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Abstract

The application of artificial intelligence coupled with the growth in the availability of cost-effective 
low power computing platforms, has accelerated the adoption of on-farm technologies that support 
the decision making of farmers. An exemplar of the evolution is encapsulated by the development of 
activity monitors for dairy cattle, migrating from simple step counting devices designed to identify 
the onset of oestrus to systems that continuously monitor individual cattle and provide insights 
into the time spent eating, ruminating, calving and other key welfare events such as lameness 
and mastitis. The chapter illustrates how the use of digital technologies has brought benefit to the 
livestock farming industry, presenting the current state-of-the-art with emphasis on accentuating 
the potential for cloud based platforms to support the integration of multiple on-farm data streams, 
the foundation for the provision of a mix of data-driven animal-centric services that bring further 
benefits to the livestock community.

Keywords: agricultural engineering, precision livestock systems, decision support applications, 
internet-of-things (IoT), wireless sensor networks (WSNs), artificial intelligence (AI), machine 
learning (ML)

3.1 Introduction

The widescale use of digitally enabled devices such as heat detection collars, leg tags, ear tags and 
boluses (Afimilk, 2015; Fullwood, 2018; McGowan et al., 2007; National Milk Records, 2018; Roelofs 
and Van der Kooij, 2015; Wolfger et al., 2015) has revolutionised the dairy sector. Such devices 
are now in common usage. Building on this deployment using cloud hosted platforms to integrate 
multiple measurement streams offers the potential to improve the performance of individual 
measurement devices and create a platform to deliver a much broader range of services.

An illustration of the on-farm environment is shown in Figure 3.1. Information from a range of 
measurement devices for example cattle collars, milking station and feed wagon are communicated 
to a cloud hosted platform. Currently, these systems are vendor specific and are designed to operate 
in isolation with optional cloud hosting to facilitate access through channel, e.g. smart phone, for 
farm operatives. Cloud based implementations are reliant on robust internet access which in rural 
settings is highly variable.
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While value from each system can be identified, the approach falls short to fully address the 
requirements of the farmer, presenting challenges of mastering a range of custom interfaces and 
often requiring multiple data entries. To better serve the end-user, independent solution providers2,3 
are beginning to offer hosting services that address the needs of multi-vendor sensor integration. 
The effective integration of multiple data sources eliminates the need to master the operational 
features of multiple interfaces and is the foundation for developing richer insights within the farm 
environment – the basis of concepts encapsulated by Herdsman+.4 This chapter reviews the evolution 
of these sensor device and demonstrates the Herdsman+ approach which is predicated on mining 
data from multiple sources to derive better information and provide new services to the community.

3.2 Oestrus detection in dairy cattle

Methods for automating the process of monitoring the behaviour of cattle have become increasingly 
important given the recent trend characterising the dairy industry. A striking example of the pressure 
the sector is experiencing is the UK community, which as witness a steady decline in the number 
of milk producers from 2.6 million in 1996, to 1.9 million in 2015 (AHDB Dairy, 2016). Similarly, 
the number of dairy producers has fallen from 35,741 in 1995, to 13,815 in 2014. In tandem with 
this, the average herd size has risen, as those holdings with smaller herds have left the industry. 
In 2014, the average number of cows per herd was 133, compared to 97 in 2004 (AHDB Dairy, 
2016). Further, the period over which the average herd size has grown has been accompanied by an 
increase in average milk yield per cow.

A direct consequence of the dynamics of the sector is a change in traditional practices and established 
methods. The time available to farmers to observe the herd has reduced and thus increasingly, 
farmers are relying on technology to undertake routine tasks traditionally executed through visual 

2 https://www.365farmnet.com/en/
3 https://glas-data.co.uk/
4 https://www.iof2020.eu/

Figure 3.1. Schematic of internet enabled farm.
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inspection. The most striking corroboration of the increase in the level of adoption of on-farm 
technology solutions is the reliance on oestrus, or ‘heat’, detection collars and pedometers to assist in 
the optimisation of pregnancy rates (Afimilk, 2015; Fullwood, 2018; McGowan et al., 2007; National 
Milk Records, 2018; Roelofs and Van der Kooij, 2015; Wolfger et al., 2015).

