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A B S T R A C T   

The health indicators (HIs) were extracted from the current sensor to represent the tool wear progression. The 
extracted HIs were found poorly correlated with the progression of tool wear as the raw current sensor signal was 
susceptible to the influence of other parts and structures in the machine tool. Hence, this paper proposed a novel 
current sensor-based HI that utilized the mean of inverse hyperbolic cosine function fitted to an envelope of the 
current signal to improve the correlation. Using the extracted HIs, many bespoke machine learning (ML) models 
have been developed by researchers. However, these models have many hyperparameters, difficult to interpret 
and especially poor prediction accuracy has been observed under variable operating conditions. This study 
overcame these issues by proposing a Weibull Accelerated Failure Time Regression (WAFTR) model, which 
combines process parameters data with HI for improving the prediction accuracy under variable operating 
conditions. This model mapped a functional relationship with tool wear in the form of probability density 
function to identify best HIs and acceleration/deacceleration factors which makes it interpretable. The accel
eration/deacceleration factors are useful to deaccelerate the tool wear evolution by controlling the specific 
values of the machining parameters.   

1. Introduction 

The contact forces and friction between the cutting tool and work
piece during machining, high temperatures in the cutting area and chips 
pressure on the cutting tool will lead to gradual wear of the cutting tool 
or its sudden breakage [1,2]. Hence, a cutting tool condition monitoring 
system is needed to monitor tool degradation and timeliness detection of 
tool failure to improve productivity and product quality [3]. 

Cutting tool condition monitoring can be performed using direct or 
indirect methods [4,5]. The direct methods involve visual inspection of 
tool surfaces using optical instruments. However, direct methods are 
costly, time-consuming, and may interfere with machining operations. 
In indirect methods, tool condition is estimated based on the sensor 
signals such as vibration, acoustic emission, current, force, etc. [6–8]. 
The sensors used for condition monitoring, such as vibration, acoustic 
emission (AE), and force, may interfere with cutting operations, and 
measurements may also be affected by cutting fluid and cutting chips. In 
addition, separate mounting arrangements are also needed for the 
installation of these sensors. In comparison, current sensors can be 

mounted directly, e.g., Fluke i3000s to the machine tool's spindle 
external power supply connections and are cost-effective [5,9]. In some 
CNC machines, the current sensor is already installed and, hence, an 
integral part of the machine tool spindle. No separate arrangements are 
required for using the current sensor, and the measurement will not 
interfere with machining operations. Hence, the current sensor-based 
machine tool condition monitoring system is presented in this study. 

The current signal is too complex to interpret directly. Hence a health 
indicator (HI) was often constructed to monitor tool wear degradation. 
The machine learning or statistical models can be used to mapped the 
relationship between extracted HIs and tool wear [10]. For example, 
Proteau et al. [11] presented a specific cutting energy HI to monitor the 
tool wear, which calculated the amount of energy required to remove 1 
cm3 of material. Utilizing the extracted HI, long short-term memory 
(LSTM) was used to tool wear prediction. Cai et al. [6] developed an 
LSTM model in which a temporal encoder was used to extract fault 
relevant HIs from the raw sensor signal time sequences. Later, these HIs 
were combined with process data and fed into a nonlinear regression 
model for tool wear prediction. Zhou and Sun [5] utilized the mean of 

* Corresponding author. 
E-mail address: xichun.luo@strath.ac.uk (X. Luo).  

Contents lists available at ScienceDirect 

Journal of Manufacturing Processes 

journal homepage: www.elsevier.com/locate/manpro 

https://doi.org/10.1016/j.jmapro.2022.08.036 
Received 22 December 2021; Received in revised form 4 March 2022; Accepted 10 August 2022   

mailto:xichun.luo@strath.ac.uk
www.sciencedirect.com/science/journal/15266125
https://www.elsevier.com/locate/manpro
https://doi.org/10.1016/j.jmapro.2022.08.036
https://doi.org/10.1016/j.jmapro.2022.08.036
https://doi.org/10.1016/j.jmapro.2022.08.036
http://crossmark.crossref.org/dialog/?doi=10.1016/j.jmapro.2022.08.036&domain=pdf
http://creativecommons.org/licenses/by/4.0/


Journal of Manufacturing Processes 82 (2022) 777–791

778

signal amplitude in time-domain, frequency-domain and time-frequency 
domain to represent the progression of tool wear. These HIs are fed into 
a two-layer angle Kernel Extreme Machine Learning model (TEKELM) 
for online prediction of tool wear. The proposed TEKELM overcomes the 
shortcomings of KELM for preselecting the kernel function and its 
hyperparameter. Traini et al. [12] extracted various time-domain, fre
quency-domain and polynomial regression coefficients based HIs for 
tool wear monitoring. Among extracted HIs, best HIs were selected using 
a few criterions such as (a) removing HIs with low coefficient of varia
tion, (b) removing the HIs with low correlation coefficients, (c) hy
pothesis testing and (d) removing HIs with low prognosability and 
monotonicity. Utilizing selected HIs, the neural network model was 
resulted in least error in prediction. 

In the proposed studies discussed above, HIs were extracted based on 
the overall behaviour of the raw current signal (i.e., carrier signal). A 
poor correlation with tool wear progression was observed with these 
existing HIs. Hence, this study first focused on a signal processing 
strategy that can extract fault relevant hidden local information's from 
the raw current sensor signal, which is based on the signal envelope 
utilizing the Hilbert transform approach. An inverse hyperbolic cosine 
function was fitted to enveloped signal for sensitivity enhancement, and 
later the obtained signal was used for HI construction. Using the ob
tained HI, the existing machine learning (ML) models such as artificial 
neural network (ANN) [13,14], kernel extreme learning machine 
(KELM) [5,15], convolution neural network (CNN) [4,16], random 
forest regression (RFR) [12], recurrent neural network (RNN) [11], long 
short term memory (LSTM) [6,11,16,17], deep belief network [13], 
transfer learning [18,19], etc. can be used for tool wear prediction. 
However, these models work like a black box, don't have good inter
pretability (except RFR, which is partially interpretable), and the pre
diction errors are high under variable operating conditions. Few other 
interpretable statistical models such as Hidden Markov Model (HMM) 
[20,21], Kalman filtering [22], Particle filtering [23] can also be used 
for tool wear prediction. However, both Kalman filtering and Particle 
filtering approaches require an analytic form of state equations 
describing the physics of tool wear degradation which is complex and 
many times difficult to derive [24]. On the contrary, HMM is based on 
state transition probabilities learning from data but is impossible to use 
under variable operating conditions [24]. This study proposes a Weibull 
accelerated failure time regression (WAFTR) model for tool wear pre
diction to overcome the challenges of both statistical models and ML 
models. The proposed model will have inbuilt HI selection capability 
and is computationally faster compared to machine learning models 
such as KELM, CNN, RNN, LSTM, etc. The WAFTR model describes ac
celeration and deacceleration of wear as a function of HIs and operating 
conditions/process parameters and hence will be fully interpretable. 

