
Synthetic LiFi Channel Model Using Generative
Adversarial Networks

Ardimas Andi Purwita∗, Anil Yesilkaya†, and Harald Haas†
∗Computer Science Department, Faculty of Computing and Media, Bina Nusantara University

†LiFi R&D Centre, Department of Electronic & Electrical Engineering, The University of Strathclyde
E-mail: ardimas.purwita@binus.edu, {a.yesilkaya, harald.haas}@strath.ac.uk

Abstract—In this paper, we present our research on modeling
a synthetic light fidelity (LiFi) channel model that uses a deep
learning architecture called generative adversarial networks
(GAN). A research in LiFi that requires the generation of
many multipath channel impulse responses (CIRs) can benefit
from our proposed model. For example, future developments of
autonomous (deep learning-based) network management systems
that use LiFi as one of its high-speed wireless access technologies
might require a dataset of many CIRs. In this paper, we use
TimeGAN, which is a GAN architecture for time-series data. We
will show that modifications are necessary to adopt TimeGAN
in our use case. Consequently, synthetic CIRs generated by our
model can track long-term dependency of LiFi multipath CIRs.
The Kullback–Leibler divergence (KLD) is used in this paper to
measure the small difference between samples of synthetic CIRs
and real CIRs. Lastly, we also show a simple demonstration of
our model that can run on a small virtual machine hosted over
the Internet.

I. INTRODUCTION

Due to its high speed advantage while occupying the
unlicensed spectrum, optical wireless communications (OWC)
or light fidelity (LiFi) is frequently mentioned as a way to
enable technologies for future wireless systems, such as 6G
[1]. With the advancement of LiFi in many aspects, such as:
data rates, capacity, miniaturisation, standardisation, security,
etc., LiFi will soon be ready for mainstream industries and
consumer applications [2].

Similar to any wireless communication system, the study of
LiFi propagation channels are critical for the development of
LiFi [3]. However, many researchers that focus on determinis-
tic approaches, e.g., recursive or iterative models [4], [5], limit
their assumptions to use at most three orders of reflections.
For example, Wu et al. assume only an order of reflection
[6], while Miramirkhani and Uysal assume three reflections
[3]. The main reason for this is a long computation time
and high memory requirement if a higher order of reflections
are considered [5]. In addition, it is known that the order
of reflections does not affect the direct current (DC) channel
gain as much as having the higher order bounces does, which
leads to low order modeling assumptions in the literature, e.g.,
[3]. Nevertheless, this justification can be inaccurate since
the difference of DC channel gains of two channel impulse
responses (CIRs) obtained by assuming three reflections and
higher order of reflections can be 7 dB, see [7, Fig. 6]. In
[8], Zhou et al. conclude that for a high-speed LiFi, it is
required to assume a high order of reflections as magnitude

responses of LiFi channels can fluctuate up to 10 dB at high
frequency ranges (see [9, Fig. 7]), which cannot be captured
by only considering a low order of reflections. Therefore, it
is important to consider a high order of reflections for studies
of high-speed LiFi for future wireless systems.

Similar to recursive or iterative models, good accuracy
can be obtained by non-deterministic approaches, such as
Monte Carlo ray tracing (MCRT) [10], [11], in exchange
for computation time. It is reported in [5], [12] that the
generation of optical CIRs could take anywhere from several
hours to several days. The long simulation time might not
be a problem for a study that only takes into consideration
different situations on a case-by-case basis, e.g., evaluating
error performances of a modulation technique in a fixed
location with varying parameters of optics. However, in order
to draw a general conclusion, e.g., that a modulation technique
is better than another technique, one must show that the
conclusion applies to all users’ positions. For example, in [13,
Fig 3], it is shown that error performances of a modulation
technique are generally not good (i.e., the bit error ratio can
be greater than 10−2 in a relatively wide ares of an indoor
scenario), and they are only good in certain locations.

