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Abstract

The rapid development in hardware for quantum computing and simulation has led to much
interest in problems where these devices can exceed the capabilities of existing classical computers
and known methods. Approaching this for problems that go beyond testing the performance of a
quantum device is an important step, and quantum simulation of many-body quench dynamics is
one of the most promising candidates for early practical quantum advantage. We analyse the
requirements for quantitatively reliable quantum simulation beyond the capabilities of existing
classical methods for analogue quantum simulators with neutral atoms in optical lattices and
trapped ions. Considering the primary sources of error in analogue devices and how they
propagate after a quench in studies of the Hubbard or long-range transverse field Ising model, we
identify the level of error expected in quantities we extract from experiments. We conclude for
models that are directly implementable that regimes of practical quantum advantage are attained
in current experiments with analogue simulators. We also identify the hardware requirements to
reach the same level of accuracy with future fault-tolerant digital quantum simulation. Verification
techniques are already available to test the assumptions we make here, and demonstrating these in
experiments will be an important next step.

State-of-the art analogue quantum simulators [1, 2] are now at the stage where they reach between 50
and several thousand particles in optical lattices [3—6], trapped ions [7—9], or neutral atoms in tweezer
arrays [10, 11], and explore both time-dependent dynamics and equilibrium properties of a range of lattice
models (see figure 1(a)). At the same time, rapid development in hardware for quantum computing opens
opportunities for digital quantum simulation (figure 1(b)) [12—14]. An important question at this stage is
to understand in which regimes the output of quantum simulators is quantitatively reliable. In this work, we
analyse the error accumulation for current analogue quantum simulators, understanding the level of error
we would expect from first-principles microscopic models, and also compare the gate count required for
fault-tolerant digital quantum simulators to reach the same accuracy. These questions are particularly
important when we operate beyond the capabilities of existing classical numerical techniques, and beyond
exploring robust qualitative features. This also provides a potential definition for a practical quantum
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Figure 1. Quantum simulation of time dependent dynamics can be performed either by (a) directly implementing the model to
be simulated as the microscopic description (under well controlled approximations) on an analogue quantum simulator, or (b)
computing the dynamics using a universal quantum computer as a digital quantum simulator.

advantage, when quantum simulators can—with quantitative reliability—solve a problem that is intractable
to existing classical methods, and relevant (at least in science) beyond testing the hardware itself.

For quantitative accuracy, we need to understand how the errors in measured results (even in an ideal
case where we can reduce statistical measurement errors arbitrarily) depend on microscopic error sources
relevant in experiments. These can include calibration errors, unwanted Hamiltonian terms, or effects
arising from noise and decoherence. Though an analogue quantum simulator does not allow for arbitrary
accuracy in general, for local models we expect that the propagation of local errors can be bounded and
relatively small on relevant timescales [15], essentially because this is limited by Lieb—Robinson bounds
[16—18]. The relative errors are then further suppressed if we aim to study intensive quantities (e.g.,
spatially averaged correlations in a translationally invariant case) on large systems. Quantum simulators
based on neutral atoms or trapped ions then open a particular opportunity to analyse error propagation
quantitatively, because these systems are typically well isolated from their environments, and we can derive
microscopic models for coherent dynamics, dissipation, decoherence, and noise [19] under well-controlled
approximations from first principles [20]. Crucially, we note that the assumptions we make (both for the
Hamiltonian and with noise and dissipation) can be tested by verification methods in experiments
[21]—for example, via Hamiltonian [22-26] or Liouvillian [27] Learning techniques.

Below, we analyse errors occuring in current experimental platforms, evaluating the sources of error in
the simulation of dynamics after a quench in the Hubbard [28, 29] and transverse field Ising [30] models.
These are natural models to study because they are textbook examples from condensed matter physics, and
their dynamics are generally difficult to compute, especially for inhomogeneous models, and especially in
higher dimensions. We initially explore this for 1D systems in classically computable regimes. Because the
limits on error propagation also apply in higher dimensions, which we explore by extending our
calculations to ladder systems, two-dimensional (2D) systems provide a further advantage for quantum
simulators over classical methods. For existing analogue quantum simulators that implement these models,
where we conclude that quantitatively reliable results are well within the capabilities of current experiments,
in parameter regimes that are intractable to current classical methods.

