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Enhancing the recovery of a 
temporal sequence of images  
using joint deconvolution
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Stephen McLaughlin   2, Daniele Faccio1 & Yoann Altmann2

In this work, we address the reconstruction of spatial patterns that are encoded in light fields associated 
with a series of light pulses emitted by a laser source and imaged using photon-counting cameras, 
with an intrinsic response significantly longer than the pulse delay. Adopting a Bayesian approach, 
we propose and demonstrate experimentally a novel joint temporal deconvolution algorithm taking 
advantage of the fact that single pulses are observed simultaneously by different pixels. Using an 
intensified CCD camera with a 1000-ps gate, stepped with 10-ps increments, we show the ability 
to resolve images that are separated by a 10-ps delay, four time better compared to standard 
deconvolution techniques.

Recent development of high-temporal resolution cameras, such as intensified charge-coupled device (ICCD), 
single-photon avalanche diode (SPAD) and streak cameras, have allowed the study of picosecond phenomena by 
means of direct measurements. Such high-speed cameras have paved to the way to a wide range of applications, 
including direct observation of dynamical light phenomena, such as laser-induced plasma1, imaging around 
corners by means of the laser echoes2–4 and real-time fluorescence lifetime imaging5. Although state-of-the art 
single-photon detectors are now able to record photon time-of-arrivals with picosecond resolution, the intrinsic 
system limitations (e.g. the camera efficiency and temporal response) and signal noise/dephasing induced by 
propagation through complex media require the development of novel computational methods adapted to the 
discrete and sparse nature of the recorded data (single-photon detection events) in order to efficiently extract 
information about the phenomena of interest. Moreover, there is growing interest in exploiting spatial informa-
tion to improve temporal resolution. In particular, the assumption of space-sparsity has been used extensively in 
order to improve the spatial deconvolution of images for problems like deblurring6 and denoising7,8. Moreover, 
recent research has shown a renewed interest for free space communication systems and in particular systems 
that use also the spatial dimension to encode information, e.g. through a judicious choice of the spatial beam 
modes9,10.

In this work, we take advantage of the spatial dimensionality offered by high-speed cameras in order to pro-
vide a new temporal deconvolution method with increased temporal resolution. Our algorithm takes advantage 
of the fact that within a given frame, groups of pixels may share common temporal information, independent 
of any spatial correlation. This is typically the case when, for example, different spatial patterns are encoded in a 
series of light pulses: each laser pulse contains information that is detected across several pixels in the receiving 
camera. Therefore, we build a joint deconvolution method, which solves the deconvolution problem by process-
ing jointly groups of pixels, i.e., by regularising the pixel intensity values on a frame by frame basis. The ability to 
penalise individual temporal frames without affecting neighbouring frames results in a significant improvement 
of our ability to discriminate events that are temporally close, when compared to state-of-the-art deconvolution 
techniques based on Poisson noise assumptions and using established convex optimisation techniques11,12. In our 
experiments, we employ an ICCD camera with a 1000-ps gate that is stepped in 10-ps increments. Experimentally, 
we are able to distinguish two images encoded in two separate laser pulses that are delayed by 10-ps, with a tem-
poral resolution that is two orders of magnitude better than the width of the gate, corresponding to an improve-
ment by a factor of four in the temporal resolution with respect to standard techniques. Although the proposed 
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computational method requires the signal from several pixels, it does not rely on specific spatial correlations 
between adjacent pixels. It is thus broadly applicable to imaging applications for which the observed intensity 
fields can present significant intensity variations among neighbouring pixels.