Generating many accurate CIRs, e.g., for studies of high-
speed LiFi and deep learning, by using recursive or MCRT
approaches will be time-consuming and often infeasible.
Another option is to use geometric models, such as those
explained in [14], [15]. However, geometric models also suffer
from limited accuracy [16]. Thus, another approach is to use
an approximation as in [17], but it is not straightforward to
generalize and apply these to scenarios that include furniture,
or consider a higher order of reflections. In order to overcome
all the previously mentioned problems, in this paper, we
explore a generative approach as in [18], where synthetic
magnitude responses could be generated by using a deep
learning architecture called generative adversarial networks
(GAN) [19] and its variants. By using GAN, a synthetic CIR
can be generated from a noise sample. The benefit of using
GAN to generate CIRs is that the heavy computation is moved
to the pre-training (i.e., generating a dataset of CIRs) and
training phases (i.e., training GAN). We will later show that
the proposed CIR generator can run on a single-core central
processing unit (CPU) and 1 GB of memory, where the service
is hosted over the Internet. Another benefit is that we do
not need to store a big volume of CIR data. Instead, one

765

This is a peer-reviewed, author's accepted manuscript of the following research article:
Purwita, A. A., Yesilkaya, A., & Haas, H. (2022). Synthetic LiFi channel model using generative adversarial networks.

In ICC 2022 - IEEE International Conference on Communications (pp. 577-582). IEEE. https://doi.org/10.1109/icc45855.2022.9838481

can generate a CIR simply by drawing a realization from a
distribution function. To the best of our knowledge, there is
no similar work that has been published before.

The rest of this paper is organized as follows. In Section II,
we will first briefly review LiFi channel model and discuss
our lightweight simulator that can generate many CIRs, which
will be used to train our GAN. Then, in Section III, we will
discuss GAN and its variant, TimeGAN [20], to generate time-
series data. In Section IV, we will discuss our methodology to
generate a synthetic LiFi CIRs. Results and discussions will
be discussed in Section V. Section VI concludes this paper.

II. LIFI CHANNEL MODEL AND OUR SIMULATOR

In this section, we will briefly review a general LiFi channel
model and our simulator named owcsimpy1, which will be
used to generate a massive dataset of LiFi CIRs to train the
GAN architecture later.

A. LiFi Channel Model

We will explain the LiFi channel model that is based on
deterministic approaches following [4], [5] and [7]. Light
Emitting Diodes (LEDs), photodiodes (PDs), and diffuse
reflecting surfaces can be modeled by an elemental object
denoted by Y having the following attributes:

Y = {p, n, <, �,Ψc, '}, (1)

where p is a position vector, n is a normal vector, < is the
mode number of the Lambertian radiation, � is a detection
area, Ψc is field-of-view (FoV), and ' is a reflectivity. An
elemental object can act as a source (denoted by Ys) or act as
a receiver (denoted by Yr). That is, Ys and Yr are defined as
follows:

Ys, Yr ∈ Y, where Ys = {p, n, <}, and Yr = {p, n, �,Ψc, '}.

Let an LED be defined as (= Ys and a PD be defined as
' = Yr, then the CIR ℎ(C; (, ') of a source (and a receiver
' is defined as:

ℎ(C; (, ') =
∞∑
:=0

ℎ (:) (C; (, '), (2)

where ℎ (:) (C; (, ') is the CIR that is calculated by only
assuming : reflections. Based on [4], ℎ (:) (C; (, ') can be
approximated as:

ℎ (:) (C; (, ') ≈
#−1∑
8=0

ℎ (0) (C; (, Yr
8) ~ ℎ (:−1) (C; Ys

8 , '), (3)

where # is the total number of elemental objects Y that are
obtained by partitioning solid objects, and the notation ~
denotes the convolution operation. The initial condition of the
above equations can be calculated as follows:

ℎ (0) (C; Ys
8 , Y

r
9) =
(<8 + 1)� 9

2c32
8 9

cos<8 (q) cos(\)1(\)+8 9 , (4)

1https://github.com/ardimasp/owcsimpy

where 1(\) is an indicator function for 0 ≤ \ ≤ Ψc 9 , and
+8 9 is the visibility function that evaluates if the path between
Ys
8

and Yr
9

is not blocked. The distance between Y8 and Y 9
is denoted by 38 9 . The incident angle between Ys

8
and Yr

9
is

denoted by q, while \ is the angle between Yr
9

and Ys
8
.