We then make a comparison with the resources required for future digital quantum simulation [12, 13].
Digital quantum simulators will have two general advantages, firstly the potential to simulate a wider class
of models than can be engineered directly in an analogue quantum simulator, and secondly, the potential
(at least in principle) for arbitrary accuracy. However, the hardware requirements are often very significant,
and beyond the current roadmaps of noisy intermediate-scale quantum (NISQ) devices. We thus analyse
the number of qubits and the depth of the quantum circuit needed to perform the calculation with the
same accuracy on fault-tolerant logical qubits as we obtain from our analysis of analogue quantum
simulators. We show that the hardware requirements to reach this same point for digital quantum
simulation are substantially reduced compared with previous studies on the same models, but still require
substantial development of the hardware.

The rest of this manuscript is organised as follows. In section 1 we give an overview of the assumptions
we make, and discuss the sources of error we need to account for in analogue quantum simulation, and in
fault-tolerant digital quantum simulation of dynamics. We then introduce our example models in section 2
and calculate the propagation of errors for implementations of these examples on current analogue
simulators 3, where we determine the accuracy of implementation required to reach the quantum advantage
regime. We then discuss the time limits for propagation set by noise and decoherence in section 4. In
section 5 we then estimate the number of gate operations required for a fault-tolerant digital quantum
computer to reach the same accuracy.

This is followed by several appendices with further technical information on our calculations, and
comparison with other sources of error. In appendix A we discuss the limits of current classical simulation
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of dynamics in these models. In appendix B, we discuss more details of the influence of calibration errors
and the assumptions and parameter choices we make. In appendix C, we discuss the errors that can arise
from other sources, such as additional unwanted terms in the Hamiltonian or error in preparation of the
initial state, and show that these are significantly smaller than the errors arising from calibration
uncertainties or decoherence. We then discuss the details for the comparison to digital quantum simulation,
especially in our choice of Trotter decomposition in appendix D. Finally, in appendix E, we describe how we
reached the gate count estimates for the digital quantum simulation.

1. Assumptions and context for comparing classical simulation with analogue and
digital quantum simulation

When analysing errors and reliability of quantum simulators, as well as making comparisons between
classical, analogue, and digital quantum simulation, we need to be clear about the choices we make. In this
section we summarise our approach.

Firstly, we focus on quench dynamics, and extracting few-body correlation functions. While there is a lot
of recent work discussing potential quantum advantage in ground state calculations of strongly interacting
models, the capabilities and potential of near-future classical calculations are in many cases unclear, and
under constant development. In contrast, there are strong results constraining the efficiency of
state-of-the-art tensor network methods for computing out-of-equilibrium quench dynamics [31, 32]. In
such a case, the entanglement (expressed, e.g., as a von Neumann entropy of the reduced density operator)
grows linearly [33], so that generic quench dynamics will require exponential resources to obtain
first-principles classical results. We will choose an example where we have dynamics that entangle of the
order of 100 spins or particles, which is well beyond the capabilities of current classical methods. The
information that needs to be extracted for applications generally involves local or few-body correlations, so
we focus on the accuracy with which such observables can be extracted, rather than on state fidelities
(although we also compare with these in appendix A). We note that this is immediately extendable to other
systems such as string correlation functions, which have been measured with quantum gas
microscopes [34].

From analysing Lieb—Robinson bounds for propagation of correlations [16—18] and general
considerations of random operations [15] it can be understood that propagation of local errors will be
bounded in quantum simulation of local models. However, to verify the reliability of a quantum simulation,
we need to quantitatively analyse the influence of errors under realistic conditions. As noted above, the
advantage of the current atomic physics platforms in this regard, including cold atoms in optical lattices
[3-6], trapped ions [7-9, 35], and neutral atoms in tweezer arrays [10, 11], is that we can derive the
microscopic many-body models from first principles under well-controlled approximations [14, 36]. This
includes understanding the imperfections and sources of noise and decoherence [19, 20]. By the nature of
an analogue device, errors can arise from several sources, specifically (i) global and local calibration errors
in the Hamiltonian parameters, (ii) imperfect implementation of the Hamiltonian (e.g., neglected higher
order perturbations [36]), (iii) heating due to time dependent noise on the Hamiltonian parameters
[37, 38] and (iv) decoherence [20], as well as state preparation and measurement errors that include
readout of observables (v) [39] and (vi) in the preparation of initial product states [6]. For Hubbard model
simulations with atoms in optical lattices, calibration of parameters dominates the effects of static errors (i)
and (ii), and so we will pay particular attention to these below, while estimating the magnitude of other
errors from static sources in appendix C. The timescale for analogue simulation is then ultimately limited
by heating and decoherence, (iii) and (iv) in the experiments, which we also analyse below.

