This is a peer-reviewed, author's accepted manuscript of the following conference proceedings output:

ution of synthetic aperture radar complex data by deep-learning. In 2022 IEEE 9th International Workshop on Metrology for AeroSpace (MetroAeroSpace) (IEEE Internat

Super-Resolution of Synthetic Aperture Radar
Complex Data by Deep-Learning

1" Pia Addabbo
Departimento di Ingegneria
Universita degli studi del Sannio
Benevento, Italy
paddabbo @unisannio.it

4™ Marta Cimitile
Department of Law and Economics
Univerista Unitelma Sapienza
Roma, Italy
marta.cimitile @unitelmasapienza.it

25t Mario Luca Bernardi
Dipartimento di Ingegneria
Universita degli studi del Sannio
Benevento, Italy
bernardi @unisannio.it

5" Carmine Clemente
Department of
Electronic and Electrical Engineering
University of Strathclyde
Glasgow, UK

3" Filippo Biondi
Dipartimento di Ingegneria
Universita degli studi dell’Aquila
L’ Aquila, Italy
biopippop @gmail.com

6™ Nicomino Fiscante
Dipartimento di Ingegneria
Universita degli studi Roma TRE
Rome, Italy
n.fiscante @uniromatre.it

carmine.clemente @strath.ac.uk

7" Gaetano Giunta
Dipartimento di Ingegneria
Universita degli studi Roma TRE
Rome, Italy
gaetano.giunta@uniromatre.it

Abstract—One of the greatest limitations of Synthetic Aperture
Radar imagery is the capability to obtain an arbitrarily high
spatial resolution. Indeed, despite optical sensors, this capability
is not just limited by the sensor technology. Instead, improving
the SAR spatial resolution requires large transmitted bandwidth
and relatively long synthetic apertures that for regulatory and
practical reasons are impossible to be met. This issue gets particu-
larly relevant when dealing with Stripmap mode acquisitions and
with relatively low carrier frequency sensors (where relatively
large bandwidth signals are more difficult to be transmitted).
To overcome this limitation, in this paper a deep learning
based framework is proposed to enhance the SAR image spatial
resolution while retaining the complex image accuracy. Results
on simuated and real SAR data demonstrate the effectiveness of
the proposed framework.

Index Terms—Expectation Maximization, Polarimetric Radar,
Radar, Synthetic Aperture Radar

I. INTRODUCTION

Synthetic Aperture Radar (SAR) imagery has become an
important Earth observation technique for obtaining physical
and shape information about targets. As coherent radar tech-
nology improves, there is an increasing demand for image
quality with the ability to discriminate more and more detail.
Image resolution is a key factor in discriminating two sepa-
rately located targets at ever smaller distances. In order to meet
these demands, it is necessary to process conspicuous amounts
of both electromagnetic (EM) and Doppler bands, which may
not always be feasible. In order to solve this problem, we
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have developed a super-resolution (SR) system based on Deep-
Learning (DL).

Author of [1] proposes a recovery solution for SAR Single
Look Complex (SLC) images that are corrupted by noncoher-
ent EM noise covering only the higher frequency spectrum.
The solution consists of, first, exporting the spectrum damages
that occur in the native data and, second, focusing only
the survived spectrum information at lower resolution. The
recovery of the original image is done by SR signal processing
based on spectrum extrapolation and implemented by convex
programming. In [2] a new method of single image SR
based on DL features and dictionary model is proposed. The
experimental results indicate that the proposed algorithm can
produce good SR visual results with respect to state-of-the-art
algorithms.

