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OPTIMAL STATISTICAL ARBITRAGE: 
A MODEL SPECIFICATION ANALYSIS ON ISEQ EQUITY DATA

Mark Cummins1

University of Limerick

ABSTRACT

A comprehensive empirical analysis of the novel optimal statistical arbitrage 
trading model of Bertram (2010) is performed on a dataset of stocks quoted 

on the Irish Stock Exchange. Evidence of signifi cant errors on average in the 
key measures underlying the trading model is presented, refl ecting the mis-
specifi cation of the underlying Gaussian Ornstein–Uhlenbeck (OU) process. 
Overestimation of the expected return per unit time measure and underestima-
tion of the expected trade cycle time measure are most notable. It is further shown 
that the Bertram (2010) trading model is more robust to high mean reversion 
and/or volatility parameter estimates compared to two benchmark models based 
on the exact and approximate fi rst-hitting time densities of Linetsky (2004) for 
an OU process.

INTRODUCTION

Statistical arbitrage trading strategies are commonly applied in industry to exploit 
the long-term statistical relationships that often exist between assets, with pairs trad-
ing being one of the most well-known applications. Cointegration techniques are 
generally used to formally establish the statistical relationships upon which various 
trading strategies may be designed. One of the key considerations in such strategies 
is the optimal choice of entry and exit levels for the trades. A directly related risk is 
the stochastic nature of the trade cycle time (i.e. the time between entering, exiting 
and subsequently re-entering a trade) for such trades.

A number of alternative studies in the area of statistical arbitrage trading have 
been conducted to date. Many of the papers focus on the design of statistical 
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arbitrage trading rules and the resulting performance when applied to empirical 
data. These include Burgess (1999, 2000), Trapletti, Geyer and Leisch (2002), Vidy-
amurthy (2004), Whistler (2004), Elliott,Van Der Hoek and Malcolm (2005), Gatev, 
Goetzmann and Rouwenhorst (2006) and Do, Faff and Hamza (2006). Andrade, di 
Petro and Seasholes (2005), Papadakis and Wysocki (2007) and Do and Faff (2009) 
contribute to the literature by means of providing independent verifi cation of the 
trading rule proposed by Gatev et al. (2006) and examining the sustainability of prof-
its. Aldridge (2009), Bowen, Hutchinson and O’Sullivan (2010) and Dunis, Giorgini, 
Laws and Rudy (2010) consider the application of statistical arbitrage trading on 
high-frequency data. Kanamura, Rachev and Fabozzi (2010) use the approximate 
fi rst-time hitting density formulation of Linetsky (2004) to develop a total profi t 
model for pairs trading. Other papers of interest include Shleifer and Vishny (1997), 
Hogan, Jarrow, Teo and Warachka (2004) and Lin, McRae and Gulati (2006).

However, few of these papers deal directly with the issue of optimal entry and 
exit trading levels in the presence of stochastic trade cycle times. Vidyamurthy 
(2004) proposes an optimal entry level given by the maximum point on a profi t-
ability profi le constructed as the product of probability estimates – obtained from 
counting the number of times each candidate entry level is exceeded – and the 
 associated absolute profi t levels. Vidyamurthy (2004) further proposes an exit level 
that lies through the long-run equilibrium level and of equal distance away as the 
entry level; this is to account for any potential trade slippage. Elliott et al. (2005) 
use fi rst-passage time theory on the standard Ornstein–Uhlenbeck (OU) process to 
develop a framework for calculating the expected trade cycle time of a statistical 
arbitrage strategy, along with symmetric entry and exit boundaries. Do et al. (2006) 
similarly consider statistical arbitrage trading under an OU framework, drawing on 
asset pricing theory to inform the underlying statistical applications.