To analyse the hardware requirements for digital quantum simulation of these models, we first choose a
Trotter decomposition that for the timescale simulated introduces an error comparable to the leading
source of errors in our analysis of analogue systems [12, 16—18]. We then minimise the gate count for this
decomposition both for a NISQ and fault-tolerant system to make a comparison between the digital and
analogue hardware requirements at the quantum advantage point. The total error in the digital simulation
will be the combination of Trotter decomposition and gate errors and so by proceeding in this way we have
prioritised the Trotter error in order to find a lower bound for the number of gates required. This trade-off
could be executed with a different priority which would increase the final circuits and gate counts produced.

There is a natural inequality in implying a direct comparison between digital and analogue quantum
simulators, as digital devices are universal, and not restricted to certain classes of Hamiltonians.
Nonetheless, the problems we have chosen, and important classes of related models are accessible on
analogue devices, making this comparison for models that can be implemented in an analogue manner
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useful. We provide a Q# code [40] in order to facilitate extensions and adjustments using different
optimisation strategies or different gate sets, as these are likely to result in some variety of resource
requirements. We will see below that the prospects for universal digital quantum simulation in the medium
term are very promising, and that for those classes of problem where analogue simulators exist with
sufficiently small calibration errors, the quantum advantage point is already accessible with current
technology.

2. Models and classical calculations

As test cases we consider two models for many-body quantum systems, firstly the Hubbard model, relevant
for the physics of strongly interacting electrons. This can be realised with ultracold atoms in optical lattices,
where it can be derived from first principles under well-controlled approximations [41, 42]. The
Hamiltonian is given by

Hy = ] (& eni10 +hc) + U iy, (1)

n,o n

for h = 1 and where ¢}, is the creation operator for a fermion with spin o = {1, ]} on site , and
fng = C} 4Cno. Here, ] is the tunnelling amplitude, and U is the on-site interaction energy for two electrons
of opposite spins.

Secondly we consider a transverse field Ising model for interacting spins, of the form

Hs =Y J"m$8 4+ BY St (2)
n<m n
where S is a spin-z operator at site 7. Here, B corresponds to an applied transverse field, and J
describes the strength of Ising coupling between different spins. This form of the interactions arises
naturally in laser-driven chains of ions in a Paul trap [35, 43, 44] with "™ = J; /|n — m|®. In the following
we consider the case of long-range interactions with o« = 2, but compare to a nearest neighbour Ising model
with @ — oo in appendix B.

For each of these models we will now use classical simulation techniques to model the propagation of
errors. As noted above, we will explore propagation of calibration errors for analogue devices, as well as
heating and decoherence. We perform calculations of quench dynamics beginning in a product state, using
a time evolving block decimation (TEBD) algorithm [32, 45, 46], always converged to numerical precision
several orders of magnitude better than the error values we are computing. As noted above, due to the
growth of entanglement in time for these systems, these calculation methods become exponentially more
expensive after short timescales—Dbut the timescales accessible here are sufficient for us to understand how
propagation of errors affects observables in our chosen models.

3. Comparison of calibration errors and Trotter errors

To analyse the effects of calibration errors, we sample the model parameters (U and J for the Hubbard
model, and J, and B for the Ising models) from a normal distribution, with a standard deviation, A, given
as a percentage of the mean value. Repeatedly selecting values for the model parameters in this way and
simulating the system many times we find the average values of some typical observables. We compare the
values of these observables to those from the target model, which corresponds to parameters with the mean
value of these distributions. Experimentally, these parameters are often set globally, by some external laser
for example, and so the errors can be considered homogeneous. With this in mind we take model
parameters that are uniform over the entire system for a given simulation, but we have compared this to the
case of local calibration errors and found only small quantitative differences of less than 10% of the error
value.