B. Simulator to Generate Data

There are a few simulators that can be used to generate
CIRs. However, to the best of our knowledge, most of them
require us to install licensed programs, such as MATLAB®.
Examples of such programs are introduced in [21], [22]. In
addition to the need to install a licensed software, another
limitation is that we can only define models that are aligned
with the G-axis or H-axis with [21], [22], for example [5,
Figs 1 and 10]. This limited capability restricts us to define
our 3D objects that might face or move in any direction.
Another licensed simulator is Zemax®2, which is a well-
known ray tracing tool. Another limitation of Zemax® is that
only Windows operating systems are supported, which require
another license to run.

In this paper, in order to train GAN, a massive number
of CIRs is required, which is commonly found in many
deep learning architectures [23]. We generated 10 million
CIRs to train our GAN model. Therefore, it is imperative to
have a lightweight simulator that can be installed and run
on many small computing instances simultaneously. It means
that we need to eliminate the options that depend on licensed
programs. Hence, we use our open-source simulator called
owcsimpy that is mainly written in Python and C languages
and only depends on free libraries such as NumPy, Matplotlib,
CBLAS, CLAPACK, OpenMP, etc. Note that owcsimpy
currently supports the iterative model from [5], the frequency-
domain model from [7], and the geometric model from [15].
We installed and deployed owcsimpy in hundreds of free-
tier Amazon Elastic Compute Cloud (Amazon EC2) instances
to generate the dataset. The fact that owcsimpy can run on
a Cloud computing service means that we can directly store
the generated CIRs to Cloud computing database services and
connect it with deep learning containers to train our GAN.

III. GENERATIVE ADVERSARIAL NETWORKS (GAN) AND
TIMEGAN

In this paper, we will briefly review GAN and TimeGAN
since they are foundational architectures for our model.

A. Generative Adversarial Networks (GAN)

The vanilla GAN [19] consists of two networks, namely the
generative network (denoted by �) and discriminative network
(denoted by �). Suppose that � is a multilayer perceptron
with parameters or weights wg, then � is a function that maps
a noise z drawn from density function ?Z (z) to a data space,
e.g., images, audios, etc. Therefore, � can be denoted as
� (z; wg). The discriminative network � can be also modeled
by a multilayer perceptron � (x; wg) ∈ [0, 1], where x is a
realization from the data space, and � outputs a probability

2https://www.zemax.com/products/opticstudio

766

Synthetic LiFi channel model using generative adversarial networks

of x being a real data or a synthetic data. Both networks are
trained via the so-called adversarial process which is defined
as:

min
�

max
�

Ex∼?data [log (� (x))] Ez∼?Z [log (1 − � (� (z)))] .

In the game theory, the optimization problem above is also
called as a two-player minimax game since the network � is
trained to fool the network �. Then, both networks can be
trained by using the prominent backpropagation and dropout
algorithms by Hinton et al. [24].

B. Time-Series GAN (TimeGAN)
TimeGAN is a GAN for time-series data. In this paper, we

treat CIRs denoted in (2) as time-series data. Let a time-series
data be denoted by a realization of a random process X, i.e.,
x1:) , where) is a random variable. In addition, we can also
generate a static data that corresponds to the temporal data x,
namely s ∼ ?S.

TimeGAN is made up of four networks, i.e., an embedding
function (e), a recovery function (r), a generator (g), and a
discriminator (d). Suppose that X and S are vector spaces
that contain x and s, respectively. Furthermore, let Z be a
vector space that contains noise z. Then, the four networks
are defined as follows:

e : S ×
∏
C

X → HS ×
∏
C

HX ,

r : HS ×
∏
C

HX → S ×
∏
C

X,

g : ZS ×
∏
C

ZX →HS ×
∏
C

HX , and

d : HS ×
∏
C

HX → [0, 1] ×
∏
C

[0, 1],

where H is a latent vector space. Loss functions that are used
to train the networks are:

Lr =Es,x1:)

[
| |s − ŝ| |2 +

∑
C

| |xC − x̂C | |2

]
,

Lu =Es,x1:)

[
log HS +

∑
C

log HC

]
+

Es,x1:)

[
log(1 − ĤS) +

∑
C

log(1 − ĤC)
]
, and

Ls =Es,x1:)

[∑
C

| |hC − gX (ĥS , ĥC−1, zC) | |2

]
,

(5)

where:

ĥC = gX (ĥS , ĥC−1, zC), ĥS = gS (zS), (6)

and | | · | |2 denotes L2-norm. Let we,wr,wg, and wd be the
weights of the embedding function, the recovery function,
the generator, and the discriminator, respectively. Then, the
networks are trained based on the following optimization
problems:

min
we ,wr
(_Ls + Lr) and min

wg
([Ls +max

wd
Lu), (7)

where _, [≥ 0 are hyperparameters during the training phase.
Intuitively speaking, according to [20] the above optimization
problems try to approximate the following objectives:

min
?̂
�

(
?S,X | | ?̂S,X

)
and min

?̂
�

(
?XC |S,X1:C−1 | | ?̂XC |S,X1:C−1

)
,

where � denotes a distance measure between the true distribu-
tion ? and the estimated distribution ?̂, e.g., Kullback-Leibler
divergence (KLD). Finally, Algorithm 1 summarizes a step-
by-step method to generate a synthetic time-series data from
a noise sample drawn from an independent and identically-
distributed (IID) ?Z .

Algorithm 1 Pseudocode of TimeGan

1: Sample (zS , zX)
IID∼ ?Z

2: Generate synthetic latent codes by calculating (6)
3: Mapping to the feature space:
4: (ŝ, x̂1:)) = (rS (ĥS),rX (ĥX))

IV. METHODOLOGY

In this section, we will explain our methodology in im-
plementing TimeGAN for generating a synthetic LiFi CIR.
First, we will discuss modifications that we apply to the
vanilla TimeGAN so that it better fits our case. Then, we
will elaborate our training methodology. We will also explain
the performance metrics used in this paper.

A. Modifications

In [20], the authors use basic recurrent networks for all
four networks, i.e., e, r, g, and d. However, it is well known
that recurrent networks have problems tracking the long-term
dependency problem [23]. The problem could affect our model
in generating synthetic LiFi CIRs as the recursive calculation
shown in (2) indicates a long-term dependency. That is, the
impulse from, for example, the second-order reflection affects
the calculation of impulses coming from a higher order of
reflections, which will arrive much later compared to impulses
coming from a lower order of reflections. In order to capture
the long-term dependencies of time-series data, a typical
network that is frequently used is the long short-term memory
(LSTM) network. Therefore, in this paper we use the LSTM
networks for e, r, g, and d. In the next section, we will
provide results that use recurrent neural networks vs. LSTM
and show that the former network cannot capture long-term
dependency.

In our case, S is a set of geometry locations, e.g., locations
of users, PDs, furniture, etc, and X is a set of LiFi CIRs.
Based on (5), Lr is computed based on samples s, ŝ, x, and
x̂. Meanwhile, ŝ and x̂ are calculated based on the estimated
latent codes ĥ individually. Therefore, there could be an error
in generating x̂ from ĥX . We will show later that by adding
another loss function that takes an advantage of owcsimpy,

767

Synthetic LiFi channel model using generative adversarial networks

Fig. 1. Training of TimeGAN, where solid lines show forward propagation,
and dashed lines show backward propagation.

we can improve the performance. Specifically, Lr is modified
into:

Lo = Es,x1:)

[
| |s − ŝ| |2 +

∑
C

| |xC − x̂C | |2 +
∑
C

| |xC − o(ŝ) | |2

]
,

(8)

where o is either owcsimpy or a deep learning model
that has been trained to model owcsimpy. Therefore, our
optimization problem becomes:

min
we ,wr
(_Ls + Lo) and min

wg

(
[Ls +max

wd
Lu

)
, (9)

where Lr is replaced by Lo.