The raw sensor signal obtained for one cycle of machining may 
contain large fluctuations because the tool may not be in constant 
contact with the workpiece or have random reasons. The HIs extracted 
from this complete one cycle signal may not be able to map the tool wear 
evolution. No generic methodology is available to select the portion of 
the signal in which the actual machining process occurs, i.e., the tool is 
in constant contact with the workpiece. Therefore, a novel binary seg
mentation (BS) methodology is also proposed in this study to automat
ically filter the signal of interest and outlier removal. This methodology 
will identify the stationary phase of the machining activity in one cycle 
of operation. 

In comparison to existing work on cutting tool wear prediction, the 
present study made the following attempts for an accurate and robust 
tool wear prediction:  

• A novel HI based on the mean of inverse hyperbolic cosine function 
fitted to an envelope signal is proposed.  

• A fully interpretable reliability-based WAFTR algorithm that can 
model both HIs and operating conditions simultaneously in a func
tional form with tool wear has been presented. The acceleration and 

deacceleration factor provided by this model is very important to 
control the tool wear evolution by changing the cutting tool pa
rameters. No ML model provides acceleration and deacceleration 
factors to control the tool wear progression.  

• A binary segmentation methodology has been proposed to remove 
the outliers and select the raw sensor signal that corresponds to the 
stable machining process. 

This paper is divided into five sections. Section 2 discusses the 
overall tool wear prediction framework, the proposed data filtering and 
outlier removal methodology, current sensor based HIs for tool wear 
monitoring, and the WAFTR model for tool wear prediction. Section 3 
describes the data sets used for validation of the proposed tool wear 
prediction framework. Comparison of tool wear prediction results ob
tained using the proposed methodology and existing methodologies are 
discussed in Section 4. The conclusion drawn based on the proposed 
work is presented in Section 5. 

2. Proposed framework for tool wear prediction 

This study proposes a unified and generic predictive tool condition 
monitoring framework that can be applied to different machining op
erations. The proposed framework for tool wear prediction combines 
data filtering and outlier methodology, health indicator (HI) extraction 
methodology, and wear prediction methodology. Fig. 1 shows the flow 
chart of the proposed framework for tool wear prediction. 

The proposed framework is divided into two phases: offline and 
online. Current signal-based HIs correlating to tool wear progression 
will be extracted and identified in the offline phase. The process pa
rameters such as depth of cut (DOC), feed rate, etc., will be combined 
with the current sensor-based extracted HIs for tool wear prediction 
under variable operating conditions. Based on the given tool wear data, 
corresponding process parameters, and current sensor HI values, ma
chine learning or reliability-based models will be trained. The trained 
model performance will be checked based on performance metrics such 
as percentage error in prediction. The model parameters corresponding 
to which model gives the least prediction error will be obtained. In the 
online phase, using the raw current signal obtained for a new cutting 
tool, tool wear can be predicted based on the trained model and the most 
suitable HIs identified in the offline phase. 

The novel data filtering and outlier removal, HI extraction, and tool 
wear prediction methodologies that are part of the proposed tool wear 
prediction framework are discussed hereunder. 

2.1. Data filtering and outlier removal 

The signal obtained from sensors may be unstable due to unex
plained (e.g., random) and explained reasons such as the start and end of 
machining processes (e.g., the tool may not be in constant contact with 
the workpiece when the machining process takes place) [25]. Hence, it is 
desirable to have a methodology that can automatically filter the signal 
of interest. Traini et al. [12] recently utilized the change point detection 
approach to select the stationary window in which the machining pro
cess has been taken. However, the methodology proposed in this study is 
complex and accuracy dependent on a threshold parameter, α. In this 
work, a binary segmentation (BS) methodology that is threshold inde
pendent has been used to select a window in which the signal is stable (i. 
e., identifies the stationary phase of the machining activity), and no 
outliers are presented. The BS methodology identifies the window of a 
stable sensor signal based on the change in a time series signal's distri
butional properties. This methodology identifies change point in a time 
series, yi=1:n = {y1,y2………yn} based on log-likelihood function for a 
normal distribution and which is defined as [26]. 
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where, y and σ2
0 are the mean and variance of the time series, respec

tively. 
The unknown parameters, y and σ2

0, can be calculated by taking the 
partial derivative of the log-likelihood function with respect to the un
known parameters and setting it to zero. 

y =

∑n

i=1
yi

n
(2)  

σ2
0 =

∑n

i=1
(yi − y)2

n
(3)  

Eq. (1) can now be rewritten as 

logL0 = −
n
2
(
log
(
2πσ2

0

)
+ 1

)
(4)  

The stable time-series signal window has been selected based on the 
change in log-likelihood value given in Eq. (4). The methodology as
sumes each data point of a time series as a change point and calculates 
the log-likelihood value for the datasets before the assumed change 
point and after the assumed change point. Both calculated log-likelihood 
values are added and then subtracted from the log-likelihood value 
calculated using complete time-series data as given below. 

λ =

[

−
k
2
(
log
(
2πσ2

k

)
+ 1

)
−

n − k
2
(
log
(
2πσ2

n− k

)
+ 1

)
+

n
2
(
log
(
2πσ2

0

)
+ 1

)
]

(5)  

where, k represents the number of data points till change point c, and σk
2 

and σn− k
2 is the variance of the k and rest n − k data points, respectively. 