The success of automated heat detection systems has been driven by two factors. Pressures to reduce 
operating costs have forced consolidation and thus modern farms are larger, operate with fewer 
staff which, while effectively limiting the time to observe their animals. In parallel, the sector has 
witnessed a steady decline in cattle fertility (Gröhn and Rajala-Schultz, 2000; Lucy 2001). While 
the reasons are complex, deficiencies in oestrus detection are a significant contributory factor. 
The resultant fall in pregnancy rates costs the sector directly through the loss of revenue from 
milk production. An eligible cow that is not bred (or is incorrectly bred) has a resultant loss of 
approximately 21 days of milk production, equivalent to £140 per cow assuming a representative 
price per litre. An examination of farm fertility carried out in 1994 over 4,550 herds in the US, found 
a mean heat detection accuracy 38% (Lucy, 2001). In contrast, technological solutions (collars and 
leg tags) are reported to perform with success rates upwards of 80-90% (Mayo et al., 2019).

3.3 Internet of things: low power processors and radio technologies

Oestrus (heat) detection systems are exemplars of the successful application of wireless sensor 
technology that addresses a specific problem and enables an ‘Internet of Things’ methodology to 
deliver greater value. Low power sensor technologies, usually Micro-Machined Electromechanical 
(MEMs) accelerometers, are combined with low power processors and wireless radio chipsets to 
provide a monitoring capability that operates 24 hours per day over an extended period of time (5 to 
10 years). To determine when a cow is on heat the activity of the animal is measured since cattle in 
heat (oestrus) become restless (Kiddy, 1977; Van Vliet and Van Eerdenburg, 1996). Machine learning 
or statistical approaches can identify outlier behaviour that aligns with the onset of heat (Eradus et 
al., 1992; Martiskainen et al., 2009). Measurement of this change in activity is readily achieved using 
MEMs accelerometers (Pastell et al., 2009; Robert et al., 2009). The precision of the diagnosis can 
be enhanced by incorporating other behaviours, e.g. feeding or rumination. To identify these, the 
frequency content of the accelerations can be informative, consequently three axis accelerations are 
sampled at rates of 10 Hz or more (Michie et al., 2017). This generates significant amounts of data 
that is not practical to transmit back to a central point as is illustrated in the following example.

Early on in the development of SilentHerdsman, a detailed investigation of the radio transmission 
characteristics in the on farm environment was undertaken (Kwong et al., 2009a,b, 2012). The 
studies examined the influence of radio carrier frequency, antenna location and the influence of 
cattle on the propagation characteristics. An individual cow represents a significant barrier to radio 
propagation. At 2.4 GHz, a common radio frequency for Industrial Scientific and Medical (ISM) use 
(OFCOM, 2021), penetration through body fat is around 10 cm and wet skin attenuates even more 
significantly. This means that cattle in the vicinity of a radio collar would have a strong possibility of 
blocking any radio transmissions. The radio transmission improves with the inverse of the carrier 
frequency however, the associated bandwidth of the receiver drops to a similar degree. A compromise 
was required between transmission range and data transmission capacity. The studies undertook 
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both analytical and experimental analysis of the farm environment and demonstrated that much of 
the impact that comes from the animal body mass could be mitigated through appropriate location 
of the base station. Hence a recommendation was made to locate base stations at a height of 2.5 m 
or more where possible.

During the course of the above investigation, the challenges of the operational environment from 
mechanical damage were highlighted. Almost all of the initial prototype devices were damaged 
by the fatigue associated with the constant motion of the collars and the fact that the electronic 
units were continually knocked against metal enclosure during cattle’s daily routine, particularly 
during periods like feeding. This was resolved when the units were engineered for production and 
all elements of significant mass (e.g. battery) were firmly soldered to the motherboard and glued in 
place for additional protection.

