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ABSTRACT

comprehensive empirical analysis of the novel optimal statistical arbitrage

trading model of Bertram (2010) is performed on a dataset of stocks quoted
on the Irish Stock Exchange. Evidence of significant errors on average in the
key measures underlying the trading model is presented, reflecting the mis-
specification of the underlying Gaussian Ornstein-Uhlenbeck (OU) process.
Overestimation of the expected return per unit time measure and underestima-
tion of the expected trade cycle time measure are most notable. It is further shown
that the Bertram (2010) trading model is more robust to high mean reversion
and/or volatility parameter estimates compared to two benchmark models based
on the exact and approximate first-hitting time densities of Linetsky (2004) for
an OU process.

INTRODUCTION

Statistical arbitrage trading strategies are commonly applied in industry to exploit
the long-term statistical relationships that often exist between assets, with pairs trad-
ing being one of the most well-known applications. Cointegration techniques are
generally used to formally establish the statistical relationships upon which various
trading strategies may be designed. One of the key considerations in such strategies
is the optimal choice of entry and exit levels for the trades. A directly related risk is
the stochastic nature of the trade cycle time (i.e. the time between entering, exiting
and subsequently re-entering a trade) for such trades.

A number of alternative studies in the area of statistical arbitrage trading have
been conducted to date. Many of the papers focus on the design of statistical
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arbitrage trading rules and the resulting performance when applied to empirical
data. These include Burgess (1999, 2000), Trapletti, Geyer and Leisch (2002), Vidy-
amurthy (2004), Whistler (2004), Elliott,Van Der Hoek and Malcolm (2005), Gatev,
Goetzmann and Rouwenhorst (2006) and Do, Faff and Hamza (2006). Andrade, di
Petro and Seasholes (2005), Papadakis and Wysocki (2007) and Do and Faff (2009)
contribute to the literature by means of providing independent verification of the
trading rule proposed by Gatev et al. (2006) and examining the sustainability of prof-
its. Aldridge (2009), Bowen, Hutchinson and O’Sullivan (2010) and Dunis, Giorgini,
Laws and Rudy (2010) consider the application of statistical arbitrage trading on
high-frequency data. Kanamura, Rachev and Fabozzi (2010) use the approximate
first-time hitting density formulation of Linetsky (2004) to develop a total profit
model for pairs trading. Other papers of interest include Shleifer and Vishny (1997),
Hogan, Jarrow, Teo and Warachka (2004) and Lin, McRae and Gulati (2006).

However, few of these papers deal directly with the issue of optimal entry and
exit trading levels in the presence of stochastic trade cycle times. Vidyamurthy
(2004) proposes an optimal entry level given by the maximum point on a profit-
ability profile constructed as the product of probability estimates - obtained from
counting the number of times each candidate entry level is exceeded - and the
associated absolute profit levels. Vidyamurthy (2004) further proposes an exit level
that lies through the long-run equilibrium level and of equal distance away as the
entry level; this is to account for any potential trade slippage. Elliott et al. (2005)
use first-passage time theory on the standard Ornstein-Uhlenbeck (OU) process to
develop a framework for calculating the expected trade cycle time of a statistical
arbitrage strategy, along with symmetric entry and exit boundaries. Do et al. (2006)
similarly consider statistical arbitrage trading under an OU framework, drawing on
asset pricing theory to inform the underlying statistical applications.

In contrast to the above papers, Bertram (2010) presents a novel approach to
the issue of optimal statistical arbitrage trading. Specifically, modelling a given
spread series as a mean-reverting OU process, analytic solutions are derived that
allow for the optimal entry and exit levels to be determined through maximising
either (i) the expected return per unit time or (ii) the associated per unit time Sharpe
ratio. Considering the expected return and Sharpe ratio on a per unit time basis is
a very important innovation of Bertram (2010). Statistical arbitrage trading strate-
gies with defined entry and exit levels offer deterministic (log-) returns. However,
uncertainty lies in the stochastic trade cycle times associated with such trades. The
expected return per unit time is defined as the ratio of the deterministic return to
the expected trade cycle time, with the definition of the Sharpe ratio following in
a similar way. This normalisation explicitly accounts for the different determin-
istic returns and expected trade cycle times associated with alternative statistical
arbitrage trading strategies defined by alternative entry and exit levels. Hence, the
normalisation allows for consistent cross-comparison of alternative statistical arbi-
trage trading strategies.