This methodology can be defined as an optimisation problem. The 
location where a maximum change in this log-likelihood value is 
observed or the location at which test statistic λ reaches a maximum is 
considered as the location of the change point. One identified change 
point will generate two signal windows. The signal belong to these in
dividual windows will be more stable compares to the complete signal. 

To evaluate this methodology's performance in selecting a stable 
signal window, four normal distribution-based random time series with 
a mean of 100 and standard deviation (SD) of 1, 2, 4, and 6, respectively, 
containing 100 data points, are generated and joined as a single signal. 
The obtained simulated signal is shown in Fig. 2. Fig. 3(a) shows the 
window of stable signal identified using the proposed BS methodology. 
The BS methodology identifies a change point where the most signifi
cant change in distributional properties will be observed. Based on the 
simulated signal, the first change point is determined at data point 
number 200, as shown in Fig. 3(a). Two windows contain data points 
from 1 to 200, and 201 to 400 are identified using this methodology. 
However, the overall signal has four different windows of a stable signal. 

This binary segmentation process could be repeated n number of 
times for n + 1 stable window selection. For the next window of stable 
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Fig. 1. Proposed framework for tool wear prediction.  

Fig. 2. Simulated normal distribution-based random time-series signal (red: mean 100, SD 1; blue: mean 100, SD 2; black: mean 100, SD 4; magenta: mean 100, SD 
6). (For interpretation of the references to colour in this figure legend, the reader is referred to the web version of this article.) 
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signal selection, the data points in windows obtained in the previous 
iteration will be treated separately. Hence for multiple windows iden
tification, the test statistic λ given in Eq. (5) was applied separately to all 
previously identified segments. The segment in which the maximum 
value of test statistic λ is obtained was selected for new window for
mation. This process was iteratively applied unless desired segments are 
obtained or any given threshold criteria were met. 

The location where test statistic λ achieves its maximum in any of the 
previous windows that will be considered as new window. Following 
this procedure, the third and fourth windows of a stable signal are 
identified, shown in Fig. 3(b) and (c), respectively. In actual application, 
a signal may contain multiple outliers, and hence this process could be 
repeated iteratively for n window selection of stable signal. The data- 

driven prediction model accuracy depends on the amount of data uti
lized for model building. It is important to have a large amount of data 
for the model-building to include all variability in the machining pro
cesses. Hence, the window which contains a maximum number of data 
points can be selected for further analysis. 

This methodology automatically selects the window in which the 
machining sensor signal is almost stationary in one cycle of operation. 
The signal belongs to this window is further used for HI extraction and 
tool wear prediction. 

2.2. Health indicator for tool wear progression monitoring 

During the cutting tool and workpiece engagement, cutting energy is 

(a)

(b)

(c)

Fig. 3. Multiple windows of stable signal identification using the proposed BS methodology (a) two windows (b) three windows (c) four windows.  
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released, resulting in the cutting forces [27,28]. The spindle motor 
current can indirectly measure these changes in cutting forces during 
tool-workpiece engagement as current is proportional to torque, which 
is proportional to cutting forces [29]. Increased tool wear increases the 
cutting forces, and the current drawn by the electric motors corre
spondingly also increases. However, the fault relevant information in 
the current signal is overlapped with disturbances from the other pow
ered sources, which make it noisy and this will obstruct the detection of 
small fluctuations in the cutting force due to the tool wear [5]. In 
addition, the spindle power needed for material removal takes only a 
very small portion of the total power, while the rise of temperature 
which is inherent in motors under load will also affect this power con
sumption [30]. Thus, spindle current will be affected by these factors 
and hence is too complex to be interpreted directly. Hence HIs for tool 
wear monitoring have been extracted in the literature by analysing 
sensor signal in the time domain (TD), frequency domain (FD), and time- 
frequency domain (TFD) [31]. Some of the most widely used HIs in 
literature are shown in Table 1. 

The HIs shown in Table 1 are extracted based on the overall 
behaviour of the raw current signal. The valuable information related to 
cutting tool degradation and dynamics is hidden in the signal. It is 
important to extract those pieces of information from the signal to reflect 
wear progression better. In this work, the HI for tool wear monitoring is 
formed based on the extraction of those useful pieces of information 
from the raw current signal. The raw current sensor signal has two main 
components: high-frequency carrier and low-frequency modulating 
signals. The carrier signal contains many frequencies irrelevant to the 
cutting tool degradation and also degradation relevant information 
masked by broadband noise. An increase in signal amplitude modulation 
has been observed with the degradation of the cutting tool. The signal 
gets modulated around the spindle's rotational speed, which can be seen 
in the signal envelope. Hence, this study aims to extract fault relevant 
information from the current signal utilizing signal envelope and dis
carding carrier signal. In previous studies [32,33], it has been shown 
that the envelope of the current sensor signals better diagnose the motor 
fault compared to the original raw current sensor signal. This study first 
time utilizes the envelope of the current sensor to more effectively 
monitor the wear progression. 

A Hilbert transform approach is used for extracting the current signal 
envelope [34,35]. Hilbert transform is a time-domain convolution and 
mathematically can be expressed as 

H[y(t) ] =
1
π

∫∞

− ∞

y(t)
t − τ dτ (6)  

where, H[y(t)] is the Hilbert transform of time-domain current signal y 
(t). 

The magnitude of this complex time series represents the signal en
velope and which can be extracted as 

a(t) =
̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅
y2(t) + H2[y(t) ]

√
(7)  

The extracted signal envelope a(t) represents an estimate of the ampli
tude modulation present in the raw current signal. 

For further enhancement in the enveloped signal's sensitivity, the 
enveloped signal is transformed to a different scale using the inverse 
hyperbolic cosine function. The inverse hyperbolic cosine function for 
the enveloped signal can be calculated as 

cosh− 1[a(t) ] = log
[
a(t)+

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅
a2(t) − 1

√ ]
(8)  

Taking inverse hyperbolic cosine function for the enveloped signal 
produce HI with low scale and better correlation. The mean of the 
transformed enveloped signal (cosh− 1[a(t)]) is considered as the HI for 
wear monitoring. In summary, from Eqs. (6), (7), and (8), the proposed 
HI for wear monitoring can be presented as 

Proposed HI = mean
(

log
[
̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅
y2(t) + H2[y(t) ]

√
+

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅
y2(t) + H2[y(t) ] − 1

√
] )

(9)  

This proposed HI is further used for the online prediction of tool wear 
with a reliability-based Weibull Accelerated Failure Time Regression 
(WAFTR) model discussed in the next section. 