The wireless radio protocols for communicating between the collar, or leg tag, and a base station are 
designed to transmit small messages and therefore constrain the amount of data that can normally 
be transmitted. For example, IEEE 802.15.4 standard (IEEE, 2018) for low power wireless radio 
supports a physical layer that generally transmits at 250 kb/s, 40 kb/s or 20 kb/s. The packet structure 
has an overhead of 0-6 bytes for management and a data payload of up to 128 bytes of information. 
This small packet size is well suited to the on farm environment as analysed in 21-23 because it 
increases the probability that the radio transmission will be successful. It is more likely that the radio 
will find a short timeslot when it can transmit its data as opposed to negotiating a long time period 
to upload large amounts of data. It does however, constrain the amount of data that can realistically 
be transmitted but again this is beneficial within the operational constraints since this minimises the 
power consumption and hence optimises collar/tag operational lifetime.

For the sake of illustration, we can consider the highest data transmission rate 250 kb/s. In practice 
not all of this channel capacity is available to an individual user. The wireless protocol will cater 
for acknowledgements between the transmitting node and the receiving node which will consume 
some capacity and also the devices will have to listen and wait for a clear channel to transmit. If it is 
assumed that half of the channel capacity can be used an approximate maximum data transmission 
can be estimated. To simplify further it can be assumed that we are only concerned with the 
maximum payload of 128 bytes.

The transmission of unprocessed data (three axis accelerometer measurements at a sample frequency 
of 10 Hz or more) would require 3 × 10 bits × 10 samples per second, or 300 bits/s. Over the course of 
a day this will equate to 3.24 Mbytes of data (25.9 Mbits). Under perfect operating conditions where 
the radio simply broadcasts all of the data which is received without acknowledgement and the need 
for retransmission, this would require that the radio was transmitting for 207 seconds per day or 
3.5 minutes. An approximate current consumption for a transceiver in transmit mode is in the region 
of 10 to 20 mA (e.g. Texas Instruments, 2021). Therefore, each collar (or tag) will consume between 
35 and 70 mAh of power per day. The capacity of an AA battery is around 2,500 mAh meaning that 
to meet the power requirements of the radio alone, the battery would have to be changed every 35 
to 70 days. If the issue of battery life is considered from an on-farm operational perspective, an AA 
battery with a capacity of 2,500 mAh is required to last at least 5 years, approximately equivalent to 
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the average lifetime of a productive dairy cow, without charging. The restriction translates into an 
average power consumption limit of no more than 500 mAh/year, an average current draw from the 
battery of less than 50 μA.

Thus, to meet the operational lifetime requirement, innovative management of the limited power 
resources is a necessity. The solution must exploit the low power sleep modes of the processor, radio 
and accelerometer and process the measurement data directly on the collar processor to reduce/
compress the amount of data that needs to be transmitted – an example of ‘edge computing’ – and 
only transport periodic status updates at hourly intervals. Alternatively, the measurement data can 
be pre-processed into features that describe the dominant signal characteristics over a predefined 
period of time before transmission (Michie et al., 2017). In this manner substantial savings in radio 
transmission power consumption are obtainable and battery lifetimes of 5-10 years are common 
(e.g. Afimilk, 2015; Fullwood, 2018; National Milk Records, 2018). Information generated in this 
way can then be processed on a central farm computer or on the cloud to represent the measurement 
data in a manner that is meaningful to the farm operative to support their daily decision making.

3.4 Automated measurement of animal welfare

Heat detection systems are now readily accepted within the dairy industry as yielding a significant 
return-on-investment to the extent that there is strong competition to differentiate products 
through the provision of additional features that give enhanced insight into welfare events. Closely 
coupled are the demands both from milk processors and consumers for higher levels of animal 
welfare with supermarkets migrating to pricing frameworks where a premium is paid on the ability 
to demonstrate and validate positive welfare practices. Measurement technology has a role to play 
providing a continual record of animal conditions.

