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Abstract 

Clean and safe water is vital for our lives and public health. In recent decades, population growth, agriculture, industries, and 
climate change have worsened freshwater resource depletion and clean water pollution. Several studies have focused on water 
pollutions risk simulation and prediction in the presence of pollution hotspots. However, the increase and complexity of big data 
caused by uncertain water quality parameters led to a new efficient algorithm to trace the most accurate pollution hotspots. 
Therefore, this study proposes to offer different algorithms and comparative studies using Machine Learning (ML) algorithms. 
Ten different most widely used algorithms, including unsupervised and supervised ML, will be employed to categorize the 
pollution hotspots for the Terengganu River. Besides, we also validate algorithms’ accuracies by improving and changing each 
parameter in ML algorithms. Our results list all the accurate and efficient ML algorithms for the classification of river pollutions. 
These results help to facilitate river prediction using efficient and accurate algorithms in various water quality scenario.       
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1. Introduction 

Groundwater, which includes rivers, streams, dams, lakes, reservoirs, creeks, and wetlands, is an important 
resource providing the main source of clean and safe drinking water; to domestic households, industries and 
agriculture [1]. Despite its greatest importance in maintaining human life and other habitats, including aquatic plants 
and wildlife, ground water is immensely faced to pollution coming from uninhibited human activities of 
industrialization and agriculture. Based on the United Nations World Water Development Report 2015, developing 
countries left almost 90% of untreated sewage that goes straight into water sources [2]. Meanwhile, the statistics 
from United Nations Educational, Scientific, and Cultural Organization (UNESCO) showed that around 300 to 400 
megatons of waste coming from the industry had been discharged into the water source bodies each year [3].  

Malaysia is one of the countries also faced with the high uncontrolled treatment of sewage or discharge from 
manufacturing and agro-based industries [4]. Ammoniacal Nitrogen (NH3-N), Biochemical Oxygen Demand (BOD), 
and Suspended Solids (SS) are the most crucial parameter that causes river pollution. Effluent and ineffective 
sewage treatment coming from manufacturing and agro-based industries can contribute to high BOD. Meanwhile, 
uncontrollable domestic sewage and animal farming can contribute to high NH3-N. Besides, improper land clearing 
activities and earthworks can contribute to high SS [4]. Continuous water quality statistics on these river pollution 
hotspots are needed to categorize which areas are polluted and must be treated. Several previous studies have 
discussed on water quality assessment in Malaysia [5, 6, 7]. However, the increase and complexity of big data 
caused by uncertain water quality parameters led to a new efficient algorithm to trace the pollution hotspots 

Therefore, this study proposes to offer different algorithms and comparative studies using unsupervised and 
supervised Machine Learning (ML) algorithms to efficiently trace the river pollution hotspots. Several studies have 
discussed water quality with ML algorithms [8, 9, 10]. However, as far from our knowledge, no detailed 
comparative study on the application of ML in river quality assessment datasets is found in the literature. Thus, ten 
different most widely used algorithms including unsupervised and supervised ML which are Hierarchical Clustering 
(HC), K-Nearest Neighbors (KNN), Support Vector Classifiers (SVC), Logistic Regression (LR), Linear 
Discriminant Analysis (LDA), Naïve Beyes (NB), Multi-Layer Perceptron (MLP), Random Forest (RF), Decision 
Tree (DT) and K-Means (KM) will be employed to categorize the pollution hotspots in Terengganu River which is 
one of the river parts in Malaysia. Besides, we also validate algorithms’ accuracies by improving and changing each 
parameter in ML algorithms. This process is crucial in every ML algorithm for avoiding underfitting and overfitting 
[11]. Thus, the algorithms will make overfit and underfit to spurious designs and patterns in the training data and not 
generalize [12]. Overall, this paper is discussed on the detail comparison and evaluation for each ML algorithm 
based on the river pollutions classification’s accuracy. Highest accuracy is retrieved from the preprocessing 
strategies and tuning processes on each algorithm.  