We directly compare these errors with those from a Trotter decomposition of the time evolution
operator into sequences of two-site gates which act on nearest neighbouring sites, U, ,,+1. This approach is
relevant for digital simulation, which we will discuss in more detail below. These decompositions first
consist of breaking the evolution up into discrete time steps where the choice of further decomposing the
single time step evolution can be carried out in various ways to minimise the error. The first main case that
we have considered are of the form of a left-right sweep [47], where the two site operators are applied
sequentially from left-to-right (and then right-to-left) throughout the whole chain. The second case, which
we only apply to the Hubbard model is a Suzuki—Trotter decomposition of the odd/even bonds [32], where
first all odd bonds are evolved and then all the even. See appendix D for more details. We have compared
the 2nd and 4th order versions of these methods in the time step, 7. For the 4th order sweep methods there
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Figure 2. Comparison of the RMS errors over all sites 7 in the off-diagonal correlation function (equation (4)) with

0, = CL 21 Cnts for the Hubbard model, with system size M = 20. For analogue simulation we compare a 1% calibration error
(dark blue) and a 0.1% calibration error (light blue) averaged over Ny, = 50 miscalibrations. For the digital we have plotted the
4th order decomposition (equation (3)), splitting the interaction and kinetic energy terms, for the time steps J7 = 3 (circles),

Jr = 3/2 (stars), Jr = 1 (plus sign) and J7 = 1/2 (crosses).
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Figure 3. Comparison of the RMS errors over all sites 7 in the off-diagonal correlation functions (equation (4)) with

0, = ST *s", for a transverse field Ising model, with system size M = 20. For analogue simulation we compare a 1% calibration
error (dark blue) and a 0.1% calibration error (light blue) averaged over N, = 50 miscalibrations. For the digital we have
plotted the 4th order decomposition (equation (3)), for the time steps Jo7 = 4 (circle), Jo7 = 2 (stars), and Jo7 = 1 (plus sign).

are several decompositions which have different ratios of errors to complexity [47], we use the version with

the smallest errors, '
e A (M (=2 M MTM"

x ()W) )M)(D)(=2)T (1)) (1),

where (s) corresponds to a single left-to-right sweep with a time step s7/12 and (s)" to a right-to-left sweep,
such that the total cumulated time step of all sweeps in equation (3) is 7, see appendix D for more details.
For the Hubbard model there is the additional choice of further decomposing the two-site operator into a
contribution from the tunnelling, J, and the onsite interactions, U, but we find that this results in a slightly
larger error as shown in appendix D. As this further decomposition is more likely to be compatible with
available digital quantum hardware we present the errors found using this decomposition in the main text.
In figure 2 we plot the results of this analysis for the Hubbard model with ] = U = 1, beginning in the
product state [¥(0)) = | 1,], T, 4, .. .) and in figure 3 for the long-range transverse Ising model, with
Jo = 1 = B = 1, beginning with all spins aligned in the s, direction, |¥(0)) = |+, +,+,+ - - ), for a system
size, M, of 20 lattice sites and spins respectively. We calculate the global errors in the observable, O,
according to,

(3)

€= \/ﬁzn:“wsim(t)()nhpsim(t» — (Yex (1) O [thex (1)), @

where |1g,,, (1)) is the state as simulated on the experimental hardware with a given source of error and
[thy (1)) is the exact state and we average this error over N, miscalibrated instances to find the results
shown. In figures 2 and 3 we use the off-diagonal correlation functions, O, = c}d 246t and O, = SA_f/ gn
respectively, as the observable and where the 4th order left-right gate sweep is used for the digital
simulation. We see that for the analogue simulation errors rapidly increase for short times but then remain
approximately constant with some small oscillations and are at similar magnitudes in both the Hubbard
model and transverse Ising models. These oscillations are due to the calibration uncertainty introducing
small differences in the frequency and amplitude of the oscillatory dynamical behaviour of the observables
compared to the exact case. This is discussed in more detail in appendix B. In addition, the average over
different realisations of the parameters reduce the size of the oscillations observed in the errors. We note
that there is only a weak dependence on system size, as shown with additional calculations in appendix B.
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For the largest time classically simulable to this accuracy (#/ = 3 for the Hubbard model and ¢J, = 4 for
the Ising model) we extrapolate the critical time step, 7%, defined as the time step for which the errors in the
digital simulation will match or only slightly exceed the errors in the analogue simulation with a given level
of calibration error. We find that the 4th order decomposition for the Hubbard model has a critical time
step of JT* =~ 2.7 (JT* & 1) in order for the errors in the observable correlation functions to match those
arising from a calibration error of A = 1% (0.1%), whereas for the Ising model Jo7* ~ 2.6 (Jo7* ~ 1.5) for
a calibration error of 1% (0.1%). Note that these estimates for 7* only weakly depend on system size and
the particular observable, but depend more strongly on the type of Trotter decomposition used, up to at
most a factor of 3 (see appendix D for more data with different decompositions).

