
vidual treatments when compared to the results of the uni-
variate NMA of second-line therapy alone (combining RCT
data with BSRBR-RA data). For example, the effect of eta-
nercept vs. methotrexate on ACR20 response was OR = 3.8
(0.9, 11.1) from the bivariate NMA compared to OR = 4.3
(0.7, 14.4) from the univariate NMA. The between-studies
correlation was weak, p = —0.3 (95% Crl: —0.94, 0.66),
which limited the borrowing of information across the
treatment lines. The heterogeneity parameter for the
second-line treatments was 0.91 (0.36, 1.84), which was
comparable with the results of the univariate NMA, and
0.93 (0.65, 1.35) for the first-line treatments.

The bivariate NMA approach assuming the additional
exchangeability of the absolute effects of the biologic ther-
apies allowed for predictions of treatment effects that had
not been evaluated in trials in a second-line setting. In this
case, it produced effectiveness estimates for abatacept in
the second line of therapy against all other treatments in

the network. Moreover, this additional exchangeability
led to a noticeable reduction in uncertainty around the re-
maining estimates of effect for other therapies, as can be
seen in the lower triangle of Table 4. This was a result of
additional borrowing of information across the biologic
therapies. However, there may have been some degree of
smoothing of the effects across the biologic therapies,
which was difficult to judge due to the large uncertainty.
A sensitivity analysis was carried out using a #-distribution
in place of the normal distribution in model (3) in the
Supplementary materials C, which largely produced very
similar results but inflated the uncertainty around the effec-
tiveness estimate for abatacept in the second line.

4. Discussion

There has been an increased interest in use of real-world ev-
idence to inform clinical and policy decisions in healthcare.
For example, Schiinemann et al. discuss a range of scenarios
where nonrandomized evidence can contribute as comple-
mentary, sequential, or replacement evidence for RCTs when
evaluating the effectiveness of interventions in meta-analysis
[19]. Our approach for combining evidence on early and late
designs (first vs. second lines of therapy) provides a new high-
ly informative way to use both sources of evidence in the net-
works. We provide a conceptual approach for using RWD,
such as from registries or electronic health records, to generate
estimates of effectiveness of treatments in first and second
lines of therapy and combining them with RCT data to
enhance the evidence base and provide effectiveness estimates
of therapies in the second line, where data on effectiveness in
the second line are not available from RCTs. In such

Table 4. Results of a bivariate NMA combining data from RCTs and BSRBR-RA of biologic in both lines of therapy using the “‘standard’’ bivariate
NMA model (upper triangle) and assuming exchangeability of biologic therapies (lower triangle), represented as ORs with 95% Crls

Treatment MTX ADA ETA

IFX GOL ABT RTX

MTX 4.1 (0.57, 15.3) 3.81 (0.87, 11.1) 7.64 (0.3, 36.2) 4.92 (0.32, 21.7) =
2.01 (0.13, 8.64) 2.17 (0.15, 9.48) 2.94 (0.06, 13.4) -
3.92 (0.07, 16.7) 2.19 (0.07, 9.96) -

ADA 2.96 (1.51, 5.29)
ETA 3.07 (1.72, 5.18) 1.1 (0.58, 2.03)
IFX 3.13(1.38, 6.31) 1.09 (0.56, 2.03) 1.05 (0.47, 2.04)

GOL 3.03 (1.38, 5.78) 1.08 (0.49, 2.12) 1.02 (0.45, 1.91) 1.06 (0.42, 2.14) =
ABT 3.37(1.08, 7.81) 1.19 (0.41, 2.76) 1.13 (0.36, 2.55) 1.16 (0.37, 2.64)
RTX 3.09 (1.55, 5.83) 1.09 (0.57, 2.08) 1.04 (0.51, 1.97) 1.06 (0.52, 2.0)

4.4 (0.49, 17.3)
1.7 (0.13, 7.43)
1.91 (0.1, 8.69)
1.65 (0.09, 7.85)
4.03 (0.07, 18.3)
1.2 (0.38, 2.88) —
1.11 (0.5, 2.31) 1.17(0.39, 2.74)

4.79 (0.03, 20.0) -
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circumstances, producing these estimates would require con-
ducting expensive and time-consuming additional clinical tri-
als. The proposed approach can be used to carry out a
feasibility analysis or provide inputs to the trial design or even
be used for evidence-based decision-making where evidence
is sufficiently robust.

When carrying out this research, we came across anumber
of limitations. Some of them were related to data. In partic-
ular, the RCT data were relatively sparse with a star-shaped
network for the first-line treatments and only two trials re-
porting the effectiveness of biologic therapies in the second
line. The dataset was simplified by combining the control
arms (including methotrexate as either combination therapy
or concomitant therapy with placebo) into the same control
arm denoted as methotrexate. This was done to strengthen
the network structure to better illustrate the methodological
aspect of this work. Most of the biologic arms also included
methotrexate. Considering that for a large proportion of visits
in the BSRBR-RA data, methotrexate was recorded as a
concomitant therapy to a biologic treatment; an assumption
was made that a large proportion of patients receiving bio-
logic therapy, across all studies, also received methotrexate.
The registry dataset contained a substantial amount of
missing data, in particular for some of the components of
the ACR20 response criteria, which was not due to the issues
of quality of the data but owing to the fact that some of the
components are not routinely collected by the register. To es-
timate the response to the biologic therapies, we chose to
relax the definition of the response. In addition, the register
only captures 28 joint counts, which may be different from
some of the trials. Considering these potentially strong as-
sumptions around the data sources, the results of our analysis
should not be used for clinical interpretation but only as an
illustration of the proposed methodology.

There were only six target trials generated from the reg-
istry data, which resulted in substantial uncertainty around
the between-studies correlation, as these were the only
studies contributing data to estimating the correlation.
The combined network was still limited with a lack of data
on each contrast and line across study designs. Target trial
data were incorporated in the NMAs at a face value,
assuming they were equivalent with RCT data. Extensions
of the analysis could include a power prior approach [20],
allowing for down-weighting of RWD, or hierarchical
modeling to differentiate between the two study designs
[4]. Further investigation into data scenarios and model as-
sumptions needs to be carried out to understand when this
framework can be most efficient.

5. Conclusion

Registry data can be used to bridge networks of first and
second lines of therapy which are disconnected when using
RCT data alone. Bivariate NMA of combined data from
RCTs and RWD can be used to predict effectiveness of a
treatment in second-line use when the therapy is only

investigated in an RCT as first line (or vice versa). The
approach can be applied to other settings where RCT data
are available for disjoint subsets of population, such as,
for example, children and adults and registries may provide
data covering follow-up period from childhood to adult-
hood for each individual.
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