2.3. Methodology for tool wear prediction 

In this study, a reliability-based Weibull Accelerated Failure Time 
Regression (WAFTR) approach has been proposed for tool wear pre
diction. Weibull distribution is mainly used to analyse the reliability and 
maintainability of a component/system. The reliability function for this 
distribution is presented as [36]. 

R(t) = exp
(

−
( t

η

)β
)

(10)  

where, η is the scale or characteristics life parameter, i.e., time at which 
63.2 % of failure occurs, and β is the shape parameter. R(t) presents the 
probability that component-time to failure, i.e., T will be greater than or 
equal to some time period t, i.e., Pr{T ≥ t}. 

In the present work, the machine tool assumes to be failed if tool 
wear in the current state is greater than the critical wear value. Hence, 
the current problem's reliability function will represent the probability 
that the flank tool wear in the current state of the tool is lesser than or 
equal to the critical value. By considering tool wear as a life parameter, 
the reliability formula mathematically for the present problem can be 
presented as 

Pr(wear ≤ wearcritical) = exp
(

−
(wear

η

)β
)

(11) 

The tool life depends on the process parameters such as feed rate, 
depth of cut (DOC), spindle speed, and tool and work materials, etc. 
These parameters also affect job duration, quality, and accuracy of 
finished product and production cost. All these parameters are termed 
external parameters or external covariates. The cutting tool's degrada
tion leads to change in characteristics such as vibration, AE, the cutting 
force generated, current signal drawn by machine tool, etc. The pa
rameters that indirectly represent or used for tool conditions are termed 
as internal parameters or internal covariates. These external and inter
nal covariates should be part of a prediction model for an accurate, 
reliable, and online tool condition assessment. Hence, the scale param
eter in a Weibull distribution could be modified and expressed as a 
function of external/internal covariates and termed as Weibull Accel
erated Failure Time Regression (WAFTR) model. The WAFTR model for 
the present machine tool wear prediction model can be expressed as 

Table 1 
Current sensor based HIs extracted for tool wear monitoring by various 
researchers.  

References Health indicators 

[5] TD: Mean 
FD: Mean 
TFD: Wavelet packet energy 

[6] TD: Root mean square, Variance, Skewness, Kurtosis, Peak, Peak-to- 
Peak 
FD: Peak-to-Peak, Spectral skewness, Spectral kurtosis 
TFD: Wavelet packet energy 

[12] TD: Max, Mean, RMS, Standard deviation, Skewness, Kurtosis, Peak-to- 
Peak, Crest factor 
FD: Max, Sum, Mean, Standard deviation, Skewness, Kurtosis, Relative 
spectral peak per band 

[11] TD: RMS, Kurtosis, Peak, Peak-to-Peak, Crest factor  
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Pr(wear ≤ wearcritical) = exp

⎛

⎜
⎜
⎝ −

⎛

⎜
⎜
⎝

wear

exp
ao+
∑q

l=1
alIl+
∑m

j=1
bjEj

⎞

⎟
⎟
⎠

β⎞

⎟
⎟
⎠ (12)  

where, I and E represent internal and external covariates respectively, q 
and m represent the number of internal and external covariates respec
tively, ao is the intercept, al is the regression coefficient for lth internal 
covariate and bj is the regression coefficient for jth external covariate. 

The Eq. (12) in the expanded form can be represented as   

Based on the available condition monitoring sensor data and life- 
affecting external covariates, the value of the unknown parameters 
such as β, ao, a1, b1, etc. given in Eq. (13) can be estimated using the 
maximum likelihood estimation (MLE) approach. In generalised form, 
the likelihood function can be defined as 

L (β, ao, a, b) =
∏g

d=1
f (weard, Id,Ed)×

∏p

s=1
R(wears, Is,Es) (14)  

where, d and s are indexes for the number of failure and suspension/ 
degradation data points respectively and f(weard, Id,Ed) is the probability 
density function for WAFTR model. Eq. (14) in the expanded form can be 
represented as  

The partial derivative of the Eq. (15) with respect to the unknown pa
rameters β, ao, a1, a2, ………, aq, b1, b2, ………, bm and setting the de
rivative equal to zero will give optimal value for these unknown 
parameters. It is very crucial to know what the models have learned, 
particularly in real-world situations where decision reliability is 
important. The interpretability increases model acceptance. Unlike 
other machine learning models such as ANN, SVM, etc., WAFTR is a 
white box modeling approach and fully interpretable. The WAFTR 
model is fully interpretable in two ways, i.e., gives acceleration factor 
for different levels of covariate and covariates importance. 

Eq. (13) provides coefficients for covariates and can infer how 
particular HI is affecting tool wear. For example, in WAFTR, the survival 
time (e.g. wear in the present case) accelerates or decelerates by a 
constant factor when comparing different levels for a particular covar
iate. The coefficients of the covariates help in estimating this constant 
factor. The negative coefficient value indicates that an increase in 
particular covariate level will deaccelerate tool wear and vice versa for a 
positive value. Hence, in WAFTR, the effect of covariate is multiplicative 
on wear, and it is said to “accelerate/deaccelerate” wear rate, which can 
be mathematically explained below. 

From Eq. (13), the scale parameter η for WAFTR can be presented as 
[37–39]. 

η= exp
[
ao+

(
a1I1+a2I2.…………+aqIq

)
+(b1E1+b2E2.…………+bmEm)

]

(16)  

Keeping other covariates values fixed, increase covariate I1 value by x 
unit from I1 to I1 + x and denote this scale parameter as η2    

From Eqs. (16) and (17), the η1 and η2 parameters are related as 

η2 = exa1 η1 (18)  

The factor exa1 in Eq. (18), represent the acceleration factor (AF) for 

particular levels of covariates and hence evaluate the effect of covariate 
levels on the tool wear. For example, x unit increase in covariate level, 
the AF can be interpreted as effects on wear, which can either accelerate 
(AF greater than 1) or deaccelerate (AF less than 1) wear. 

