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Bayesian Optimisation vs. Input Uncertainty Reduction

JUAN UNGREDDA, MICHAEL PEARCE, and JUERGEN BRANKE, University of Warwick

Simulators often require calibration inputs estimated from real-world data, and the estimate can significantly

affect simulation output. Particularly when performing simulation optimisation to find an optimal solution,

the uncertainty in the inputs significantly affects the quality of the found solution. One remedy is to search

for the solution that has the best performance on average over the uncertain range of inputs yielding an

optimal compromise solution. We consider the more general setting where a user may choose between either

running simulations or querying an external data source, improving the input estimate and enabling the

search for a more targeted, less compromised solution. We explicitly examine the trade-off between simulation

and real data collection to find the optimal solution of the simulator with the true inputs. Using a value

of information procedure, we propose a novel unified simulation optimisation procedure called Bayesian

Information Collection and Optimisation that, in each iteration, automatically determines which of the two

actions (running simulations or data collection) is more beneficial. We theoretically prove convergence in the

infinite budget limit and perform numerical experiments demonstrating that the proposed algorithm is able

to automatically determine an appropriate balance between optimisation and data collection.
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1 INTRODUCTION

Simulation optimisation is the problem of identifying the best solution, when solution qualities
can only be estimated via sampling—that is, running a computationally expensive simulation and
obtaining a stochastic output value. In many cases, the simulation model has additional parameters
that need to be set, such as the mean arrival rate of customers or the mean and variance of the
demand distribution.

In reality, such input parameters are either chosen by expert opinion or set to values estimated
from historical data. If the chosen values for the input parameters differ significantly from the true
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parameters, the solution found by optimising the simulation model may be far from optimal in the
real world. This problem is generally known as simulation optimisation with input uncertainty
and has received much attention in recent years [Lam et al. 2016]. Much work has focused on
explicitly modeling the uncertainty of the input parameters and seeking a robust solution that
performs well on average (or worst case) over this distribution.

In this article, we extend our previous work on Bayesian optimisation (BO) aiming to identify
the solution with the best expected performance given the input uncertainty [Pearce and Branke
2017]. In particular, we assume that the user has access to real-world data that can help to inform
the parameters required by the simulator. Given finite resources to spend on simulation and/or data
collection, an algorithm must carefully determine which of the two possible actions to perform.

Devoting too much effort to data collection may not leave sufficient resources for optimisation
and an algorithm would return a sub-optimal solution to an accurate simulator. However, devoting
too little effort to data collection may lead to learning a good compromise solution that performs
well on average across a variety of possible input parameters but may be sub-optimal under the
true input parameters. In this work, we propose a BO algorithm that can intelligently trade off
simulation and data collection.

This applies to simulation optimisation problems where additional external input data can be
collected incrementally, although requiring resources to collect. For example, sales demand may be
estimated from physical sales records that needs to be manually sorted and entered into a database
to reduce uncertainty about true demand, or external data may require time-consuming physical
measurements by observers such as traffic flow or user choices.

This work makes the following novel contributions.

• We consider a new variant of input uncertainty problems where external data can be sampled
to reduce input uncertainty and it is possible to decide how much effort to put into data
collection vs. simulation. This differs from previous work where new data acquisition is
not an option or data comes from a streaming process and automatically arrives over time
without being requested.
• We propose the Bayesian Information Collection and Optimisation (BICO) algorithm,

which effectively balances the trade-off between simulation and real data collection when
the aim is to find the best solution under the true inputs. The algorithm is an extension of the
Value of Information (VoI) with input uncertainty idea proposed by Pearce and Branke
[2017].
• We prove consistency of BICO and show that BICO automatically detects whether an exter-

nal data source is relevant for optimisation.
• We demonstrate the effectiveness of BICO on several artificial and practical problems.

We start with an overview of related work in Section 2, followed by a formal definition of the
problem in Section 3. Section 4 explains the statistical models, derives the suggested sampling pro-
cedures, and discusses their theoretical properties and practical computation. We perform numer-
ical experiments in Section 5. Finally, the article concludes with a summary and some suggestions
for future work in Section 6.

2 LITERATURE REVIEW

Running a simulation model may be computationally expensive. Response surfaces, or metamod-
els, can be built to predict the output of the computationally expensive simulation much more
efficiently. Various metamodeling techniques have been proposed in the literature [Barton and
Meckesheimer 2006]. Most relevant for this work are Gaussian processes, which belong to the
category of Gaussian random fields (GRF) [Staum 2009; Vanmarcke 2010]. Gaussian processes are
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non-parametric regression models that provide not only a predicted value for each point in the
domain but also a confidence interval.

This is exploited by BO, a global optimisation method. BO builds a Gaussian process, or Kriging,
surrogate model of the simulator response surface based on a few initial samples, then uses an
acquisition function, or infill criterion, to sequentially decide where to sample next to improve the
model and find better solutions. For a brief introduction, refer to the work of Shahriari et al. [2016].

Several BO algorithms have been proposed in the literature. The most popular is the Efficient

Global Optimisation (EGO) algorithm of Jones et al. [1998] that combines a Gaussian process
with an expected improvement criterion for deciding where to sample next. The Knowledge Gra-

dient (KG) policy for continuous parameters [Scott et al. 2011] is another myopic acquisition
function that aims to maximise the new predicted optimal performance after one new sample.
Different from EGO, KG accounts for covariance when judging the value of a sample and can be
directly applied to noisy functions.

Conventional simulation optimisation approaches, including BO, assume that the auxiliary in-
put parameters are known, when often this is not the case. Therefore, investigating the effect of
input uncertainty has recently gained significant interest in the simulation community (for a gen-
eral introduction, see, e.g., the work of Lam et al. [2016] and Corlu et al. [2020]). Currently, there
are several proposed methods to assess the input uncertainty and its impact on the mean value
of the simulation output. Barton and Schruben [2001] build an empirical distribution given histor-
ical data and sample from it using direct and bootstrap techniques to assess the impact of input
uncertainty. Yi and Xie [2017] further improve by proposing a budget allocation approach that
can efficiently employ the simulation resource. Chick [2001] uses a Bayesian posterior distribu-
tion to estimate the input distributions for the same purpose. Cheng and Holloand [1997] estimate
the simulation output variability by decomposing it into random variations within the simulation
model (simulation uncertainty) and input parameter uncertainty. Barton et al. [2014] replace the
expensive simulation by metamodel-assisted bootstrapping using a stochastic Kriging response
surface to estimate the impact of input uncertainty on the simulation output. Similarly, Yuan and
Ng [2020] propose a Gaussian process based Bayesian approach to simultaneously calibrate the
simulation model and select the most influential set of uncertain parameters.

The aforementioned methods assume the data to estimate input uncertainty is given. In the case
when additional input data can be collected, Freimer and Schruben [2002] examine the question
how much data to collect, and for what parameters. They suggest to run an initial experimental
design with the endpoints of the confidence interval of the input uncertainty. Then they can use
ANOVA to see whether the parameter effects are significant. If they are, then more information
should be collected to reduce the uncertainty of the parameter. For a simplified setting only con-
sidering main effects, Song and Nelson [2015] propose a more efficient method that approximates
the impact of input uncertainty on the overall variance in the simulation output with the help
of a mean-variance metamodel depending on the means and variances of the input distributions.
Similar work has also considered the trade-off between running more simulation evaluations or
to collect more field data to reduce overall output performance uncertainty. Ng and Chick [2006]
propose a method based on asymptotic approximations to quantify the impact of data collection.
Then, a budget may be allocated in a way that minimises the overall performance uncertainty
given sampling allocation constraints. Yuan and Ng [2013], similar to Yuan and Ng [2020], pro-
pose a Gaussian process based Bayesian approach to study how to allocate sampling resources by
directly comparing the impact of each sampling decision using the integrated mean squared pre-
diction error. Liu and Zhou [2020] suggest a method for quantifying the input uncertainty from
streaming data that arrives sequentially over time.
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When input uncertainty estimation is considered in the optimisation process, Song et al. [2015]
explore the impact of model risk due to input uncertainty on indifference zone (IZ) ranking and
selection. Wu and Zhou [2017] use ranking and selection in a two-stage allocation of finite budget,
where the first stage consists of estimating the input parameters, followed by the budget allocation
scheme to perform simulation runs in the second stage. Xiao and Gao [2018] consider taking the
input uncertainty into account, but the optimisation is focused on the worst-case performance
given a fixed finite number of input models. Zhou and Xie [2015] propose a formulation that
allows to adapt to one’s risk preference for the optimisation.

Pearce and Branke [2017] proposed extensions to EGO and KG with continuous parameters to
account for input uncertainty, essentially treating optimisation with input uncertainty as optimis-
ing an integrated expensive-to-evaluate function. Similar extensions to KG have been proposed by
Toscano-Palmerin and Frazier [2018], and to the Informational Approach to Global Optimization
(IAGO) algorithm by Wang et al. [2018].