In contrast to the above papers, Bertram (2010) presents a novel approach to 
the issue of optimal statistical arbitrage trading. Specifi cally, modelling a given 
spread series as a mean-reverting OU process, analytic solutions are derived that 
allow for the optimal entry and exit levels to be determined through maximising 
either (i) the expected return per unit time or (ii) the associated per unit time Sharpe 
ratio. Considering the expected return and Sharpe ratio on a per unit time basis is 
a very important innovation of Bertram (2010). Statistical arbitrage trading strate-
gies with defi ned entry and exit levels offer deterministic (log-) returns. However, 
uncertainty lies in the stochastic trade cycle times associated with such trades. The 
expected return per unit time is defi ned as the ratio of the deterministic return to 
the expected trade cycle time, with the defi nition of the Sharpe ratio following in 
a similar way. This normalisation explicitly accounts for the different determin-
istic returns and expected trade cycle times associated with alternative statistical 
arbitrage trading strategies defi ned by alternative entry and exit levels. Hence, the 
normalisation allows for consistent cross-comparison of alternative statistical arbi-
trage trading strategies.

The analytic solutions provide signifi cant computational effi ciencies, which 
are of particular advantage for the implementation of statistical arbitrage trading 
at a high frequency level. However, the underlying OU process being Gaussian 
only allows for a normal distribution for changes in the spread series. Whereas this 
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allows for analytic solutions to determining optimal entry and exit levels, empirical 
data does not conform with the assumption of normality. This study contributes to 
the literature by means of performing a comprehensive model specifi cation anal-
ysis of the optimal statistical arbitrage trading model of Bertram (2010) – herein 
referred to as the Bertram trading model – on a set of cointegrated pairs identifi ed 
from the current (July 2010) listing of ISEQ stocks on the Irish Stock Exchange. The 
empirical analysis allows for the identifi cation and quantifi cation of model mis-
specifi cation errors in the Bertram trading model. That is, it looks to investigate the 
mis- specifi cation error introduced in using a Gaussian OU process to describe non-
Gaussian empirical cointegration spread series.

The paper further contributes by means of unifying the optimal statistical arbi-
trage trading criteria set out in the Bertram trading model with the fi rst-hitting time 
density framework of Linetsky (2004) in order to develop two alternative trading 
models for benchmark purposes. The benchmark trading models are based on the 
exact and approximate fi rst-hitting time density formulations of Linetsky (2004), 
defi ned under the OU model specifi cation. The benchmark trading models provide 
insight into the superior stability of the Bertram trading model for cases where the 
speed of mean reversion and/or volatility parameters of the OU process are par-
ticularly high. The analysis, in presenting results for individual pairs, also helps 
to understand the sensitivity of the Bertram trading model to variations in the key 
parameters of the OU process. Furthermore, in implementing the benchmark trad-
ing model based on the approximate fi rst-hitting time density of Linetsky (2004), 
the error introduced as a result of the approximation is investigated and quantifi ed 
in the context of a trading application.

The remainder of the paper is organised as follows. The next section provides 
an overview of the optimal statistical arbitrage trading model of Bertram (2010) and 
discusses the benchmark models based on the fi rst-hitting time density approach of 
Linetsky (2004). The following section discusses the ISEQ stock data and presents 
the cointegration and OU fi tting results for the set of stock pairings used. The fourth 
and fi fth sections respectively present the empirical analysis in the cases of maxim-
ising the expected return per unit time and maximising the Sharpe ratio. The fi nal 
section concludes.

OPTIMAL STATISTICAL ARBITRAGE TRADING

Bertram (2010) approaches the issue of optimal statistical arbitrage trading by fi rst 
assuming that the spread on two given asset log-prices, denoted st , is described by 
the following OU process:

with ,  0 and tWα σ <  a Wiener process. This model by construction allows for 
mean reversion of the spread process ts  about a long-run mean level of zero, where 
the speed of the mean reversion is given by α .2 The Wiener process,  Wt, drives the 
randomness in the process, where, by defi nition, changes in the Wiener process, 

(1)t t tds s dt dWα σ= − +
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dWt, are normally distributed with mean zero and variance dt. The volatility param-
eter σ  is a scaling parameter, which scales this variance to 2dtσ . It is the normality 
of the Wiener that implies the normality of the spread process st.

Defi ning the entry and exit levels of the trading strategy by a and m respectively, 
a complete trade cycle is the time taken for the spread process to transition from the 
entry level a to the exit level m and then return back to the entry level a. Formally, 
the trade cycle time is defi ned as follows:

where Ta m→  is the time to transition from a to m and Tm a→  is the time to transition 
from m to a, and the independence of the two times follows from the Markovian 
property of the OU process. So, T is a random variable representing the complete 
trade cycle time for the statistical arbitrage trading strategy.

