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The paper will present a novel approach to the design optimisation of a resilient Drone Logistic Network (DLN)
for the delivery of medical equipment. It is proposed a digital blueprint methodology that integrates Digital Twin
(DT) models and optimisation tools, with the goal to optimise both the network topology and the delivery planning-
scheduling over the defined network.
The DLN is a complex system being composed of a high number of different classes of drones and ground
infrastructures which interconnections give rise to the whole network behaviour. Uncertainty, that comes in different
forms, affects at different levels the subsystems and the whole network.
The paper will present the generative network optimisation which is the approach used to define, by design, the
network topology and configuration that are optimal for the defined Key Performance Indicators. It will then focus
on the operational optimisation problem which, for a predefined DLN, aims at determining the optimal drone’s
planning and scheduling considering also the uncertainty on the environment and the possible unexpected events.

Keywords: Digital Blueprint, Digital Twin, Physarum Optimisation, Drone Logistic Network, Vehicle Routing
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ACO Ant Colony Optimisation
DAE Differential Algebraic Equation
DLN Drone Logistic Network
DT Digital Twin
MH-PO Multi Headed Physarum Optimiser
MOP Multi-Objective Problem
NHS National Health Service
NOP Network Optimisation Problem
PSO Particle Swarm Optimisation
SoS System of Systems
UC Use Case
VRP Vehicle Routiong Problem

1. Introduction

During the last years more efforts has been spent
on researching new solution for distributed health-
care network systems. Some experiments about
medical delivery with the use of drones have al-
ready been done in the recent past. A trial near
Rome by Leonardo and Telespazio Li et al. (2020)
was completed in 25 minutes by drone while the
road journey along the coast took of 45-60 min-
utes. In F. V. Daalen and Geerlings (2017) it has
been established that below a tournaround time of
4 hours there are no negative effects on biological
samples. Matternet Matternet (2020) announced
in 2020 a collaboration with lab facilities in Berlin
to transport patient samples from hospitals in
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Berlin by drone to lab facilities run by Labor
Berlin. This is in addition to the flights Matternet
have undertaken in Switzerland with Swiss Post,
transporting laboratory samples between two hos-
pitals. Microbiological specimens including blood
cultures were transported by drone as a test in
T. K. Amukele and Zhang (2016) and compared
with stationary specimens to assess whether such
specimens are affected by drone transport. For the
microbes used in the trial no significant impact
was found on the time to produce a positive result
for the specimens flown for 30 minutes. Flight
tests for medical delivery have been successfully
conducted also in Spain Quintanilla Garcı́a et al.
(2021).

Working in this direction the UK government
is currently investing in the realisation of an au-
tonomous Drone Logistic Network (DLN) that
allows the delivering of medical equipment and
assistance to remote areas. The CAELUS project,
financed by the UK Industrial Strategy Future
Flight Challenge Fund, has the aim of further
explore the use of drone delivery systems for the
dispatching of medical items. This paper presents
part of the results produced during the first project
phase. The CAELUS’ main goal is the realisation
of a digital blueprint - a combination of a Digital
Twin (DT) models of the complex network and
a set of optimisation tools - of the DLN with a
twofold applicability.

The first application of the digital blueprint
corresponds to the design process of the whole
DLN such to be optimal for the given key perfor-
mance indicators as defined by the stakeholders.
This task takes place in advance of the physical
network construction and it is entirely performed
in the virtual environment simulation. The design
problem translates to a multi-objective generative
network optimisation Gao et al. (2019) where
the network is iteratively defined, simulated and
improved. The indicators considered in this work
are: capital costs of investment and operational
cost of the delivery, delivery time and resilience
under internal and external unexpected events. In
particular, the resilience is considered as the abil-
ity of the whole network system to absorb negative
and unpredictable events and recover after the

failure.
For this generative network optimisation, a

biologically-inspired methodology has been de-
veloped which extend the work proposed in Masi
(2013). It is inspired by the behaviour of the by
Physarum organism and it has shown to perform
well in many engineering problems including net-
work topology T. Nakagaki (2000) and Steiner
tree problems A. Tero (2000).

