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Abstract—This paper presents a novel approach to the gener-
ative design optimisation of a resilient Drone Logistic Network
(DLN) for the delivery of medical equipment in Scotland. A DLN
is a complex system composed of a high number of different
classes of drones and ground infrastructures. The corresponding
DLN model is composed of a number of interconnected digital
twins of each one of these infrastructures and vehicles, forming
a single digital twin of the whole logistic network.

The paper proposes a multi-agent bio-inspired optimisation
approach based on the analogy with the Physarum Policefalum
slime mould that incrementally generates and optimise the DLN.
A graph theory methodology is also employed to evaluate the
network resilience where random failures, and their cascade
effect, are simulated. The different conflicting objectives are
aggregated into a single global performance index by using
Pascoletti-Serafini scalarisation.

Index Terms—Physarum Optimisation, Digital Twin, Drone
Logistic Network, Vehicle Routing Problem, Complex System,
Graph Theory, Resilience

ACO Ant Colony Optimisation
CMOP Constraint Multi-Objective Problem
DAE Differential Algebraic Equation
DLN Drone Logistic Network
DLND Drone Logistic Network Design
DT Digital Twin
LRP Location-Routing Problem
KPI Key Performance Indicator
MH-PO Multi Headed Physarum Optimiser
MOO Multi-Objective Optimisation
NHS National Health Service
NOP Network Optimisation Problem
PSO Particle Swarm Optimisation
SoS System of Systems
TSP Travelling Salesman Problem
UC Use Case
VRP Vehicle Routiong Problem

This work is founded by the project CAELUS, UK Industrial Strategy
Future Flight Challenge Fund

I. INTRODUCTION

It has been recognised in these last years (and the covid-19
pandemic increased the supporting evidence) that a distributed
healthcare network can improve tremendously the efficacy and
efficiency of our healthcare systems. Working in this direction
the UK government is currently investing in the realisation
of a autonomous Drone Logistic Network (DLN) that allows
the delivering of medical equipment and assistance to remote
areas.

Some experiments about medical delivery with the use
of drones have already been done in the recent past. In
Rwanda drones are used successfully for the delivery of blood
from central storage facilities [1], [2]. In Baltimore trials
are currently performed for delivering kidneys for transplants
[3]. A trial near Rome by Leonardo and Telespazio [4] was
completed in 25 minutes by drone while the road journey along
the coast took of 45-60 minutes. In [5] the effect of drone
transportation has been analysed on biological samples and it
has been established that below a tournaround time of 4 hours
there are no negative effects. Matternet [6] announced in 2020
a collaboration with lab facilities in Berlin to transport patient
samples from hospitals in Berlin by drone to lab facilities run
by Labor Berlin. This is in addition to the flights Matternet
have undertaken in Switzerland with Swiss Post, transporting
laboratory samples between two hospitals. Microbiological
specimens including blood cultures were transported by drone
as a test in [7] and compared with stationary specimens to
assess whether such specimens are affected by drone transport.
For the microbes used in the trial no significant impact was
found on the time to produce a positive result for the speci-
mens flown for 30 minutes. Flight tests for medical delivery
have been successfully conducted also in Spain [8]. In [9] there
is an interesting study for the reliability of dreon delivery of
authomatic external defibrillators that takes into consideration
stochastic demands and meteorological conditions.
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The work presented in this paper, as part of the CAELUS
project financed by the UK Industrial Strategy Future Flight
Challenge Fund, wants to do a further step. The goal is indeed
to design and produce a whole DLN that is optimal from many
Key Performance Indicators (KPIs). It is indeed required to
minimise the capital costs of investment and the operational
cost of the delivery, to allow fast areal routing, scheduling and
planning and finally to design such a delivery network to be
resilient under internal and external unexpected events.

As highlighted in [10] emerging attention of the research
field is put on the development of approaches for the genera-
tion network optimisation since it is a difficult problem with a
wide range of applicability. It has been furthermore recognised
the importance of cross-fertilisation between engineering ap-
proaches and the biologic field that generated bio-intelligent
systems through hundreds of thousand years of evolution.