Given relative transaction costs c, the total log-return from one complete trade 
cycle is given by ( , , )r a m c m a c≡ − − . That is, the log-return is given as the differ-
ence between the exit level and entry level. Important to note is that this log-return 
is deterministic and known in advance, whereas the associated trade cycle time is 
stochastic, as already discussed. So, the time it takes to achieve this deterministic 
log-return is random and unknown in advance. In this context, Bertram (2010) pro-
poses the concept of the expected return per unit time as follows:

where (T) (T ) (T )a m m aE E E→ →= + . That is, ( , , )a m cξ  is the ratio of the deterministic log-
return to the expected trade cycle time. This normalisation explicitly accounts for 
the different deterministic log-returns and expected trade cycle times associated 
with alternative choices of the entry and exit levels. Therefore, the normalisation 
allows for consistent cross-comparison of the alternative statistical arbitrage trad-
ing strategies. Bertram (2010) further proposes a variance of return per unit time 
measure as follows:

where (T) (T ) (T )a m m aV V V→ →= +  is the variance of the trade cycle time.
Following a transformation of the OU process in Equation 1 to a dimension-

less system, and drawing on the fi rst-passage time theory of Thomas (1975), Sato 
(1977) and Ricciardi and Sato (1988), Bertram (2010) derives analytic expressions 
for (T),E  (T),V  ( , , )a m cξ  and ( , , )a m cς . These analytic expressions involve standard 
mathematical tools; namely the imaginary error function, the gamma function and 
the digamma function. With these analytic results in place, it is shown that the opti-
mal entry and exit levels a* and m* may be derived by maximising the expected 
return per unit time, ( , , )a m cξ . Solving for the optimal entry and exit levels a* and m* 

T T Ta m m a→ →≡ +

( , , )( , , )
(T)

r a m ca m c
E

ξ ≡

2

3

( , , ) (T)( , , )
(T)

r a m c Va m c
E

ς ≡
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is straightforward and, furthermore, it is shown that they are symmetrically posi-
tioned about the long-run mean level.

Bertram (2010) further develops a second approach, whereby the optimal entry 
and exit levels are determined by means of maximising the associated per unit time 
Sharpe ratio. For this, the per unit time Sharpe ratio is defi ned as follows:

where rf is the risk-free rate of interest. Solving for the optimal entry and exit levels 
a* and m* is straightforward and again they are shown to be symmetric about the 
long-run mean level. For technical details on any of the above, the interested reader 
is directed to the paper of Bertram (2010).

Benchmark Models
This section presents a unifi cation of the optimal trading criteria (i.e. maximisation 
of expected return per unit time, ( , , )a m cξ , or Sharpe ratio, ( , , , )fS a m c r ) proposed by 
Bertram (2010) and the fi rst-hitting time density approach of Linetsky (2004). In so 
doing, an alternative statistical arbitrage trading model is presented that serves as a 
benchmark for the Bertram trading model. Linetsky (2004) considers the more gen-
eral OU process:

The only difference between this specifi cation and that of Equation 1 is that the 
process st mean reverts around the long-run mean level μ, which is not necessar-
ily zero. Under this process, Linetsky (2004) considers the associated fi rst-hitting 
time density for the movement of the process from a given point to another defi ned 
point. The fi rst-hitting time density describes the probability distribution for the 
stochastic time it takes to move between the two points and allows one to calculate, 
for instance, the expected time of this movement. In the context of this study, the 
two points may be considered to be the entry and exit levels of the statistical arbi-
trage trading model. Linetsky (2004) derives both exact and approximate solutions 
for the fi rst-hitting time density. The exact formulation involves the Hermite func-
tion, which is a standard mathematical tool, whereas the approximate formulation 
involves nothing more complex than the cosine function. For technical details the 
interested reader is directed to the paper of Linetsky (2004).