The analytic solutions provide significant computational efficiencies, which
are of particular advantage for the implementation of statistical arbitrage trading
at a high frequency level. However, the underlying OU process being Gaussian
only allows for a normal distribution for changes in the spread series. Whereas this
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allows for analytic solutions to determining optimal entry and exit levels, empirical
data does not conform with the assumption of normality. This study contributes to
the literature by means of performing a comprehensive model specification anal-
ysis of the optimal statistical arbitrage trading model of Bertram (2010) - herein
referred to as the Bertram trading model - on a set of cointegrated pairs identified
from the current (July 2010) listing of ISEQ stocks on the Irish Stock Exchange. The
empirical analysis allows for the identification and quantification of model mis-
specification errors in the Bertram trading model. That is, it looks to investigate the
mis-specification error introduced in using a Gaussian OU process to describe non-
Gaussian empirical cointegration spread series.

The paper further contributes by means of unifying the optimal statistical arbi-
trage trading criteria set out in the Bertram trading model with the first-hitting time
density framework of Linetsky (2004) in order to develop two alternative trading
models for benchmark purposes. The benchmark trading models are based on the
exact and approximate first-hitting time density formulations of Linetsky (2004),
defined under the OU model specification. The benchmark trading models provide
insight into the superior stability of the Bertram trading model for cases where the
speed of mean reversion and/or volatility parameters of the OU process are par-
ticularly high. The analysis, in presenting results for individual pairs, also helps
to understand the sensitivity of the Bertram trading model to variations in the key
parameters of the OU process. Furthermore, in implementing the benchmark trad-
ing model based on the approximate first-hitting time density of Linetsky (2004),
the error introduced as a result of the approximation is investigated and quantified
in the context of a trading application.

The remainder of the paper is organised as follows. The next section provides
an overview of the optimal statistical arbitrage trading model of Bertram (2010) and
discusses the benchmark models based on the first-hitting time density approach of
Linetsky (2004). The following section discusses the ISEQ stock data and presents
the cointegration and OU fitting results for the set of stock pairings used. The fourth
and fifth sections respectively present the empirical analysis in the cases of maxim-
ising the expected return per unit time and maximising the Sharpe ratio. The final
section concludes.

OPTIMAL STATISTICAL ARBITRAGE TRADING

Bertram (2010) approaches the issue of optimal statistical arbitrage trading by first
assuming that the spread on two given asset log-prices, denoted s, , is described by
the following OU process:

ds, = —as,dt + odW, )
with a, o <0and W, a Wiener process. This model by construction allows for
mean reversion of the spread process s, about a long-run mean level of zero, where

the speed of the mean reversion is given by «.> The Wiener process, W, drives the
randomness in the process, where, by definition, changes in the Wiener process,
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dW, are normally distributed with mean zero and variance dt. The volatility param-
eter o is a scaling parameter, which scales this variance to o”dt. It is the normality
of the Wiener that implies the normality of the spread process s,.

Defining the entry and exit levels of the trading strategy by a and m respectively,
a complete trade cycle is the time taken for the spread process to transition from the
entry level a to the exit level m and then return back to the entry level a. Formally,
the trade cycle time is defined as follows:

T=T,,+7T,..
where T, ,,, is the time to transition from a to m and T, _,, is the time to transition
from m to a, and the independence of the two times follows from the Markovian
property of the OU process. So, T is a random variable representing the complete
trade cycle time for the statistical arbitrage trading strategy.

Given relative transaction costs c, the total log-return from one complete trade
cycle is given by r(a,m,c)=m—a—c. That is, the log-return is given as the differ-
ence between the exit level and entry level. Important to note is that this log-return
is deterministic and known in advance, whereas the associated trade cycle time is
stochastic, as already discussed. So, the time it takes to achieve this deterministic
log-return is random and unknown in advance. In this context, Bertram (2010) pro-
poses the concept of the expected return per unit time as follows:

r(a,m,c)
E(T)

&(a,m,c)

where E(T)=E(T,_,, )+ E(T,_,,). That s, £(a,m,c) is the ratio of the deterministic log-
return to the expected trade cycle time. This normalisation explicitly accounts for
the different deterministic log-returns and expected trade cycle times associated
with alternative choices of the entry and exit levels. Therefore, the normalisation
allows for consistent cross-comparison of the alternative statistical arbitrage trad-
ing strategies. Bertram (2010) further proposes a variance of return per unit time
measure as follows:

¢(a,m,c)= Tmaril) (a,;zé))V(T)

where V(T)=V(T,_,,)+V(T,_,) is the variance of the trade cycle time.