Monitoring the time that cattle spend feeding is considered an excellent proxy for establishing 
a view of overall health (Phillips, 1993). Cows that are sick will eat less, and/or spend less time 
eating. Similarly, rumination patterns and the time spent ruminating add valuable insights into 
cattle welfare (Borges, 2012; Pahl et al., 2015; Phillips, 1993; Reith and Hoy, 2012; Stangaferro et al., 
2016; Welch and Smith, 1970) aiding to identify, for example the onset. Rumination typically takes 
place when the cow is at rest, often lying down. Boluses of feed partially digested by gut enzymes, 
are regurgitated and remasticated to aid digestion, a process characterized by a rhythmic chewing 
action lasting for around 50 seconds per bolus (Phillips, 1993). The rhythmic motion of chewing 
action, can be identified from the concomitant motion of the neck muscles facilitating the use of 
accelerometers to estimate the time spent ruminating (and feeding). A healthy dairy cow ruminates 
for 500 to 600 minutes per day; any significant departure from that time will generate a ‘welfare 
alert’, a trigger to investigate the animal further.

The detail of process of extracting the rumination information is not the main subject of this chapter 
but for illustration Figure 3.2 shows an example of a rumination sequence measured using a pressure 
sensitive halter (Michie et al., 2017) monitoring jaw motion during rumination (bottom trace) along 
with corresponding measurements of accelerometer data made using a collar taken at the same 
instance in time. The data demonstrates that the rumination signal has a strong and identifiable 
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frequency content (rhythmic content). Processing on the collar to identify this rhythmic process 
enables rumination periods to be readily identified and transmitted without significant power 
consumption that would compromise battery lifetime (Andriamandroso et al., 2017; Pavlovic et al., 
2020; Smith et al., 2016; Watanabe et al., 2008).

The value of such measurements is illustrated Figure 3.3 which shows a representative measurement 
from Afimilk SilentHerdsman (National Milk Records, 2018). A running average of the feeding/
rumination patterns was used to identify when changes from normal behaviour occur for a specific 
animal and used to trigger alerts when they deviate from the norm.

Figure 3.3 illustrates the case where both rumination and feeding patterns have dropped below 25% 
of their running average. This is an indication of a significant illness event, in this case ‘milk fever’ 
resulting from a reduction of blood calcium in the early stages of lactation. If the cow is not assisted 
through dietary management, milk fever can produce a range of symptoms and ultimately death. 
Early diagnosis is therefore of critical importance and is evidently facilitated with the use of collar-
based systems. However, it must be stressed that the system is best viewed as provisioning decision 
support with the final diagnosis delegated to the veterinarian.
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Figure 3.2. Rumination signature measured using a neck mounted accelerometer (upper trace) and a pressure 
halter (lower trace).
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3.5 Heat stress

The onset of heat stress, proven to compromise productivity, occurs when the heat load experienced 
by an animal exceeds that which it is capable of managing (Schirmann et al., 2013). Methods to 
detect heat stress have often focused on direct body temperature measurement, e.g. a study utilising 
rumen temperature measurements under conditions of high heat load was performed on Aberdeen 
Angus and Braham steers (Polsky and Von Keyserlingk, 2017) with some animals, allowed access 
to shade. The Aberdeen Angus cattle with access to shade showed rumen temperatures 0.5-0.53 °C 
lower than those denied shade; no measurable difference was observed on Braham steers, well 
known for their heat tolerance.