Only very few papers consider the case where additional information can be gathered during
the optimisation process. Song and Shanbhag [2019] consider the case of optimisation under input
uncertainty when additional data is received from an uncontrolled streaming data process during
optimisation. They propose a stochastic approximation framework that prescribes the number of
gradient descent steps to be conducted in every timestep. For the discrete ranking and selection
problem, Wu and Zhou [2019] study the impact of input uncertainty assuming new data becomes
available in each iteration. They propose a technique that discards the oldest simulation outputs
in the estimation of the means, an elimination of designs according to its confidence bounds, and
a stopping criterion that has a guaranteed probability of correct selection.

In this work, we explicitly look at the trade-off between either running more simulations or
instead collecting more input parameter data, all with the aim of finding the optimal solution to a
simulator with accurate input parameters. Our methodology mainly builds on preliminary work
by Pearce and Branke [2017]. We consider the more general case where the algorithm is allowed
to choose between external data and simulation data, and provide a theoretical analysis as well as
an empirical evaluation on multiple test problems.

3 PROBLEM FORMULATION

For simulation data, we assume solutions are given by vectors in a solution space, x ∈ X ⊂ RD .
The simulator may have multiple inputs for different purposes, and we refer to the concatenated
vector as parameters in parameter space, a ∈ A ⊂ RJ . The simulator is an arbitrary stochastic black
box function we denote as

f : X ×A→ R,
which takes as arguments a solution and parameters and returns a noisy scalar valued performance

y = θ (x ,a) + ϵ , where ϵ is independent and identically distributed as N(0,σ 2
ϵ ). Finally, the expec-

tation of noisy performance is referred to as the expected output denoted θ (x ,a) = E[f (x ,a)].
For parameter data collection, we let N be the number of parameter data sources indexed by

s ∈ S = {1, . . . ,N }. Querying a data source s returns a parameter data point r ∼ P[r |a∗, s], where
a∗ is the true parameter vector. Note that N may or may not equal parameter dimension J , as
one data source may inform several input parameters (e.g., mean and variance in the newsvendor
example in the following). If we denote m as the number of data samples collected so far, and r i

the i-th value observed from the parameter data source si ∈ S , then Rm = {(s, r )1, . . . , (s, r )m } is
the set ofm queried data pairs. Therefore, a∗ may be inferred using the likelihood of the data

m∏
i=1

P[r i |a, si ]. (1)
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Fig. 1. The expected output θ (x ,a) with true parameter a* and optimal solution x∗. The goal is to learn

x∗ = arg maxθ (x ,a∗), which requires learning both the true expected output θ (x ,a) and the true parameter

a∗ to be able to optimise the objective maxx θ (x ,a∗).

The likelihood is defined by the application at hand, and therefore we assume it is given and
may be used by any algorithm. For the goal of optimisation, both simulation triplets (x ,a,y) and
parameter data pairs (s, r ) must be collected to infer both θ (x ,a) and a*, respectively. The objective
function we want to optimise is the expected output given the true input parameter, θ (x ,a∗), and
the aim is thus to identify

x∗ = arg max
x

θ (x ,a∗).

Figure 1 illustrates an example.
There is a budget of B units that can be spent either by choosing (x ,a) and calling f (x ,a)

costing cf , or by choosing s ∈ {1, . . . ,N } and querying P[r |a∗, s] costing cs ∈ {c1, . . . , cN }. After
consuming the budget, a solution xr is returned to the user and its quality is determined by the
difference in true performance between xr and the best solution x∗, or opportunity cost (OC),

OC (xr ) = θ (x∗,a∗) − θ (xr ,a
∗). (2)

For example, in Section 5 we consider the newsvendor problem. A newsvendor aims to max-
imise profit by choosing the optimal number of newspapers to stock, x ∈ {0, 1, 2, . . .} under uncer-
tain demand r ∼ Normal(a∗) where the true parameter, a*, is composed by the mean demand for
newspapers, Γ ∈ R+, and demand variance, σ 2

r . Both parameters are unknown and significantly
affect the optimal number of newspapers to stock. We have a stochastic simulator to evaluate any
chosen stock level with any set demand, f (x , r ), which costs cf = $1 to run. We also have ac-
cess to N = 1 data source, that can be queried for cs = $1 to obtain demand sales data for a
past day, to infer the true parameters a∗ = [Γ,σ 2

r ]. During optimisation, we have a budget of
B = $100 and we can collect either more simulator data, y = f (x , r ), or more past sales data, r ,
to find to true optimal stock level, x∗, that maximises expected profit for the true demand level,
maxx E[f (x ,a∗)] = maxx θ (x ,a∗). Note that the costs cs and cf describe the relative cost incurred
by running additional simulations or collecting additional input data, respectively, and they may
correspond to time, money, computational power or other forms of resources required. In some
cases, both might be monetary and measured in the same units—for example, if simulations are run
on the cloud and input data is collected via a crowdsourcing platform, each would have a known
monetary cost. In many other cases, the relative cost has to be set by a domain expert.
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4 THE BICO ALGORITHM

We propose BICO, which automatically decides whether to conduct additional simulation
experiments to find better solutions or to collect additional parameter data to reduce
parameter uncertainty. In Sections 4.1 and 4.2, we describe the statistical models for infer-
ring the expected output θ (x ,a) and true parameters a∗, respectively. Section 4.3 derives the
general VoI procedure, and Sections 4.5 and 4.6 apply this to value collecting simulation and
collecting parameter data, respectively. At each iteration, the action is simply determined by what
has the highest value. Together, the modelling and automated value based data collection form
the BICO algorithm summarised as Algorithm 1 in Section 4.7. We then prove properties about
BICO behaviour in Section 4.8.

4.1 Statistical Model for the Expected Simulator Output

Let us denote the n-th simulation point by (x ,a)n , performance by yn = f (xn ,an ) and the set
of points up to n as Fn = {(x ,a,y)1, . . . , (x ,a,y)n }. For convenience, we define the concate-

nated simulator arguments X̃n = {(x ,a)1, . . . , (x ,a)n } with x̃ = (x ,a) and vector of outputs Yn =

(y1, . . . ,yn ). Then, we propose to use a Gaussian process to model θ (x ,a).
A Gaussian process is defined by a mean function μ0 (x̃ ) : X ×A→ R and a covariance function

k0 (x̃ , x̃ ′) : (X × A) × (X × A) → R. Given the simulator dataset Fn , predictions of the expected
output θ (x ,a) at new locations (x ,a) are given by

E[θ (x ,a) |Fn] = μn (x ,a)

= μ0 (x ,a) + k0 ((x ,a), X̃n ) (k0 (X̃n , X̃n ) + Iσϵ )−1 (Yn − μ0 (X̃n )),
(3)

Cov [θ (x ,a),θ (x ′,a′) |Fn] = kn ((x ,a), (x ′,a′))

= k0 ((x ,a), (x ′,a′)) − k0 ((x ,a), X̃n ) (k0 (X̃n , X̃n ) + Iσϵ )−1k0 (X̃n , (x ′,a′)).
(4)

This model is also referred to as Kriging with a nugget effect [Yin et al. 2011] or stochastic Krig-
ing with (constant, diagonal) intrinsic uncertainty. Although it may be used for the general het-
eroscedastic noise case (e.g., [Ankenman et al. 2008]), we only consider homogeneous noise in
this article. The prior mean μ0 (x ,a) is typically set to μ0 (x ,a) = 0 and the k0 (x̃ , x̃ ′) allows the user
to encode known properties of the expected output θ (x ,a) such as smoothness and periodicity. In
Section 5, we use the popular squared exponential kernel that assumes θ (x ,a) is a smooth function
such that nearby (x ,a) have similar outputs while widely separated points have unrelated outputs,

k0 ((x ,a), (x ′,a′)) = σ 2
0 exp �� | |(x ,a) − (x ′,a′) | |2

2l2
X A

�� , (5)

where σ0 ≥ 0 and lX A > 0 are hyper-parameters estimated from the data F n by maximum mar-
ginal likelihood described in the appendix. Further details can be found in the work of Rasmussen
and Williams [2006].

Note that we use a Gaussian process to model the output over the space X ×A. Durrande et al.
[2012] show that the number of data points required by a Gaussian process increases exponentially
with the dimension of the input space. Therefore, this approach may not work for a high number
of uncertain parameters or dimensions of the solution space.

4.2 Statistical Model for the True Parameters

We use a Bayesian approach to estimate the true parameters a*. The sources s1, . . . , sm ∈ S are
deterministically chosen by the algorithm and the observed r 1, . . . , rm are each independently
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Fig. 2. Surface θ (x ,a) sliced by the unknown true

parameter a∗ (red) and uncertainty distribution

P[a |Rm] (blue) over the possible input values given.