Following a transformation of the OU process in Equation 1 to a dimension-
less system, and drawing on the first-passage time theory of Thomas (1975), Sato
(1977) and Ricciardi and Sato (1988), Bertram (2010) derives analytic expressions
for E(T), V(T), &(a,m,c) and ¢(a,m,c). These analytic expressions involve standard
mathematical tools; namely the imaginary error function, the gamma function and
the digamma function. With these analytic results in place, it is shown that the opti-
mal entry and exit levels a* and m* may be derived by maximising the expected
return per unit time, §(a,m, c). Solving for the optimal entry and exit levels a* and m*
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is straightforward and, furthermore, it is shown that they are symmetrically posi-
tioned about the long-run mean level.

Bertram (2010) further develops a second approach, whereby the optimal entry
and exit levels are determined by means of maximising the associated per unit time
Sharpe ratio. For this, the per unit time Sharpe ratio is defined as follows:

Ty
&(a,m,c)— E(T)

S(a,m,c,rf) = .

where r, is the risk-free rate of interest. Solving for the optimal entry and exit levels
a* and m* is straightforward and again they are shown to be symmetric about the
long-run mean level. For technical details on any of the above, the interested reader
is directed to the paper of Bertram (2010).

Benchmark Models

This section presents a unification of the optimal trading criteria (i.e. maximisation
of expected return per unit time, £(a,m,c), or Sharpe ratio, S(a,m,c,r,)) proposed by
Bertram (2010) and the first-hitting time density approach of Linetsky (2004). In so
doing, an alternative statistical arbitrage trading model is presented that serves as a
benchmark for the Bertram trading model. Linetsky (2004) considers the more gen-
eral OU process:

ds, = a(u—s,)dt +ocdW, )

The only difference between this specification and that of Equation 1 is that the
process s, mean reverts around the long-run mean level £, which is not necessar-
ily zero. Under this process, Linetsky (2004) considers the associated first-hitting
time density for the movement of the process from a given point to another defined
point. The first-hitting time density describes the probability distribution for the
stochastic time it takes to move between the two points and allows one to calculate,
for instance, the expected time of this movement. In the context of this study, the
two points may be considered to be the entry and exit levels of the statistical arbi-
trage trading model. Linetsky (2004) derives both exact and approximate solutions
for the first-hitting time density. The exact formulation involves the Hermite func-
tion, which is a standard mathematical tool, whereas the approximate formulation
involves nothing more complex than the cosine function. For technical details the
interested reader is directed to the paper of Linetsky (2004).

Armed with these first-hitting time density formulations, calculation of E(T),
V(T), é(a,m,c) and ¢(a,m,c) is straightforward. Whereas Bertram (2010) provides
analytic expressions from which to determine the optimal entry and exit levels
a* and m*, the approach here requires calculating either &(a,m,c) or S(a,m,c,r,)
as required over a grid of potential entry and exit levels and extracting the opti-
mal levels from the results. For the purposes of the empirical analysis to follow,
both the exact and approximate approaches will be implemented as benchmark
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models for the Bertram model. Further to this, implementation of the approximate
approach provides an opportunity to investigate the effect of the error introduced
by the approximation in the context of a trading application. For the exposition to
follow, the benchmark models will be referred to as the Linetsky Exact and Linetsky
Approximate models.

DATA AND PRELIMINARY STATISTICAL RESULTS

Drawing from the current (July 2010) ISEQ stock listing, 32 stocks in total are exam-
ined with end-of-day mid-quoted price data spanning the sample period 21 July
2000 to 23 July 2010.>* The 32 stocks chosen are those for which time series are avail-
able over the full sample period, which is deemed a sufficiently long period to test
for cointegration and, more importantly, to comprehensively test the Bertram trad-
ing model as described below. The ISEQ stocks not considered are those for which
the date of first listing succeeds 21 July 2000. The majority of these stocks (all bar
two) actually have listing dates from 2006 onwards and so the associated time series
are not deemed sufficiently long for the empirical testing.

All price series are first tested for stationarity using the standard augmented
Dickey-Fuller (Dickey and Fuller, 1981) test and, hence, one stock is dropped from
the sample data set for failing to reject the null hypothesis of stationarity. From the
remaining 31 stocks, the residual-based cointegration test of Engle and Granger
(1987) is performed on the resulting 465 stock pairings, which assumes the follow-
ing linear model:

S, =y+PBs, t+e

where s, , and s, , are the log-prices of the two assets in the pair, and the resulting
cointegration spread series is defined such that s, =s, , — fs, .. Using a 1 per cent sig-
nificance level criterion, cointegration is established between 37 pairs of stocks in
total, made up of the 22 stocks listed in Table 1. Use of the high 1 per cent signifi-
cance level serves to reduce the number of pairings examined for this particular
study, allowing for results for individual pairs to be more easily reported for the
perusal of the reader. It is the individual results that provide insights into the sen-
sitivity of the Bertram trading model to variations in the key parameters of the
OU process. In practice, of course, a 5 per cent significance level may be deemed
acceptable to establish cointegration in the price spread. Indeed, cointegration is
recognised as a strong statistical test and so may not identify weaker forms of pre-
dictability that offer trading opportunities. Burgess (1999) discusses this point and
proposes an alternative variance ratio test approach to establishing predictability.
Table 2 presents the cointegration pairs, along with the associated f-statistics from
the cointegration testing. Descriptive statistics for the resulting spread series are
also presented.