Armed with these fi rst-hitting time density formulations, calculation of (T),E   
(T),V  ( , , )a m cξ  and ( , , )a m cς  is straightforward. Whereas Bertram (2010) provides 

analytic expressions from which to determine the optimal entry and exit levels 
a* and m*, the approach here requires calculating either ( , , )a m cξ  or ( , , , )fS a m c r  
as required over a grid of potential entry and exit levels and extracting the opti-
mal levels from the results. For the purposes of the empirical analysis to follow, 
both the exact and approximate approaches will be implemented as benchmark 

( , , )
(T)( , , , )

f

f

r
a m c

ES a m c r
ξ

σ

−
≡

(2)( )t t tds s dt dWα μ σ= − +

IAR2011.indb   25IAR2011.indb   25 31/03/2011   08:40:5631/03/2011   08:40:56



Cummins

26

models for the Bertram model. Further to this, implementation of the approximate 
approach provides an opportunity to investigate the effect of the error introduced 
by the approximation in the context of a trading application. For the exposition to 
follow, the benchmark models will be referred to as the Linetsky Exact and Linetsky 
Approximate models.

DATA AND PRELIMINARY STATISTICAL RESULTS

Drawing from the current (July 2010) ISEQ stock listing, 32 stocks in total are exam-
ined with end-of-day mid-quoted price data spanning the sample period 21 July 
2000 to 23 July 2010.3, 4 The 32 stocks chosen are those for which time series are avail-
able over the full sample period, which is deemed a suffi ciently long period to test 
for cointegration and, more importantly, to comprehensively test the Bertram trad-
ing model as described below. The ISEQ stocks not considered are those for which 
the date of fi rst listing succeeds 21 July 2000. The majority of these stocks (all bar 
two) actually have listing dates from 2006 onwards and so the associated time series 
are not deemed suffi ciently long for the empirical testing.

All price series are fi rst tested for stationarity using the standard augmented 
Dickey–Fuller (Dickey and Fuller, 1981) test and, hence, one stock is dropped from 
the sample data set for failing to reject the null hypothesis of stationarity. From the 
remaining 31 stocks, the residual-based cointegration test of Engle and Granger 
(1987) is performed on the resulting 465 stock pairings, which assumes the follow-
ing linear model: 

where 1,ts  and 2,ts  are the log-prices of the two assets in the pair, and the resulting 
cointegration spread series is defi ned such that 2, 1,t t ts s sβ≡ − . Using a 1 per cent sig-
nifi cance level criterion, cointegration is established between 37 pairs of stocks in 
total, made up of the 22 stocks listed in Table 1. Use of the high 1 per cent signifi -
cance level serves to reduce the number of pairings examined for this particular 
study, allowing for results for individual pairs to be more easily reported for the 
perusal of the reader. It is the individual results that provide insights into the sen-
sitivity of the Bertram trading model to variations in the key parameters of the 
OU process. In practice, of course, a 5 per cent signifi cance level may be deemed 
acceptable to establish cointegration in the price spread. Indeed, cointegration is 
recognised as a strong statistical test and so may not identify weaker forms of pre-
dictability that offer trading opportunities. Burgess (1999) discusses this point and 
proposes an alternative variance ratio test approach to establishing predictability. 
Table 2 presents the cointegration pairs, along with the associated t-statistics from 
the cointegration testing. Descriptive statistics for the resulting spread series are 
also presented.

With the cointegrated pairs identifi ed, the next stage of analysis fi ts the gen-
eral OU process in Equation 2 to each spread series. Table 2 presents the estimated 
parameters α̂, μ̂ and σ̂  for each of the 37 pairings. These estimates will be used in 

2, 1,t t ts s eγ β= + +
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the application of the Bertram, Linetsky Exact and Linetsky Approximate trading 
models in the forthcoming sections. From the descriptive statistics for the spread 
series reported in Table 2, it is clearly evident that the OU process, being Gaussian, 
is inadequate to capture the non-normal asymmetric and leptokurtic features of the 
spread series data. The next section investigates the error introduced as a result of 
this model mis-specifi cation within the trading models.