The methodology includes two integrated steps:
the generation of a sub-optimal delivery network
that is progressively optimised and the simulation
over the generated network of the drone delivery
system. The former is a Network Optimisation
Problem (NOP) while the latter, with the task of
selecting the correct drones and finding the opti-
mal routing and scheduling, can be classified as a
Vehicle Routiong Problem (VRP).

The second task performed by the digital
blueprint is the network operational problem: the
on-line simulation of the DT during the actual
operational life of the DLN and optimisation of
its scheduling and planning. Once the physical
network system is operative, sensor data can be
collected from the physical systems and used to
refine the DT models. The digital blueprint is used
in this phase to simulate many possible scenarios
affected by uncertainty in the medium-short pe-
riod of time, and determine the optimal actions to
take.

The paper will first present briefly the gener-
ative network optimisation problem and its algo-
rithmic methodology, then the operational optimi-
sation problem and its algorithmic solution. It will
finally explain the application and the solutions
presented.

2. Digital Twin Models

The DT models are one of the fundamental com-
ponents of the digital blueprint. They are refined
by real data flowing from the physical systems in
the network and allow to simulate many possible
scenarios without taking any risk on the physical
infrastructures. For each one of the network com-
ponents a corresponding DT has been developed
while their integration gives rise to the DT of the
whole network system. Even if the DT models
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are not presented in the current paper, they are
however an integral part for the proposed method-
ology.

3. Generative Optimisation of a Logistic
Network

The Generative Optimisation of a logistic network
method integrates both NOP and VRP. The for-
mer component defines the network topology by
choosing which nodes and links to use and all
the discrete properties associated to them. This
part refers to both ground and aerial infrastruc-
tures. The latter optimisation component instead
simulates the whole DT system over the created
network and defines the optimal planning and
scheduling strategy for the items delivery together
with all the optimal values of the continuous prob-
lem variables. Since multiple conflicting goals are
considered the design methodology translates in
the Multi-Objective Problem (MOP):

minimise f(G,x) = [f1, f2, ..., fm]T

subject to ci(G,x) ≤ 0, i = 1, ..., n

x ∈ X
(1)

where G is the set of all possible nodes and
links that can be selected to generate the delivery
network, X ⊂ Rn the parameter space of mixed-
integer variables, m,n ∈ N, m ≥ 2 and Y =

{f(G,x) s.t. x ∈ X, gj(G,x) ≤ 0, j = 1, ..., n}
the feasible objective space.

4. Multi-Headed Physarum Decision
Making

The algorithm that has been developed to solve
the Generative Optimisation problem is the Multi
Headed Physarum Optimiser (MH-PO), a meta-
heuristic approach based on multiple adapting
populations that allow for combinatorial optimi-
sation and discrete decision making. Physarum
Policefalum is a single-celled multi-nucleate slime
mould that in its plasmodium state is formed of
a network of veins called pseudopodia. The or-
ganism presents interesting bio-intelligence be-
haviour that allows it to adapt and move in order
to find sources of food or amicable environments.

This capacity is made possible by the mechanisms
of extension and retraction of the veins that are
coupled with the flow of both chemical-physical
signals and food nutrients. The algorithm belongs
to the family of swarm intelligence methodolo-
gies that includes also Particle Swarm Optimisa-
tion (PSO) and Ant Colony Optimisation (ACO)
to whom it shows some similarity Hickey and
Noriega (2008). A first work on the Physarum
algorithm has been proposed in Masi (2013). The
multi-headed extension and integration with the
generative network optimisation will be published
soon in a specific work.

5. Operational Optimisation: planning
and Scheduling

The second problem application of the digital
blueprint regards the actual operation of the DLN.
Given a predefined network topology and set of
terrestrial and areal infrastructures, the goal here
is to decide the optimal planning and scheduling
of drones over the DLN. The DLN can both be a
virtual model as a result of the network optimisa-
tion problem or a physical and operative network
system. The optimisation algorithm for planning
and scheduling needs to be able to define optimal
planning under nominal conditions, to consider
also the effect of uncertainties on the system dy-
namics and finally to be able to overcome possible
systems disruptions.