Method
collaborative sparse reconstruction.  Deconvolution problems are usually solved by minimising an 
appropriate cost function. Such cost functions typically include a data fidelity term which quantifies the simi-
larity between the observed data y and its approximation, which results from the analytical convolution of the 
original signal of interest x by the response function of the sensing or imaging system. The convolution process 
is often considered as a linear process (denoted as F here), and the convolved signal is Fx. The original signal is 
recovered by minimising the cost function with respect to x, and possibly other unknowns such as background 
illumination. A typical example, which also serves to showcase the novelty of our joint deconvolution method, is 
the SPIRAL algorithm12. The SPIRAL algorithm can be applied to restore images corrupted by a linear operator 
(e.g., a blurring or down-sampling operator) in the presence of Poisson noise, but for the purpose of this paper we 
will introduce its principle for time series restoration. Consider the cost function.
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,1 ,= …  is the discrete time series of length T, recorded in a given pixel n, whose sampling rate 
is determined by the physical specifications of the detector, where = …x xx [ , , ]n n n T
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 is the original signal to 
be recovered. Note that the data sampling rate is not required to match the sampling rate of xn, which can be 
higher than that imposed by the detector (i.e., when Tx > T). In Eq. (1), bn is a constant vector combining the 
ambient illumination and detector dark count level, which are assumed to be constant over time, but can vary 
across pixels. Thus, the elements of bn are all equal to the same value bn > 0. The cost function C1(·) corresponds 
to the data fidelity term and depends on the underlying observation noise model. For applications where the 
Gaussian noise assumption holds, the data fidelity term becomes
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where ||·||2 denotes the standard 2 -norm. When the Poisson noise model is more accurate, the data fidelity term 
derived from the data negative log-likelihood becomes
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n n,1 ,= … = + . The second and third terms are regularisation terms which encode our 
prior knowledge about the unknown signal to be recovered and the background illumination, respectively. The 
influence of these terms is controlled by two positive parameters λ and λb (the larger the values of these parame-
ters, the more significant the impact of the corresponding regularisation on the recovered signal). Lastly, the 
fourth term on the right-hand side of (1) is an indicator defined on + to ensure the positivity of (xn, bn).

Among the various regularisations that can be used, convex (with respect to xn) sparsity promoting functions 
are particularly relevant here since we expect to recover a reduced number of pulses, relatively short compared to 
the sampling rate of xn. Moreover, they allow state-of-the art convex optimization techniques to be used to recover 
xn. A classical approach consists of adopting an 1  regularisation, i.e., setting φ = || || = ∑ | |xx x( )n n t n t1 , , which will 
force in a similar fashion all the elements of xn to be small. Although generally efficient, the 1 regularisation does 
not lead to sufficiently sparse solutions to solve our deconvolution problem satisfactorily, as will be seen in the 
next section. In this work, we thus adopt a so-called weighted 1 regularisation such that the second term in Eq. 
(1) becomes λ∑ | |xt t n t, , where the parameters tλ  are now allowed to vary in time. This allows locally for larger 
values for xn t,  when λ > 0t  is small, when compared to the standard 1 regularisation. Although more flexible, the 
weighted 1 approach requires the selection of Tx additional parameters (a single λ is required for the original 1
-based regularisation in Eq. (1)), whose values have a significant impact on the solution and which are difficult to 
adjust in practice, especially when information is analysed one individual pixel at a time.

We therefore propose a joint deconvolution method where we simultaneously process groups of pixels i.e., the 
entire ICCD camera array described in the next section, in order to reduce estimation uncertainty (as pixels are 
expected to contain redundant information). This allows us to estimate the Tx additional parameters { }tλ , which 
are assumed to be shared across all the pixels of the group. In other words, we expect some frames to consist on 
average of high intensities while other frames are expected to be darker on average. Assuming that we observe a 
set of N pixels over time, the cost function in Eq. (1) becomes
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1λ λ λ λ= … . Note that in Eq. (4), we 
introduce an additional regularisation term ( )λψ  to encode prior information (e.g. positivity constraints) availa-
ble about λ. This term will be further discussed later in this section. As mentioned above, estimating X by mini-
mising the cost function in (4) can significantly improve signal restoration performance, provided that λ is 
properly adjusted. Unfortunately, the cost function in Eq. (4) is in general highly multimodal, and thus particu-
larly difficult to minimise globally with respect to λX b( , , ) using optimisation techniques. However, this cost 
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function (up to an additive constant) can be interpreted in a statistical framework as the negative logarithm of the 
joint probability density function of X b( , , )λ , given the observed data Y, denoted as λ|f X b Y( , , ); that is

λ λ− ∝ | .C fX b X b Yexp[ ( , , )] ( , , ) (5)Y

This property is particularly interesting as it enables a larger range of statistical tools to satisfactorily solve the 
deconvolution problem. Note that for Eq. (5) to apply, ( )λψ  should correspond to a valid prior distribution for λ. 
Here, ( )λψ  is defined such that the resulting prior distribution λf ( ) consists of Tx independent gamma distribu-
tions. These prior distributions are set to be weakly informative so that they do not bias unnecessarily the inten-
sity estimation while defining a proper hierarchical Bayesian model.