Within the immense biological realm, in the last years
researchers have focused their attention to the single multi-
nucleate cells Physarum Polycephalum slime mould which
shows an excellent intelligence in constructing biological
network in the existing experiments, including the network
topology [11] and Steiner tree problems [12].

We present then a Physarum-inspired network optimisation
methodology that extend the work proposed in [13]. The algo-
rithm is called Multi Headed Physarum Optimiser (MH-PO)
since multiple cooperative Physaria are modelled and evolved
during each generation.

The methodology includes two integrated approaches: the
generation of a sub-optimal delivery network that is pro-
gressively optimised and the simulation over the generated
network of the drone delivery system. The former is a Network
Optimisation Problem (NOP) while the latter, with the task of
selecting the correct drone and finding the optimal routing and
scheduling, can be classified as a Vehicle Routiong Problem
(VRP).

The complex DLN system is modelled as a Digital Twin
(DT): a virtual copy has been developed for each component
of the physical system and their interconnection generates the
DT of the whole system. Due to the computational cost of
simulating the DT, a surrogate-based approach is implemented
that improve the speed of the optimisation convergence.

The design problem translates in a Multi-Objective Opti-
misation (MOO) Problem since many KPIs are considered. A
Pascoletti-Serafini scalarisation approach is implemented.

Particular attention is given in the paper to the quantification
of the network resilience that is considered as the ability of the
whole network system to absorb negative and unpredictable
events and recover after the failure.

The remainder of the paper is organised as follows. First
we give a definition of the Drone Logistic Network Design
(DLND) problem and we briefly describe the generative ap-
proach. Second, we describe the improved MH-PO algorithm
and its specificity for the generative optimisation method.
Third, we describe the Use Case (UC) in section V and present
the problem formulation and the optimisation metrics. Finally
the conclusions are given based on the results.

II. DRONE LOGISTIC NETWORK DESIGN

The DLND is a type of Location-Routing Problem (LRP)
[14] that aims to find simultaneously the optimal decision
on the location of the DLN facilities and on the routing
of the fleets of drones. The problem has an influence on
the drone supply chain planning at three different levels of
the organisation: strategic, tactical, and operational. From a
strategic perspective, it deals with the decisions on the location
of ground stations, their infrastructure types, the type and
number of drones used in the network and the allocation of
customers. The tactical decisions includes the transportation
modes among stations and the allocation of drones to depot.
Lastly, the operational-level decisions include the VRP for the
fulfilment of customer demands. We propose here a generative
optimisation approach for the solution of the DLND problem.
The method, MH-PO, is indeed based on an iterative procedure
that progressively define sub-optimal DLN, evaluate them and
produce improved solutions. It is to be noticed that the total
number of network’s nodes and links is fixed in advance before
starting the optimisation process. It is the optimisation task to
select a sub-set of them o be used to generate the network.
The links’ costs are calculated on-line during the simulation
and saved in memory. This can be particularly advantageous
for high dimensional and/or high costly problems where only
a sub-set of all the solutions is analysed by the optimiser and
the remaining part of node combinations is not considered and
simulated.

III. MULTI-HEADED PHYSARUM DECISION MAKING

The MH-PO is a meta-heuristic approach based on multiple
adapting populations that allow for combinatorial optimisation
and discrete decision making. The algorithm belongs to the
family of swarm intelligence methodologies that includes
also Particle Swarm Optimisation (PSO) and Ant Colony
Optimisation (ACO) to whom it shows some similarity [15].
Physarum-inspired algorithms have however demonstrated to
be particular promising and efficient in solving complex opti-
misation tasks. Physarum Policefalum is a single-celled multi-
nucleate slime mould that in its plasmodium state is formed of
a network of veins called pseudopodia. The organism presents
interesting bio-intelligence behaviour that allows it to adapt
and move in order to find sources of food or amicable envi-
ronments. This capacity is made possible by the mechanisms
of extension and retraction of the veins that are coupled with
the flow of both chemical-physical signals and food nutrients.

The algorithm with its phases and its workflow is sum-
marised in algorithm 1 while the main algorithm’s parameters
are listed in table I.