TABLE 2: COINTEGRATION AND OU MODEL FITTING RESULTS

Pairing  t-stat Standard 
Deviation

Skewness  Kurtosis α̂ μ̂ σ̂
ALBK–AMNX -4.03 0.36 -0.35 2.97 4.18 -2.46 1.01
ALBK–BKIR -4.32 0.17 0.65 6.12 4.62 0.64 0.53
ALBK–GNC -4.51 0.16 0.14 3.07 3.64 -0.02 0.43
ALBK–INME -5.13 0.28 -0.87 4.94 3.96 0.46 0.75

(Continued)

TABLE 1: ISEQ STOCKS IN PAIRINGS

Reuters Instrument Code Name

ALBK Allied Irish Banks

AMNX Aminex

ARYN Aryzta

BKIR Bank of Ireland

DQ5 CPL Resources

CRH CRH

DQ7 Donegal Creameries

DGO Dragon Oil

FBD FBD Holdings

GRF Grafton Group

GNC Greencore Group

INME Independent News & Media

IPM Irish Life & Permanent

JEV Kenmare Resources

KYGa Kerry Group ‘A’

KSP Kingspan Group

MCI McInerney Holdings

ORM Ormonde Mining

OVG Ovoca Gold

PACC Prime Actvie Capital

RDMX Readymix

UDG United Drug
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TABLE 2: (CONTINUED)

Pairing  t-stat Standard 
Deviation

Skewness  Kurtosis α̂ μ̂ σ̂
ALBK–IPM -5.20 0.26 0.48 6.21 4.04 -0.64 0.73
ALBK–OVG -5.75 0.35 0.56 3.71 9.52 -1.70 1.49
ALBK–RDMX -6.34 0.20 -0.38 6.31 7.48 -1.82 0.76
AMNX–BKIR -4.14 0.35 -0.35 3.04 4.40 -2.18 1.02
AMNX–INME -3.95 0.35 -0.54 3.02 4.16 -2.29 1.01
AMNX–IPM -4.34 0.35 -0.39 2.85 4.75 -2.82 1.05
AMNX–OVG -6.39 0.33 -0.18 2.67 12.86 0.58 1.66
ARYN–KYGa -4.46 0.09 -0.01 3.11 4.27 1.18 0.26
BKIR–GNC -4.62 0.16 0.68 3.19 4.34 0.26 0.46
BKIR–IPM -6.97 0.19 0.10 5.07 7.32 -1.27 0.71
BKIR–OVG -5.95 0.34 0.79 4.08 10.15 -1.41 1.50
BKIR–RDMX -4.81 0.25 -0.12 7.94 5.09 -1.25 0.78
DQ5–CRH -4.44 0.13 0.25 3.22 3.92 2.82 0.37
CRH–JEV -4.58 0.14 0.09 3.61 4.76 3.36 0.41
CRH–KSP -5.22 0.10 0.09 2.85 5.26 2.33 0.33
CRH–ORM -3.88 0.17 0.19 2.76 3.23 3.57 0.43
DQ7–UDG -4.40 0.18 0.29 2.66 4.25 -0.03 0.51
DGO–KYGa -3.94 0.10 -0.43 2.77 3.07 2.81 0.25
FBD–OVG -4.81 0.40 -0.05 2.63 7.13 -2.13 1.48
GRF–INME -3.98 0.48 -0.29 3.15 5.16 2.49 1.55
GRF–OVG -5.39 0.38 0.13 3.04 9.49 -0.24 1.64
GNC–IMP -5.10 0.15 0.83 3.71 5.04 -0.36 0.48
GNC–OVG -4.32 0.29 -0.31 2.13 5.56 1.35 0.94
INME–IMP -4.21 0.31 -1.22 5.75 2.76 1.01 0.70
INME–OVG -5.88 0.32 -0.21 3.20 10.80 -1.56 1.48
INME–PACC -4.73 0.36 -0.01 2.26 6.93 -1.78 1.34
INME–RDMX -4.37 0.25 -0.90 3.48 4.16 -1.46 0.70
IPM–OVG -5.82 0.35 0.73 3.52 9.65 -2.06 1.50
IPM–RDMX -4.91 0.29 -0.82 6.91 4.61 -2.38 0.88
MCI–OVG -4.07 0.49 0.37 2.90 4.87 -0.49 1.48
ORM–UDG -5.26 0.33 0.17 3.64 5.86 -4.28 1.07
OVG–PACC -5.39 0.38 0.13 3.04 9.49 -0.24 1.64
OVG–RDMX -3.99 0.55 -0.23 1.96 4.93 0.82 1.70

Note: The reported t-stats result from the residual-based cointegration test of Engle and Granger (1987). ˆ ,α   
μ̂ and σ̂  are the estimated speed of mean reversion, long-run mean and volatility parameter estimates for the 
general OU process.