Finally, we performed similar simulations with a Hubbard model on a ladder system to confirm that
there is no substantial quantitative change in the propagation of errors, and no change in the critical time
step (see appendix B4). This implies that we can use the same time step for propagation of errors in a 2D
system if we use the same period of time evolution as in 1D. The advantage of working with an extra
dimension is that there is a much larger generation of entanglement in the larger system size. Correlations
spread at the same rate in the ladder system and a 1D chain, as is expected due to similar group velocities.
Through this comparison we expect that the effect of calibration errors on our example correlation
functions will be of the order of 1% when extended to a 2D scenario, over timescales of tJ = 10, which
would be sufficient to entangle all parts of a 10 x 10 lattice system.

4. Time limits for propagation in analogue simulators

The other error sources relevant to consider for analogue simulators are those of decoherence and heating
which can create errors that grow in time, and that these will at some point contribute at the same level as
calibration errors. These come from sources that are typically well characterised in experiments [19]
including spontaneous emission [48, 49], and noise on the trapping lasers [37, 38]. First we incorporate the
latter of these into simulations of the Hubbard model using time dependent parameters where the
fluctuations in U and ] are anti-correlated, since if the laser intensity increases, the potential barrier height
increases which gives rise to a lower tunnelling rate but a larger onsite interaction strength. In figures 4(a)
and (b) we compare errors caused by noise of trapping lasers to those produced from a calibration error of
A = 1% and 0.1% of the parameters U = ]J. We directly compare these to the errors induced through laser
fluctuations where we employ a white noise approximation [37, 38] with a standard deviation given by

A; = 1% and 0.1%, where in this case, the percentage is given with respect to a recoil unit Ex = h*k} /2m,
with k; the wave-vector of the optical laser and m the mass of the trapped atoms. We then calculate the
parameters U(t) and J(¢) from the resulting Wannier functions arising from the potential at each time step,
choosing the mean intensity of the sinusoidal optical potential to be V; = 10ER (as this places usin a
regime for typical experimental parameters where both J and U are significant), where the resulting
tunnelling rate is calculated to be J =~ 0.02Eg. We find that when we choose a distribution for the laser
intensities with width A; = 0.1% of a recoil unit, then this gives rise to a tunnelling rate distribution with
standard deviation ~0.25% of a tunnelling rate, which means that in terms of overall uncertainty in energy,
the chosen levels for the laser fluctuations are actually larger than the uncertainty in the calibration errors.
The difference is that the fluctuations average to zero over time, so contribute to heating, whereas the
calibration offset is seen to be constant over the period of one time evolution. In figure 4(a) and (b) the
errors in each case have the same qualitative time dependence and where oscillations in errors of some
observables have the same origin as those in figures 2 and 3 (see appendix B). However, those arising from
the laser fluctuations are at a much lower overall magnitude compared to the effects from uncertainty in the
calibration.

We also analyse the effects of decoherence, which can arise through spontaneous emission by applying a
quantum trajectory approach to the Lindblad master equation [20, 50] where we include independent jump
operators at each site, L, = /¥ (fzn,T + 1, i)- In figures 4(c) and (d) we plot the errors in observables where
we have exaggerated the values of the decoherence rate, v, in order to make the error scaling more explicit.
For v = 0.001], as is feasible in experiment, the level of error at the end of the evolution when ] = 3 is
comparable to errors in the same observables due to calibration uncertainty of 0.1%. State of the art
analogue simulations quote coherence times on the order of 1-2 s [51, 52] which for J ~ 1 kHz, correspond
to values of v < 0.001J. This means that in realistic experiments the effects of decoherence will be smaller
than those considered here for the same timescales. This analysis of decoherence and heating allows us to
conclude that for the timescale we are interested in for the 2D system, these contributions can be neglected
for typical experiments.