Fig. 3. True expected output defined using true

parameter a∗ (red) and estimated performance using

the parameter distribution P[a |Rm].

generated from each corresponding source and have a likelihood given by Equation (1). To supple-
ment data with expert knowledge, we can combine this with a prior distribution P[a] resulting in
a posterior distribution

P[a |Rm] ∝ P[a]

m∏
i=1

P[r i |a, si ].

By assuming a convenient and intuitive prior distribution, the posterior distribution P[a |Rm] can
be computed analytically and updated as new sources are queried. In practice, prior information
may be modelled based on historical data on the distribution of parameter values, data from experi-
ments done prior to the one being undertaken, or in case of no prior information, a non-informative
prior such as Jeffrey’s prior can be used. Using conjugate priors facilitates closed-form posterior
distributions which increases sampling efficiency.

In this work, we assume a uniform prior P[a] over the box-constrained space A thereby restrict-
ing a∗ to realistic values. In our experiments in Section 5, we work with Gaussian distributed
data P[r |a∗, s], therefore the posterior P[a |Rm] is a truncated Gaussian which is analytically
tractable. Figure 2 shows we can evaluate the true expected output by taking a slice through the
surface θ (x ,a = a∗). However, we can only estimate a distribution P[a |Rm] through collected
data.

4.3 Action Space

At any iteration t =m+n, the algorithm can choose a simulation point (x ,a) ∈ X ×A and observe
y = f (x ,a), or it may choose a parameter data source s ∈ S = {1, . . . ,N } and observe r ∼ P[r |a∗, s].
Therefore, the set of actions available to the algorithm is {X × A, S }. In the following, we follow
the VoI procedure to derive the expected realised benefit of performing a given action (i.e., an
acquisition function over the action set). The algorithm, in each iteration, then selects the action
with the largest value.

4.4 Predicted Performance

Firstly, we consider the output at the end of executing the algorithm. After exhausting the budget
B, the algorithm must return a recommended solution xr to the user. The true value of any given
solution x is the expected output of the perfect simulator, the objective, θ (x ,a∗). However, both
θ (x ,a) and a∗ are unknown, hence we need to make two approximations. Firstly, approximate
θ (x ,a) with the Gaussian process prediction μn (x ,a). Secondly, replace the fixed point a∗ with the
posterior P[a |Rm]. Thus, the best estimate of the true quality of solution x , θ (x ,a∗), given the data
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so far F n ,Rm is denoted as G (x ; Rm ,F n ) and given by

G (x ; Rm ,F n ) = Ea

[
E[θ (x ,a) |F n]

���Rm
]
=

∫
A

μn (x ,a)P[a |Rm]da. (6)

Then, the best solution to recommend, xr , is the solution that maximises the model’s current pre-
diction of true output

xr (Rm ,F n ) = arg max
x

G (x ; Rm ,F n ). (7)

By using the preceding xr , the corresponding predicted true output is the maximum ofG (·) which
we denote as

G∗ (Rm ,F n ) = max
x

G (x ; Rm ,F n ). (8)

We use G∗ (Rm ,F n ) as the measure of value or quality of the data we currently have. A VoI pro-
cedure quantifies the value of an action by computing the one-step look-ahead future expectation
of this value and performing the action with maximum value.

The difference between using the true parameter a∗ and the parameter distribution can be seen
in Figure 3. The predicted solution quality G (x ) with the recommended solution xr and true qual-
ity θ (x ,a∗) with true best solution x∗ may differ substantially. Simulation data helps to improve
μn (x ,a) to converge towards θ (x ,a). However, even with full simulator information, μn (x ,a) =
θ (x ,a), the predicted outputG (x ) must marginalise over a by Equation (6) which is still imperfect
and xr � x∗.

We next derive the VoI of performing any action. This is computed by assuming an action
is taken and considering the hypothetical predicted performance at the next timestep, either
G∗ (Rm+1,F n ) or G∗ (Rm ,F n+1).

4.5 VoI for Simulation Data

If a simulation point (x ,a,y)n+1 were to be collected thereby augmenting Fn+1 = F n ∪
{(x ,a,y)n+1}, then the updated predicted performance would beG (Rm ,F n+1). At time t =m +n,
given the next simulation point (x ,a)n+1 and before collecting the new performance yn+1, we may
compute the one-step look-ahead incremental increase in predicted performance which is the VoI
of taking the action (x ,a)n+1,

VoI((x ,a); Rm ,F n ) = Eyn+1

[
G∗ (Rm ,F n+1) −G∗ (Rm ,F n )

cf

����(x ,a)n+1 = (x ,a),Fn

]
, (9)

where cf is the cost of running a simulation. Assuming the datasets are given, VoI((x ,a)n+1; ·) :
X × A → R is a scalar valued function over the domain of the simulator. It returns the expected
increase in the peak of the predicted simulator output,G (x ; Rm ,F n ), per unit cost of running the
simulator.

To evaluate VoI((x ,a)n+1; ), we next derive the predictive distribution ofG (x ; Rm ,F n+1) given
data at time t = n +m. This requires an updating formula for the posterior mean μn+1 (x ,a). By
setting the posterior mean and covariance after n samples, μn (x ,a), kn ((x ,a), (x ′,a′)), as the prior
mean and covariance in Equation (3), we can write the formula for the mean after the (n + 1)-th
sample as

μn+1 (x ,a) = μn (x ,a) +
kn ((x ,a), (x ,a)n+1)

kn ((x ,a)n+1, (x ,a)n+1) + σ 2
ϵ

(yn+1 − μn (x ,a)), (10)
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where (x ,a)n+1 is a given argument to VoI(·) and yn+1 is unknown. The Gaussian process model
provides a predictive distribution for the new function value

yn+1 ∼ N (μn (x ,a)n+1,kn ((x ,a)n+1, (x ,a)n+1) + σ 2
ϵ ). (11)

By writing yn+1 = μn (x ,a) +
√
kn ((x ,a)n+1, (x ,a)n+1) + σ 2

ϵZ with Z ∼ N (0, 1), substituting into
Equation (10) and simplifying leads to the following parametrisation of μn+1 (x ,a),

μn+1 (x ,a) = μn (x ,a) + σ̃n ((x ,a), (x ,a)n+1)Z , (12)

where σ̃n ((x ,a), (x ,a)n+1) is a deterministic function parametrised by (x ,a)n+1 that is the additive
update to the posterior mean scaled by Z

σ̃n ((x ,a), (x ,a)n+1) =
kn ((x ,a), (x ,a)n+1)√

kn ((x ,a)n+1, (x ,a)n+1) + σ 2
ϵ

. (13)

Therefore, the predictive distribution of the new posterior mean is given by

μn+1 (x ,a) ∼ N (μn (x ,a), σ̃n ((x ,a), (x ,a)n+1)2), (14)

and the predicted performance after a new sample (x ,a)n+1 can then be written as

G (x ; Rm ,F n+1) =

∫
A

μn+1 (x ,a)P[a |Rm]da, (15)

=

∫
A

μn (x ,a)P[a |Rm]da + Z

∫
A

σ̃n ((x ,a), (x ,a)n+1)P[a |Rm]da, (16)

= G (x ; Rm ,F n ) + Z Σ̃n (x , (x ,a)n+1), (17)

where Σ̃n (x , (x ,a)n+1) is the final term in Equation (16). The predictive distribution of a new ob-
servation after evaluating (x ,a)n+1 is then given by

G (x ; Rm ,F n+1) ∼ N (G (x ; Rm ,F n ), Σ̃n (x , (x ,a)n+1)2). (18)

The new sample at (x ,a)n+1 causes the posterior mean to change at other solutions and inputs
according to the additive update Z Σ̃n (x , (x ,a)n+1). So, replacing the derived G (x ,Rm ,F n+1)
(Equation (18)) in the VoI of acquiring a new simulation point (x ,a) (Equation (9)) results in

VoI((x ,a)n+1; Rm ,Fn ) =
1

cf
Eyn+1

[
G∗ (Rm ,Fn+1) −G∗ (Rm ,Fn )

����(x ,a)n+1
]
, (19)

=
1

cf
EZ

[
max

x

{
G (x ; Rm ,Fn ) + Z Σ̃n (x , (x ,a)n+1)

}
−G∗ (Rm ,Fn )

����(x ,a)n+1
]
.

(20)

The final expectation is identical to KG under input uncertainty [Pearce and Branke 2017; Toscano-
Palmerin and Frazier 2018]. Following these works, the expectation can be evaluated by traditional
KG for continuous parameters using Gaussian processes [Frazier et al. 2009] where the maximisa-
tion over x ∈ X embedded within the expectation and within G∗ (·) are replaced with a maximi-
sation over a disretised set x ∈ XD ⊂ X . With this replacement, the expectation over Z can be
evaluated analytically. The VoI((x ,a); Rm ,F n ) acquisition function may be optimised over the
joint solution-input space to find the most beneficial (x ,a)n+1 and corresponding max VoI(·).