With the cointegrated pairs identified, the next stage of analysis fits the gen-
eral OU process in Equation 2 to each spread series. Table 2 presents the estimated
parameters &, i and & for each of the 37 pairings. These estimates will be used in
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TABLE 1:ISEQ STOCKS IN PAIRINGS

Reuters Instrument Code Name

ALBK Allied Irish Banks
AMNX Aminex

ARYN Aryzta

BKIR Bank of Ireland
DQ5 CPL Resources
CRH CRH

DQ7 Donegal Creameries
DGO Dragon Oil

FBD FBD Holdings

GRF Grafton Group
GNC Greencore Group
INME Independent News & Media
IPM Irish Life & Permanent
JEV Kenmare Resources
KYGa Kerry Group ‘A’
KSP Kingspan Group
MCI Mclnerney Holdings
ORM Ormonde Mining
OoVG Ovoca Gold

PACC Prime Actvie Capital
RDMX Readymix

uDG United Drug

the application of the Bertram, Linetsky Exact and Linetsky Approximate trading
models in the forthcoming sections. From the descriptive statistics for the spread
series reported in Table 2, it is clearly evident that the OU process, being Gaussian,
is inadequate to capture the non-normal asymmetric and leptokurtic features of the
spread series data. The next section investigates the error introduced as a result of
this model mis-specification within the trading models.

TABLE 2: COINTEGRATION AND OU MODEL FITTING RESULTS

Pairing t-stat Star.lda.rd Skewness Kurtosis a i &
Deviation
ALBK-AMNX -4.03 0.36 -0.35 2.97 4.18 -246 1.0l
ALBK-BKIR -4.32 0.17 0.65 6.12 462 0.64 0.53
ALBK-GNC -4.51 0.16 0.14 3.07 364 -0.02 043
ALBK-INME -5.13 0.28 -0.87 4.94 396 046 0.75
(Continued)
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TABLE 2: (CONTINUED)
Pairing t-stat Star.ldafrd Skewness Kurtosis a i &
Deviation
ALBK-IPM -5.20 0.26 0.48 6.21 404 -064 073
ALBK-OVG -5.75 0.35 0.56 3.71 952 -1.70 1.49
ALBK-RDMX -6.34 0.20 -0.38 6.31 748 -1.82 0.76
AMNX-BKIR -4.14 0.35 -0.35 3.04 440 -2.18 1.02
AMNX-INME -3.95 0.35 -0.54 3.02 4.16 -229 1.0l
AMNX-IPM -4.34 0.35 -0.39 2.85 475 -282 1.05
AMNX-OVG -6.39 0.33 -0.18 2.67 1286 058 1.66
ARYN-KYGa -4.46 0.09 -0.01 3.11 427 1.18 026
BKIR-GNC -4.62 0.16 0.68 3.19 434 026 046
BKIR-IPM -6.97 0.19 0.10 5.07 732 -127 0.71
BKIR-OVG -5.95 0.34 0.79 4.08 10.15 -1.41 1.50
BKIR-RDMX -4.81 0.25 -0.12 7.94 509 -125 0.78
DQ5-CRH -4.44 0.13 0.25 3.22 392 282 037
CRH-JEV -4.58 0.14 0.09 3.6l 476 336 04]
CRH-KSP -5.22 0.10 0.09 2.85 526 233 033
CRH-ORM -3.88 0.17 0.19 2.76 323 357 043
DQ7-UDG -4.40 0.18 0.29 2.66 425 -003 05l
DGO-KYGa -3.94 0.10 -0.43 2.77 307 281 025
FBD-OVG -4.81 0.40 -0.05 2.63 713 -2.113 148
GRF-INME -3.98 0.48 -0.29 3.15 516 249 |.55
GRF-OVG -5.39 0.38 0.13 3.04 949 -024 .64
GNC-IMP -5.10 0.15 0.83 3.71 504 -036 048
GNC-OVG -4.32 0.29 -0.31 2.13 556 135 094
INME-IMP -4.21 0.31 -1.22 5.75 276 1.0l 0.70
INME-OVG -5.88 0.32 -0.21 3.20 1080 -1.56 1.48
INME-PACC -4.73 0.36 -0.01 2.26 693 -1.78 1.34
INME-RDMX -4.37 0.25 -0.90 3.48 4.16 -146 0.70
IPM-OVG -5.82 0.35 0.73 3.52 9.65 -206 1.50
IPM-RDMX -4.91 0.29 -0.82 6.91 461 -2.38 0.88
MCI-OVG -4.07 0.49 0.37 2.90 487 -049 148
ORM-UDG -5.26 0.33 0.17 3.64 586 -428 1.07
OVG-PACC -5.39 0.38 0.13 3.04 949 -024 .64
OVG-RDMX -3.99 0.55 -0.23 1.96 493 082 1.70