We note that the combination of results in the previous two sections implies that—even at around 1%
calibration error, the dynamics we would observe at #/ = 10 in a 10 x 10 system of fermionic atoms in an
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Figure4. (a)and (b) Comparison of the calibration errors (dashed) to the errors from laser fluctuations (solid) in the Hubbard
model for different observables and magnitudes of error, A = A; = 1% (a) and A = A; = 0.1% (b). We compare the errors,
equation (4), in (from darkest to lightest) O, = cjmcm, 0, = CL o Cnt and O, = CL 24M /Z,TCI,,TCM. (c¢) Errors in O,, = CL o Cnt
due to decoherence with rate y/J = {0.2,0.1,0.05,0.01} (circles, plus signs, stars, crosses). (d) Errors due to decoherence at

t] = 3 for different observables (from darkest to lightest) O, = cjmcm, 0, = cjw I Cnt and O, = cjw /216 /z,TCIan,T' System size,
M = 20, number of averages, Ny, = 50.

optical lattice would result in an error of at most a few percent in the observables we have analysed. This is
already beyond the capabilities of classical attempts to capture real time dynamics (see appendix A) and has
notably already been realised in a series of experiments with quantum gas microscopes [53—56]).

5. Digital circuit implementations and gate counts

We now analyse the resources we would require to run this same calculation on a digital quantum
computer, in order to reach the same error obtained for analogue quantum simulation. We note in advance
that for models that can be implemented on analogue quantum simulators, the analogue implementations
have a natural advantage. However, future digital quantum simulators will allow arbitrary accuracy and a
much wider range of models.

Having checked the cost of different Trotter decompositions, we choose that of equation (3). We map
the operations which execute a single time step to a set of gates which can be implemented on digital
quantum computer. We assume a native gate set including single qubit rotations around the z axis
R, (0) = exp{—igoz}, Clifford gates and CNOT gates. Naturally the estimates and optimal decomposition
are sensitive to the available gates but in most cases the two qubit gates and arbitrary rotations will have the
most impact in limiting performance and are often common accross different hardware implementations.

For the Hubbard model of equation (1) the standard way to do this mapping is to use the well known
Jordan Wigner decomposition [57]. We require 2M qubits to represent a system with M sites and two
species, where the state of each qubit describes the occupation of one site by one species. Minimising the
gate counts and depths for circuits of this kind has been a topic of extensive research [58]. Here we
optimistically consider a digital quantum computer with all-to-all connectivity when calculating the gate
counts and depths. While this may not be realistic for known qubit architectures, it will provide a lower
bound for the required number of qubits and runtime. To facilitate future estimates and allow for
customization or improvements by other researchers we include a Q# code [40], which we use to verify our
gate count.

The on-site interaction term with energy U, along with any optional chemical potential terms, map
easily to a circuit with 3M rotations (depth 2) and 2M CNOTs (depth 2). The main challenge is
implementation of the tunneling terms with amplitude J, which consist of non-local Jordan Wigner strings
of length O(M) between the pairs of qubits involved in a tunneling event. This string consists of a chain of
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Table 1. Gate count and depth estimates for digital quantum simulation of the Hubbard model with J7 = 2.7, M = 100 and #J = 10.

Gate Gate count Depth
CNOT 1.7 x 10° 8.4 x 10°
R,(6) 6.8 x 10* 6.7 x 10%

Table 2. Gate count and depth estimates for digital quantum simulation of the long-range Ising model with J,7 = 2.6,
M = 100, ], = 10.

Gate Gate count Depth
CNOT 6.9 x 10° 1.4 x 10*
R,(6) 3.5 x 10° 7.0 x 10°

Table 3. Gate count and depth estimates for digital quantum simulation of the nearest neighbour Ising model with J,7 = 2.6,
M = 100, tJ, = 10.

Gate Gate count Depth
CNOT 1.6 x 10° 5.5 x 10?
R,(6) 2.1 x 10* 3.5 x 10%

CNOT gates between the two qubits forming the pair. This necessarily involves all the intervening qubits
which is expensive in CNOT gates and it is not immediately obvious how it might be possible to execute
many of these in parallel. A key observation for optimising this circuit is that the Jordan Wigner string
between qubits k and / effectively calculates the number of excitations between them. This calculation can
be reused when finding the number of excitations between qubits j and m if j < k < [ < m. Furthermore
we note that executing the tunneling between k and / does not change the parity on the string spanning j to
m and so this operation can be commuted through the one executing the j to m tunneling event. This
allows us to apply the rotation gates for both pairs in parallel. These considerations reduce the number of
gates per time step sweep down from O(M®) to O(M), with depths O(V/M) at the expense of using 2VM
additional ancilla qubits for storage of parity calculations [58—60].