It is crucial to determine the most suitable external and internal 
covariates statistically in the model. The covariate selection in WAFTR 
model is made using a backward elimination procedure by selecting the 
covariates with the lowest p-value. The p-value is the probability of 
obtaining sample results using the chi-square test, assuming the null 
hypothesis is correct. In WAFTR model, the null hypothesis assumes no 
relationship between the covariate and tool wear and vice-versa for the 

R(wear ≤ wearcritical) = exp

⎛

⎝ −

(
wear

exp
[
ao +

(
a1I1 + a2I2.………… + aqIq

)
+ (b1E1 + b2E2.………… + bmEm)

]

)β
⎞

⎠ (13)   

L
(
β, ao, a1, a2,………,aq, b1, b2,………,bm

)
=
∏g

d=1

β
(
exp
(
ao + a1I1d + a2I2d.………… + aqIqd + b1E1d + b2E2d.………… + bmEmd

) )β(weard)
β− 1

× exp

⎡

⎣ −

(
weard

exp
(
ao + a1I1d + a2I2d.………… + aqIqd + b1E1d + b2E2d.………… + bmEmd

)

)β
⎤

⎦

×
∏p

s=1
exp

⎡

⎣ −

(
wears

exp
(
ao + a1I1s + a2I2s.………… + aqIqs + b1E1s + b2E2s.………… + bmEms

)

)β
⎤

⎦

(15)   

η2 = exp
[
ao +

(
a1(I1 + x)+ a2I2.…………+ aqIq

)
+(b1E1 + b2E2.…………+ bmEm)

]
(17)   
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alternate hypothesis. A lower p-value indicates that the alternate hy
pothesis is correct, and the null hypothesis is not true. The choice of 
selecting the threshold p-value is arbitrary. Most of the researchers used 
the p-values as 0.05, 0.01 and 0.001. A lower p-value indicates partic
ular covariates/features/HIs selected are highly significant for model 
formation. Hence, a lower p-value of 0.01 is chosen in this study, i.e. 
which indicated only a 1 % probability that the results (i.e., covariates 
selected) are due to random chance. 

For best covariate selection, first, WAFTR model is fitted using all 
covariates in the model, and the covariate with the highest p-value is 
identified. The identified covariate will be removed if the p-value for this 
covariate is greater than the threshold value. The model is retrained 
using the remaining HIs. The non-significant HIs are removed, sequen
tially repeating this procedure one by one and termed backward elimi
nation procedure for most suitable covariate selection. This procedure is 
repeated until all covariates considered in the model have a p-value less 
than 0.01. Fig. 4 shows the backward elimination procedure for cova
riates selection. 

3. Data set for proposed framework performance validation 

The milling datasets provided by NASA AMES and the University of 
Berkeley [40] have been used for performance validation of the pro
posed framework for tool wear prediction. The experiments were per
formed at 16 different conditions. Table 2 shows details of the 
experiment's conditions at which these sixteen experiments were 
performed. 

The cutting speed in all experiments was constant, which is equal to 
200 m/min. Four different types of sensor data, such as acoustic emis
sion, vibration, DC current and AC current, were collected to monitor 
machine tool wear progression. However, this study is restricted to use 
spindle AC current sensor data for tool wear monitoring, and hence data 
from this sensor is only further discussed. A 70 mm diameter face mill 
with six inserts (type KC710) was used for machining operation. The 
inserts are coated with multiple titanium carbide layers, titanium car
bonitride, and titanium nitride in sequence. The machining operation 
using this milling cutter is done to machine a workpiece of size 483 mm 
× 178 mm × 51 mm. The flank wear on the insert was measured in each 
cycle with the help of a microscope. 

Fig. 5 shows tool wear progression with the number of cycles for 
different cutters. The data set for cutter number 6 is not completely 
available and hence not considered in this study. In addition, the tool 
flank wear was not measured in every cycle, and therefore no flank wear 
data is available for 21 instances. A total of 167 instances were available. 
After eliminating 21 instances for which tool wear data is not available 
and cutter 6 data, a total of 145 instances remained for model devel
opment and validation. Based on the current signal sensor data collected 
from such 145 instances, the following section shows the wear predic
tion results obtained using the proposed framework for machine tool 
wear monitoring explained in Section 2. 

4. Results and discussions 

This section shows the performance of binary segmentation-based 

Table 2 
Experimental conditions for different experiments.  

Experiment/cutter 
number 

Depth of cut 
(in mm) 

Feed rate 
(in mm) 

Tool 
material 

Number of 
cycles  

1  1.5  0.5 Cast Iron  17  
2  0.75  0.5 Cast Iron  14  
3  0.75  0.25 Cast Iron  16  
4  1.5  0.25 Cast Iron  7  
5  1.5  0.5 Steel  6  
6  1.5  0.25 Steel  1  
7  0.75  0.25 Steel  8  
8  0.75  0.5 Steel  6  
9  1.5  0.5 Cast iron  9  
10  1.5  0.25 Cast iron  10  
11  0.75  0.25 Cast iron  23  
12  0.75  0.5 Cast iron  15  
13  0.75  0.25 Steel  15  
14  0.75  0.5 Steel  10  
15  1.5  0.25 Steel  7  
16  1.5  0.5 Steel  6  

(a) (b)

Fig. 5. Tool wear progression with a number of cycles for cutters made of (a) cast iron (b) steel.  

Select threshold p-value of null hypothesis 

Fit WAFTR model considering all covariates 

Select the covariate with the highest p-value  

If p-value for a 

covariate greater than 

threshold p-value 

Remove the covariate and retrain the model 

with remaining covariates  

Yes 

No Retain the covariate and 

fit the model with 

selected covariates  

Fig. 4. Backward elimination procedure for covariates selection in 
WAFTR model 
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data filtering and outlier removal methodology, proposed HI utilizes 
mean of inverse hyperbolic cosine function fitted to the signal envelope 
and WAFTR based wear prediction methodology using data sets dis
cussed in Section 3. 