6. Planner

An agent-based model has been developed to sim-
ulate and understand the behaviour of the network
infrastructures and the flying fleet of drones over
the variation of internal and external conditions.
A decision agent node has been implemented for
the definition of the optimal network operations.
It takes in input the on-line information on the
operative network and on the delivery requests and
defines as output the optimal drone scheduling by
minimising the key performance indicators time-
to-delivery and risk of the trajectory. In order to
achieve this goal the ground infrastructure conges-
tion dynamics over the DLN is also simulated.
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7. Application - Network Optimisation

It is here described the practical application for
the proposed generative optimisation methodol-
ogy. The main goal is to design an optimal DLN
for the delivery of medical items and assistance in
the Scottish territory for the National Health Ser-
vice (NHS). The results presented in the following
refer to the delivery of biological samples from
Hospitals to Microbiological Laboratories. This is
a representative Use Cases (UCs) as identified in
the preliminary phase of the project.

The list of ground infrastructures considered in
the model includes: Hospitals (H), Laboratories
(L), Airports (A), Charging Stations (CS) and
Drone Ports (DP ). H, L and A represent infras-
tructures already existing and functioning in Scot-
land while DP and CS are new infrastructures
that could be created and for which new locations
need to be identified. A set of drones with dif-
ferent properties and performances are also con-
sidered. The problem consists in the definition of
the optimal network topology and combination of
nodes properties in order to optimise the medical
delivery where the nodes H represent the pick-up
points and the L the delivery points of the nested
VRP.

The optimisation problem is represented by the
geographical map of the real Scottish ground in-
frastructures as plotted in Fig. 1. The map includes
13 H , 19 L, 3 A and 24 additional stations for
which different types of ground infrastructures
(CS or DP ) can be selected.

7.1. Optimisation Metrics

Many key performance metrics have been identi-
fied. The three most important, in the following of
the section, have been selected and included in the
optimisation framework.

7.1.1. Cost

The cost estimation is decoupled in Capital Ex-
penditures (CapEx) and Operational Expenditures
(OpEx).

The former refers to the cost needed to acquire,
upgrade, and maintain physical assets. CapEx re-
fer to Hub infrastructure (airport, drone port) and
new ground infrastructure Network Points (charg-

Fig. 1. DLN map of the ground infrastructures: 3
Airports (black square), 13 Hospitals (blue square), 19
Laboratories (green square) are given and 24 additional
stations (blue points). DLN map stations, problem 1:
map of the ground infrastructures.

ing points, short term stock holding, temperature
control systems, data provision, communication
with drones).

The latter instead, OpEx, depend on the time of
flight for each drone and on man-hour required to
operate the system.

for a station i

Ci
CapEx = Cnominal(1 + δcapacity) (2)

7.1.2. Time to Delivery

Nominal time for the delivery per unit of delivered
item in steady state conditions:

KPI2 =
Ttot

X
(3)

Time Ttot is the sum of preliminary process
time, flight time between stations, process time
through intermediate stations and analysis time at
the lab for a single drone:

Ttot = Tprep + Tf + Tinter−CS + Tanalysis (4)

The preparation time consider the worst case
between time for flight DP to H, and internal H
transport/preparation of payload:

Tprep = max(TDP→H
f , TH

transp/proc) (5)

The time of flight depends on the nominal path
lenght and type of drone chosen (consider uncer-
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tainty on environment conditions):

Tf =
∑

link−k

Lk

vdrone
(6)

Charging time and transport/processing of
drones in intermediate stations is proportional to
the number of drones transiting through the sta-
tion (global quantity of the whole network) and
inversely proportional to the CS capacity:

Tinter−CS ∝ Ndrones

C
(7)