During periods of heat stress the animal is no longer able to regulate its internal temperature to 
within a comfortable degree (Schirmann et al., 2013). The stimulus is commonly a high ambient 
temperature often combined with high humidity (Lees et al., 2018) and is known to compromise 
productivity. The physiological responses to cope with heat stress include increased Respiration Rate 
(RR), panting and sweating. A dairy cow would typically display a resting RR of 26-50 breaths per 
minute but when stressed, the rate will increase and can exceed 100 breaths per minute. Increases 
in RR is often accompanied by a laboured breathing/panting and this motion is detectable using 
accelerometers.

Figure 3.4 illustrates a measurement made on a single cow over a period of 24 h where the ambient 
conditions were conducive to the onset of heat stress. The analysis is based on a measurement of the 
harmonic content of the signals to produce an indication that that cow was experiencing heat stress 
(Schlattler, 1987).

Signs of the onset of heat stress can be observed at relatively low ambient temperatures; cattle begin 
to show reduced feed intake when the air temperature is above 23 °C and when the humidity is 
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greater than 80% (Schirmann et al., 2013). High humidity inhibits self-cooling by evaporation and 
reduces the ability to self-regulate through sweating. An empirically derived Temperature Humidity 
Index (THI) is an accepted metric with which to estimate the potential for the onset of heat stress 
(Lees et al., 2018):

THI = 0.8T + (RH% ×(T – 14.4)) + 46.4 (1)

where T is the daily maximum temperature (°C) and RH% is the mean daily relative humidity 
percentage. Friesian cattle for example, experience heat stress at a THI level of 68 or more (21 °C 
and RH=75%); Figure 3.5 displays boxplots of activity budgets for 10 cattle under observation over 
the month of July where daily temperature was routinely above 30 °C and the THI was between 70 
and 90. The times spent exhibiting signs of heat stress, where their respiration rates exceed 60 bpm 
are significant and are comparable with all other behaviours (Schlattler, 1987). Knowledge of this 
information can inform farmers to take mitigating action, e.g. activate sprinkler systems.

Although the determination that an animal showing signs of heat stress was made using accelerometer 
measurements, it is corroborated by knowledge of the local ambient conditions, consistent with the 
broader value proposition derived from correlations between multiple data enhancing insights into 
welfare conditions; the basis of the premise underpinning Herdsman+.

3.6 Herdsman+ sensor integration to improve mastitis detection in 
dairy cattle

The functionality of collar-based technology clearly enables a service whereby farmers are alerted 
to the onset of heat, and or an impending illness. Integration of data from collars with other sensor 
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modalities enables improved and potentially more specific diagnosis of illness events. An example 
of the Herdsman+ principles is the diagnosis of mastitis by combining Silent Herdsman collar data 
with information from a robotic milking station.

Cattle attend robotic milkers typically three or more times daily according to their own needs. 
The robot therefore offers an excellent platform for assessing cow welfare during milking periods. 
Dry cows and heifers require additional measurement technology, e.g. collars, to facilitate year 
round observation. Measurements of key milk constituents, typically fat content and conductivity, 
through in-line sensors integral to the milking station, presents an ideal opportunity to obtain a 
daily signature that can be used to identify the possible onset of a damaging illness, e.g. mastitis. 
Early detection enables early treatment and minimizes the need for antibiotics. Despite providing 
important data, there are instances where sensors can produce misleading readings and in general, 
additional sensor modalities can provide mitigating insight.

Conductivity analysis from a Fullwood (Fullwood, 2018) milking robot was used in tandem with 
accelerometer derived data from the Afimilk Silent Herdsman collar to improve measurement 
reliability. Figure 3.6 shows a measurement trace from the milker that displays an increase in 
conductivity over all four quarters over a period of three days around the 12th December 2016. This 
change in conductivity generated a mastitis alert. The associated collar derived welfare indicators 
(feeding and rumination) indicate the onset of oestrus around the 22nd November (apparent rise in 
feeding due to increased restlessness, licking and nuzzling accompanied with a fall in rumination) 
but after this time the indicators are stable. A cow with mastitis would normally feed and ruminate 
to a lesser degree suggesting that mastitis is not present. The conductivity was in fact due to a fertility 
treatment and all cattle within the group displayed the same response. Hence the raised conductivity 
was ignored since feeding/rumination behaviour analysis indicated that there was no significant 
welfare issue.
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An example of a genuine mastitis response is shown in the measurement combinations below in 
Figure 3.7.
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In contrast, to the precious case, the sharp drop in time spent feeding/rumination is a consequence 
of a genuine mastitis infection. Rumination and feeding have dropped by more than 25% the day 
prior to a rise in conductivity. The changes in feeding and rumination were identified the day prior to 
a rise in milk conductivity remaining erratic after treatment indicating that the animal was fighting 
the condition (Schlattler, 1987).