2. Materials and Methods 

This paper focuses on two types of ML, which are unsupervised and supervised. In unsupervised learning 
includes HC, the goal is to identify group patterns within the dataset. Supervised learning has KNN, SVC, LR, LDA, 
NB, MLP, RF, DT, and KM; the goal is to predict the polluted hotspots in the Terengganu River. We divided 
Terengganu River data into two official parts: training and validation. A training dataset is used to calibrate the 
algorithm’s parameters, and a validation dataset is utilized to evaluate algorithm performance [13]. We began by 
assessing an unsupervised ML method, HC, a given number of clusters are estimated by iteratively assigning data 
points from datasets. After the exact number of clusters are retrieved, supervised ML methods, KNN, SVC, LR, 
LDA, NB, MLP, RF, DT, and KM, are performed to predict water pollution hotspots. 

2.1. Datasets 

The datasets used to present measurement of water pollutions in Terengganu River, Malaysia [14].  These 
datasets contain 405 samples with 27 features for five different levels of water pollutions. Five different levels water 
pollutions include Very Clean, Clean, Slightly Polluted, Polluted, and Highly Polluted. All data are in positive and 
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negative integers where each value represents the characteristics of the water pollutions level that allow the learning 
process from unsupervised and supervised ML algorithms. 

2.2. Preparing for Datasets 

For the experiments, the information is divided into two parts. The first part matches to the features (X); includes 
all the water quality parameters, and the second part matches to the classes (Y); includes all the river pollution 
hotspots. The features compose a matrix of size pxq, and the classes are a vector of size qx1, where p is the number 
of river pollution hotspots area and q is the number of water quality parameters. Hidden patterns in the datasets are 
discovered using unsupervised ML to retrieve the most suitable number of pollutions’ clusters. Next, using the same 
405 river pollution datasets, we subdivided them into two subsets: 80% training and 20% validation. The training 
dataset is utilized to calibrate the supervised ML algorithm, and the validation dataset is used to hyperparameter 
tuning and measure the accuracy. K-fold validation with k=10 is set for the hyperparameters tuning to calculate the 
accuracy for each algorithm. Two preprocessing techniques were used to improve the statistical significance which 
are Standard Scaler and Principal Component Analysis (PCA). Based on the original datasets, we created them into 
four different types of datasets for the training and validation of each supervised ML algorithm; 1) original data 
stated as Raw; 2) performed a scaling process; Standard Scaler; 3) applied PCA using Raw data to reduce data 
dimensionality with a retained variance of 80%; 4) applied both Standard Scaler and PCA. The combination of these 
preprocessing datasets is to retrieve the best performance for each algorithm. 

2.3. Significance Tests 

A significance test is performed to determine the differences in accuracy between each algorithm and then decide 
whether it is significant. The difference between the observed and expected accuracies is computed under a normal 
distribution. The accuracy can be calculated using the number of correct test predictions x and the number of test 
instances N, as follows: 
 

       (1) 

      (2) 
 

      (3) 
 
These significant tests allow to determine the accuracy of each algorithm after the tuning process and decide 
whether the necessary of the parameter tuning and the relevancy of each supervised ML algorithm are necessary.  

2.4. Tools 

The preprocessing using Standard Scaler and PCA transformation were executed using preprocessing modules and 
decomposition from Python scikit-learns [15]. All unsupervised and supervised algorithms were executed using 
scikit-learn libraries from the Python programming language. Matplotlib libraries were used to create the images 
[16]. 

3. Clustering Unsupervised ML 

Hierarchical Clustering (HC) is an algorithm to group patterns in the dataset. It is essential to visualize the group 
patterns before evaluating the classification of the water pollution hotspots. HC with Ward’s method is created to 
retrieve the most balanced group patterns using the Raw and PCA dataset. Fig. 1 shows there are 5 major group 
patterns at distance=0.2. Meanwhile, Fig. 2 shows number of river pollution hotspots for each group patterns 
composition.   