The analysis time is proportional to the total
volume of work of the selected laboratory (global
quantity of the whole network):

Tanalysis ∝ VLab,tot (8)

The total capacity of transported items X is

X =
Vitems

Cdn
(9)

with n the number of concurrently flying drones
that is the minimum between the number of avail-
able drones Nd,tot and the maximum capacity of
the airline corridor Nmax,link:

n = min(Nd,tot, Nmax,link) (10)

7.1.3. Resilience

The resilience of a complex System of Systems
(SoS) is considered to be the ability of the whole
system to absorb shocks due to internal or external
unexpected events, to evolve, to adapt and finally
to recover functionalities totally or partially after
the failures.

An explanatory example of the metric that has
been adopted in the paper is presented in the fol-
lowing and it refers to Figs. 2 and 3. In particular,
Fig. 2 represent a DLN were nodes (ground in-
frastructures) include 13 charging stations CH , 1
hospital H and 1 laboratory L while links refers to
all feasible airways connections. Each station and
airway is characterised by specific properties as
defined by the resilience model presented below.
The nominal flow of deliveries transits through
the highlighted links in Fig. 2: H , CS-7, CS-10
and L. The flow quantification, normalised to 1,
is plotted in Fig. 3 and refers to time below 100.
We suppose, as in Fig. 2, that a failure happens at

time t0 = 100 which make CS-7 unusable. Fig. 2
shows that the DLN allows for a reorganisation
of the delivery plan using station CS-12. The
mission after the failure can still be accomplished
but, as in Fig. 3, due to the longer trajectory
required and to the different properties of the new
selected station and links, the new flow is lower
than the nominal one. Quantification of resilience
is made restricting the analysis between the time
instant when the failure happens, t0, and the time
instant when the system recovers (in this case only
partially). For the failure of node i the resilience is
calculated as:

Ri =

∫ tr
t0

Qi(t)dt

th − tr
(11)

where Qi is the flow after the i-th failure. The
global metrics is finally calculated by making each
station fail and averaging all the results.

The resilience metrics is based on the dynami-
cal flow analogy based on differential equations.
Using the state-space approach, the system of
mixed DAE is represented in matrix form by the
state equation and the output equation:

{ṗ(t)} =
[
A
]
· {p(t)}+

[
B
]
· {u(t)}

{Q(t)} =
[
C
]
· {p(t)}+

[
D
]
· {u(t)}

(12)

where the state matrix
[
A
]

can be calculated as:

[
A
]
=

[
C
]−1 [

K
]

(13)

where
[
C
]

is the diagonal matrix of capaci-
tance:

C =

C11 · · · 0
...

. . .
...

0 · · · Cnn

 (14)

calculated as

C = Ic{c} =

1 · · · 0
...

. . .
...

0 · · · 1


c1...
cn

 (15)

with Ic the identity matrix and {c} the vector of
capacitance of each node in the network,
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and
[
K
]

is the matrix of conductance:

K =

K11 · · · K1n

...
. . .

...
Kn1 · · · Knn

 (16)

calculated as:

K = Ik{k} =

I
k
11 · · · Ik1n
...

. . .
...

Ikn1 · · · Iknn


k1...
kn

 (17)

with Ik the incidence matrix of order zero and
{k} the vector of conductance of each link in the
network.

The input matrix [B] is:[
B
]
=

[
C
]−1 [

U
]

(18)

where
[
U
]

represents the boundary conditions.
Once the vector of p is calculated, also the

flow Q can be found by mass balance equations
summarised in the second line of Eq. (12) that is
the output equation with [C] the output matrix and
[D] the direct transmission matrix and it allow to
calculate the volumetric flow through the network.