Note: The reported t-stats result from the residual-based cointegration test of Engle and Granger (1987). g,
/tand & are the estimated speed of mean reversion, long-run mean and volatility parameter estimates for the
general OU process.

EMPIRICAL ANALYSIS: MAXIMISING EXPECTED RETURN
This section presents an empirical analysis of the optimal Bertram trading model,
along with the optimal benchmark Linetsky Exact and Linetsky Approximate

models, where the expected return per unit time is maximised.® For each stock

pairing under each trading model, the optimal entry and exit levels a* and m* are
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determined. Using the empirical spread series, sample counterparts to E(T), V(T),
&(a,m,c)and ¢(a,m,c)are calculated, herein denoted T,V, &, and ¢ respectively. Com-
plete trade cycles a* — m* — a* are identified and the associated trade cycle times
recorded. For this, and given the discrete daily frequency structure of the data, each
occurrence of the spread series crossing over either the optimal a* or m* level is first
identified and then interpolation is used as required to assign an associated time (as
a fraction of a year). For each spread series j = 1,...37, and given the sampled trade
cycle times {1/},i=1,.. .,n].,6 the sample measures are defined as follows:

- 19
T ="YT
nj; !

Vi= lZ(Tij _ T)Z
nis

A

g :(m;—u;—c)/Tf
&l :(m;—a;—c)sz/(ij

Table 3 presents the optimal entry and exit levels relative to the estimated long-
run mean parameters. The errors between the model and corresponding empirical
expected return per unit time and expected trade cycle time measures are also pre-
sented for each model. Table 4 provides the actual expected return per unit time
and expected trade cycle time measures under each model. To conserve space, the
variance of return per unit time and variance of trade cycle time measures are not
reported, but are available upon request.

An important first observation to make is that for the Linetsky models, no results
are reported for a number of pairings (highlighted with the symbol x). In these cases,
the Linetsky models are found to exhibit an instability that is not experienced by
the Bertram model. Specifically, the Linetsky models are found to generate implau-
sible expected return values, resulting directly from the excessively small (i.e. close
to zero) expected trade cycle time estimates. From the fitted OU model parameters,
these pairings can be seen to correspond to speed of mean reversion and/or vola-
tility parameter estimates that are particularly high relative to the other pairings.

For the Bertram trading model, the optimal entry and exit levels are, by con-
struction, symmetric about the long-run mean level. The results of the Linetsky
Exact and Linetsky Approximate models support this, showing symmetry for all
pairings for which valid results are achieved. The trading models generally over-
estimate the expected return per unit time relative to the empirical data. The mean
error for the Bertram model across all 37 pairings is significant at 46.19 per cent.
Across only the valid pairings for the Linetsky models, mean errors for the Bertram,
Linetsky Exact and Linetsky Approximate models are again significant at 28.39
per cent, 27.65 per cent and 28.11 per cent respectively. Underlying these errors
is the underestimation of expected trade cycle times relative to the empirical data.
Across all 37 pairings, the mean error in the trade cycle time for the Bertram model
is approximately four and a half months, at -0.3813 years. For the valid pairings
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under the Linetsky models, the mean trade cycle time errors show underestimation
of almost six months for both the Bertram and Linetsky Exact models, at -0.4414
and -0.4337 respectively, and in excess of six months for the Linetsky Approximate
model, at -0.6788. On a case-by-case basis, the lowest errors generally correspond
to those pairings with spread series that are close to Gaussian, in particular those
that exhibit kurtosis close to 3. As expected, the closer the spread series is described
by a Gaussian distribution, the smaller the model mis-specification error that is
introduced.