4.1. Data filtering and outlier removal 

Each current signal from 145 instances contains 9000 data points, 
and a few current signal data obtained for different experiments is 
shown in Fig. 6(a). The amplitude of the current signal obtained in this 
study is very high/low at the start and end of the machining process, 
maybe because the tool is not in constant contact with the workpiece 
when the machining process takes place. In a few cases, erratic signal 
behaviour is also observed, for example, the signal shown for cutter 2 in 
Fig. 6(a). It is desirable to select the window in which the signal has 
stable behaviour. Hence, BS methodology has been applied for the 
window selection. Fig. 6(b) shows the signal obtained after the proposed 
BS methodology applied on current sensor data, demonstrating for 
different types of the obtained current signal how effectively the pro
posed BS methodology can identify the window when the machining 
sensor signal is stable. For example, for signal belong to the first cycle of 

cutter number 1, from Fig. 6(a), the stable signal behaviour is observed 
between data points 1800 to 7500, which is identified using the pro
posed BS methodology as shown in Fig. 6(b). The stable signal obtained 
using the proposed BS methodology has been further used for HIs 
extraction and tool wear prediction. 

4.2. Health indicator performance 

A prediction model's performance depends on the sensitivity of the 
HIs to represent the cutting tool degradation [41]. The proposed HI in 
this work is based on the envelope of the raw current signal. Fig. 7 shows 
the original current signal and envelope of the same, which is calculated 
using Eq. (7). As discussed earlier, the wear on the cutting tool modu
lates the current signal. This modulation which is extracted based on the 
signal envelope, is expected to increase as tool wear increases. The in
verse hyperbolic cosine function of the enveloped signal is taken to 
enhance the signal sensitivity further. The mean of the enhanced 
enveloped signal represents the HI for tool wear monitoring. 

Fig. 8(a) shows the variation of the proposed HI for different cutters. 
Corresponding wear values are plotted in Fig. 8(b). In most instances, 
the HI value increases as tool wear increases. The proposed HI 

(a)

(b)

Fig. 6. (a) Raw signal obtained from current sensor signal (b) stable signal of interest obtained using proposed BS methodology.  
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performance is compared with existing HIs based on the correlation of 
particular HI with tool wear progression. From Table 1, a total of 32 
most used current sensor based HIs for tool wear monitoring are 
considered. Out of these HIs, eight were extracted in time-domain 
(mean, maximum, sum, standard deviation (SD), skewness, root mean 
square (RMS), peak-to-peak (P2P), and crest factor (CF)), eight were 
extracted in frequency-domain (mean, maximum, sum, SD, skewness, 
kurtosis, P2P and relative spectral peak per band (RSPB)), and 16 were 
extracted in time-frequency (4 level wavelet packet energy (WE)) 
domain. The correlation coefficient (CC) obtained for existing HIs and 
proposed HI with wear is reported in Table 3. From Table 3, compares to 
existing HIs (HI number 1 to 32), the highest correlation value is ob
tained for the proposed HI (HI number 33), which is 0.63. Hence, this HI 
is further used for tool wear prediction. The performance of the pro
posed HI and existing HIs is also shown with the help of tool wear 
prediction results, which will be discussed in the next section. 

4.3. Tool wear prediction results 

As discussed earlier in Section 3, a total of 145 instances are available 
for validation of the proposed methodology. Leave one out cross- 
validation (LOOCV) approach has been used to evaluate the proposed 
tool wear prediction framework. The WAFTR model discussed in Section 
2.3 is used for tool wear prediction based on the proposed HI shown in 
Section 4.2. For the present problem, the external covariates will be 
process parameters such as depth of cut (DOC), feed rate and tool ma
terial and internal covariates will be current sensor-based extracted HIs 
for tool wear prediction. Initially, all process-related information is 
combined with the current sensor-based extracted HIs to improve pre
diction performance as cutting tools made of different materials and run 
under variable operating conditions. In addition, cutting tool running 
time cycle (run and time) information also has been considered in the 
model. After considering all these covariates, the WAFTR model for the 
current problem can be presented as   

Fig. 9 shows tool wear prediction results. The proposed WAFTR 
model accurately predicted tool wear except for a few instances where 
actual tool wear is predominately high in cutter numbers 9 and 13–16. 
The model parameters estimated based on other cutters' data doesn't 
show high tool wear corresponding to the particular operating condi
tions. Due to limited available data in this study for model development, 
it is very difficult to develop a robust model that can accurately predict 
wear in all scenarios. The availability of more training data points can be 
helpful in further reducing the prediction error. In addition, cutter 
number 16 has data only for three cycles, and hence we can't comment 
on prediction results for this cutter due to data inefficiency. 

To further evaluate the performance of the proposed HI, the wear 
prediction results are obtained when other existing HIs are considered in 
the WAFTR model. The percentage error in prediction is calculated to 
evaluate the proposed WAFTR model's performance when using existing 
HIs and the proposed HI. The obtained prediction error results are re
ported in Table 4. 

From Table 4, the percentage error in tool wear prediction is mini
mum (20.8 with HI 33) with proposed HI compares to existing HIs (in 
existing HIs, best results are obtained with HI 6, which is 25.4). This 
shows the proposed HI is useful for better tool wear prediction. In 
addition, the above analysis is repeated for different existing wear pre
diction models such as RFR and ANN to benchmark the performance of 
the proposed WAFTR wear prediction model. A total of 500 decision 
trees were used in the RFR model, and an ANN model with one hidden 
layer and 20 neurons were used. The tool wear prediction results ob
tained with these three models are illustrated in Fig. 10. It shows that the 
tool wear prediction results obtained using the proposed WAFTR model 
are closer to the actual wear value than the RFR and ANN models. 
Table 5 shows the percentage error in prediction obtained using all three 
models. Overall, the percentage error in prediction obtained using the 
proposed WAFTR model is 20.8 %, whereas it is 26.8 % and 44.8 % using 
RFR and ANN model, respectively. This shows the proposed WAFTR 
model outperforms the existing machine learning models such as RFR 
and ANN for tool wear prediction. 