In particular, in analogy with an hydraulic net-
work, we consider for the generic i-th node (reser-
voir):

Ci =
Ai

9.81ρi
(19)

with Ai the section and ρi the density.
With the same hydraulic analogy, the conduc-

tance for the generic i-th link (pipe) given by the
Hagen-Poisuelle formula:

Ki =
1

Ri
=

πr4i
8µiLi

(20)

Flows parameters related to nodes and links are
considered to be variable with respect to the sys-
tem conditions. Indeed, each node has a defined
maximum capacity represented as the maximum
pressure in the flow model pi,max. When this
threshold is reached the node (station) start to be
saturated. This is modelled by varying ρ as

ρi =

{
ρi,0 if pi ≤ pi,max

ρi,0Mi(pi − pi,max) if pi > pi,max

(21)

when a further threshold is reached, pi,MAX the
node fails.

An analogous approach is implemented for the
links. A threshold capacity is given for each link
ij. For a higher flow than Qij,max the airways are
congested, with a variation of the viscosity µij

µij =

{
µij,0 if Qij ≤ Qij,max

µij,0Mi(Qij −Qij,max) if Qij > Qij,max

(22)
This allows to model the degradation of perfor-

mance of stations (nodes) and airways (links) due
to saturation and congestion and also the cascade
of failures through the network system.

Fig. 2. Resilience metrics example. A charging station
is consider unusable due to a failure. A new alternative
trajectory is possible. It is highlighted between source
H and sink L passing through CS-12 and CS-10.

8. Application - Operational
Optimisation

It is here presented an application for the opera-
tional optimisation problem. The test case consists
in the trajectory optimisation for an a intra-urban
blood culture transport delivery in Edinburgh be-
tween Western General Hospital and Royal Infir-
mary of Edinburgh at Little France. A risk map is
created based on the ground information on popu-
lation density and avoiding areas and it is used to
define the trade-off between the minimisation of
the flight trajectory length and the associated risk
of impact on the ground.

Uncertainty is also defined on the environmen-
tal conditions (wind speed and temperature) and
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Fig. 3. Resilience metrics example. Normalised flow
in the Logistic Network in Fig. 2 before and after failure
of station CS-7. The network is able to absorb part
of the shock and recover. The performance after the
failure is however lower than in the nominal case. The
resilience is calculated as in Eq. (11) as function of the
area below the flow curve and the time distance tr − t0.

its propagation allows to identify robust trajectory
plans against the impact risk on the ground.

A final test case is presented for the definition
of the optimal planning over the whole DLN for
an entire fleet of drones. It is here used the plan-
ner agent node which simulate the dynamics of
the network and define the optimal planning and
scheduling.

9. Results

Figs. 2 and 3 refers to the first optimisation prob-
lem: the generative network optimisation. In par-
ticular they explain the definition of resilience as
it is defined and optimised: a network resilient
solution is able to sustain possible node failures
and continue to finalise the scheduled deliveries
by adapting the scheduling and planning at the
new network conditions. In particular, as in Fig. 3,
resilience is a dynamic property.

Figs. 4 to 9 show instead the results for the
second optimisation problem: the operational net-
work optimisation.

The planner algorithm can solve the determin-
istic multi-objective optimisation for the flight tra-
jectory. Fig. 4 shows the trade-off on the solutions
between flight distance and risk on the ground
impact.

The corresponding Pareto front of the solutions

plotted in Fig. 4 is then presented in Fig. 5.
In Fig. 6 the uncertainty on the environment

conditions is also considered and propagated
through the models to quantify its effects on the
performance indicators. This uncertainty quantifi-
cation is used by the Planner optimisation algo-
rithm to define robust solution on the optimal tra-
jectory as in Fig. 7 where the different Pareto front
are represented for different levels of threshold on
the environment uncertainty.

Fig. 4. Risk map over Edinburgh. Optimal trajectories
between origin and destination that shows the trad-off
between minimising distance and risk.

Fig. 5. Pareto front of solutions showing drone’s tra-
jectories’ distance and risk.
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Fig. 6. uncertainty propagation of impact on the
ground.

Fig. 7. pareto front distance vs risks for different lev-
els of uncertainty

Fig. 8. visualisation of the Agent Based model sim-
ulation for the production of the optimal delivery plan-
nings. Yellow points show terrestrial infrastructures that
have failed.
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