 EMPIRICAL ANALYSIS: MAXIMISING EXPECTED RETURN
This section presents an empirical analysis of the optimal Bertram trading model, 
along with the optimal benchmark Linetsky Exact and Linetsky Approximate 
models, where the expected return per unit time is maximised.5 For each stock 
pairing under each trading model, the optimal entry and exit levels a* and m* are 
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determined. Using the empirical spread series, sample counterparts to (T),E  (T),V  
( , , )a m cξ  and ( , , )a m cς  are calculated, herein denoted T, ˆ ,V  ˆ,ξ  and ς̂  respectively. Com-

plete trade cycles a* → m* → a* are identifi ed and the associated trade cycle times 
recorded. For this, and given the discrete daily frequency structure of the data, each 
occurrence of the spread series crossing over either the optimal a* or m* level is fi rst 
identifi ed and then interpolation is used as required to assign an associated time (as 
a fraction of a year). For each spread series j = 1,…37, and given the sampled trade 
cycle times { }T ,j

i  i = 1,…,nj,6 the sample measures are defi ned as follows:

Table 3 presents the optimal entry and exit levels relative to the estimated long-
run mean parameters. The errors between the model and corresponding empirical 
expected return per unit time and expected trade cycle time measures are also pre-
sented for each model. Table 4 provides the actual expected return per unit time 
and expected trade cycle time measures under each model. To conserve space, the 
variance of return per unit time and variance of trade cycle time measures are not 
reported, but are available upon request.

An important fi rst observation to make is that for the Linetsky models, no results 
are reported for a number of pairings (highlighted with the symbol x). In these cases, 
the Linetsky models are found to exhibit an instability that is not experienced by 
the Bertram model. Specifi cally, the Linetsky models are found to generate implau-
sible expected return values, resulting directly from the excessively small (i.e. close 
to zero) expected trade cycle time estimates. From the fi tted OU model parameters, 
these pairings can be seen to correspond to speed of mean reversion and/or vola-
tility parameter estimates that are particularly high relative to the other pairings.

For the Bertram trading model, the optimal entry and exit levels are, by con-
struction, symmetric about the long-run mean level. The results of the Linetsky 
Exact and Linetsky Approximate models support this, showing symmetry for all 
pairings for which valid results are achieved. The trading models generally over-
estimate the expected return per unit time relative to the empirical data. The mean 
error for the Bertram model across all 37 pairings is signifi cant at 46.19 per cent. 
Across only the valid pairings for the Linetsky models, mean errors for the Bertram, 
Linetsky Exact and Linetsky Approximate models are again signifi cant at 28.39 
per cent, 27.65 per cent and 28.11 per cent respectively. Underlying these errors 
is the underestimation of expected trade cycle times relative to the empirical data. 
Across all 37 pairings, the mean error in the trade cycle time for the Bertram model 
is approximately four and a half months, at -0.3813 years. For the valid pairings 

2

1
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under the Linetsky models, the mean trade cycle time errors show underestimation 
of almost six months for both the Bertram and Linetsky Exact models, at -0.4414 
and -0.4337 respectively, and in excess of six months for the Linetsky Approximate 
model, at -0.6788. On a case-by-case basis, the lowest errors generally correspond 
to those pairings with spread series that are close to Gaussian, in particular those 
that exhibit kurtosis close to 3. As expected, the closer the spread series is described 
by a Gaussian distribution, the smaller the model mis-specifi cation error that is 
introduced.

To conclude, it is worth making some fi nal comments on the variance of return 
per unit time and the variance of trade cycle time, where we focus on only those 
pairings with valid results under the Linetsky models. The mean variance of return 
per unit time is 0.0771, 0.0772 and 0.0831, for the Bertram, Linetsky Exact and Linet-
sky Approximate models respectively, with corresponding mean errors of 0.0584, 
0.0543 and 0.0611. For the Bertram model, the mean variance of trade cycle time 
is 0.0813, with a mean error of -0.5875. For the Linetsky Exact and Approximate 
models, the mean variances of trade cycle time are higher relative to the Bertram 
model at 0.0878 and 0.3415 respectively, with errors of -0.5037 and -0.6838.