4 Author name / Procedia Computer Science 00 (2019) 000–000 

 
 
 
 
 
 
 
 
 
 
 
 

 

Fig. 1. HC using Ward’s method 

 

 

Fig. 2. Cluster composition 

Based on Fig. 1 and Fig. 2 results, Table 1 listed all the river pollution hotspots for each class. These classes 
include classes from the original datasets, classes that contributed from Raw data, and classes that were retrieved by 
preprocessed data with PCA.  
 

      Table 1. Number of river pollution area for each class. 

Class Original datasets Raw datasets Preprocessed datasets with PCA 

0 8 10 15 

1 330 278 305 

2 63 97 68 

3 3 18 15 

4 1 2 2 

 
Table 1 shows there are some slights different in terms of the number of river pollution hotspots, between 

original datasets, Raw datasets, and preprocessed datasets with PCA. However, it is still in line with the five 
different levels of water pollution coming from the original datasets: Very Clean, Clean, Slightly Polluted, Polluted 
and Highly Polluted. These slights are different, maybe coming from the different types of datasets.  
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4. Predicting using Supervised ML 

Parameters are used to tune the algorithms before running supervised ML. Four different parameters for four 
different algorithms are defined in Table 2 to discover the best behaviour using four types of datasets (Raw, 
Standard Scaler, PCA, and Standard Scaler+PCA). The best hyperparameters were calculated using different 
parameters and determined which dataset could be the most appropriate. 

     Table 2. Tuning parameters. 

Tuning parameters Detail description 

Neighbors Number of neighbors 

C Penalty parameter C of the error term. 

Neurons Number of neurons in hidden layers.  

Clusters Number of clusters.  

KNN, SVC, MLP, and KN used the parameters stated in Table 2 to tune the algorithms. Meanwhile, LDA is set 
as parameter default, RF and DT are tuned based on the number of estimators with the minimum and maximum 
sample splits. All these algorithms were trained and validated using four types of datasets. Figure 3 plotted the 
accuracy values of the training and validation processes on all types of datasets. RF and DT were not plotted since 
more than one hyperparameter was tuned. Meanwhile, the accuracy results of each algorithm are listed in Table 3.  

     Table 3. Accuracy for each algorithm. 

Algorithm Types of the dataset Tuning parameters % Accuracy 

KNN Raw  Neighbors=4 83.95 

 Standard Scaler Neighbors=9 90.12 

 PCA Neighbors=6 85.19 

 Standard Scaler + PCA Neighbors=3 90.12 

SVC Raw  C=10 81.48 

 Standard Scaler C=10 83.95 

 PCA C=10 81.48 

 Standard Scaler + PCA C=10 83.95 

 LR Raw  C=0.1 83.95 

 Standard Scaler C=0.79 91.36 

 PCA C=0.1 79.01 

 Standard Scaler + PCA C=0.1 90.12 

LDA Raw  Default 91.36 

 Standard Scaler Default 90.12 

 PCA Default 83.95 

 Standard Scaler + PCA Default 91.36 

NB Raw  Default 37.04 

 Standard Scaler Default 80.25 

 PCA Default 84.95 

 Standard Scaler + PCA Default 77.78 

MLP Raw  Neurons=200 83.95 

 Standard Scaler Neurons=650 93.83 

 PCA Neurons=250 83.95 
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 Standard Scaler + PCA Neurons=50 88.89 

RF Raw  n_estimators=81, max_depth=91, min_samples_split=10, 
max_features=27 

98.77 

 Standard Scaler n_estimators=91, max_depth=81, min_samples_split=10, 
max_features=27 

98.78 

 PCA n_estimators=91, max_depth=21, min_samples_split=10, 
max_features=27 

86.42 

 Standard Scaler + PCA n_estimators=61, max_depth=11, min_samples_split=10, 
max_features=27 