A. Initialisation

First all the parameters defining the MH-PO in table I are
defined (line 1 in algorithm 1).

B. Construction

The construction phase is repeated at each generation (lines
3-13 in algorithm 1) and it is used to define a sub-optimal DLN
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which will then be progressively improved through following
generations. At each step of the construction, each agent
evolves adding a single new link. Two alternatives methods are
possible: ramification to an unexplored new link or movement
in the already existing network. The choice is stochastic with
a probability threshold pram,0 as in line 6. In the former case
a set of new possibilities are evaluated and saved in memory
while in the latter all the previously generated links that are
feasible are considered. The flow through each of these veins
ij is modelled with the Hagen-Poisuelle equation:

Qij =
πr4ij
8µ

∆pij
Lij

(1)

where rij is the vein radious, µ the dynamic viscosiy, Lij is
problem-specific heuristic that model the cost of the link and
∆p the pressure gradient.

The flow matrix in eq. (1) is then used to decide where to
move with a weighted roulette approach:

pram,i−j =

{
Qij∑

j∈Ni
Qij

if j ∈ Ni

0 if j /∈ Ni

(2)

The construction phase evolves a single head of the MH-PO
for each pick-up station and defines the corresponding delivery
one for the nested VRP.

The construction phase needs to satisfy a set of rules. Some
of them are problem independent and correspond to generic
settings of MH-PO: the maximum number of times a node can
be visited by the same agent and the possibility to exclude a
link if in a previous generation it resulted unfeasible. There
are then some problem specific rules. The network needs to
have directional links that connect depots to pick-up and pick-
up to deliveries. additional stations can be included between
the two end points, but the order (depots, pick-up, deliveries)
has to be satisfied. A constraint on the link is also considered
and it refers to the energy limit given by the battery.

Finally, the termination criterion is achieved when all pick-
up stations are connected to a delivery one. At this point the
Physaria construction of the current agent can be stopped (line
5 in algorithm 1).

C. Matching criteria
During the construction phase or after the network has been

finalised, a set of rules are implemented in order to match the
different components of the agent.

D. Network Definition
Once the construction phase is terminated, the information

collected during the optimisation process is used to generate
the DLN. The network is defined by the selected nodes by the
current Physarum’s generation and by all the feasible links
calculated up to this point. To be noticed that it is a multi-
layer network where each type of drone corresponds to a single
layer.

E. Global quantification
The network is used to quantify the global performance

metrics of the Physarum’s solution (line 16 of algorithm 1).

F. Vein’s Update

As discussed in [13] two methods are used in the literature
to model the flow through the Phsarum’s veins: the fluid-style
that is based on a mass-balance system equation and the ACO-
style that is based on the analogy with ACO’s pheromone
deposition and evaporation. The latter has shown to outperform
the former and is used in the current implementation.

Vein’s extension and retraction happens through the dilation
and evaporation processes. In particular, at the end of each k-
th agent’s evolution (lines 18-20) the Physarum’s veins radii
are dilated based on the formula:

d

dt
rij

∣∣∣∣
dilation

= f (Qij) = m
r
(k)
ij

L
(k)
tot

(3)

where m is the linear dilation coefficient and is fixed a priori.
After all agents have constructed their sub-optimal network

the radii retraction is applied:

d

dt
rij

∣∣∣∣
contraction

= −ρrij (4)

with ρ the evaporation coefficient.
Taking inspiration from the amoeba Dictyostelium dis-

coideum (Dd) a dilation of the best solution is also included:

d

dt
rijbest

∣∣∣∣
elasticity

= GFrijbest (5)

where GF is the growth factor of the best chain of veins and
rijbest the best vein’s radii.