The preceding VoI contains an integration over a, G (x ,Rm ,F n ), which must be approximated
through Monte Carlo (special cases can be done analytically, although we do not consider them
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Fig. 4. In all plots, small points represent function evaluations. (a) Expected output θ (x ,a), and (d) shows

G (x ) using the expected outputθ (x ,a) and uniform parameter distribution. After 10 initial samples, (b) shows

the surface μ10 (x ,a) and (e)G (x ,R0,F 10). After 90 samples allocated by Equation (20), (c) shows the surface

given by μ100 (x ,a), and (f) shows G100 (x ,R0,F 100).

here). We use NA sampled parameter values, ak ∼ P[a |Rm] for k ∈ 1, . . . ,NA, and we may write

G (x ,Rm ,F n ) ≈ Ĝ (x ,Rm ,F n ) =
1

NA

NA∑
k=1

μn (x ,ak ),

with the same expression for Σ̃n (x , (x ,a)n+1).
Figure 4 shows KG with input uncertainty [Pearce and Branke 2017]. At the start of sampling,

initial samples are allocated by Latin hypercube sampling, the Gaussian process prediction of
θ (x ,a) and G (x ; R0,F 10) after the initial allocation are shown in Figure 4(b) and (e) assuming
a uniform distribution for P[a]. Then a budget of B samples is allocated sequentially according to
Equation (20) (Figure 4(c)). Once all samples have been allocated, based on the learned Gaussian
process model, the design x with the largest predicted performance, according to Equation (7), is
recommended to the user (Figure 4(f)).

4.6 VoI of Data from External Sources

Instead of collecting simulation data, we may collect data from a parameter data source rm+1 ∼
P[r |a∗, sm+1] thereby augmenting the corresponding dataset Rm+1 = Rm ∪ {(s, r )m+1}. This also
generates an improvement in predicted performance that we refer to as the VoI of collecting addi-
tional external data, given by

VoI(s; Rm ,F n ) = Er m+1

[
G∗ (Rm+1,F n ) −G∗ (Rm ,F n )

cs

���sm+1 = s,Rm

]
, (21)

with cs being the cost of sampling external data source s . VoI(s; Rm ,F n ) is computed using
Monte Carlo with samples rm+1 generated from to the predictive density P[rm+1 |sm+1,Rm]. Each
sample leads to a realisation of G∗ (Rm+1,F n ). The difference between the average of future
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G∗ (Rm+1,F n ) realisations and the current G∗ (Rm ,F n ) yields a non-negative quantity that can
be used to assess the benefit of sampling a parameter data source s .

However, naively using Monte Carlo integration can lead to high variance and expensive compu-
tation. We instead recommend to use importance sampling, common random numbers and control
variates as follows.

We use the same Monte Carlo set AMC = {a1, . . . ,aNA
} as used to compute the benefit of simu-

lation data VoI((x ,a); ·), thereby the two types of actions, simulator (x ,a) and external data s , are
compared with common random numbers. Given a hypothetical (s, r )m+1 (where sm+1 is chosen
and rm+1 is a sample), the one-step look-ahead expected performance function G (x ,Rm+1,F n )
may be estimated using AMC with importance sampling

G (x ,Rm+1,F n ) ≈ Ĝ (x ,Rm+1,F n ) =
1

NA

NA∑
k=1

μn (x ,ak )
P[ak |Rm+1]

P[ak |Rm]
,

and the corresponding Ĝ∗ (Rm+1,F n ) is found by a Nelder-Mead optimiser over x ∈ X . Thus, to
evaluate VoI(s; ·), given a source sm+1 = s , we generate Nr samples rm+1

l
∼ P[rm+1 |sm+1; Rm]

for l ∈ {1, . . .Nr }. Each sample rl produces a realisation of a future dataset, Rm+1
l

, a future

posterior density, P[a |Rm+1
l

], and importance weights,
P[ak |Rm+1

l
]

P[ak |Rm ] . The weights define a function

Ĝ (x ,Rm+1
l
,F n ) with peak Ĝ∗ (Rm+1

l
,F n ). The VoI of collecting external data from source s is the

average of new peaks minus the current peak

VoI(s; Rm ,F n ) =
1

cs

���� 1

NR

NR∑
l=1

Ĝ∗ (Rm+1
l ,F n )�� − Ĝ∗ (Rm ,F n )�� . (22)

See Figure 5 (centre left, centre right) illustrating the densities and the one-step look-ahead update.

Finally, we may further reduce variance by modifying Ĝ∗ (Rm ,F n ) to act as a control variate.
This is achieved by decomposing the distribution over a as follows:

P[a |Rm] =

∫
r m+1

P[a |Rm+1]P[rm+1 |sm+1,Rm]︸���������������������������������︷︷���������������������������������︸
P[a,r m+1 |sm+1,Rm ]

drm+1, (23)

which may be substituted into the expression for G∗ (Rm ,F n ) and after simplification yields

G∗ (Rm ,F n ) = Er m+1

[
G
(
xm,n

r , Rm+1,F n
) ���sm+1,Rm

]
,

where the argument xm,n
r = xr (Rm ,F n ) is the current optimal solution. The final expression for

the VoI of external data is therefore

VoI(s; Rm ,F n ) =
1

cs

1

NR

Nr∑
l=1

[
max

x
Ĝ (x ,Rm+1

l ,F n ) − Ĝ (xm,n
r ,Rm+1

l ,F n )
]
.

Note that the argument within the summation is strictly non-negative, in contrast with
Equation (22) whose summation terms may be positive or negative. See Figure 5 (right) illustrating

realisations of the summation argument Ĝ (x ,Rm+1
l
,F n ) − Ĝ (xm,n

r ,Rm+1
l
,F n ) whose peaks are

all non-negative.
For the remainder of this work, we will use the shorthand VoIt (·) = VoI(·; Rm ,F n ) to refer to

the VoI at iterationm+n = t . We note that extending the method to account for multiple parameter
data sources is simply a case of computing VoIt (·) for each individual parameter data source s ∈ S
and taking the maximum.

ACM Transactions on Modeling and Computer Simulation, Vol. 32, No. 3, Article 17. Publication date: July 2022.



17:12 J. Ungredda et al.

Fig. 5. Left: The simulation metamodel given 10 points. Centre left: Black shows P[a |R10], and green shows

four realisations of P[a |R11
l

]. Centre right: Black shows G (x ,R10,F 10), and green shows the four realisa-

tions of G (x ,R11
l
,F 10). Right: Using the control variate G (x10,10

r ,R11
l
,F 10) reduces variance and enforces

non-negativity.

Fig. 6. Iterations of BICO only collecting external data, the simulation metamodel μn (x ,a) (left) is unchanged

and only the input parameter uncertainty, P[a |Rm], is updated. Remaining top plots give P[a |R5], P[a |R10]

and P[a |R30]. Bottom plots show the corresponding G (x ,R5,F 10), G (x ,R10,F 10), G (x ,R30,F 10) which

are found by integrating the simulation metamodel over the (vertical) a ∈ A dimension with the correspond-

ing P[a |·]. Dashed lines represent the confidence interval.

As external input parameter (s, r ) pairs are collected, the distribution over input parameter a is
updated, in turn updating G (x ,Rm ,F n ). Figure 6 illustrates the model updating with increasing
external data.

4.7 The Overall Algorithm

BICO is outlined in Algorithm 1. On line 1, the algorithm begins by fitting a Gaussian process
model to a set of initial simulation points Fn using a Latin hypercube (LHS) ‘space-filling’ ex-
perimental design. In addition, we compute the posterior parameter distribution for any collected
parameter data source points Rm . After initialisation, the algorithm continues in an optimisation
loop until the budget B has been consumed. During each iteration, we compute the VoI of col-
lecting a new simulation point (xn+1,an+1,yn+1) according to VoIt ((x ,a)) (line 3) and the VoI of
collecting a new sample for each one of the parameter data sources s ∈ S VoIt (s ) (line 4). Fig-
ure 7(a) shows a Gaussian process simulation metamodel with the input parameter distribution.
The corresponding VoI is displayed in Figure 7(b). The multi-modal surface shows the value of
collecting a simulation point at VoIt (x ,a) while the value of collecting external data, VoIt (s ),
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Fig. 7. (a) The two inferred posterior distributions within BICO. The surface shows the Gaussian process

simulation metamodel, μn (x ,a), after nine simulation points while the gray bell curve shows the estimated

input parameter distribution, P[a |Rm] after 10 samples. (b) The VoI used within BICO. The multi-modal

surface shows the value of collecting a simulation point at VoIt (x ,a) while the value of collecting external

data, VoIt (s ), is overlayed as a constant plane. The optimal action is to collect simulation datayn+1 = f (30, 0).

is overlayed as a constant plane. The action that gives greatest value determines whether we
collect a sample (x ,a,y)n+1 or rm+1. In the first case, the Gaussian process model is updated
according to the new solution sample (lines 6–9), and for the second case, the posterior
parameter distribution is updated according to the new parameter data source sample (lines 11–14).
At the end of B samples, the design x with the largest predicted performanceG (x ) is recommended
to the user (line 15). The source code can be downloaded from https://github.com/JuanUngredda/
Input-Uncertainty.