91.36 

DT Raw  max_depth=71, min_samples_split=10, max_features=27 96.29 

 Standard Scaler max_depth=51, min_samples_split=10, max_features=27 97.53 

 PCA max_depth=81, min_samples_split=10, max_features=27 83.95 

 Standard Scaler + PCA max_depth=51, min_samples_split=20, max_features=27 90.12 

 KM Raw  Clusters=16 83.02 

 Standard Scaler Clusters=3 92.90 

 PCA Clusters=15 82.72 

 Standard Scaler + PCA Clusters=3 92.90 

 
 
Our results prove that the various algorithms work better by preprocessing and tuning parameters differently. Our 

findings show that KNN, SVC, LR, NB, MLP, RF and KM yield the highest accuracy after using Standard Scaler 
preprocessing. However, LDA and DT work better using the Raw dataset. Meanwhile, KNN, SVC, LR, LDA, MLP, 
RF, DT, KM yield the highest accuracy in the Standard Scaler+PCA dataset. Only NB produces the highest 
accuracy in PCA only. Overall, we can conclude that Standard Scaler and Standard Scaler+PCA help to obtain the 
best accuracy results. Parameter and preprocessing scaling can improve the accuracy of the algorithm. 
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4. Predicting using Supervised ML 

Parameters are used to tune the algorithms before running supervised ML. Four different parameters for four 
different algorithms are defined in Table 2 to discover the best behaviour using four types of datasets (Raw, 
Standard Scaler, PCA, and Standard Scaler+PCA). The best hyperparameters were calculated using different 
parameters and determined which dataset could be the most appropriate. 

     Table 2. Tuning parameters. 

Tuning parameters Detail description 

Neighbors Number of neighbors 

C Penalty parameter C of the error term. 

Neurons Number of neurons in hidden layers.  

Clusters Number of clusters.  

KNN, SVC, MLP, and KN used the parameters stated in Table 2 to tune the algorithms. Meanwhile, LDA is set 
as parameter default, RF and DT are tuned based on the number of estimators with the minimum and maximum 
sample splits. All these algorithms were trained and validated using four types of datasets. Figure 3 plotted the 
accuracy values of the training and validation processes on all types of datasets. RF and DT were not plotted since 
more than one hyperparameter was tuned. Meanwhile, the accuracy results of each algorithm are listed in Table 3.  

     Table 3. Accuracy for each algorithm. 

Algorithm Types of the dataset Tuning parameters % Accuracy 

KNN Raw  Neighbors=4 83.95 

 Standard Scaler Neighbors=9 90.12 

 PCA Neighbors=6 85.19 

 Standard Scaler + PCA Neighbors=3 90.12 

SVC Raw  C=10 81.48 

 Standard Scaler C=10 83.95 

 PCA C=10 81.48 

 Standard Scaler + PCA C=10 83.95 

 LR Raw  C=0.1 83.95 

 Standard Scaler C=0.79 91.36 

 PCA C=0.1 79.01 

 Standard Scaler + PCA C=0.1 90.12 

LDA Raw  Default 91.36 

 Standard Scaler Default 90.12 

 PCA Default 83.95 

 Standard Scaler + PCA Default 91.36 

NB Raw  Default 37.04 

 Standard Scaler Default 80.25 

 PCA Default 84.95 

 Standard Scaler + PCA Default 77.78 

MLP Raw  Neurons=200 83.95 

 Standard Scaler Neurons=650 93.83 

 PCA Neurons=250 83.95 
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 Standard Scaler + PCA Neurons=50 88.89 

RF Raw  n_estimators=81, max_depth=91, min_samples_split=10, 
max_features=27 

98.77 

 Standard Scaler n_estimators=91, max_depth=81, min_samples_split=10, 
max_features=27 