To conclude, it is worth making some final comments on the variance of return
per unit time and the variance of trade cycle time, where we focus on only those
pairings with valid results under the Linetsky models. The mean variance of return
per unit time is 0.0771, 0.0772 and 0.0831, for the Bertram, Linetsky Exact and Linet-
sky Approximate models respectively, with corresponding mean errors of 0.0584,
0.0543 and 0.0611. For the Bertram model, the mean variance of trade cycle time
is 0.0813, with a mean error of -0.5875. For the Linetsky Exact and Approximate
models, the mean variances of trade cycle time are higher relative to the Bertram
model at 0.0878 and 0.3415 respectively, with errors of -0.5037 and -0.6838.

In summary, the trading models examined show the following common attrib-
utes: overestimation of the expected return per unit time; underestimation of the
expected trade cycle time; overestimation of the variance of return per unit time;
and underestimation of the variance of trade cycle time.

EMPIRICAL ANALYSIS: MAXIMISING SHARPE RATIO

Similar to the previous section, an empirical analysis of the statistical arbitrage trad-
ing models is performed whereby the optimal entry and exit levels are determined
this time by means of maximising the Sharpe ratio. The empirical counterparts to
the expected trade cycle time, variance of trade cycle time, expected return per unit
time and variance of return per unit time measures are calculated as outlined previ-
ously. In addition to these, an empirical counterpart to the Sharpe ratio is defined
as follows:

S T/
S/ = (mj _ﬂj —C—Tf) ﬁ
(m; —a; —c)"V

For ease of the analysis to follow, the risk-free rate of interest r, is set equal to the
average three-month composite EURIBOR over the full sample period of 2.9966
per cent. Table 5 presents the optimal entry and exit levels, along with the model-
empirical measure errors. Table 4 again provides the actual expected return per
unit time and expected trade cycle time measures under each model. The variance
of return per unit time and variance of trade cycle time measures are again not
reported in order to conserve on space.

In contrast to the previous section, the Linetsky models do not show instabil-
ity for any of the 37 pairings. This likely reflects the fact that, overall, the reported
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optimal entry and exit levels for each pairing represent a wider range around the
long-run mean level compared to maximisation of expected return per unit time
and, hence, the associated expected trade cycle time is much longer. Indeed, the
mean expected trade cycle times for the Bertram, Linetsky Exact and Linetsky
Approximate models respectively are 0.5709, 0.5553 and 0.5226 years. Despite the
greater absolute returns on offer from the wider optimal entry and exit levels, it is
particularly interesting to note that the longer expected trade cycle times lead to
expected return per unit time measures that are quite comparable to the previous
section. So on a per unit time basis, there appears to be marginal difference between
the trading strategy based on either maximisation of expected return per unit time
or Sharpe ratio. Further to this, the mean error in the expected return per unit
time relative to the empirical data is 44.92 per cent, 47.80 per cent and 48.89 per cent
for the Bertram, Linetsky Exact and Linetsky Approximate models respectively.
Again, the trading models significantly overestimate the expected return relative to
the empirical data, reflecting significant underestimation of the expected trade cycle
time with mean errors of -1.3474, -1.4175 and -1.3994 years.

On the associated Sharpe ratio measures, the trading models show evidence of
both overestimation and underestimation relative to the empirical data, with vary-
ing degrees of magnitude. Overall, the mean error is positive at 0.4214, 0.3848 and
0.3952 for the Bertram, Linetsky Exact and Linetsky Approximate models respec-
tively. The mean variance of return per unit time is 0.1258, 0.1389 and 0.1375 for the
Bertram, Linetsky Exact and Linetsky Approximate models respectively, with cor-
responding mean errors of 0.0950, 0.1099 and 0.1094. The mean variance of trade
cycle time is 0.2101, 0.2085 and 0.1932 for the Bertram, Linetsky Exact and Linet-
sky Approximate models respectively, with corresponding mean errors of -1.2718,
-1.2618 and -1.2511.

In summary, the trading models examined show the following common attrib-
utes: overestimation of the expected return per unit time; underestimation of the
expected trade cycle time; overestimation of the variance of return per unit time;
and underestimation of the variance of trade cycle time. These observations are
similar to the last section. Furthermore, the trading models all show mixed results
for the Sharpe ratio, with evidence of either over- or underestimation.

CONCLUSION

This study presents a comprehensive model specification analysis of the Bertram
(2010) optimal statistical arbitrage trading model on quoted ISEQ stocks. A number
of key contributions to the literature are made. Firstly, the empirical analysis allows
for the identification and quantification of model mis-specification errors in the
Bertram trading model. That is, it looks to investigate the mis-specification error
introduced in using a Gaussian OU process to describe non-Gaussian empirical
cointegration spread series. Significant errors are reported on average in the key
measures underlying the trading model. In particular, for both maximisation of the
expected return per unit time and maximisation of the Sharpe ratio, it is found that
the trading model generally overestimates the expected return per unit time and
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underestimates the expected trade cycle time relative to the empirical data. Errors
in the Sharpe ratio show evidence of both overestimation and underestimation. In
general, and as expected, the closer the data is to normal, the better the trading
model performs.