In summary, the trading models examined show the following common attrib-
utes: overestimation of the expected return per unit time; underestimation of the 
expected trade cycle time; overestimation of the variance of return per unit time; 
and underestimation of the variance of trade cycle time.

EMPIRICAL ANALYSIS: MAXIMISING SHARPE RATIO

Similar to the previous section, an empirical analysis of the statistical arbitrage trad-
ing models is performed whereby the optimal entry and exit levels are determined 
this time by means of maximising the Sharpe ratio. The empirical counterparts to 
the expected trade cycle time, variance of trade cycle time, expected return per unit 
time and variance of return per unit time measures are calculated as outlined previ-
ously. In addition to these, an empirical counterpart to the Sharpe ratio is defi ned 
as follows:

* *
* * 2

Tˆ ( ) ˆ( )

j
j

j j f j
j j

S m a c r
m a c V

≡ − − −
− −

For ease of the analysis to follow, the risk-free rate of interest rf is set equal to the 
average three-month composite EURIBOR over the full sample period of 2.9966 
per cent. Table 5 presents the optimal entry and exit levels, along with the model-
empirical measure errors. Table 4 again provides the actual expected return per 
unit time and expected trade cycle time measures under each model. The variance 
of return per unit time and variance of trade cycle time measures are again not 
reported in order to conserve on space.

In contrast to the previous section, the Linetsky models do not show instabil-
ity for any of the 37 pairings. This likely refl ects the fact that, overall, the reported 
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optimal entry and exit levels for each pairing represent a wider range around the 
long-run mean level compared to maximisation of expected return per unit time 
and, hence, the associated expected trade cycle time is much longer. Indeed, the 
mean expected trade cycle times for the Bertram, Linetsky Exact and Linetsky 
Approximate models respectively are 0.5709, 0.5553 and 0.5226 years. Despite the 
greater absolute returns on offer from the wider optimal entry and exit levels, it is 
particularly interesting to note that the longer expected trade cycle times lead to 
expected return per unit time measures that are quite comparable to the previous 
section. So on a per unit time basis, there appears to be marginal difference between 
the trading strategy based on either maximisation of expected return per unit time 
or Sharpe ratio. Further to this, the mean error in the expected return per unit 
time relative to the empirical data is 44.92 per cent, 47.80 per cent and 48.89 per cent 
for the Bertram, Linetsky Exact and Linetsky Approximate models respectively. 
Again, the trading models signifi cantly overestimate the expected return relative to 
the empirical data, refl ecting signifi cant underestimation of the expected trade cycle 
time with mean errors of -1.3474, -1.4175 and -1.3994 years.

On the associated Sharpe ratio measures, the trading models show evidence of 
both overestimation and underestimation relative to the empirical data, with vary-
ing degrees of magnitude. Overall, the mean error is positive at 0.4214, 0.3848 and 
0.3952 for the Bertram, Linetsky Exact and Linetsky Approximate models respec-
tively. The mean variance of return per unit time is 0.1258, 0.1389 and 0.1375 for the 
Bertram, Linetsky Exact and Linetsky Approximate models respectively, with cor-
responding mean errors of 0.0950, 0.1099 and 0.1094. The mean variance of trade 
cycle time is 0.2101, 0.2085 and 0.1932 for the Bertram, Linetsky Exact and Linet-
sky Approximate models respectively, with corresponding mean errors of -1.2718, 
-1.2618 and -1.2511.

In summary, the trading models examined show the following common attrib-
utes: overestimation of the expected return per unit time; underestimation of the 
expected trade cycle time; overestimation of the variance of return per unit time; 
and underestimation of the variance of trade cycle time. These observations are 
similar to the last section. Furthermore, the trading models all show mixed results 
for the Sharpe ratio, with evidence of either over- or underestimation.

CONCLUSION

This study presents a comprehensive model specifi cation analysis of the Bertram 
(2010) optimal statistical arbitrage trading model on quoted ISEQ stocks. A number 
of key contributions to the literature are made. Firstly, the empirical analysis allows 
for the identifi cation and quantifi cation of model mis-specifi cation errors in the 
Bertram trading model. That is, it looks to investigate the mis-specifi cation error 
introduced in using a Gaussian OU process to describe non-Gaussian empirical 
cointegration spread series. Signifi cant errors are reported on average in the key 
measures underlying the trading model. In particular, for both maximisation of the 
expected return per unit time and maximisation of the Sharpe ratio, it is found that 
the trading model generally overestimates the expected return per unit time and 
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underestimates the expected trade cycle time relative to the empirical data. Errors 
in the Sharpe ratio show evidence of both overestimation and underestimation. In 
general, and as expected, the closer the data is to normal, the better the trading 
model performs.