G. Restart mechanism

To avoid stagnation on local minima, a restarting criterion
is implemented on the value of all the vein’s radii and applied
when a fixed a-priori percentage of agents at the current
generation converges to the same solution:

rij = R(rij) = r0 (6)

TABLE I: Optimiser parameters

symbol explanation

r0 starting radius
m linear dilation coefficient
ρ evaporation coefficient
GF growth factor for best solution
GFgraph growth factor from graph theory
Ngen number of generations
Nphys number of virtual physarum
Nagents number of virtual agents
pram,0 initial probability of ramification
pram,δ reduction factor of probability of ramification
pchild,loc probability of choosing a child from the same physarum
pchild,glo probability of choosing a child from other physaria
λ weight on ramification
ω⃗ objective functions weight vector
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Algorithm 1 Optimisation Algorithm

1: Initialise parameters in table I
2: for each generation do
3: for each agent do
4: while construction condition do
5: for each active Physarum do
6: if ν ∈ U(0, 1) ≤ pram then
7: Create new decision path building missing

links and nodes for the selected physarum
8: else
9: Move in the existing graph

10: end if
11: Update shared information
12: end for
13: end while
14: Look for possible matching
15: Define Drone Delivery network
16: Calculate global metrics
17: Update surrogate model
18: Graph analysis of the generated network
19: for each Physarum do
20: Update veins with dilation
21: end for
22: end for
23: for each Physarum do
24: Update veins with evaporation and dilation of the best

solution
25: end for
26: Check on minimum and maximum vein’s radius
27: if restart condition then
28: Update all radii to r0
29: end if
30: end for

H. Surrogate-based approach

Since the DT is computationally expensive it is here pro-
posed a surrogate-based approach. During the construction
phase the lower fidelity but faster surrogate is used. Once the
network is completed and the global metrics are evaluated,
instead, the higher fidelity models are evaluated and the
response surface is update.

IV. ALGORITHM COMPLEXITY

The MH-PO optimisation algorithm can solve the Travelling
Salesman Problem (TSP), the VRP and their variants. These
optimisation problems are NP-complete and an exhaustive
search of their optimal solution suffers of the curse of di-
mensionality having a computational complexity greater than
O(n!) with n the number of nodes. The Generative Optimi-
sation Problem is even more computationally complex that
TSP and VRP since both network topology and drone mission
planning needs to be optimised. The global convergence of
MH-PO on the generative problem can not be proved as for
any other optimisation strategy in the literature. MH-PO is
however complete. It is indeed based on a stochastic search on

the parameter space that plays with the trade-off between ex-
ploration and exploitation. Probability on any possible decision
is updated, increased or reduced, but it remain strictly positive
for all the optimisation run allowing for any possible solution
evaluation as the simulation time increase. The algorithmic
complexity grows with O(n).

V. APPLICATION

Through a stakeholder engagement in CAELUS, four types
of products for delivery applications have been identified as
promising for the DLN: laboratory samples, blood products,
chemotherapy and medicine delivery. We focus here on the de-
livery of biological samples from Hospitals to Microbiological
Laboratories. Four types of ground facilities are considered in
the problem: Hospitals (H), Laboratories (L), Airports (A)
and New Facilities NF . H , L and A correspond to already
existing facilities with a given location while for the NF
a grid of possible new locations has been defined. Different
types of infrastructures are included that can be coupled with
the listed ground stations: Take-off and Landing Infrastructure
(TL-I), Drone Charging Infrastructures (DC-I) and Drone
Ports infrastructures (DP -I). Each one of these is given
with different capacities. An heterogeneous fleet of drones is
defined with different properties and performances.

The task of the DLND is to generate an optimal DLN
that will autonomously and optimally deliver by drones the
laboratory samples from H to A starting from depots.

VI. PROBLEM FORMULATION

Given the list of ground facilities A, L, H and NF which
sizes are respectively nA, nL, nH and nNF and the list of
infrastructures that can be attached are also given, we define
the ground stations as the combination of a ground facilities
and one or more infrastructures. Four types of stations can
be defined: depot, pick-up, delivery and additional. Nodes
with facility A or with infrastructure DPI are classified as
depot. Nodes with a facility H are pick-up. Nodes with a
facility L are delivery. The remaining nodes are classified
as additional. A node can assume more than one of these
definitions: combination of L and DPI is indeed both a
delivery and a depot node.

The DLN can now be represented as the network G(N,L)
where N is the set of all nodes (ground stations) and L the
set of all feasible links (flight connections).