4.8 Theoretical Properties of BICO

We first outline the proof of asymptotic consistency of BICO with an infinite sampling budget
and leave full details to the appendix. We specifically show that if X is discrete and A ⊂ Rd is
continuous, the BICO algorithm will find the true optimal solution x∗ as well as the true parameters
a∗ in the limit. This builds on a previous proof by Toscano-Palmerin and Frazier [2018] that shows
consistency for input uncertainty and collection of simulation points. In the proof, we assume a
discrete solution space which simplifies matters significantly. However, we would like to note that
the discretisation may be arbitrarily fine.

Proposition 3 shows that if a single action is performed infinitely often, then the value of per-
forming the action vanishes. This implies the value of all actions eventually vanishes.

Proposition 3. Let (x ′,a′) ∈ X × A and suppose that f (x ′,a′) is repeatedly observed, then

VoIt ((x ′,a′)) → 0 as t → ∞. Let s ′ ∈ S and suppose that P[r |a∗, s ′] is repeatedly observed, then

VoIt (s ′) → 0 as t → ∞.

Furthermore, if the VoI of all actions is zero, this implies that x∗ is known and P[a |Rm] is a
point-mass distribution on a*.
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ALGORITHM 1: BICO algorithm. The algorithm starts with an initialization phase to collect preliminary

data. Then it proceeds to a sequential phase, dynamically determining to collect simulation data to improve

the metamodel or external data to reduce input parameter uncertainty.

Input: simulator f : X ×A→ R with cost cf , external data sources P[r |s,a∗] : {s1, . . . , sN } → r with costs

{c1, . . . , cN }, external data likelihood functions P[r |a, s], sampling budget B

0. Collect initial simulation data, Fn , and fit a Gaussian process, μn (x ,a)

1. Collect initial external data, Rm , and compute a posterior distribution, P[a |Rm]

2. While b < B do:

3. Compute (x ,a)n+1 = arg max(x,a)∈X×A VoIt ((x ,a)).

4. Compute sm+1 = arg maxs ∈S VoIt (s )

5. If max(x,a)∈X×A VoIt ((x ,a)) > maxs ∈S VoIt (s ):

6. Collect from simulator, yn+1 = f ((x ,a)n+1)

7. Update simulation dataset, Fn+1 ← Fn ∪ {(x ,a,y)n+1}
8. Fit a Gaussian process to Fn+1

9. Update budget consumed, b ← b + cf ,n ← n + 1

10. Else:

11. Collect from parameter data source , rm+1 ∼ P[r |a∗, sm+1]

12. Update external dataset, Rm+1 ← Rm ∪ {(s, r )m+1}
13. Compute a posterior distribution P[a |Rm+1]

14. Update budget consumed, b ← b + csm+1 ,m ←m + 1

15. Return: Recommend solution, xr = arg maxx G (x ; Rm ,Fn )

Proposition 4. Given a squared exponential kernel with finite length scale, la < ∞. If VoI((x ,a);
Rm ,F n ) = 0 and VoI(s; Rm ,F n ) = 0 for all (x ,a) and s , then arg maxx G (x ; Rm ,F∞) = arg maxx∫

A
θ (x ,a)P[a |Rm]da and P[a |Rm] = δa=a∗ .

We next prove that BICO will not sample from irrelevant information sources. If an input param-
eter a does not influence the simulator outcome, then an algorithm should not waste budget trying
collecting external data to reduce its uncertainty. If we use a squared exponential kernel, then the
length scales for each input parameter dimension a ∈ A determine the relevance of that parameter.
A long length scale suggests the model is less sensitive to change in such input parameter, hence
learning more about such a parameter will have less impact and an algorithm should not sample
such data. Remark 1 proves that BICO behaves exactly in this way and will not sample irrelevant
external information sources.

Remark 1. Let (x ,a) ∈ X × A where A ⊂ R and assume a single information source N = 1. Let
the Gaussian process model use a squared exponential kernel,

k0 ((x ,a) (x ,a)′) = σ 2
f e
− 1

2

(
(x−x

′)2
lx

+
(a−a

′ )2
la

)
. (24)

Then VoIt (s,Rm ,F n ) → 0 as la → ∞ for anym and n.

5 RESULTS AND DISCUSSION

To demonstrate the performance of BICO, we compare it against a two-stage algorithm which first
collects m data source samples to update the input posterior distribution. Then, in stage two the
remaining budget is dedicated to sequentially sample from the simulator. If there are two or more
input distributions, we equally distribute the initial portion, m, over the different inputs. Since in
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Fig. 8. Results for Gaussian process generated test functions. Mean and 95% confidence interval for the OC

plotted in a semi-log scale for B = 100. (a) With one-dimensional solution space and one parameter. (b) With

one-dimensional solution space and two parameters. In each experiment, each parameter has one parameter

data source. Each confidence interval is generated using 20 replications.

practice it is not possible to know in advance how many data source samplesm should be collected,
we will show results for different settings of m. The best setting of m can then be regarded as an
ideal case which cannot be obtained for real problems.

For simplicity and without loss of generality, in all figures, we consider the same acquisition
cost, cs = cf = 1. In practice, the only requirement is that cs and cf are comparable measures of
‘cost’ for data collection. They are application specific and often depend on the user’s preferences.
Results for BICO are shown in orange, with OC error bars (see Equation (2)) as vertical lines and
the average number of samples and its error bar as horizontal lines.

5.1 Gaussian Process Generated Experiments

We consider a test function with solution space X = [0, 100] and either one parameter in A =
[0, 100] or two parameters with A = [0, 100]2 generated from a Gaussian process with a squared
exponential kernel with known hyper-parameters lX A = 10, σ 2

0 = 1 , σ 2
ϵ = (0.1)2. The total

budget in both cases was set to B = 100. To model input uncertainty, we assume a uniform prior
P[a] = 1

100 and normally distributed data source samples for each source with unknown mean and

known variance σ 2
s = 10 for all data sources.

Results are shown in semi-log scale in Figure 8, on the left for the case of a single parameter and
on the right the case of two parameters with equal variance. The horizontal axis shows the number
of samplesm allocated to the parameter data source to update P[a |Rm], whereas the vertical axis
shows the confidence interval of the OC after the budget B has been completely allocated. In both
cases, BICO balances the sampling allocation effort in a sensible way, finding comparable results
to taking the optimal initial number of parameter data sources samples. Somewhat surprisingly, it
seems more effort should be allocated to external data collection if there is only one data source.
A possible reason for this is that in case of two data sources, the space over which the simulator
is defined is higher, requiring more simulation effort to build a credible Gaussian process model.

Figure 9 shows the case of two parameter data sources with different variances. More specifically,
we consider two sources S = {1, 2} with σ 2

s=1 = 5 and σ 2
s=2 = 10, where the horizontal and vertical

axis show the number of samples allocated to parameter data source 1 and parameter data source
2, respectively. In both cases, for BICO (orange) and the fixed initial allocation (dotted yellow box),
the best budget allocation is located around 13 samples for parameter data source 1 and 18 samples
for parameter data source 2. Since all length scales are equal for this experiment, differences in the
number of samples collected by BICO are mainly due to the difference in variance of the parameter

ACM Transactions on Modeling and Computer Simulation, Vol. 32, No. 3, Article 17. Publication date: July 2022.



17:16 J. Ungredda et al.

Fig. 9. Grid plot: Number of samples allocated to the parameter data source 1 (horizontal axis) and the

parameter data source 2 (vertical axis), where the BICO sample allocation (orange) is represented by a confi-

dence interval for source 1 (horizontal) and source 2 (vertical). Colours inside the grid show the mean OC for

the fixed initial proportion approach according to the colour bar for each allocation combination. The best

OC for the fixed initial allocation is shown in yellow (dotted line). Colour bar: OC value in a log scale where

BICO (orange) is represented as a vertical confidence interval. BICO and each allocation combination are

averaged over 20 replications.

data sources, and so as expected, it is best to allocate more samples to the data source with higher
variance. The colour bar in Figure 9 compares the confidence interval of the OC for BICO with the
benchmark.

5.2 Newsvendor Simulation Optimisation

Here, we consider the problem of a newsvendor, who must decide how many copies of the day’s
paper to stock in the face of uncertain demand and where any unsold copies will be worthless at
the end of the day. The solution x is the number of newspapers ordered and demand is a random

variable r ∼ Normal(Γ,σ 2
r ) with true mean Γ = 40 andσ 2

r =
√

10. In this experiment, we assume the
solution space is continuous. Both parameters, expected demand Γ and variance σ 2

r , are unknown
in the simulation and must be estimated through real data. The profit, f (x , r ), can be calculated as

f (x , r ) = p min(x , r ) − lx ,

where p is the selling price and l the production/purchase cost of a newspaper, with p > l . For
this experiment, we set p = 5, l = 3 and x ∈ [0, 100]. We use an initial allocation of 10 samples to
train the Gaussian process model from an overall budget of B = 100. There is only one data source,
from which the unknown mean and variance has to be estimated. To update input uncertainty, we
assume a non-informative Gamma prior, which is a conjugate prior of the normal distribution so
P[Γ,σ 2

r |Rm] can be sampled hierarchically using Γ |σ 2
r ,R

m ∼ Normal(r̄ ,σ 2
r /m) and 1/σ 2

r |Rm ∼
Gamma((m − 1)/2, s2 (m − 1)/2). P[rm+1 |Rm] is distributed as Student t distribution tm−1 (r̄ , s2 (1+
1/m)), where r̄ and s2 are the sample mean and unbiased sample variance of the collected data
Rm .