4.3.1. WAFTR interpretation 
The WAFTR model has the advantage of having two separate in

terpretations, i.e., acceleration factor and inbuilt most suitable cova
riates selection capability. Based on the backward elimination 
procedure explained in Fig. 4, the relative importance of all internal (HIs 
given in Table 4 and running time cycle (run and time) information) and 
external covariates (DOC, feed rate and material type) is calculated and 
ranked according to their importance in Fig. 11. The higher p-value, the 
lower the importance is. From Fig. 11, among the internal covariates, 
the WE12 HI extracted in the time-frequency domain is the least suitable 
HI (p-value = 0.89) and the proposed HI is the most suitable HI (p-value 
= 6.52e-39). Among the external covariates, material type (p-value =
0.03) is least suitable and DOC (p-value = 2.30e-27) and feed rate (p- 
value = 4.09e-47) are most suitable. In addition, none of cutting tool 
running time cycle information (i.e., run (p-value = 0.66), time (p-value 
= 0.04)) is important in the model. In summary, the p-value obtained for 
the proposed HI and external covariates DOC and feed rate is less than 
0.01. Hence, these covariates are only retained in the model for wear 
prediction and now the WAFTR model can be presented as   

 

Fig. 7. Signal enveloping.  

Pr(wear ≤ wearcritical) = exp

(

−

(
wear

exp[ao + (a1*run + a2*time + a3*propsoed HI) + (b1*DOC + b2*feed rate + b3*material) ]

)β
)

(19)   
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Based on the most suitable selected internal (i.e., proposed HI) and 
external covariates (i.e., DOC and feed rate), the ANN and RFR model's 
performance have also been investigated and compared with WAFTR 
model. Fig. 12 shows the tool wear prediction results obtained using all 
three models when non-significant covariates are removed. Comparing 
with Fig. 10, the prediction results by RFR and ANN models have been 
apparently affected by the running time cycle information. In contrast, 
the performance of the proposed WAFTR model is almost similar with 
and without consideration of the running time cycle information. 
Table 6 shows the percentage error in prediction obtained using all three 
models when non-significant covariates are removed. Overall, the per
centage error in prediction obtained using the proposed WAFTR model 
is 20.4 %, whereas it is 65.2 % and 160.5 % using RFR and ANN models, 
respectively. This indicates that the proposed WAFTR model can also 
accurately predict tool wear with limited process information, high
lighting another advantage of the proposed model compared to existing 
machine learning-based models. 

Another advantage of WAFTR model is it provides an acceleration 
factor (AF). The AF estimated using the WAFTR model can help in 
deaccelerating the wear by controlling the covariate levels. For example, 
for cutter number 2, the experiment was performed at a DOC and feed 
rate of 0.75 and 0.5, respectively. Based on the LOOCV approach, for this 
cutter, the WAFTR model eq. is shown below  

From Eq. (21), the external covariates, i.e., DOC and feed rate levels, can 
be adjusted to deaccelerate the wear progression. The negative coeffi
cient values for DOC and feed rate show that increased levels for both 
these two external covariates will deaccelerate the wear progression. 
How much wear will deaccelerate can be quantified using the acceler
ation factor. For example, if DOC for this cutter is increased from 0.75 to 
1.5, the AF (e0.75*− 1.11 = 0.43; from Eqs. (18) and (21)) will be 0.43. 
This indicates tool wear for this cutter can be reduced 0.43 times if DOC 
increases from 0.75 to 1.5. This shift (black line for DOC 0.75 to red line 
for DOC 1.5) in wear progression can be seen from Fig. 13(a). Similarly, 
if the feed rate decreased from 0.5 to 0.25, the AF (e− (0.25*− 2.48) = 1.86; 
from Eq. (18) and (21)) will be 1.86. A decrease in feed rate increases the 
wear 1.86 times which can be seen from Fig. 13(b) (black line for feed 
rate 0.5 to blue line for feed rate 0.25). If DOC increased from 0.75 to 1.5 
and the feed rate decreased from 0.5 to 0.25, the AF 
e0.75*− 1.11+0.25*2.48) = 0.81) will be 0.81 (shift in wear progression from 
black line to magenta line in Fig. 13(a)). The acceleration factors ob
tained for increase/decrease in DOC and feed rate for cutter number 2 is 
reported in Table 7. Similar results for cutter number 10 can be seen in 
Fig. 13(b) and Table 8. In summary, the acceleration factor provided by 
WAFTR model can be used to control (accelerating and deaccelerating) 
the tool wear by adjusting levels of the covariate. 

From Eq. (21), the WAFTR model has five coefficients, i.e., ao, a1, b1, 
b2, and β. Fig. 14 shows the variation of these coefficients for different 
training data combinations. The intercept, HI coefficient, DOC coeffi
cient, feed rate coefficient, and shape parameter value lies in the range 

of − 2.18 to − 2.11, 1.97 to 2.02, − 1.14 to − 1.08, − 2.55 to − 2.43, and 
4.55 to 4.69, respectively. Very little variation (standard deviation for 
intercept, HI coefficient, DOC coefficient, feed rate coefficient, and the 
shape parameter value is obtained 0.008, 0.005, 0.006, 0.01, and 0.024, 
respectively) in coefficient values for different training data combina
tions indicates the model consistency. 

In summary, the BS and WAFTR models presented in this study are 
very generic and can also be implemented for different precision ma
chines. For example, in all precision machines, the cutting tool may not 
constantly contact the workpiece all the time during machining. The BS 
methodology will be helpful in such scenarios for identifying the sta
tionary phase of the machining activity in each cycle of operation. In all 
precision machines, the cutting tool generally operates under variable 
operating conditions for machining different materials. The WAFTR 
model will be helpful in such scenarios for estimating the tool wear 
progression for different tool/workpiece material and change in the 
levels of the process parameters. 

5. Conclusion 

This study proposed a unified, systematic, and generic framework 
that can be applied to different machining processes for tool wear pre
diction. The proposed framework contributes to three directions (i.e., 

data filtering and outlier removal, sensitive HI extraction and fully 
interpretable tool wear prediction model) for tool wear prediction.  