We define three KPIs that are used to drive the optimisation
process: the total network cost Ctot, the total time to delivery
Ttot and the network resilience Rnet.

The optimisation solver deals with the following tasks: (i)
to choose a subset of depot, delivery and additional nodes
between the ones given in input, (ii) to define for each of
the selected ground facilities its set of infrastructures, (iii) to
define the heterogeneous fleet of drones specifying numbers
and types, (iv) to assign drones to depots, (v) to calculate a
set of optimal routes for the drone-based delivery.

The general formulation of the DLND can be described with
the following Constraint Multi-Objective Problem (CMOP)
formulation:
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minimise f(G,x) = [Ctot, Ttot, Rnet]
T

subject to c(G,x) ≤ 0

x ∈ X
(7)

In eq. (7) G and x are the decision variables. The MH-PO
defines at each generation a sub-graph GP (NP , LP ) that is
used o quantify the metrics Ttot, Ctot and R. x ∈ X ⊂ Rn

is the vector of mixed-integer variables of the DTs. f is the
vector of objective functions with Ctot the total network cost,
Ttot the total time to delivery and Rnet the network resilience.
The mathematical formulations of Ctot, Ttot and Rnet are
presented in section VII. The constraint function c assure
feasible scheduling of drones on the predefined DLN with
regards to the battery’s energy consumption. Y = {f(G,x)
s.t. x ∈ X, gj(G,x) ≤ 0, j = 1, ..., n} the feasible objective
space.

Kd = [1, 2, ..., nd] number of total drones τd = [1, 2, ..., p]
number of types of drones.

Ks = [1, 2, ..., ns] number of total station
Kl = [1, 2, ..., nl] number of total workers

A. Approach Novelty

The optimisation approach is used to solve the generative
DLND problem: the methodology does not only optimise
drone’s planning, routing and scheduling, but also generate
an optimal network, by defining stations and their locations,
over which the delivery is performed.

During the generative optimisation phase many scenarios
are considered and simulated. Solutions are saved in an archive
and are used in the next generations of the MH-PO and as a
benchmark for the operational phase of the DLN.

VII. OPTIMISATION METRICS

This section presents the mathematical formulation of the
KPI used in the optimisation problem. Different fidelity mod-
els have been developed to analyse the DLN. An Agent based
model is coupled with the DTs of all the network’s sub-
systems. Its fidelity depends on the fidelity of the used DTs.
A flow model based on the analogy with the non-Newtonian
flow has been developed to study the transient behaviour of the
DLN. It is here used to quantify resilience. For the total cost
and total time functions are here given the description of the
lower fidelity models while it is left for a future publication
the detailed description of all the developed models.

A. Network Cost

The cost model includes all the expenditures that are re-
quired for the construction (Capital Expenditures) and opera-
tion (Operational Expenditures) of the DLN. It is defined as
the sum of fixed and variable costs. Fixed cost, that includes
transportation and facility costs, is the sum of the costs for
drones, stations, labor and the vehicle maintenance:

Cfix =
∑
i∈Kd

cd,i + cmd,i +
∑
i∈Ks

cs,i +
∑
i∈KL

cl,i (8)

where cd,i and cmd,i are the cost of the i-th drone and its
maintenance respectively, cs,i is the cost of the i-th station
and cl,i is the cost of the i-th worker. In eq. (8), cs,i is the
sum of all the i-th station’s infrastructures. The variable cost
instead depends on the network operation and it considers the
efficiency of each vehicle ηk, the price of source of power ck,
and the distance of travel dk:

Cvar =
∑
k∈Kd

∑
i,j∈LP

ckdijη
kNij

(
wk +W k

)
(9)

where wk is the average weight per shipment of i-th drone,
W k is the i-th drone’s weight and Nij ≥ 0 the number of
drones flying on the link.

Finally, the total Network cost is weighted sum of Cfix and
Cvar where the latter is considered for 10 years period.

Ctot = wc,1Cfix + wc,2Cvar (10)

B. Time to Delivery

This model quantifies the nominal time for the delivery of
medical items in a steady state flow delivery conditions.