As a result the total number of rotation gates needed to implement one time step sweep is 11M — 8v/M
with depth 10. The total number of CNOT gates is 2(15M — 20v/M + 6) with depth 6(2v/M + 1). Further
details on the method for obtaining these counts can be found in appendix E and the results for a full
simulation of the Hubbard model to ¢/ = 10 are shown in table 1.

Simulation of the Ising model of equation (2) is more easily mapped to operations on a digital quantum
computer. Evolution under the transverse field maps to M single qubit rotations with depth 1. Executing the
Ising coupling term requires M(M//2) rotations and 2M(M//2) CNOT gates, with depths M and 2M
respectively. We ensure that the coupling terms between qubits are executed in parallel as much as possible
to minimise the depth of the circuit. The resulting full gate counts for the long-range Ising model are shown
in table 2.

If we instead set a« — 0o and estimate the resources of an Ising model with only nearest neighbour
coupling then we need a significantly reduced number of coupling terms consisting of 2(M — 1) rotations
and 4(M — 1) CNOT gates with depths only 4 and 8 respectively. This drastically reduces the overall
resource estimates which can be seen in table 3. Here we have conservatively used the same critical time step
as required for the long-range Ising model.

If we now consider a realistic simulator with noisy gates we can probe the feasibility of executing such
circuits, without assuming a particular type of gate error. For a computation with a random error per gate
the final fidelity will be (1 — p)~ where N is the number of gates and p the error per gate. Based on this
pessimistic model the gate errors would have to be lower than O(107°) in order to yield a fidelity above 0.9
using O(10*) gates. This gate precision is not within the scope of NISQ rotation and CNOT gates. If we
instead assume that we have access to a fault-tolerant quantum computer with error correction we
overcome this challenge but also lose access to arbitrary rotations which must now be synthesised using
multiple T gates. We also incur further overhead in gate counts for the Hubbard model and long-range
Ising model if the fault-tolerant quantum computer supports only local gates. This would be the case for the
use of the surface code [61, 62]. It is possible to take advantage of the parallel implementation of many
identical rotations resulting in a reduction in the number of T gates required as detailed in [63, 64].
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Following these references, if we need to apply Ny identical R, () rotations in parallel the number of T gates
required is

1
Nt = 4Ng + log, (Nr) (1.1510g2 (E logz(NR)> + 9.2) , (5)

where E is the error per synthesised rotation. We set the requirement of introducing 1% error across all
rotation gates per time step sweep such that the error per synthesised rotation is 1% /Nxr where Ny is the
total number of rotation gates used in the simulation, as compared to Ng which will be the number of
identical rotations executed in parallel within a single time step sweep. The numbers for Ny for the Ising
and Hubbard models appear in tables 1-3 under R,(6) gate counts for the Hubbard, long-range Ising and
nearest neighbour Ising models respectfully. Hence we find the number of T gates required to construct the
rotation gates for the full evolution using a fault-tolerant system for each model. For the Hubbard model
this amounts to 4.6 x 10° T gates, and for the long-range Ising model, with the reduced ability to parallelise
limiting the advantage of this rotation gate synthesis method, the resulting T gate count is 1.5 x 10”. The
most optimistic requirements are expected for the nearest neighbour Ising model where we benefit from the
ability to execute many identical coupling terms in parallel as well as the absence of Jordan Wigner strings.
This results in a T gate count for this model of 1.7 x 10°.

In such a fault-tolerant system the next step would be to calculate the resources required per T gate both
in terms of logical and physical gates and qubits as a single T gate must be distilled from a larger set of noisy
T gates [65, 66]. These distillation processes are likely to dominate the resource requirements and set the
limit on the logical gate fidelity required and the consequent physical qubit requirements.

In our analysis we determine the minimum hardware requirements in order for a digital quantum
simulator to compete with experimentally realistic purpose built analogue devices at the task of simulating
the continuous time dynamics of Hubbard and spin models. We have found that in order to be able to
simulate these on NISQ systems, would require on the order of at least 10* gates, including this order of
rotations. For a fault-tolerant system this many rotations would correspond to at least 10° T gates. These are
likely to dominate the resource requirements as each T gate is generated via an expensive distillation
process.