B. Training

The training process of the TimeGAN that uses stochastic
gradient descent (SGD) is summarized in Algorithm 2 and
illustrated in Fig. 4. The main ingredient of the training
is a dataset of geometry configurations (s) and time-series
CIRs (x). In other words, s is a collection of Ys, Yr, furniture
locations, human locations, and room dimensions, and x is the
corresponding CIR ℎ(C; (, '). In this paper, we focus only on
a specific environment in order to prove the fact the TimeGAN
can be reliably used to generate synthetic CIRs for LiFi.
Specifically, we assume a 4 m × 3 m × 3 m office room with
a desk and a chair as depicted in Fig. 2(a). Solid objects are
modeled with collections of rectangular planes as illustrated in
Fig. 2(b). Orientations of the LiFi access point and the mobile
device are represented by arrows. In owcsimpy, a red circle
in Fig. 2(b) is used to distinguish the role of a mobile device,
i.e., whether it acts as a receiver or not. Therefore, Fig. 2(b)
illustrates a downlink scenario.

Table I summarizes our LSTM-based TimeGAN architec-
ture. The input layer handles 1000 inputs, and we use multiple
networks in the hidden layer. We use three LSTM cells
followed by a fully connected layer. A rectified linear unit
(ReLU) activation function is used and followed by a dropout
layer with a 20% dropout rate to prevent overfitting. Another
stack of LSTM cell and a fully-connected layer are used before
the regression output layer.

Algorithm 2 Pseudocode of Training TimeGan
Input: _ = 1, [= 10, batch size 128, learning rate 0.01
Initialize: we, wr, wg, wd

1: while not converge do
2: (1) Map the feature space to the latent space
3: Sample (s1, x1,1:)1), . . . , (s=b , x1,1:)=b

)
4: for = = 1, . . . , =b, C = 1, . . . ,)= do
5: (h=,S , h=,C) = (eS (s=),eX (h=,S , h=,C−1, x=,C)))
6: (s̃=, x̃=,C) = (rS (h=,S),rX (h=,C))
7: end for
8: (2) Generate synthetic latent codes
9: Sample (zS,1, z1,1:)1), . . . , (zS,=, z1,1:)=)

IID∼ ?Z
10: for = = 1, . . . , =b, C = 1, . . . ,)= do
11: (ĥ=,S , ĥ=,C) = (gS (zS,=),gX (ĥ=,S , ĥ=,C−1, z=,C)))
12: end for
13: (3) Distinguish between real and synthetic data
14: for = = 1, . . . , =b do
15: (Ĥ=,S , Ĥ=,1:)=) = dS (h=,S , h=,1:)= , ĥ=,S , ĥ=,1:)=)
16: end for
17: (4) Calculate losses
18: Calculate Lo, Lu, Ls according to (5) and (8)
19: (5) Update the weights via SGD
20: we = we − W∇we − (_Ls + Lo)
21: wr = wr − W∇wr − (_Ls + Lo)
22: wg = wg − W∇wg − (_Lu + Lo)
23: wd = wd − W∇wd − Lu
24: end while

(a) (b)

Fig. 2. (a) A sketch of a simple office scenario, and (b) its model by using
owcsimpy.

C. Performance Metrics

In this paper, we use the KLD estimator from [25] to
measure the difference between distributions of real data and
synthetic data. Given a sample x1:) drawn from ?X, then the
empirical distribution is:

%e (G) =
1
)

)∑
C=1

* (G − GC), (10)

where * is a step function with * (0) = 0.5. The empirical
distribution %e is then used as a reference to calculate a
function as:

%c (G) =


0, G < G0

0CG + 1C , GC−1 ≤ G < GC
1, G) +1 < G

(11)

768

Synthetic LiFi channel model using generative adversarial networks

Table I. TimeGAN-LSTM Architecture

Name and Type Activation Properties Details States
Sequence Input: 1 × 1000 N/A - N/A

lstm_1: LSTM Hidden Units: 1000 State activation function: tanh
Gate activation function: sigmoid