Instead of minimising λC X b( , , )Y  which is computationally challenging and which corresponds to estimating 
X b( , , )λ  via maximum a posteriori estimation, here we resort to a Markov Chain Monte Carlo (MCMC) 

method13 to approximate the marginal posterior means of interest

λ λ= 〈 〉 = 〈 〉 .X X , and (6)Y Y
ˆˆ

The main goal the MCMC method used in this work is to generate random variables distributed according to 
f X b Y( , , )λ|  and to use the generated samples to approximate numerically the high-dimensional integrals 
involved in the computation of the expectations in Eq. (6). Precisely, in order to generate random variables 
asymptotically distributed according to λ|f X b Y( , , ), we resort to a Metropolis-within Gibbs sampler to sample 
sequentially and iteratively according to the conditional distributions f X b Y( , , )λ|  and f Y X b( , , )λ| . While the 
conditional distribution λ|f Y X b( , , ) reduces to a product of independent gamma distributions, which is easy to 
sample from, the conditional distribution λ|f X b Y( , , ) is a non-standard distribution and accept-reject proce-
dures are required to update X b( , ). Due to large dimensionality of X b( , ) and the high correlation between these 
variables, we resort to constrained Hamiltonian Monte Carlo (HMC) updates which use the local curvature of the 
distribution f X b Y( , , )λ|  to propose candidates in regions of high probability. This approach allows better mix-
ing properties than more standard random walk alternative strategies. The pseudo code of the proposed sampler 
is detailed below. The marginal posterior means X̂ and λ̂ are approximated by averaging the generated variables 
after having removed the first Nbi iterations of the sampler which correspond to the burn-in period of the sampler. 
The duration of this transient period and the total number of iterations NMC are set by visual inspection of the 
chains from preliminary runs.

For the deconvolution problem addressed in this paper, it turns out that in practice, the proposed method is 
particularly efficient both in terms of convergence speed and reliability of the estimated intensity profiles. It is 
also important to recall that this method is fully unsupervised in the sense that it does not require the user to tune 
regularisation parameters affecting the obtained solution. The details of implementing the MCMC method can 
be found for example in ref.13.

The estimation strategy explained above exploits the natural redundancy between the N  pixels considered but 
does not explicitly rely on the presence of spatially structured intensity fields. For applications where the intensity 
fields are indeed structured (i.e. they contain images), we propose an additional processing step to refine the field 
estimated by the MCMC method. First, we threshold the regularisation parameters estimated in Eq. (6) to iden-
tify the most significant (brightest) frames within the image sequence and thus concentrate on enhancing a 
reduced number of significant intensities at a lower computational cost. Since the underlying intensity field is 
expected to consist of a reduced number of pulses, only a reduced number of frames are likely to be picked up. To 
perform the frame selection, we select sequentially the frame presenting the highest tλ̂  until the sum of the 
retained λ{ }tˆ  exceeds 99% of the sum of all the regularisation parameters. Then we introduce classical independ-
ent total-variation regularisations for each of the retained frames (whose indices are gathered in  ) to promote 
spatially structured intensities and minimise the following cost function

Algorithm 1.  Proposed MCMC method.
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where TV(·) denotes the total variation (TV) regularization14 and X  is the reduced set of frames corresponding 
to highest values of tλ̂  obtained from the first step. The TV-regularisation parameters have been set to ˆ10t tµ λ= . 
In contrast to Eq. (4), the cost function in Eq. (7) is convex with respect to X b( , )  and involves significantly fewer 
unknown parameters. Therefore it can be minimised efficiently using a pre-existing, state-of-the-art convex opti-
misation method at a low additional cost.

It is worth mentioning that the main computational cost of the proposed approach is the first step achieved 
using a simulation method. The proposed sampler requires a sufficiently large number of iterations to ensure 
reliable estimates. Although Markov chain Monte Carlo methods are usually more computationally demanding 
that optimization methods, the proposed method is competing with state-of-the art optimization methods as it 
simultaneously estimates the intensity eld and the regularization parameters. Indeed, iterative re-weighting meth-
ods are not particularly fast for this ill-posed problem. Initializing the regularization parameters too large usually 
leads to poor (too sparse) results while initializing with small regularization parameters induces prohibitively 
slow convergence rates.