Secondly, the study contributes by means of unifying the optimal statistical
arbitrage trading criteria set out in the Bertram trading model with the first-hitting
time density framework of Linetsky (2004) in order to develop two alternative trad-
ing models for benchmark purposes. Comparison of the Bertram trading model
against these benchmark models shows the former to be much more robust to high
mean reversion and/or volatility parameter estimates. The analysis further helps
to understand the sensitivity of the Bertram trading model to variations in the key
parameters of the OU process by reporting results for individual pairs. Thirdly, in
implementing the benchmark trading model based on the approximate first-hitting
time density of Linetsky (2004), the error introduced as a result of the approxima-
tion is investigated and quantified in the context of a trading application.

The key advantage of the Bertram trading model is that the analytic approach
to determining optimal entry and exit levels provides significant computational
efficiencies, which is of particular advantage for the implementation of statistical
arbitrage trading at a high-frequency level. However, given that the underlying
OU process only allows for a normal distribution for changes in the spread series,
model mis-specification error is a feature when applied to non-normal empirical
data. Therefore, for practitioners, there is a tradeoff to be made between the com-
putational efficiencies that the Bertram trading model offers and the error that it
introduces. This study shows that the errors in the key underlying measures using
ISEQ data are significant on average. However, on an individual pair basis, the
closer the spread series is to normal, the less the error will be in general. It is advis-
able that practitioners be cognisant of the model mis-specification error issue when
using the Bertram trading model and where possible to comprehensively backtest
any statistical arbitrage trading strategy based on the resulting optimal entry and
exit levels.

Finally, informed by the model specification insights of this study, a formal trad-
ing strategy validation would significantly extend the literature. Examination of the
performance of the Bertram trading model against alternative statistical arbitrage
models, in addition to alternative trading strategies (e.g. technical rules), would be
of particular interest to practitioners. However, such analysis would need to pro-
ceed while controlling for data snooping through the use of appropriate techniques,
such as the reality check bootstrap of White (2000) and the superior predictive abil-
ity test of Hansen (2005).

ENDNOTES

1 The author would like to thank Professor Ciarén O hOgartaigh and the two anonymous referees involved in
the review process, whose comments and feedback greatly improved the paper.

2 The zero mean assumption does not present any issue in practice. The optimal entry and exit levels obtained
can be easily translated to account for a non-zero mean in empirical data.
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3 Data were obtained using the equity price database available via the Thomson Reuters Xtra 3000 platform. A
full listing of the 32 stocks is available from the author upon request.

4 TIthasbeen pointed out by one of the anonymous referees that including only stocks which are live at the end of
July 2010 introduces survivor bias. The author would like to thank the referee for pointing this out. Including
dead stocks would need to be coupled with extended analysis of structural change effects in any cointegration
relationships identified. For a given pairing that includes a stock that ultimately delists or ceases trading, any
long-term statistical relationship that exists is likely to undergo some form of structural change or may indeed
break down entirely during the lead-up period. Such analysis is defered for future research.

5  For the implementation of the trading models in this section and the next, the transaction costs parameter
is arbitrarily set at a negligible level of ten basis points. As the objective is to investigate errors between the
models and empirical data, it is only necessary to apply the transaction parameter consistently. In practice, of
course, transaction costs are an essential consideration.

6  Akeyassumption made in the calculation of sampled trade cycle times is that the spread may be transacted at
the entry and exit levels exactly. In practice, of course one or more of the assets underlying the spread may be
illiquid and so it may not be possible to transact immediately once the entry and exit levels are reached. The
author would like to thank one of the anonymous referees for raising this issue.

REFERENCES

Aldridge, I. (2009). High-Frequency Trading: A Practical Guide to Algorithmic Strategies and Trad-
ing Systems, Hoboken, NJ: John Wiley & Sons.

Andrade, S., di Pietro, V. and Seasholes, M. (2005). Understanding the Profitability of Pairs
Trading, working paper, University of California, Berkley.

Bertram, W.K. (2010). Analytic Solutions for Optimal Statistical Arbitrage Trading, Physica A,
Vol. 389, No. 11, pp. 2234-2243.

Bowen, D., Hutchinson, M.C. and O’Sullivan, N. (2010). High-Frequency Equity Pairs Trad-
ing: Transaction Costs, Speed of Execution, and Patterns in Returns, The Journal of Trading,
Vol. 5, No. 3, pp. 31-38.