In [3] authors propose a deep network architecture for a SR-
aided hyperspectral image classification with classwise loss
(SRCL). First, a three-layer SR convolutional neural network
(SRCNN) is employed to reconstruct a high-resolution image
from a low-resolution image. Second, an unsupervised triplet-
pipeline CNN (TCNN) with an improved classwise loss is built
to encourage intraclass similarity and interclass dissimilarity.
Finally, SRCNN, TCNN, and a classification module are
integrated to define the SRCL, which can be fine-tuned in
an end-to-end manner with a small amount of training data.
Experimental results on real hyperspectral images demonstrate
that the proposed SRCL approach outperforms other state-of-
the-art classification methods, especially for the task in which
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only a small amount of training data are available. In [4]
a new approach that combines the advantages of multiple-
image fusion with learning the low-to-high resolution mapping
using deep networks, is defined. In [5], authors proposes a
full-polarimetric SAR image SR reconstruction method based
upon deep convolutional neural network for nonlinear model
fitting and, then, apply residual compensation to network
reconstruction results using low-resolution image information.
So far, DL has been successfully applied to single image SR,
which aims at reconstructing a high-resolution (HR) image
from its low-resolution (LR) counterpart. In [6], authors use a
scheme based in the frequency domain to reconstruct the HR
image at various frequency bands. Further, authors propose
a method that incorporates the wavelet transform (WT) and
the recursive Res-Net. The WT is applied to the LR image to
divide it into various frequency components. To validate the
effectiveness of the proposed method, extensive experiments
are performed using the NWPU-RESISC45 data set, and the
results demonstrate that the proposed method outperforms
several state-of-the-art methods in terms of both objective
evaluation and subjective perspective. Recently in [7], a novel
CNN-based technique that exploits both spatial and temporal
correlations to combine multiple images, is devised. This
novel framework integrates the spatial registration task directly
inside the CNN, relying on a single CNN with three main
stages. Finally, another tool that comes in handy to obtain
SR images is the generative adversarial network (GAN) as
corroborated by [8].

II. THE PROPOSED METHODOLOGY

This study proposes the two channel Deep CNN with Resid-
ual Net, Skip Connection and Network in Network (DC2SCN)
as an extension of the DCSCN model described in [9], [10].
The overall network consists of a combination of a feature
extraction and reconstruction tasks. The feature extraction part
of the network learns, from the complex SAR image, a wide
range of features used by the subsequent reconstruction part
to rebuild the input SAR image at an higher resolution. The
proposed DC2SCN variant exploits two main channels, instead
of a single one, for both feature extraction and reconstruction
of each SAR image component: one for real part and the other
for imaginary part of the signal (recall that processed SAR data
are complex).

The feature extraction part is comprised, for each channel,
of a cascade of Ng sets of 3 x 3 CNN, bias and Parametric
Rectified Linear Units (ReLU). Skip connections are used
to send extracted features at each level to the reconstruction
subsequent part of the network.

The reconstruction part of the network is comprised for each
channel of a 3 x 3 CNN layer in parallel with two 3 x 3 CNN
blocks (each one followed by a bias and a parametric ReLu
units) that are shared through the real and imaginary channels
as shown at the center of the figure. This shared portion
of the network allows for: (i) it improves the computation
performance by reducing the dimensions of the previous layers
with a low information loss, and (ii) it allows the entire

network to learn relationships across real and imaginary parts
of the signal to preserve phase information during the high
resolution image reconstruction.

For each channel an estimation of the up-sampled origi-
nal image is obtained including these outputs to the image
constructed using bicubic interpolation. Notice that, the in-
put layer of the reconstruction network is characterized by
large dimensions since all the features are included. For this
reason a parallelized 1 x 1 CNN [11] is used to reduce the
dimension before generating the final images (X and Y'). It
also enhances the final representation by including additional
nonlinearity.

III. EXPERIMENTAL RESULTS

The data set used in the experiments are SAR SLC images
sensed by COSMO-SkyMed (CSK) in the StripMap (SM) ac-
quisition mode [12]. The SM mode implements aproximately
a spatial resolution of 3 X 3 m in ground coordinates. The set
is made by 10 scenes of different size acquired over nothern
Italy. Since each whole scene consists in wide geographical
areas containing milions of pixels, the images are divided into
blocks of size 512 x 512 pixels, hereafter referred to as tiles.
Precisely, the whole dataset is divided into a total of 20239
tiles. Figure 1 shows the entire first scene that covers the river
Po valley in northen Italy. This scene covers an area of about
50 x 65 km and is made by 1344 tiles. We trained the network
employing degraded resolution SAR images. Spatial resolution
degradation was done in both the range and azimuth directions.
In this context, we focused the images by employing adapted
filters that consider half-band, both range and azimuth. The
same images that we focused at half spatial resolution were
also focused at maximum resolution, then using adapted filters
set to consider all available chirp and Doppler bandwidth. The
maximum resolution images were used as ground truth during
the training phase of the neural network.

Precisely, we selected 16191 tiles for training and validation
and 4048 tiles for test. This experimental setup allowed to an
extensive training of the network as well as a computational
efficiency.