Input Weights: 4000 × 1
Recurrent Weights: 4000 × 1000
Bias: 4000 × 1

Hidden state: 1000 × 1
Cell state: 1000 × 1

lstm_2: LSTM Hidden Units: 500 State activation function: tanh
Gate activation function: sigmoid

Input Weights: 2000 × 1000
Recurrent Weights: 100 × 500
Bias: 2000 × 1

Hidden state: 500 × 1
Cell state: 500 × 1

lstm_3: LSTM Hidden Units: 250 State activation function: tanh
Gate activation function: sigmoid

Input Weights: 1000 × 500
Recurrent Weights: 100 × 250
Bias: 1000 × 1

Hidden state: 250 × 1
Cell state: 250 × 1

fc_1: Fully connected N/A Weights: 100 × 250
Bias: 100 × 1 N/A

relu_1: ReLU N/A - N/A
do: Dropout 20% N/A - N/A

lstm_4: LSTM Hidden Units: 500 State activation function: tanh
Gate activation function: sigmoid

Input Weights: 4000 × 100
Recurrent Weights: 4000 × 1000
Bias: 4000 × 1

Hidden state: 500 × 1
Cell state: 500 × 1

fc_2: Fully connected N/A Weights: 1 × 500
Bias: 1 × 1 N/A

Regression output Loss functions - N/A

where 0C and 1C are defined to ensure that %c (G) takes the
same value as %e (G) at the sampled values. Then, the KLD
estimator between distribution % and & is:

�̂ (% | |&) = 1
)

)∑
C=1

log
X%c (GC)
X&c (GC)

, (12)

where X%c (GC) = %c (GC) − %c (GC − n) for any
n < minC {GC − GC−1}. We will use this estimator to measure
the difference between the distribution of root mean square
(RMS) of delay spread calculated from the dataset of CIRs
and synthetic CIRs.

V. RESULTS AND DISCUSSIONS

In this paper, we will investigate two LSTM-based models
with different loss functions, i.e. the one with Lr and Lo.
(Recall that in Section IV, we hypothesized that by using
Lo, the performance can be improved as the network r also
directly learns from owcsimpy, which generates the real
data.) We will refer the first model as ‘TimeGAN-LSTM-
r’, and the second model as ‘TimeGAN-LSTM-o’. However,
before focusing on this comparison, we would like to highlight
our finding that standard recursive networks cannot capture the
long-term dependency of LiFi CIRs. This fact can be shown
by Fig. 3. Fig. 3(a) shows an estimated geometry configuration
that is tied with the synthetic CIR shown in Fig. 3(b) by
using the TimeGAN-LSTM-o model. Note that the synthetic
CIR is compared by CIR obtained from owcsimpy having
the configuration shown in Fig. 3(a). It can be seen that the
TimeGAN-LSTM-o model can generate a synthetic CIR that
is quite similar to the real one. Unlike the TimeGAN-LSTM-o
model, recursive networks cannot generate a decent synthetic
CIR as shown in Fig. 3(c). It appears that the impulses in
synthetic CIR shown in Fig. 3(c) are random, which can be an
indicator of a model that cannot track long-term dependency.

(a)

(b)

(c)

Fig. 3. (a) Estimated configuration from TimeGAN-LSTM-o, (b) CIR gener-
ated by TimeGAN-LSTM-o compared with CIR calculated by owcsimpy,
and (c) CIR generated by TimeGAN with recursive networks.

Now, we will discuss the benefit of using our modified loss
function Lo compared to Lr. Fig. 4 shows the training curve
of the total loss. It can be seen that the training performance
is better if Lo is used. As the result, which can be seen in
Fig. 5 the cumulative distribution function (CDF) of the RMS
delay spread is closer to the CDF of CIRs from the dataset,
which is generated by using owcsimpy. The estimated KLD

769

Synthetic LiFi channel model using generative adversarial networks

Fig. 4. Comparisons of training between different loss functions.