A set of delivery requests are first defined and an optimal
plan on the network is first calculated.

The total time to delivery is the sum of the total travelling
time and the total processing time at the stations.

Ttot =
∑
k∈τd

∑
i,j∈LP

dij
vk

Nk
ij +

∑
k∈τd

∑
i∈NP

P k
i (Ni) (11)

The travelling time in eq. (11) is function of the distance
dij between the connected nodes i, j ∈ NP as in the defined
scheduling, of the k-th drone’s type velocity vk and the
number of drones of the k-th type flying the link Nk

ij . The
processing time depends on the drone type, on the station
type and on the number of drones concurrently processed at
the station. Indeed depots and intermediate stations require
processing time only for take-off and landing. For any station
with a charging infrastructure, the charging time is calculated
as function of the station capacity Cs,i and the number of
drones landed:

P k
charge,i = tkcharge +

Ni

Cs,i
(12)

For pick-up stations, the processing time has an additional
component calculated as the difference between the time
required for preparing the medical package and the time
interval between the started order and the landing of the drone
T0:

P k
pickup,i = max(0, Tpackage − T0) (13)

Finally, for the delivery station the additional component for
the medical samples analysis is considered:

Pdelivery,i = ta
Ni

Cs,i
(14)
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C. Resilience
The resilience of a complex System of Systems (SoS) is

considered to be the ability of the whole system to absorb
shocks due to internal or external unexpected events, to
evolve, to adapt and finally to recover functionalities totally
or partially after the failures.

An explanatory example of the metric that has been adopted
in the paper is presented in the following and it refers to figs. 3
to 6. It is represented the DLN for Scotland medical delivery
were nodes (ground infrastructures) include 3 Airports, 13
Hospitals and 19 Laboratories and 24 additional stations while
links refers to all feasible airways connections. Each station
and airway is characterised by specific properties as defined
by the resilience model presented below. The nominal flow
of deliveries transits through the highlighted links. The flow
quantification, normalised to 1, is plotted in fig. 1 and refers
to time below 100. We suppose that a failure happens at
time t0 = 100 which make a station unusable. ?? shows
that the DLN allows for a reorganisation of the delivery plan
using station CS-12. The mission after the failure can still
be accomplished but, as in fig. 1, due to the longer trajectory
required and to the different properties of the new selected
station and links, the new flow is lower than the nominal one.
Quantification of resilience is made restricting the analysis
between the time instant when the failure happens, t0, and
the time instant when the system recovers (in this case only
partially). For the failure of node i the resilience is calculated
as:

Ri =

∫ tr
t0

Qi(t)dt

th − tr
(15)

where Qi is the flow after the i-th failure. The global metrics
is finally calculated by making each station fail and averaging
all the results.

The resilience metrics is based on the dynamical flow
analogy based on differential equations. Using the state-
space approach, the system of mixed Differential Algebraic
Equations (DAEs) is represented in matrix form by the state
equation and the output equation:

{ṗ(t)} =
[
A
]
· {p(t)}+

[
B
]
· {u(t)}

{Q(t)} =
[
C
]
· {p(t)}+

[
D
]
· {u(t)}

(16)

where the state matrix
[
A
]

can be calculated as:[
A
]
=

[
C
]−1 [

K
]

(17)

where
[
C
]

is the diagonal matrix of capacitance:

C =

C11 · · · 0
...

. . .
...

0 · · · Cnn

 (18)

calculated as

C = Ic{c} =

1 · · · 0
...

. . .
...

0 · · · 1


c1...
cn

 (19)

with Ic the identity matrix and {c} the vector of capacitance
of each node in the network,

and
[
K
]

is the matrix of conductance:

K =

K11 · · · K1n

...
. . .

...
Kn1 · · · Knn

 (20)

calculated as:

K = Ik{k} =

I
k
11 · · · Ik1n
...

. . .
...

Ikn1 · · · Iknn


k1...
kn

 (21)

with Ik the incidence matrix of order zero and {k} the
vector of conductance of each link in the network.