Figure 10 shows that BICO (orange) again manages to allocate the budget B close to an optimal
fixed initial number of samples (blue).

ACM Transactions on Modeling and Computer Simulation, Vol. 32, No. 3, Article 17. Publication date: July 2022.



Bayesian Optimisation vs. Input Uncertainty Reduction 17:17

Fig. 10. Newsvendor with unknown mean and variance of demand. Mean and 95% confidence interval of

OC where B = 100. Blue points: At the start, m input parameter samples are collected to estimate a*, and

thereafter standard KG for (fixed) input uncertainty is applied to allocate the remaining budget to simula-

tion points. There is no automatic trade-off between data types; m must be user specified. Orange: BICO

algorithm, the horizontal confidence interval showing the range of sample sizes m chosen by BICO. BICO

automatically collects an appropriate number of data source samples. Each confidence interval is generated

using 25 replications.

5.3 Production Line Optimisation

We consider a production line of a manufacturing plant from the Simulation Optimisation Library
[Pasupathy and Henderson 2011]. The production line presents three service queues of finite ca-
pacity in sequence. Parts leaving after service are immediately transferred to the next queue. In
case the next machine is busy, and with full service queue, the previous machine must stop work-
ing until the next machine is free since there is no room in the next queue. Parts arrive to queue
1 according to a Poisson process with true rate λ = 0.5, and the service time for each machine
is exponentially distributed with rate ξi , i = 1, 2, 3. The arrival rate is an unknown parameter in
the simulation and must be estimated through real-data acquisition. The decision variables to be

optimised are the (continuous) service times of the machines, �ξT = [ξ1, ξ2, ξ3] ∈ [0, 2]3.
The goal is to maximise the revenue function,

R (�ξ , λ) =
10, 000ρ (�ξ , λ)

1 + �cT �ξ
− 400,

over a time horizon of t = 1, 000 timesteps. In the preceding revenue function, ρ (�ξ , λ) denotes the
throughput of the production line and is defined as the time-averaged number of parts leaving the
last queue, which is a function of the service times and the unknown rate λ. �cT = [1, 5, 9] are cost
factors related to the chosen service times of the machines.

To update input uncertainty distribution, we assume a non-informative Gamma prior, which is
a conjugate prior of the Gamma distribution. So P[λ |Rm] can be sampled using a Gamma distribu-
tion with shape 1/2+m and rate r̄m. P[rm+1 |Rm] is distributed as a Pareto density with minimum
value parameter 0, shape parameter 1/2 +m and scale parameter r̄m, where r̄ is the sample mean
of the collected data Rm . Figure 11 shows an adequate allocation for both methods that coincides
with around 25% of the overall budget (B = 100).

6 CONCLUSION

In this article, we proposed a novel unified algorithm for simulation optimisation under input
uncertainty. In each iteration, it automatically determines whether to perform more simulation
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Fig. 11. Production line optimisation experiment plot with mean and 95% confidence interval for the OC

plotted in a semi-log scale for B = 100. Each confidence interval is generated using 50 replications.

experiments or instead collect more real-world data to reduce the uncertainty about the input
parameters. A comparison with an algorithm that allocates a fixed, pre-determined budget m of
the available budget to external data collection demonstrated that BICO’s allocation mechanism
is very powerful and results in a solution performance and fraction of budget allocated to external
data collection similar to what can be achieved with the optimal allocation, which is not known
in practice.

There are some interesting extensions of this work with concrete practical applications which
are possible to pursue. One example is the extension to multi-objective optimisation, where the
uncertainty about a user’s preferences over objectives can be reduced by querying the user. Further
computational efficiency may be attained by transfer learning to carry over information from one
stage to the next and speed up the optimisation since the problems solved at every stage are very
similar. Lastly, the scalability of BICO with respect to parameter and solution space dimensionality
should be investigated.

A APPENDICES

A.1 Monte Carlo Convergence of External Data Source

In this section, we present convergence rates for the Monte Carlo approximation to estimate
VoI(s; Rm ,F n ). Finding an overall error convergence rate, ϕNR,NA

, involves two applications of

Monte Carlo integration. Firstly, the inner expectation over a to approximateG∗ (·) ≈ Ĝ∗ (·) and the
outer expectation over rm+1 to approximate the next timestep. We define the error as the difference
between the (theoretical) truth and the Monte Carlo integrated approximation,

ϕNR ,NA
= E

r m+1

[
G∗ (Rm+1, F n ) −G∗ (Rm, F n )���s, Rm

]
− 1

NR

1

NA

NR∑
l=1

[ NA∑
k=1

[
μn (xm+1,n

r , ak ) − μn (xm,n
r , ak )

] ]
.

We may decompose ϕNR,NA
into the approximation errors from each Monte Carlo approxima-

tion. We may consider the differences from the expression with only one Monte Carlo expression

Er m+1

⎡⎢⎢⎢⎢⎣ 1

NA

NA∑
k=1

[
μn (xm+1,n

r ,ak ) − μn (xm,n
r ,ak )

]⎤⎥⎥⎥⎥⎦ .
For example, we may write ϕNA

that represents error dependent only on the inner integration
over a given by

ϕNA
= Er m+1

[
G∗ (Rm+1,Fn ) −G∗ (Rm ,Fn )���s,Rm

]
− Er m+1

⎡⎢⎢⎢⎢⎢⎣
1

NA

NA∑
k=1

[
μn (xm+1,n

r ,ak ) − μn (xm,n
r ,ak )

]⎤⎥⎥⎥⎥⎥⎦ .
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Fig. 12. At a given iteration of BICO, we fix NA samples as follows. (a) VoI(s; Rm ,Fn ) mean and error

bars with 95% confidence interval over number of predictive distribution samples NR . (b) The Monte Carlo

standard error over number of predictive distribution samples NR .

We may then also write ϕNR
that represents error dependent only on the outer integration over

rm+1 given by

ϕNR
= Er m+1

⎡⎢⎢⎢⎢⎣ 1

NA

NA∑
k=1

[
μn (xm+1,n

r ,ak ) − μn (xm,n
r ,ak )

]⎤⎥⎥⎥⎥⎦ − 1

NR

1

NA

NR∑
l=1

[ NA∑
k=1

[
μn (xm+1,n

r ,ak ) − μn (xm,n
r ,ak )

] ]
.

And finally note that we have ϕNR,NA
= ϕNR

+ ϕNA
as the intermediate term cancels out.

Each sum is composed of independent and identically distributed random samples, thus the error

rates for ϕNA
is O (N −1/2

A
) and ϕNR

is O (N −1/2
R

), which constitutes an overall error rate ϕNA,NR
of

O (N −1/2
A
+ N −1/2

R
). In some cases, G∗ (·) may be derived in closed form—that is, when normally

distributed P[a |Rm] is considered [Le and Branke 2020]—thus ϕNA
= 0.

We computed all Monte Carlo estimations with a fixed size NA = 150 and varying NR on the
newsvendor simulation optimisation problem (see Section 5.2). Mean and standard error are pre-
sented in Figure 12.

A.2 Computational Complexity of BICO

We start with the complexity of Gaussian process model fitting, μn (x , s ), kn ((x ,a), (x ′,a′)). Each
iteration of BICO starts by fitting the Gaussian process hyper-parameters by maximising the mar-
ginal likelihood. Each marginal likelihood evaluation requires computing the inverse of the covari-

ance matrix k0 (X̃n , X̃n )+ Iσ costingO (n3). By caching this inverted matrix, all following posterior
mean and variance computations are reduced to O (n) and O (n2), respectively.

Next we must compute the VoI for simulation data VoIt (x ,a). This can be explicitly computed
using a finite discretisation on the space X × A. We discretise X and A by generating NX Latin
hypercube samples, XMC , for X and NA posterior samples AMC ∼ P[a |Rm] for A. Therefore, the
size of the finite discretisation of the product space X ×A is NANX . However, we also include the
candidate simulation point (x ,a)n+1 from the optimiser which enlarges the number of mean and

covariance computations to NA (NX +1). Since X̃MC = XMC ×AMC is fixed during the optimisation

runs, the posterior mean over these points, μn (X̃MC ), may be computed once and stored. Posterior
covariance computations may be reduced as follows:

kn (X̃MC ; (x ,a)n+1) = k0 (X̃MC ; (x ,a)n+1) − k0 (X̃MC ; X̃n ) (k0 (X̃n , X̃n ) + Iσ )−1k0 (X̃n ; (x ,a)n+1).