Experimental setup.  The experimental layout is shown in Fig. 1. A femtosecond pulsed laser beam, with a 
repetition rate of 80 MHz, pulse width of 140 ± 20 fs, and wavelength λ = 810 nm, is separated by a beam-splitter 
into two paths, in a configuration similar to a Mach-Zehnder interferometer. Each path contains a phase spatial 
light modulator (SLM), which is used to tailor the spatial profile of the beam. We choose the letters ‘N’ and a ‘mir-
rored Z’ to obtain patterns that are significantly overlapping. Generally, the larger the overlap ratio, the harder the 
deconvolution. Thus, the proposed method will perform well when the images are the inverse of each other. The 
most challenging scenario occurs when the two images are exactly the same. In such cases, all the pixels contain 
either the two peaks or none and the data might not contain enough diversity to allow the algorithm to identify 
the actual presence of multiple peaks, in particular when their relative delay is short. A second beam-splitter then 
recombines the two beam paths, and the SLM planes are imaged onto a screen using lenses L1, L2 and L3 as shown 
in Fig. 1, so that the two spatial patterns overlap on the screen. We introduce a variable delay line into one of the 
paths allowing the temporal separation of the pulses to be varied from 0 ps to 200 ps. We use a standard camera 
lens to image the screen onto an LaVision PicoStar ICCD camera. The temporal dynamics, i.e., pulse separation, 
are captured using a 1000-ps gate, and stepping the gate in 10-ps increments. The camera requires an external 
trigger as shown in order to synchronize the acquisitions with the pulsed laser.

Results
For all the results presented in this section, the sampling period of the deconvolved signal is fixed to 2.5 ps, which 
corresponds to an improvement by a factor of four compared to the minimum sampling period of the observed 
data. First we show the capacity of our algorithm to reconstruct the signal of two pulses separated temporally 
by 10 ps, resulting in an improvement over the 1000-ps gate-width by two orders of magnitude. In Fig. 2 the 

Figure 1.  Experimental setup. A femtosecond-pulsed laser beam, repetition rate =80 MHz and wavelength 
λ = 810 nm, is used to project two spatially-overlapped, but temporally-delayed femtosecond pulses of light 
onto a screen. Different spatial patterns are imposed on the two pulses, an ‘N’ and a ‘mirrored Z’, by means of 
two SLMs. The delay is introduced by means of a variable delay line, with a range of 0–200 ps. The screen is 
imaged with an ICCD camera with a 1000-ps gate and 10-ps step size. An optical pulse picker is used to trigger 
the camera off of the femtosecond pulse.
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deconvolved signal is compared with raw data. As can be seen, the algorithm is able to resolve the ill-posed prob-
lem and gives us the best possible resolution resulting in just one temporal frame for each image.

We may then compare our joint deconvolution method with a more standard single-pixel algorithm, such 
as that described in equation (1). As shown in Fig. 3, the single-pixel algorithm results in peaks that are much 
broader than those from our joint deconvolution algorithm. For peaks delayed by 200 ps, temporal deconvolution 
is possible with either method. But below 40-ps delay, the single-pixel algorithm is no longer able to separate the 
two pulses. Conversely, the joint deconvolution method allows us to locate two pulses and therefore isolate two 
images that are separated by as little as 10 ps, thus resulting in a factor of four times improvement in the temporal 
resolution. Furthermore, we report in Fig. 3(d) the estimated delays, resulting from our algorithm by varying the 
imposed delay, versus the expected delay values. A good agreement is found between the linear fit of the estimated 
delays and the expected trend. Note that there is a difference in the amplitude of the two peaks that arises from 

Figure 2.  Comparison between raw data (blue line) and the deconvolved signal (red line) for two pulses 
separated by 10 ps with different spatial patterns, an ‘N’ and a ‘mirrored Z’. Intensity data are obtained by 
averaging over the image pixels frame by frame. Experimental data have been recorded employing an ICCD 
with a 1000-ps gate and 10-ps step size. Sampling has been improved by a factor of four for the deconvolved 
signal. The original signal is successfully restored with the minimum possible temporal resolution (2.5 ps, the 
improved sampling rate set into the retrieval algorithm).

Figure 3.  Comparison between raw data (blue line), single-pixel deconvolved signal (black line) and 
collaborative-method deconvolved signal (red line), for (a) 200 ps delay and (b) 10 ps delay. (c) zooms in on 
the peaks shown in (b). The single-pixel deconvolution, in (a–c), has been scaled by 10 × to allow for easier 
comparison. All the reported data are obtained by averaging over the image pixels frame by frame. Precisely, the 
average is calculated over the independently deconvolved different pixels’ signals. (d) Varying the delay between 
the pulses, the estimated delay calculated by our algorithm is plotted versus the expected value. Data are linearly 
fitted (red line) and compared with the expected trend (green dashed line).
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the experimental setup (two different light paths) which attenuates more the first peak than the second peak. As 
can be seen in the top subplot of Fig. 3 (Fig. 3(a)), the amplitude of the second observed peak is larger (slightly 
less than twice larger) than the first peak. This difference can also be observed clearly in the deconvolved peaks 
identified by our proposed method. The conventional method provides two peaks whose maximum amplitudes 
are similar, however the second peak (in the right-hand side) is slightly broader than the first peak. This result 
arises from the fact that a single sparsity parameter is used by the standard method which tends to provides peaks 
with similar heights.