The input matrix [B] is:[
B
]
=

[
C
]−1 [

U
]

(22)

where
[
U
]

represents the boundary conditions.
Once the vector of p is calculated, also the flow Q can be

found by mass balance equations summarised in the second
line of eq. (16) that is the output equation with [C] the output
matrix and [D] the direct transmission matrix and it allow to
calculate the volumetric flow through the network.

In particular, in analogy with an hydraulic network, we
consider for the generic i-th node (reservoir):

Ci =
Ai

9.81ρi
(23)

with Ai the section and ρi the density.
With the same hydraulic analogy, the conductance for the

generic i-th link (pipe) given by the Hagen-Poisuelle formula:

Ki =
1

Ri
=

πr4i
8µiLi

(24)

Flows parameters related to nodes and links are considered
to be variable with respect to the system conditions. Indeed,
each node has a defined maximum capacity represented as
the maximum pressure in the flow model pi,max. When this
threshold is reached the node (station) start to be saturated.
This is modelled by varying ρ as

ρi =

{
ρi,0 if pi ≤ pi,max

ρi,0Mi(pi − pi,max) if pi > pi,max
(25)

when a further threshold is reached, pi,MAX the node fails.
An analogous approach is implemented for the links. A

threshold capacity is given for each link ij. For a higher flow
than Qij,max the airways are congested, with a variation of
the viscosity µij

µij =

{
µij,0 if Qij ≤ Qij,max

µij,0Mi(Qij −Qij,max) if Qij > Qij,max

(26)
This allows to model the degradation of performance of

stations (nodes) and airways (links) due to saturation and con-
gestion and also the cascade of failures through the network
system.
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Fig. 1: Resilience metrics example. Normalised flow in the Logistic
Network before and after failure of station CS-7. The network is
able to absorb part of the shock and recover. The performance after
the failure is however lower than in the nominal case. The resilience
is calculated as in eq. (15) as function of the area below the flow
curve and the time distance tr − t0.

VIII. RESULTS

Results of the first DLN optimisation are plotted in figs. 2
to 6. fig. 2 shows the Pareto front of the optimal set solution
explaining the trade-off between the two competing objective
functions resilience and total time-to-delivery (with a constant
weight associated to the cost function). The two extreme
solutions 1 and 9 are further analysed in figs. 3 to 6. fig. 3
shows the optimal graph topology when only the time-to-
delivery is optimised and minimum importance is given to
the network resilience. In fig. 4 it is shown what happens
when a node (station 16) fails: no alternative path is possible
in order to connect source (Hospital) to sink (Laboratory)
nodes and the mission fails. Similar results are obtained if
any other charging station fails. On the other side, fig. 5 shows
the optimal graph topology when the utility function assigns
most of the importance to the network resilience and time-to-
delivery is considered to be not important. Here many stations
are selected for the DLN even if most of them are not included
in the nominal path. With respect to the previous solution, here
the cost is higher and the nominal time of delivery plan is
also worse. However, as in fig. 6, after a failure on a stations
along the nominal path, the network is able to re-plan its
strategy and the mission is still accomplished even if with
a lower performance. Similar results of fig. 6 are obtained if
any different node becomes unusable.

IX. CONCLUSIONS AND FUTURE WORK

In this paper we presented a novel bio-inspired optimisation
methodology, MH-PO, for the solution of the generative
DLND for the delivery of medical items for the National
Health Service (NHS). MH-PO takes advantage from the
concurrent evolution of multiple Physaria populations and, be-

Fig. 2: Results of problem 1. Optimal Pareto front showing the trade-
off between resilience and time-to-delivery.

Fig. 3: Results of problem 1. Drone Logistic Network corresponding
to solution 1 in fig. 2

sides the network design problem, can also solve the classical
shortest path, TSP and VRP with high performance. Particular
attention has been put on the development of a resilience
metric and its use as one of multiple optimisation objectives.
Pascoletti-Serafini scalarisation approach has been adopted to
deal with the MOO.

We decided to focus in this publication on the optimisation
methodology while leaving for later publications the detailed
presentation of the developed DT and of the approaches used
for uncertainty quantification and surrogate-assisted optimisa-
tion.
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