3.7 Optimising feeding for cattle

Optimising animal welfare through a combination of measurement data provides clear on-farm 
operational benefits and supports strategic decision making, for example when to cull or take 
finishing cattle to market. Producing high quality food from either beef or dairy cattle presents 
significant challenges. One of the main costs of milk or beef production is attributed to the animal 
feed and maintaining a balanced diet across the herd without waste/excess feed is also a key 
challenge. Ideally, knowledge of the feed intake of every animal informs the assessment in respect of 
nutritional balancing and determining productivity.

Significant advances have been made in terms of delivering consistent mixes of feed across the herd 
through the use of feeder-mixer wagons (Michie et al., 2020). The composition of the feed mix data 
from the wagons is cloud hosted recording the nutritional history and gating the establishment of 
a relationship with welfare. More recently, manufacturers have integrated spectroscopic analysis 
equipment into the feeder wagon giving real real-time information on the nutritional value of feed 
delivered.5 These advances enable the consideration of precision feeding to be considered.

Precision feeding describes the process where animals are optimally fed to match their calorific 
intake and nutritional balance to optimize both milk production and the desired milk composition 
(e.g. fat, protein and lactose percentages). Measuring individual feed intake in a practical manner is 
difficult to achieve. Feeding and rumination times from collars offer the potential to close this loop 
provided that time spent feeding is sufficiently correlated with feed intake and the feeding behaviour 
is captured adequately using a collar. Each animal has an individual feeding preference which can 
change with time further compounding the issue.

A calibration experiment was undertaken (Barbi et al., 2010; Schlattler, 1987) to determine the 
potential to use feed intake estimates, calculated using measurements of the time an animal spends 
feeding, to produce information that is useful to a farmer. Given that feeding behaviour derived from 
accelerometer measurements (collar or ear tag), is vulnerable to potential errors the experiment was 
performed using electronic feeders. Although not as practical in a production setting as a collar-based 
solution, the approach eliminates one source of error viz the misclassification of a feeding event from a 
collar or ear tag signature and gives an indication of the potential utility of such measurements.

The work was carried out within a beef cattle finishing farm. 32 beef finishing cattle were divided 
into two groups of 16 and given diets of different composition. The feeds, prepared as Total Mixed 
Rations (TMR)) using a mixing wagon, consisted of (g/kg dry matter) forage to concentrate ratios 

5 https://www.alltech.com/keenan/new-machines.

https://www.alltech.com/keenan/new-machines
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of either 494:508 (FORAGE) or 80:920 (CONC) selected as representative of commercial diets. 
Each animal was tagged with a unique radio frequency ear tag that was used to record the time 
spent at an individual feeding station and the feed intake (kg removed from the feeding station) 
during a feeding bout. This information enabled the correlation between feed time budgets and 
feed intake to be confirmed. The feeding behaviour variation across the herd was observed over 
the course of the trial and is displayed in Figure 3.8. Evident are the significant differences between 
animals; some animals tend to feed often and consume small meals whereas others consume large 
meals less frequently.