Fig. 5. Comparisons of CDFs..

of the TimeGAN-LSTM-o model is 0.0873, which is much
lower compared to that of the TimeGAN-LSTM-r model
that has 0.326 of the estimated KLD. We also tried to run
the TimeGAN-LSTM-o model on a 1-vCPU AWS EC2 as
our proof-of-concept3. For our future work, we will explore
various environments, such as an open office and industrial
environments, among others.

VI. CONCLUSIONS

In this paper, we discussed a LiFi channel model that can
generate synthetic CIRs having similarity real data. We used
TimeGAN as our base deep learning architecture. In order
to generate a massive dataset of CIRs to be used to train
our deep learning model, we used our lightweight simulator,
owcsimpy, that can be deployed in many small computing
instances. Then, we used LSTM as the recurrent network in
the TimeGAN in order to capture the long-term dependency
of LiFi CIRs. We also modified the loss function in order to
improve the performance of our TimeGAN. Finally, we show
that KLD of 0.0873 can be achieved by our proposed model
compared to that of 0.326 of KLD with the original setup.

ACKNOWLEDGMENT

This research has been supported in part by EPSRC under
Established Career Fellowship Grant EP/R007101/1, Wolfson
Foundation and European Commission’s Horizon 2020 re-
search and innovation program under grant agreement 871428,
5G-CLARITY project.

REFERENCES

[1] L. Bariah, L. Mohjazi, S. Muhaidat, P. C. Sofotasios, G. K. Kurt,
H. Yanikomeroglu, and O. A. Dobre, “A prospective look: Key enabling
technologies, applications and open research topics in 6G networks,”
IEEE Access, vol. 8, pp. 174 792–174 820, 2020.

[2] A. A. Banham, R. R. Schaeffer, and S. S. Scace, “LiFi is Ready for
Mainstream,” in 2021 OFC. San Francisco, CA, USA: IEEE, 2021,
pp. 1–4.

[3] F. Miramirkhani and M. Uysal, “Channel modelling for indoor visible
light communications,” Philosophical Transactions of the Royal Society
A, vol. 378, no. 2169, p. 20190187, 2020.

3Please visit https://bit.ly/owcsimpy-gan-first-demo for a simple demo.

[4] J. R. Barry, J. M. Kahn, W. J. Krause, E. A. Lee, and D. G. Messer-
schmitt, “Simulation of multipath impulse response for indoor wireless
optical channels,” IEEE JSAC, vol. 11, no. 3, pp. 367–379, 1993.

[5] J. B. Carruthers and P. Kannan, “Iterative site-based modeling for wire-
less infrared channels,” IEEE IEEE Trans. Antennas Propag., vol. 50,
no. 5, pp. 759–765, 2002.

[6] Z.-Y. Wu, M. Ismail, J. Kong, E. Serpedin, and J. Wang, “Channel char-
acterization and realization of mobile optical wireless communications,”
IEEE Trans. on Commun., vol. 68, no. 10, pp. 6426–6439, 2020.

[7] H. Schulze, “Frequency-domain simulation of the indoor wireless op-
tical communication channel,” IEEE Trans. on Commun., vol. 64, no. 6,
pp. 2551–2562, 2016.

[8] Z. Zhou, C. Chen, and M. Kavehrad, “Impact analyses of high-
order light reflections on indoor optical wireless channel model and
calibration,” J. Lightw. Technol., vol. 32, no. 10, pp. 2003–2011, 2014.

[9] M. Uysal, F. Miramirkhani, T. Baykas, and K. Qaraqe.
(2018, November) IEEE 802.11bb reference chan-
nel models for indoor environments. [Online]. Avail-
able: https://mentor.ieee.org/802.11/dcn/18/11-18-1582-04-00bb-ieee-
802-11bb-reference-channel-models-for-indoor-environments.pdf

[10] F. Lopez-Hernandez, R. Perez-Jimeniz, and A. Santamaria, “Monte
Carlo calculation of impulse response on diffuse IR wireless indoor
channels,” Electronics Letters, vol. 34, no. 12, pp. 1260–1262, 1998.

[11] M. S. Chowdhury, W. Zhang, and M. Kavehrad, “Combined determinis-
tic and modified Monte Carlo method for calculating impulse responses
of indoor optical wireless channels,” J. Lightw. Technol., vol. 32, no. 18,
pp. 3132–3148, 2014.