• A binary segmentation methodology was proposed for data filtering 
and outlier removal. The obtained sensor data may have random or 
known fluctuations in signal. The proposed binary segmentation 
methodology significantly selected the window in which the signal 
was more stable. The signal that belongs to this stable window was 
further selected for health indicator extraction and tool wear pre
diction model development.  

• The modulation in the current signal increased with an increase in 
tool wear. Hence modulation characteristics of the current signal 
were extracted based on the envelope of the signal. The inverse hy
perbolic cosine function was fitted to the enveloped signal for further 
enhancement in the signal sensitivity. The mean of the modified 
enveloped signal represented tool wear progression better than 
existing HIs for tool wear monitoring.  

• A WAFTR model was proposed to predict tool wear based on the 
extracted health indicator. The performance of the proposed model 
was compared with existing models such as RFR and ANN. The 
proposed WAFTR model performance considering the proposed 
health indicator was observed better than existing HIs and existing 
models for tool wear prediction.  

• In addition, the WAFTR model has better interpretability than 
existing ML models. The WAFTR model provided a functional rela
tionship between the tool wear, HIs and machine process parame
ters. It could be inferred which process parameters are accelerating 

Pr(wear ≤ wearcritical) = exp

(

−

(
wear

exp[ao + (a1*propsoed HI) + (b1*DOC + b2*feed rate) ]

)β
)

(20)   

Pr(wear ≤ wearcritical) = exp

(

−

(
wear

exp[ − 2.14 + (1.99*Propsoed HI) + ( − 1.11*DOC − 2.48*feed rate) ]

)4.56
)

(21)   
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or deaccelerating the tool wear in terms of an acceleration factor by 
controlling the levels of a particular process parameter. Hence, the 
tool wear evolution could be deaccelerated or minimised. In addi
tion, WAFTR model automatically selected the most suitable process 
parameters and HIs. Using the chi-square test, the model backwardly 
eliminated the process parameters and HIs, which would not be 
significant for tool wear monitoring. 

Since the WAFTR model has inbuilt most suitable HI selection 
capability and hence can also be used to select the most suitable sensors 
for tool wear monitoring. This process will help in minimising the sen
sors required for tool condition monitoring and can help in reducing the 
cost associated with a number of sensors. 

The proposed method relies on historical data from all operating 
conditions to establish an accurate estimation of model parameters. It 

(a)

(b)

Fig. 8. (a) Proposed HI variation for different cutters (b) Wear progression for different cutters.  

Table 3 
CC value obtained for existing HIs and proposed HI.  

TD based 

HI number 1 2 3 4 5 6 7 8 
HI name Mean Maximum Sum SD Skewness RMS P2P CF 
CC value 0.45 0.60 0.39 0.60 0.2 0.60 0.59 0.53   

FD based 

HI number 9 10 11 12 13 14 15 16 
HI name Mean Maximum Sum SD Skewness Kurtosis P2P RSPB 
CC value 0.51 0.56 0.53 0.59 0.27 0.29 0.56 0.18   

TFD based 

HI number 17 18 19 20 21 22 23 24 
HI name WE1 WE2 WE3 WE4 WE5 WE6 WE7 WE8 
CC value 0.62 0.42 0.58 0.58 0.48 0.57 0.45 0.49 
HI number 25 26 27 28 29 30 31 32 
HI name WE9 WE10 WE11 WE12 WE13 WE14 WE15 WE16 
CC value 0.002 0.37 0.04 0.24 0.20 0.49 0.05 0.56   

Proposed 

HI number 33 
HI name Mean of inverse hyperbolic cosine function fitted to signal envelope 
CC value 0.63  
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can provide very accurate results for operating conditions that fall 
within the range used for model training. In addition, prediction errors 
are high for a few cutters when predominately tool wear was high 
compared to other cutters. The model parameter updating strategy may 
resolve this issue. Future work will be focused to overcome these 
shortcomings of the WAFTR model. 

Fig. 9. Tool wear prediction results obtained using the proposed tool wear prediction framework.  

Table 4 
Percentage error in tool wear prediction obtained using existing HIs and proposed HI.  

HI number HI 1 HI 2 HI 3 HI 4 HI 5 HI 6 HI 7 HI 8 HI 9 

Correlation 29.04 26.02 29.68 25.7 32.04 25.4 25.9 30.3 31.07 
HI number HI 10 HI 11 HI 12 HI 13 HI 14 HI 15 HI 16 HI 17 HI 18 
Correlation 27.4 30.8 26.8 31.6 26.8 27.4 31.6 27.6 31.3 
HI number HI 19 HI 20 HI 21 HI 22 HI 23 HI 24 HI 25 HI 26 HI 27 
Correlation 30.9 28.11 30.5 27.2 31.7 30.9 30.7 30.8 31.5 
HI number HI 28 HI 29 HI 30 HI 31 HI 32 HI 33    
Correlation 31.3 31.4 29.8 31.3 28.7 20.8     

Fig. 10. Tool wear prediction results obtained using WAFTR, RFR, and ANN models.  

Table 5 
Percentage error in tool wear prediction obtained using WAFTR, RFR, and ANN 
models.  

Model name WAFTR RFR ANN 

% error in prediction  20.8  26.8  44.8  

Fig. 11. Relative importance of covariates.  
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Fig. 12. Tool wear prediction results obtained using WAFTR, ANN, and RFR models when non-significant covariates identified based on WAFTR model are removed.  

Table 6 
Percentage error in tool wear prediction obtained using WAFTR, RFR, and ANN models 
when non-significant covariates identified based on WAFTR model are removed.  

Model name WAFTR RFR ANN 

% error in prediction  20.4  65.2  160.5  

(a)

(b)

Fig. 13. Tool wear prediction results when process parameters are changed for the cutter number (a) 2 (b) 10.  

Table 7 
Acceleration factor calculation using WAFTR model for cutter number 2.  

Actual DOC 
(0.75) and feed 
rate (0.5) 

DOC increased 
from 0.75 to 1.5 

Feed rate 
decreased from 
0.5 to 0.25 

DOC increased from 0.75 to 
1.5, and the feed rate 
decreased from 0.5 to 0.25  

1  0.43  1.86  0.81  
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