Support Vector Regression (SVR) was applied to the data to establish a relationship between feed 
intake using data readily accessible on a production farm in combination with time spent feeding 
(Barbi et al., 2010; Schlattler, 1987). The relationship was formulated for the two diets (CONC and 
FORGAGE) and the one breed (cross-bred Limousin). The SVR model used a range of inputs that 
are readily available on a farm to estimate feed intake:
• total number of visits to the feeder (NVISITS);
• feeding duration (TFEED);
• average length of time during each visit to the feeder (TPERVISIT);
• DIET (FORAGE or CONC);
• age (days);
• liveweight (kg).

The data were randomly sampled to generate a training set of 75% of the data with the remaining 
25% used for validation. The performance of each model – the target variable being the daily feed 
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intake – was evaluated through 5-fold Monte-Carlo cross-validation. The SVR feed input prediction 
was used to predict the feed conversion efficiency (FCR) of the herd. FCR is an accepted measure of 
the efficiency of an animal to convert feed into an output of value; in the case under consideration 
the feed is converted to beef as the animal grows and the FCR is a measure of how much feed is 
consumed to produce 1 kg of body mass. The FCR is calculated for each animal using Equation 2 
where the mass of feed consumed has been adjusted to remove the water content and reflect only 
the dry matter.

FCR = Feed ConsumedDRY MATTER / Increase in Body Weight (2)

Figure 3.9 shows the calculated FCR both from direct measurements and the estimates of feed intake 
for both the FORAGE and CONC diets; there is clear evidence of a good agreement between the 
estimated and actual FCR values.

The correlation between the calculated FCR using actual values and estimated values of feed intake 
was calculated to have R2=0.93 (CONC) and R2=0.83 (FORAGE). Using this data, the performance 
of each animal, as captured by the FCR, was predicted and compared to actual performance. 
Animals were categorised into three groupings; the ‘top’ performing animals with the lowest FCR 
value, i.e. animals that gained the most weight per kg of feed; the ‘bottom’ grouping represents 
animals that require the greatest amount of feed per kg of growth; and the ‘average’ group represents 
the remainder of the herd. Each grouping contained 26 animals (Table 3.1).

In the case of the ‘top’ category, the estimated feed intake data correctly identified 18 of the ‘top’ 
and mis-classified 8 as ‘average’ performers. Similarly, for the ‘average’ category 15 were correctly 
identified, 8 were classed as ‘top’ and 3 as poor performing. Finally, in the case of the ‘poor’ category, 
23 were correctly identified with 3 identified as average performers. No lowest performing animals 
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were incorrectly categorised as ‘top’ performers and similarly no ‘top’ performing animals were 
categorized as ‘poor’.

3.8 Future trends/applications

As the sector matures and develops the addition of other measurement technology, e.g. radar 
based gait measurement devices or more extensive use of image processing is inevitable. So too 
is the greater integration of sensor systems facilitated by cloud-based platforms. Enhanced rural 
connectivity supported by the emergence of new radio standards such as 5G communications 
providing low latency communications with cloud environments may increase the sophistication 
of analysis that can be carried out on the measurement data. This will lead to greater accuracy in 
sensor performance and more precise diagnosis of specific illness. Alternatively maintaining on 
sensor processing but with more advanced processors combined with longer range communications 
technology such as Narrow band IoT may enable vendors to produce systems that can be deployed 
without the need for farm-based infrastructure. The later evolution will significantly disrupt the 
current commercial practices of existing vendors enabling other entrants to sell directly to the 
farmer offering services hosted predominately from cloud platforms.

3.9 Conclusions

The increasing uptake of monitoring technologies and systems that furnish farmers with real-
time information on animal behaviour has supported the wide-scale implementation of a range of 
decision support tools. The initial business drive was the need for improved oestrus detection to 
optimise pregnancy rates. As the field matured, manufacturers offered enhanced derivatives of the 
initial technology to yield additional information on animal welfare. The enhanced information 
not only brought further value to the farmer by enabling early intervention to prevent the onset of 
critical illness conditions and hence cost-saving, the resultant improvement in animal welfare was an 
evidenced indicator of quality indicator not only beneficial across the supply chain but in managing 
the citizen’s perceptions of the sector. Discerning consumers are reassured by industry-led quality 
markers, that the produce has been produced with consideration of the welfare of animals.