[12] F. Miramirkhani, M. Uysal, and E. Panayirci, “Channel modeling for
visible light communications,” in Optical Wireless Communications.
Springer, 2016, pp. 107–122.

[13] L. Zeng, D. C. O’Brien, H. Le Minh, G. E. Faulkner, K. Lee, D. Jung,
Y. Oh, and E. T. Won, “High data rate multiple input multiple output
(MIMO) optical wireless communications using white LED lighting,”
IEEE JSAC, vol. 27, no. 9, pp. 1654–1662, 2009.

[14] J. B. Carruthers and J. M. Kahn, “Modeling of nondirected wireless
infrared channels,” IEEE Trans. on Commun., vol. 45, no. 10, pp. 1260–
1268, 1997.

[15] V. Jungnickel, V. Pohl, S. Nonnig, and C. Von Helmolt, “A physical
model of the wireless infrared communication channel,” IEEE JSAC,
vol. 20, no. 3, pp. 631–640, 2002.

[16] S. Yahia, Y. Meraihi, A. Ramdane-Cherif, A. B. Gabis, D. Acheli, and
H. Guan, “A survey of channel modeling techniques for Visible Light
Communications,” Journal of Network and Computer Applications, p.
103206, 2021.

[17] C. Chen, D. A. Basnayaka, X. Wu, and H. Haas, “Efficient analytical
calculation of non-line-of-sight channel impulse response in visible light
communications,” Journal of Lightw. Technol., vol. 36, no. 9, pp. 1666–
1682, 2017.

[18] D. Righini, N. A. Letizia, and A. M. Tonello, “Synthetic power line
communications channel generation with autoencoders and GANs,” in
2019 IEEE SmartGridComm. Beijing, China: IEEE, 2019, pp. 1–6.

[19] I. Goodfellow, J. Pouget-Abadie, M. Mirza, B. Xu, D. Warde-Farley,
S. Ozair, A. Courville, and Y. Bengio, “Generative adversarial nets,”
Advances in neural information processing systems, vol. 27, 2014.

[20] J. Yoon, D. Jarrett, and M. van der Schaar, “Time-series Generative
Adversarial Networks,” in Advances in Neural Information Processing
Systems, H. Wallach, H. Larochelle, A. Beygelzimer, F. d'Alché-Buc,
E. Fox, and R. Garnett, Eds., vol. 32. Curran Associates, Inc., 2019.

[21] J. B. Carruthers and P. Kannan, “IRSIMIT– Infrared Impulse
Response Simulator by Iterations,” 2002. [Online]. Available: http:
//iss.bu.edu/bwc/irsimit/

[22] M. B. Rahaim, T. Borogovac, and J. B. Carruthers, “CandlES: Commu-
nication and Lighting Emulation Software,” in Proceedings of the Fifth
ACM WiNTECH. New York, NY, USA: Association for Computing
Machinery, 2010, p. 9–14.

[23] I. Goodfellow, Y. Bengio, and A. Courville, Deep learning. MIT press,
2016.

[24] G. E. Hinton, N. Srivastava, A. Krizhevsky, I. Sutskever, and R. R.
Salakhutdinov, “Improving neural networks by preventing co-adaptation
of feature detectors,” arXiv preprint arXiv:1207.0580, 2012.

[25] F. Pérez-Cruz, “Kullback-Leibler divergence estimation of continuous
distributions,” in 2008 IEEE International Symposium on Information
Theory (ISIT). Toronto, ON, Canada: IEEE, 2008, pp. 1666–1670.

770

Synthetic LiFi channel model using generative adversarial networks

	Abstract
	I. INTRODUCTION
	II. LIFI CHANNEL MODEL AND OUR SIMULATOR
	III. GENERATIVE ADVERSARIAL NETWORKS (GAN) ANDTIMEGAN
	IV. METHODOLOGY
	V. RESULTS AND DISCUSSIONS
	VI. CONCLUSIONS
	ACKNOWLEDGMENT
	REFERENCES