Notice that k0 (X̃MC ; X̃n ) (k0 (X̃n , X̃n ) + Iσ )−1 does not change with the new sample (x ,a)n+1

and need only be computed once and stored. Therefore, we reduce the mean and covariance
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computation to O (NANXn) for the points NANX . The remaining points ((xn+1,AMC )) result in
a posterior mean and covariance cost computation of O (NAn

2). We then apply the algorithm de-
veloped in the work of Scott et al. [2011] that takes O ((NX + 1)loд(NX + 1)) to computeVoI (x ,a).
Finally, letK be the number of times VoI(x ,a·) is called during optimisation of VoI(x ,a·). Therefore,
the overall optimisation cost results in O (K (NANXn + NAn

2 + NX loд(NX ))).
Finally, we must compute the VoI of data from external sources VoI(s; ·). Let NR be the number

of predictive distribution samples from P[rm+1 |sm+1; Rm]. For each sample we perform continu-
ous optimisation over x ∈ X , each optimisation call requires computing the posterior mean at
each (x ,AMC ) locations costing O (NAn). This computation is repeated for each of the K opti-
miser iterations for each of the NR samples for each of the N sources. Thus, the resulting cost is
O (KNNANRn).

The computational time of a BICO iteration in the production line optimisation problem (see
Section. 5.3) with n = 50, NA = 200 and NR = 200 is approximately 50 seconds, from which 20
seconds are dedicated to evaluate VoI(s). Time was measured on a computer with an Intel Core
CPU i7-10610U 1.80-GHz processor with 16 GB of RAM and running Ubuntu 20.04.1, and using
Python as the programming language.

A.3 BICO Asymptotic Consistency

In this section, we show that ifX is discrete andA ⊂ Rd is continuous, then when given an infinite
sampling budget B, or t → ∞, the BICO algorithm will find the true optimal solution x∗ as well as
the true parameters a*.

The proof is composed of three parts. Firstly, Proposition 1 shows that the VoI(·; Rm ,F n ) for
any action is non-negative. Secondly, for any single action that is performed infinitely often, the
value of performing the action again vanishes limt→∞ VoI(·; Rm ,F n ) → 0. Together, these im-
ply that any action repeated infinitely often results in that action becoming a minimum of the
VoI(·) function. As BICO performs the action that is a maximum of VoI(·), the value of all actions
eventually vanishes. Thirdly, if the value of all actions is zero, this implies that x* is known.

The first proposition shows that the VoI(·; Rm ,F n ) is non-negative, meaning that there is al-
ways a benefit in collecting more data. These results follow naturally from Jensen’s inequality.

Proposition 1. VoIt (·; Rm ,F n ) ≥ 0 for all (x ,a) ∈ X ×A and all s ∈ {1, . . . ,N }.

Proof of Proposition 1. The proof for both types of action follows from the tower property
and Jensen’s inequality. We first prove the result for simulation data VoIt ((x ,a)) ≥ 0.

Eyn+1

[
max

x
G (x ; Rm ,F n+1)���(x ,a),F n

]
≥ max

x
Eyn+1

[
G (x ; Rm ,F n+1)���(x ,a),Fn

]
(25)

= max
x
Eyn+1 [Ea[μn+1 (x ,a)]] (26)

= max
x
Ea[Eyn+1 [μn+1 (x ,a)]] (27)

= max
x
Ea[μn (x ,a)] (28)

= max
x

G (x ; F n ,Rm ) (29)

Therefore, VoIt (x ,a; ·) = Eyn+1

[
maxx G (x ; Rm ,F n+1)���(x ,a),Fn

]
−maxx G (x ; F n ,Rm ) ≥ 0 and

there is always some benefit in measuring simulation data. For external data, we may adopt a
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similar argument to show VoIt (s ) ≥ 0.

Er m+1

[
max

x
G (x ; Rm+1,F n )���s,Rm

]
≥ max

x
Er m+1

[
G (x ; Rm+1,F n )���s,Rm

]
(30)

= max
x

∫
r m+1

∫
A

μn (x ,a)P[a |Rm+1]P[rm+1 |Rm]dadrm+1

(31)

= max
x

∫
A

μn (x ,a)

∫
r m+1

P[a |Rm+1]P[rm+1 |Rm]drm+1da

(32)

= max
x

∫
A

μn (x ,a)P[a |Rm]da (33)

= max
x

G (x ; Rm ,F n ) (34)

�

For the second part of the proof, we show that if an action is performed infinitely often, the value
of performing the action tends to zero. The information gain in repeating an action decreases and
eventually becomes a minimum of the VoI t (·) function. Again, this is shown in for each type of
action.

We first present required preliminary results regarding the limit of collecting infinite simulation
data (Proposition 2) or infinite external data (Theorem 1).

Proposition 2. Let x ,x ′ ∈ X ; a,a′ ∈ A, and n ∈ N. The limits of the series (μn (x ,a)) and

(V n ((x ,a), (x ′,a′))) (shown in the following) exist.

μn (x ,a) = En[f (x ,a)] (35)

V n ((x ,a), (x ′,a′)) = En[f (x ,a) · f (x ′,a′)] (36)

= kn ((x ,a), (x ′,a′)) + μn (x ,a) · μn (x ′,a′) (37)

Denote their limits by μ∞ (x ,a) and V∞ = ((x ,a), (x ′,a′)) respectively.

lim
n→∞

μn (x ,a) = μ∞ (x ,a) (38)

lim
n→∞

V n ((x ,a), (x ′,a′)) = V∞ ((x ,a), (x ′,a′)) (39)

If (x ′,a′) is sampled infinitely often, then limn→∞V
n ((x ,a), (x ′,a′)) = μ∞ (x ,a) · μ∞ (x ′,a′) holds

almost surely.

Proof of Proposition 2. Cinlar [2011] states in Proposition 2.8 that any sequence of condi-
tional expectations of an integrable random variable under an increasing convex function is a
uniformly integrable martingale. Thus, both sequences converge almost surely to their respec-
tive limit. If (x ′,a′) is sampled infinitely often, then its posterior variance goes to zero, and

En

[
f (x ,a) · f (x ′,a′)

]
→ μ∞ (x ,a) · μ∞ (x ′,a′). �

Theorem 1. If a is defined on a compact set and C is a neighbourhood of a* with nonzero prior

probability, then P(a ∈ C |Rm ) → 1 as m → ∞, where a* is the value of C that minimises the

Kullback-Leibler divergence.

A proof is given in Appendix B in the work of Gelman et al. [2014] and is omitted here for
brevity.
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Proposition 3. Let (x ′,a′) ∈ X × A and suppose that f (x ′,a′) is repeatedly observed, then

VoIt ((x ′,a′)) → 0 as t → ∞. Let s ∈ S and suppose that P[r |a∗, s] is repeatedly observed, then

VoIt (s ) → 0 as t → ∞.

Proof of Proposition 3. First assume (x ′,a′) was observed infinitely often, then consider the
Gaussian process one-step look-ahead update

lim
n→∞

Σ̃n (x ; (x ′,a′)) = lim
n→∞

∫
A

σ̃n ((x ,a); (x ,a)′)P[a |Rm]da. (40)

Since the integral is independent of n, we may proceed as follows:

lim
n→∞

∫
A

σ̃n ((x ,a); (x ′,a′))P[a |Rm]da =

∫
A

lim
n→∞

σ̃n ((x ,a); (x ,a)′)P[a |Rm]da, (41)

=

∫
A

lim
n→∞

kn ((x ,a); (x ,a)′)√
kn ((x ,a)′; (x ,a)′) + σ 2

ϵ

P[a |Rm]da, (42)

= 0. (43)

Where the last line is by noting the limit of the denominator limn→∞ k
n ((x ,a), (x ′,a′)) = 0 (see

Pearce et al. [2019], Lemma 11), and therefore Σ∞ (x ; (x ,a)′) = 0. Thus, we may write as follows:

lim
n→∞

VoI ((x ,a); Fn ,Rm ) =

∫ ∞
−∞ ϕ (Z ) maxx ′′ {G (x ; F∞Rm ) +

=0︷������������︸︸������������︷
Σ∞ (x ; (x ′,a′)) Z } −maxx ′′ {G (x ; F∞Rm )}

cf
,

(44)

and the integral over Z equates to unity and the denominator terms cancel out. Therefore,

lim
n→∞

VoI ((x ,a); F n ,Rm ) = 0.

For external data, we rely on Theorem 1 that states that the parameter distribution P[a |Rm]
converges to δa=a∗ asm increases.