Furthermore, an additional benefit of a reduced carbon footprint is also derived from the fact that 
production is more efficient and hence less CO2 generated for a given volume of milk or kilogram 
of beef produced. Production efficiency is further enhanced through the integration of multiple 
sensor streams that offer a tighter diagnosis of illness/welfare events as well as providing a pathway 
to optimise feeding. While the latter is difficult due to the individual feeding behaviour of animals, 

Table 3.1. Prediction of cattle feed intake performance.

Predicted performance

Top Average Poor Total

Actual performance Good 18 8 0 26
Average 8 15 3 26
Poor 0 3 23 26
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initial evidence has shown that the performance of cattle can in principle, be identified albeit at the 
low granularity (‘top’, ‘middle’ and ‘bottom’), providing farm operatives with an additional tool in 
the route to optimal productivity.

While many of the core technologies is now accepted and widely adopted, challenges for the 
integration of data from multiple sources owing largely due to vendors’ reluctance to share data with 
other commercial organisations. The prevailing perception that there is no benefit from reaching 
commercial agreements to share data can be attributed to a lack of operational standards within the 
industry that in turn necessitates effort to customise solutions on a case-by-case basis, an overhead 
that is currently viewed as delivering little commercial return at the outset with an ongoing obligation 
to support. Nonetheless, the opportunity to enhance operational efficiency through integration is 
compelling with a high potential to bring significant future value to the industry.

Many challenges remain at the technical, commercial and policy levels:
• extensible, standardised on-farm data network: ‘plug n’ play’;
• scalable, integrated database supporting multiple data streams with a standardised data format 

that enables cleansing, mining and processing of combined data;
• ease of deployment and maintenance; reduction in the required infrastructure;
• robust, low-cost internet access e.g. 5G evolution – shared spectrum access?;
• data ownership/monetization agreements across the supply chain – ‘shared value’;
• user interface(s) that provide the most fulfilling experience for different stakeholders within the 

supply chain;
• location information per individual animal; any solution must not compromise the lifetime of 

battery-operated technologies;
• evidence-based value proposition for the migration to a recurring monthly charge viz. service 

provision.

The lack of standards – for both the infrastructure technologies and data formats – are hindering the 
migration to future solutions that in turn are limiting the potential benefits to the farming sector. 
Standards promote inter-operability, lowering the costs of acquiring solutions and empowering an 
overall optimisation of the supply chain. Furthermore, the Herdsman+ principles foster the option 
to offer a mix of services.

The traditional business model entrenched within the livestock farming sector is outright/ direct-
purchase based on a return-on-investment (ROI) assessment. The evolution accelerates the 
migration to services dominated business models:
• ‘hybrid’ model where the infrastructure enabling the service is, for example at cost price and the 

service is provisioned at a reduced price per month;
• a fully priced per month per animal cost.

The move to services-based provision is revolutionary, a move that the dairy and beef sectors to date 
remains to be convinced of. However, the business model represents a potentially effective route to 
increasing adoption through offering a ‘service bundle’ comprising traditional communications/
Internet with agri-centric services. A number of service threads can be envisaged:
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• fertility: improving milk yields per individual animal through increasing the likelihood of a 
successful pregnancy;

• integrated herd management: to maximise the farmers use of online data storage, the 
implementation and provision of a complete herd management system;

• pedigree: optimisation of the pedigree of particular herds for yield or quality;
• health: a record of diseases and treatments;
• feed/nutrition: optimising feed mixes for (say) improved health or quality;
• veterinary: on line veterinary service which aids the scheduling of farm visits and promotes 

preventative health practices;
• drug: pro-active identification of appropriate drugs and optimisation of drugs for particular 

health conditions on per animal or per herd basis.
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