98.78 

 PCA n_estimators=91, max_depth=21, min_samples_split=10, 
max_features=27 

86.42 

 Standard Scaler + PCA n_estimators=61, max_depth=11, min_samples_split=10, 
max_features=27 

91.36 

DT Raw  max_depth=71, min_samples_split=10, max_features=27 96.29 

 Standard Scaler max_depth=51, min_samples_split=10, max_features=27 97.53 

 PCA max_depth=81, min_samples_split=10, max_features=27 83.95 

 Standard Scaler + PCA max_depth=51, min_samples_split=20, max_features=27 90.12 

 KM Raw  Clusters=16 83.02 

 Standard Scaler Clusters=3 92.90 

 PCA Clusters=15 82.72 

 Standard Scaler + PCA Clusters=3 92.90 

 
 
Our results prove that the various algorithms work better by preprocessing and tuning parameters differently. Our 

findings show that KNN, SVC, LR, NB, MLP, RF and KM yield the highest accuracy after using Standard Scaler 
preprocessing. However, LDA and DT work better using the Raw dataset. Meanwhile, KNN, SVC, LR, LDA, MLP, 
RF, DT, KM yield the highest accuracy in the Standard Scaler+PCA dataset. Only NB produces the highest 
accuracy in PCA only. Overall, we can conclude that Standard Scaler and Standard Scaler+PCA help to obtain the 
best accuracy results. Parameter and preprocessing scaling can improve the accuracy of the algorithm. 
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Fig. 3. Comparison of training and validation accuracy between parameters using all data set for (A) KNN, (B) SVC, (C) LR, (D) MLP and (E) 
KM.  

Summarization of the result of the five best algorithms with the highest accuracy is listed in Table 4. Based on Table 
4, the best algorithms are RF, DT, MLP, LDA and LR, where these algorithms achieved high accuracy near to 
100%. All these algorithms used Standard Scaler datasets to retrieve the best accuracies.  

                          Table 4. The best algorithms 

Type of the datasets Algorithm % Accuracy 
Standard Scaler RF 98.78 
 DT 97.53 
 MLP 93.83 
 LDA 91.36 
 LR 91.36 

5. Conclusion 

Safe and clean groundwater is crucial in our daily lives, not only for our present lives but for future lives. Safe 
and clean groundwater is needed to sustain the public health, clean environments, and ecosystems. Therefore, early 
identification, robust prediction, and treatment are required to overcome the river pollution problems. Unsupervised 
and supervised ML algorithms are promising tools for the clustering and classifying uncertain and complex river 
pollution hotspots. Results show that obtained predictions with as high as 98.78% accuracies will allow 
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contributions to the discovery of accurate algorithms and river polluted hotspot areas for the early treatment and 
intervention.    
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Fig. 3. Comparison of training and validation accuracy between parameters using all data set for (A) KNN, (B) SVC, (C) LR, (D) MLP and (E) 
KM.  

Summarization of the result of the five best algorithms with the highest accuracy is listed in Table 4. Based on Table 
4, the best algorithms are RF, DT, MLP, LDA and LR, where these algorithms achieved high accuracy near to 
100%. All these algorithms used Standard Scaler datasets to retrieve the best accuracies.  

                          Table 4. The best algorithms 

Type of the datasets Algorithm % Accuracy 
Standard Scaler RF 98.78 
 DT 97.53 
 MLP 93.83 
 LDA 91.36 
 LR 91.36 

5. Conclusion 

Safe and clean groundwater is crucial in our daily lives, not only for our present lives but for future lives. Safe 
and clean groundwater is needed to sustain the public health, clean environments, and ecosystems. Therefore, early 
identification, robust prediction, and treatment are required to overcome the river pollution problems. Unsupervised 
and supervised ML algorithms are promising tools for the clustering and classifying uncertain and complex river 
pollution hotspots. Results show that obtained predictions with as high as 98.78% accuracies will allow 
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contributions to the discovery of accurate algorithms and river polluted hotspot areas for the early treatment and 
intervention.    
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