For the case when s is observed infinitely often, as shown in Theorem. 1, P[a |Rm] → δa=a∗ as
m → ∞, therefore

G (x ; R∞,F n ) =

∫
A

μn (x ,a)δa=a∗da, (45)

= μn (x ,a∗). (46)

Replacing G (x ; R∞,F n ) in VoI(s; R∞,F n ) results in

lim
m

VoI(s; Rm ,F n ) = lim
m
Er m+1

[
max

x
G (x ; Rm+1,F n )���s,Rm

]
−max

x
G (x ; Rm ,F n ), (47)

= Er∞

[
max

x
μn (x ,a∗)���s,R∞]

−max
x

μn (x ,a∗), (48)

= max
x

μn (x ,a∗) −max
x

μn (x ,a∗), (49)

= 0. (50)

�

Proposition 4. Let la < ∞. If VoI((x ,a); Rm ,F n ) = 0 and VoI(s; Rm ,F n ) = 0 for all (x ,a) and

s , then arg maxx ∈X G (x ; Rm ,F∞) = arg maxx ∈X
∫

A
θ (x ,a)P[a |Rm]da and P[a |Rm] = δa=a∗ .

Proof of Proposition 4. Firstly, let us consider the case when VoI((x ,a); Rm ,F n ) = 0 for

all (x ,a). By Proposition 2, limn→∞ k̃
n ((x ,a), (x ,a)′) = k̃∞ ((x ,a), (x ,a)′) almost surely for all x ,

x ′ ∈ X and a,a′ ∈ A. If the posterior variance k̃∞ ((x ,a), (x ,a)) = 0 for all (x ,a) ∈ X ×A, then we
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know the global optimiser. Now, let us define (x̂ , â) ∈ X̂ = {x ,a ∈ X × A|k̃∞ ((x ,a), (x ,a)) > 0)},
then

Σ̃∞ (x ; (x̂ , â)) =

∫
A
k∞ ((x ,a), (x̂ , â))P[a |Rm]da√

k∞ ((x̂ , â), (x̂ , â)) + σ 2
ϵ

> 0.

Let us first assume Σ̃∞ (x1; (x̂ , â)) � Σ̃∞ (x2; (x̂ , â)) for x1,x2 ∈ X . Then,VoI ((x ,a); RmF∞) must
be strictly positive since for a value of Z0 ∈ Z , G (x1; RmF∞) + Σ̃∞ (x1; (x̂ , â)) > G (x2; RmF∞) +
Σ̃∞ (x2; (x̂ , â)) for Z > Z0 and vice versa. Therefore, Σ̃∞ (x ′′′; (x̂ , â)) = Σ̃∞ (x ′′; (x̂ , â)) must hold for
any x ′′′,x ′′ ∈ X for VoI ((x ,a)) = 0, which results in∫

A
k∞ ((x ′′′,a), (x̂ , â))P[a |Rm]da√

k∞ ((x̂ , â), (x̂ , â)) + σ 2
ϵ

=

∫
A
k∞ ((x ′′,a), (x̂ , â))P[a |Rm]da√

k∞ ((x̂ , â), (x̂ , â)) + σ 2
ϵ

.

Since σ 2
ϵ > 0, ∫

A

[
k∞ ((x ′′′,a), (x̂ , â)) − k∞ ((x ′′,a), (x̂ , â))

]
P[a |Rm]da = 0.

So Σ̃∞ (x ; (x̂ , â)) does not change for all x ∈ X . Moreover, by integrating with respect to â, as

K̃ (x ; x̂ ) =
∫

Σ̃∞ (x ′′; (x̂ , â))dâ the resulting kernel does not vary with respect to x , it must be pos-

itive semidefinite, and symmetric. Therefore, by symmetry, the resulting K̃ (x ; x̂ ) does not change

with respect to x̂ and it must follow that the covariance matrix K̃ (x ; x̂ ) is proportional to an all-

ones matrix and the optimiser is known arдmaxx ∈XG (x ) = arдmaxx ∈X
∫

A
θ (x ,a)P[a |Rm]da but

not necessarily its true value.
Let us now consider the case when VoI(s; Rm ,F n ) = 0 for all s as

0 = VoI(s; Rm ,F n ) = Er m+1

[
max

x

∫
a′
μn (x ,a′)P[a′ |Rm+1]da′

]
−max

x

∫
a

μn (x ,a)P[a |Rm]da. (51)

Denote the current recommended solution as x t
r = arg maxx

∫
a′
μn (x ,a)P[a |Rm]da, and the

VoIt (s ) can be rewritten as

0 = Er m+1

[
max

x

∫
a′
μn (x ,a′)P[a′ |Rm+1]da′

]
−
∫

a

μn (x t
r ,a)P[a |Rm]da, (52)

= Er m+1

[
max

x

∫
a′
μn (x ,a′)P[a′ |Rm+1]da′ −

∫
a

μn (x t
r ,a)P[a |Rm+1]da

]
, (53)

= Er m+1

[
max

x

∫
a′
μn (x ,a′) − μn (x t

r ,a
′)P[a′ |Rm+1]da′

]
. (54)

Note that the random variable within the expectation is non-negative for all rm+1. Since the expec-
tation of the non-negative random variable is zero, every realisation of the random variable must
be zero, for all rm+1

max
x

∫
a′
μn (x ,a′) − μn (x t

r ,a)P[a′ |Rm+1]da′ = 0. (55)

If we denote the maximiser (which is a function of rm+1) as x t+1
r (rm+1), the preceding equality may

be written as ∫
a′
μn (x t+1

r (rm+1),a′) − μn (x t
r ,a)P[a′ |Rm+1]da′ = 0. (56)

This equality holds if

μn (x t+1
r (rm+1),a′) = μn (x t

r ,a) (57)
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or equivalently x t+1
r (rm+1) = x t

r . Thus, the new maximiser does not depend on rm+1.

max
x

∫
a′
μn (x ,a′)P[a′ |Rm+1]da′ = max

x

∫
a′
μn (x ,a′)P[a′ |Rm]da′ (58)

for all rm+1 and for all μn . The left-hand side also does not depend on rm+1 and therefore
P[a′ |Rm+1] does not depend on rm+1 and we have that P[a′ |Rm+1] = P[a′ |Rm].

Under some regularity conditions, as m → ∞, the posterior distribution of a approaches nor-
mality with mean a∗ and variance (mJ (a∗))−1, where a∗ is the value that minimises the Kullback-
Leibler divergence and J is the Fisher information. Therefore, if the variance is reduced at a rate of
m−1, the equality for the posterior distribution atm andm + 1 is reached only when the posterior
distribution is concentrated around the true parameter as P[a′ |Rm] = δa=a∗ , where δa=â is a Dirac
delta function on the condition a = a*. �

Therefore, BICO converges to finding the true parameter a* and true optimal solution x* as t

increases. However, Section 4.3 in the work of Gelman et al. [2004] describes when the regularity
conditions may not hold, including underspecified models, non-identified parameters, cases in
which the number of parameters grows with the sample size, unbounded likelihood functions,
improper posterior distributions, or convergence to a boundary of the parameter space.

A.4 BICO Relevance Determination

In this section, we show that if we use a squared exponential kernel, then the hyper-parameters de-
termine the relevance of parameter data sources. Therefore, non-relevant parameter data sources
will not be sampled by BICO.

Remark 1. Assuming a squared exponential kernel,

k0 ((x ,a) (x ,a)′) = σ 2
f e
− 1

2

(
(x−x

′)2
lx

+
(a−a

′ )2
la

)
, (59)

and without loss of generality, a parameter a ∈ A, and a solution x ∈ X . Then, VoIt (s,Rm ,F n ) = 0
as la → ∞ for any m and n.

Proof of Remark 1. As la → ∞ the posterior mean μn (x ,a) only depends on the solution x ,

lim
la→∞

k0 ((x ,a) (x ,a)′) = σ 2
f e
− 1

2

(
(x−x

′)2
lx

)
= k0 (x ;x ′). (60)

Let us denote X̃n
x = {x1, . . . ,xn } and assume μ0 (x ,a) = 0, then it follows from (60),

μn (x ,a) = −k0 ((x ,a), X̃n ) (k0 (X̃n , X̃n ) + Iσ )−1Yn , (61)

= −k0 (x , X̃n
x ) (k0 (X̃n

x , X̃
n
x ) + Iσ )−1Yn , (62)

= μn (x ). (63)

Since μn does not depend on a, G (x ; Rm ,F n ) = μn (x ), and the VoI t (·) for s ∈ {1, . . . ,N } is

VoIt (·) = VoI(s; Rm ,F n ), (64)

= Er m+1

[
max

x
G (x ; Rm+1,F n )���s,Rm

]
−max

x
G (x ; Rm ,F n ), (65)

= Er m+1

[
max

x
μn (x )���s,Rm

]
−max

x
μn (x ), (66)

= max
x

μn (x ) −max
x

μn (x ), (67)

= 0. (68)

�
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Therefore, external data is never collected if a is not ‘influential’ on the predicted simulation
output μn (x ,a).
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