Secondly, the study contributes by means of unifying the optimal statistical 
arbitrage trading criteria set out in the Bertram trading model with the fi rst-hitting 
time density framework of Linetsky (2004) in order to develop two alternative trad-
ing models for benchmark purposes. Comparison of the Bertram trading model 
against these benchmark models shows the former to be much more robust to high 
mean reversion and/or volatility parameter estimates. The analysis further helps 
to understand the sensitivity of the Bertram trading model to variations in the key 
parameters of the OU process by reporting results for individual pairs. Thirdly, in 
implementing the benchmark trading model based on the approximate fi rst-hitting 
time density of Linetsky (2004), the error introduced as a result of the approxima-
tion is investigated and quantifi ed in the context of a trading application.

The key advantage of the Bertram trading model is that the analytic approach 
to determining optimal entry and exit levels provides signifi cant computational 
effi ciencies, which is of particular advantage for the implementation of statistical 
arbitrage trading at a high-frequency level. However, given that the underlying 
OU process only allows for a normal distribution for changes in the spread series, 
model mis-specifi cation error is a feature when applied to non-normal empirical 
data. Therefore, for practitioners, there is a tradeoff to be made between the com-
putational effi ciencies that the Bertram trading model offers and the error that it 
introduces. This study shows that the errors in the key underlying measures using 
ISEQ data are signifi cant on average. However, on an individual pair basis, the 
closer the spread series is to normal, the less the error will be in general. It is advis-
able that practitioners be cognisant of the model mis-specifi cation error issue when 
using the Bertram trading model and where possible to comprehensively backtest 
any statistical arbitrage trading strategy based on the resulting optimal entry and 
exit levels. 

Finally, informed by the model specifi cation insights of this study, a formal trad-
ing strategy validation would signifi cantly extend the literature. Examination of the 
performance of the Bertram trading model against alternative statistical arbitrage 
models, in addition to alternative trading strategies (e.g. technical rules), would be 
of particular interest to practitioners. However, such analysis would need to pro-
ceed while controlling for data snooping through the use of appropriate techniques, 
such as the reality check bootstrap of White (2000) and the superior predictive abil-
ity test of Hansen (2005).

ENDNOTES

1 ! e author would like to thank Professor Ciarán Ó hÓgartaigh and the two anonymous referees involved in 
the review process, whose comments and feedback greatly improved the paper.

2 ! e zero mean assumption does not present any issue in practice. ! e optimal entry and exit levels obtained 
can be easily translated to account for a non-zero mean in empirical data.
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3 Data were obtained using the equity price database available via the ! omson Reuters Xtra 3000 platform. A 
full listing of the 32 stocks is available from the author upon request.

4 It has been pointed out by one of the anonymous referees that including only stocks which are live at the end of 
July 2010 introduces survivor bias. ! e author would like to thank the referee for pointing this out. Including 
dead stocks would need to be coupled with extended analysis of structural change e" ects in any cointegration 
relationships identi# ed. For a given pairing that includes a stock that ultimately delists or ceases trading, any 
long-term statistical relationship that exists is likely to undergo some form of structural change or may indeed 
break down entirely during the lead-up period. Such analysis is defered for future research.

5 For the implementation of the trading models in this section and the next, the transaction costs parameter   
is arbitrarily set at a negligible level of ten basis points. As the objective is to investigate errors between the 
models and empirical data, it is only necessary to apply the transaction parameter consistently. In practice, of 
course, transaction costs are an essential consideration. 

6 A key assumption made in the calculation of sampled trade cycle times is that the spread may be transacted at 
the entry and exit levels exactly. In practice, of course one or more of the assets underlying the spread may be 
illiquid and so it may not be possible to transact immediately once the entry and exit levels are reached. ! e 
author would like to thank one of the anonymous referees for raising this issue.
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