We now briefly investigate the role of the sampling step size. In Fig. 4, we show the results of the joint decon-
volution for the two different sampling step sizes, for pulses/images separated by a temporal delay of 10 ps and 
a delay of 20 ps. Figure 4(a,b) correspond to a step size of 10 ps and image delays of 20 ps and 10 ps respectively. 
Figure 4(c,d) correspond to a step size of 20 ps and delays of 20 ps and 10 ps respectively. Note that in Fig. 4(c), due 
to the small delay between the two pulses and the degraded sampling period (20 ps instead of 10 ps), it becomes 
more difficult to accurately quantify the individual amplitudes of the two peaks, which translates in more similar 
estimated peaks when using the proposed method. As shown in Fig. 4(d), we observe that with a 20-ps step size, 
the algorithm fails to restore the original signal, showing a single peak instead of two separate peaks. On the other 
hand, a 10-ps step size allows us to resolve two pulses with a separation of 10 ps. The failure to resolve a 10-ps 
delay, using a 20-ps step size suggests that the step size is one of the factors that limits the temporal resolution 
of our experiment. Further factors might be identified in the shape of the gate and especially in the gate’s rising 
time: loosely speaking, steeper rising edges provide more information and allow better resolving power from the 
deconvolution algorithm. We were not able to control the rise time in our experiments, so we simply highlight 
this point as a potential parameter to be considered when choosing a gated camera for these applications. In the 
experiments presented in the paper, the rise time of the gate is around 50 ps and the fall time is around 200 ps. 
The rise time is thus more limiting than the fall time. Moreover, sampling periods much shorter than 50 ps will 
have less impact on the temporal resolution than sampling periods close to or larger than the rise time of the gate. 
Furthermore, the method accuracy depends on the actual noise level (ambient illumination and acquisition time). 
Choosing a sampling period smaller for the deconvolved signal than the observed signal allows the recovery of 
temporal details that occur faster than the sampling period of the observed data (super-resolution), provided that 
the quality (e.g. noise level, sampling period) of the observed data is high enough.

Finally, we compare the first and second step of our method in Fig. 5. As previously discussed, once the 
first step of our algorithm has located the peak positions, we can take advantage of eventual spatial correlations 
between pixels in order to improve the image appearance. To do so, a second step is built in where piece-wise 
constant intensity profiles are promoted thanks to the total variation regularization in the deconvolution process. 
In this way, we obtain the overall smoother images reported in Fig. 5. In these figures, there are still residual errors 
in the discrimination of the two patterns due to short delay between the pulses (10 ps). Such errors decrease as we 
increase the delay pulses.

Data availability.  All relevant data present in this publication can be accessed at https://doi.
org/10.17861/2408c175-89d1-42d9-9616-be9cf6b234cf.

Conclusion
We have introduced a novel algorithm for improving the temporal deconvolution of a sequence of images subject 
to temporal blurring (due e.g. to time-gated detection with gates much longer than the image separation) and 

Figure 4.  Comparison between the deconvolution’s results obtained with a step size of 10 ps (a,b) and step size 
of 20 ps (c,d). For (a,c) the peak separation is 20 ps, whereas for (b,d) it is 10 ps. As it can be seen in (d), with 
20-ps step size the algorithm is no longer able to distinguish peaks separated by 10 ps.

http://dx.doi.org/10.17861/2408c175-89d1-42d9-9616-be9cf6b234cf
http://dx.doi.org/10.17861/2408c175-89d1-42d9-9616-be9cf6b234cf
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corrupted by noise. This algorithm is general in that, while it relies on a large number of spatially distributed 
pixels with similar temporal information, it does not require spatial correlation between the pixels. Furthermore, 
we do not make assumptions on the shape or number of pulses beyond a basic assumption of sparsity. We demon-
strate experimentally the validity of our method by reconstructing two images encoded in two femtosecond 
pulses overlapped in space and separated in time by 10 ps, imaged with an ICCD camera using a 1000-ps gate, 
stepped in 10-ps increments. Compared with the results for a single-pixel algorithm, we observe an improvement 
by a factor of four in the temporal resolution. Moreover, we investigate the role of the step size showing that it may 
limit resolution. Since our method relies only on the availability of a large number of pixels, the results reported 
here are general and versatile, and in principle may be applied to most time-resolved imaging processes under the 
assumption of sparse signals in the temporal domain. Therefore, possible applications might be found in the free 
space telecommunication field10,15,16 and for time gated lidar imaging17–19.
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