Burgess, A.N. (1999). A Computational Methodology for Modelling the Dynamics of Statisti-
cal Arbitrage, PhD thesis, London Business School.

Burgess, A.N. (2000). Statistical Arbitrage Models on the FTSE 100, in Y. Abu-Mustafa, B.
LeBaron, A.W. Lo and A.S. Weigend (eds.), Computational Finance 1999, Cambridge, MA:
MIT Press.

Dickey, D. and Fuller, W. (1981). Likelihood Ratio Statistics for Autoregressive Time Series
with a Unit Root, Econometrica, Vol. 49, No. 4, pp. 1057-1072.

Do, B. and Faff, R. (2009). Does Naive Pairs Trading Still Work?, working paper, Monash
University, Melbourne.

Do, B., Faff, R., and Hamza, K. (2006). A New Approach to Modeling and Estimation for Pairs
Trading, working paper, Monash University, Melbourne.

Dunis, C.L., Giorgini, G., Laws, J. and Rudy, J. (2010). Statistical Arbitrage and High-Fre-
quency Data with an Application to Eurostoxx 50 Equities, working paper, Liverpool
Business School.

Elliott, R.J., Van Der Hoek, J. and Malcolm, W.P. (2005). Pairs Trading, Quantitative Finance,
Vol. 5, No. 3, pp. 271-276.

Engle, RF. and Granger, C.W. (1987). Cointegration and Error Correction: Representation,
Estimation, and Testing, Econometrica, Vol. 55, No. 2, pp. 251-276.

Gatev, E., Goetzmann, W.N. and Rouwenhorst, K.G. (2006). Pairs Trading: Performance of a
Relative-Value Arbitrage Rule, The Review of Financial Studies, Vol. 19, No. 3, pp. 797-827.

Hansen, P.R. (2005). A Test for Superior Predictive Ability, Journal of Business and Economic
Statistics, Vol. 23, No. 4, pp. 365-380.

39

TAR2011indb 39 @ 31/03/2011 08:41:05



Cummins

Hogan, S., Jarrow, R., Teo, R. and Warachka, M. (2004). Testing Marking Efficiency Using
Statistical Arbitrage with Applications to Momentum and Value Strategies, Journal of
Financial Economics, Vol. 73, No. 3, pp. 525-565.

Kanamura, T., Rachev, S.T. and Fabozzi, F.J. (2010). A Profit Model for Spread Trading with
an Application to Energy Futures, The Journal of Trading, Vol. 5, No. 1, pp. 48-62.

Lin, Y., McRae M. and Gulati, C. (2006). Loss Protection in Pairs Trading through Minimum
Profit Bounds: A Cointegration Approach, Journal of Applied Mathematics and Decision Sci-
ences, Vol. 2006, pp. 1-14.

Linetsky, V. (2004). Computing Hitting Time Densities for OU and CIR Processes: Applica-
tions to Mean-Reverting Models, Journal of Computational Finance, Vol. 7, No. 4, pp. 1-22.

Papadakis, G. and Wysocki, P. (2007). Pairs Trading and Accounting Information, working
paper, MIT.

Ricciardi, L. and Sato, S. (1988). First Passage Time Density and Moments of the Ornstein-
Uhlenbeck Process, Journal of Applied Probability, Vol. 25, No. 1, pp. 43-57.

Sato, S. (1977). Evaluation of the First Passage Time Probability to a Square Root Boundary
for the Wiener Process, Journal of Applied Probability, Vol. 14, No. 4, pp. 850-856.

Shleifer, A. and Vishny, R. (1997). The Limits of Arbitrage, Journal of Finance, Vol. 52, No. 1,
pp. 35-55.

Thomas, M.U. (1975). Some Mean First Passage Time Approximations for the Ornstein-
Uhlenbeck Process, Journal of Applied Probability, Vol. 12, No. 3, pp. 600-604.

Trapletti, A., Geyer, A. and Leisch, F. (2002). Forecasting Exchange Rates using Cointegration
Models and Intra-Day Data, Journal of Forecasting, Vol. 21, No. 3, pp. 151-166.

Vidyamurthy, G. (2004). Pairs Trading: Quantitative Methods and Analysis, Hoboken, NJ: John
Wiley & Sons.

Whistler, M. (2004). Trading Pairs: Capturing Profits and Hedging Risk with Statistical Arbitrage
Strategies, Hoboken, NJ: John Wiley & Sons.

White, H. (2000). A Reality Check for Data Snooping, Econometrica, Vol. 68, No. 2, pp.
1097-1126.

40

TAR2011indb 40 @ 31/03/2011 08:41:05