The 25 tiles highlighted in the boxes in Figure 1 are here
considered for assessing the performance of the proposed
architecture. To quantitatively evaluate the performance in
terms of the quality of the reconstructed super-resoluted image,
hereafter indicated as I, with respect to the original full-
resoluted one, namely I¢, we use the following metrics:

« the Mean Absolute Error (MAE) expressed as

L Mo
MAE = UN Z Z[|If(m,n)| = [Le(m, n)[];

m=1n=1

o the Root Mean Square Error (RMSE) expressed as

1 M N 9
RMSE = | | 2 > > [1Te(m,n)| = [Le(m. n)|;

m=1n=1
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Figure 1: The intensity image is represented with a zoomed color scale from 0 to 5 for image enhancement.
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« the Peak Signal-to-Noise Ratio (PSNR), expressed in d
defined as the ratio of the maximum pixel intensity to t
power of the distorsion,

max(|I;|%)

why 3 5 [Helm.m)] = [Te(m.

« the SSIM, a widely used perceptual image quality metr
that can be expressed as

SSIM=1-c-s,

with [, ¢, s the luminance, the contrast and the structw
changes as defined in [13].

Particularly, the PSNR, the RMSE, the MAE and the SSI
are evaluated both two network configuration of respective
20 and 40 layers (respectively called L20 and L40) which ¢
compared with the corresponding degraded images used
input. This is done to evaluate the gain obtained through tuc
reconstructed resolution of the two networks.

The experimental results show an increase in the values of
PSNR and SSMI for all the tiles and for both L20 and L40
configurations. The RMS of the PSNR gains of 13.97 dB and
12.54 dB with respect to degraded image are obtained by L40
and L20, respectively. As for the SSIM, the RMS value for the
degraded image is 0.17 whereas 0.60 and 0.67 are obtained
with L40 and L20, respectively. Both the RMSE and MAE
metrics also confirm the superiority of L40 with respect to
L20 with slightly lower values.

In Figure 2 (top), the tile 267 of the full scene in Figure
1 is shown representing a mixed urban and vegetated area.
Moreover, a zoom plot on a bright target of the degraded
image is shown at the top in Figure 2 (bottom). In Figure
3, the improvement with respect to the degraded target of
Figure 2 (bottom) is shown in term in the amplitude and phase
domains. In this case, the PSLR values are 12.9809, 5.9038,
13.0155 and 13.0461 dB for the original full-resoluted image,
the degraded image and the reconstructed images with L20
and L40, respectively. In terms of 3 dB main lobe amplitude,
40 interpolated azimuth pixels (corresponding to 4 original
azimuth pixels) for the degraded image are found whereas 20
pixels are obtained for both L20 and L40 which coincide with
the full resolution of the original image. At the bottom of
Figure 3, the phase values are reported. Interestingly, it can
be noticed that the reconstructed phases show a very good
agreement with respect to the original one. On the contrary,
the degraded phase exhibits a phase discrepancy of 7 in the
main lobe position (azimuth pixel 234).

These results confirm that the proposed architecture is able
to superesolve as well as to reconstruct both the module and
the phase of the SAR complex data.

IV. CONCLUSIONS

In this paper a novel deep learning approach based on a
DC2SCN fully convolutional neural network has been intro-
duced to reconstruct super resolved Single Look Complex
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Figure 2: Tile 267 of the full scene in Figure 1. Top original
image and bottom a zoom over a point target of the degraded
image.

SAR images. The proposed method employs two channels to
deal with both real and imaginary parts of the SAR image
and combines a feature extraction stage with a reconstruction
stage in order to reconstruct a super-resolved SAR image. Real
COSMO-skymed SAR data have been used to quantitatively
assess the effectiveness of the proposed framework. Different
figures of merit have been used to asses the performance over
rural and anthropized areas, all confirming the capability of
the proposed framework to reliably create super-resolution
images. Finally, the capability to preserve phase information
has been also demonstrated, thus enabling the application of
this framework to advanced SAR processing techniques such
as interferometry.



Super-resolution of synthetic aperture radar complex data by deep-learning

—— Original
1r —— Degraded | |
—1L20
—L40
808
2
s
& o6
pe}
o]
N
g 0.4
S
zZ
0.2
0 &
230 231 232 233 234 235 236 237 238
Interpolated azimuth [pixel] 10!
xk J

3
=
N

Phase [rad]
o

-7l2

—o— Original
—o— Degraded
——1L20

T [—e—L40

231 232 233 234 235 236 237
Azimuth [pixel]

230 238

Figure 3: Azimuth section module (top) and phase (bottom) of
the Tile 267 of the bright target shown in Figure 2 (bottom).
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