5.1. Post-Trotter simulation cost

Recent post-Trotter quantum simulation algorithms based on quantum signal processing [67] achieve
optimal scaling with respect to time, error, and system size like O (at + log(1/€)), but in terms of queries to
unitaries U = [0...0)(0...0| ® H/a + - - - that block-encode the Hamiltonian up to some positive
constant v [68]. The quantum gate cost is then dominated by this query cost multiplied by gate cost of
synthesizing a controlled-block-encoding. The gate cost of other additional circuit elements such as
reflections by |0...0)(0...0| and applying single-qubit rotations, are strongly sub-dominant to this
block-encoding and will be ignored.

Once the quantum gate cost of this block-encoding is accounted for, the scaling of gate cost with respect
to system size can be worse than Trotter methods. For any Hamiltonian that is a sum of K Pauli operators
H =}, a;P; with positive coefficients, the block-encoding U = PREP' - SELECT - PREP is generically
constructed from the circuit preparing a quantum state PREP |0...0) = ﬁz iV/l7)|A);> with a target state
|A); and a select circuit applying the Hamiltonian terms SELECT = >_.[j) (j| @ P;. In the worst case, PREP
costs O(K) T gates, and controlled-SELECT costs <4K T [69] gates. However, symmetries such as the
presence of identical coefficients can greatly reduce cost. For instance, if there are M’ groups of identical
coefficients, the T cost of PREP is only O (M’) and may be ignored. Using the fact that SELECT* = I, in the
relevant limit where it > log(1/¢), the prefactor in the query cost approaches 2at [68].

The 2D Hubbard Hamiltonian in any qubit representation has at most K = 11M distinct Pauli terms,
and the constant o ~ M(4] + 3U/4). Assuming that ] = U, the cost of simulation is m352M2]t(19/16) T
gates. The case of M = 100 and Jt = 10 has a T cost of ~24 x 107, which is significantly larger than the
Trotter approach. Though further circuit optimizations beyond this generic construction could in principle
reduce the prefactor, this is over-shadowed by the M? scaling. The long-ranged Ising model contains
significantly more terms, and can be expected a exhibit an even worse T cost compared to the Trotter
approach.

6. Conclusions

We have analysed the propagation of errors for analogue quantum simulators, and the minimum gate
counts required for digital quantum simulation, on two well-known problems of interest in physics and
materials science. This identifies requirements for quantum simulation to be quantitatively reliable in
regimes beyond what we can calculate classically with existing methods.
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For analogue quantum simulators, our main result is that the calibration level of current experiments is
already sufficient to obtain observable values with errors bounded at the 1% percent level for 2D systems,
where the same accuracy is not possible for any known classical algorithm. This comparison was carried out
at the quantum advantage point, meaning that as analogue systems are scaled up, even more digital logic
gates would be required to match the accuracy that can be achieved in the analogue experiments. This
demonstrates clearly that analogue simulators are the best means to accurately compute observables in
those classes of systems that can be realised (at this calibration level) directly in experiments, and confirms
that existing experiments are already past the requirements for quantum advantage.

We are confident that this type of error analysis can be directly compared with ongoing experiments,
also with the addition of verification techniques [21, 70]. In this respect, the assumptions that we made can
be verified using Hamiltonian learning [21-26] or Liouvillian learning [27] techniques.

On the side of digital quantum simulation, we note that these gate counts are a factor of 10°
improvement over previous estimates for the same protocol [13]. This improvements arises from a number
of contributing factors; our extension of the model from 1D to 2D so that we need to propagate only until
t] = 10 rather than 100, our choice of focusing on errors in observables, rather than basing errors on the
state fidelities and in part due to application of gate saving techniques. Further reductions are unlikely as we
have already reached time steps of order 1 and in general the cost is lower bounded by the product of the
number of qubits, propagation time, and the cost of each local term. We note that our analysis can be
directly extended to other protocols, including recent optimisations of the digital algorithm [71], by
considering directly the propagation of local errors. Potential trade-offs between gate errors and Trotter
errors on NISQ machines, and other optimal or hardware-specific gate counts for fault-tolerant systems will
be a very intersting area for follow-up research, as we look towards the roadmap for development of
universal quantum simulators for models that cannot be directly realised on analogue platforms.

While the present analysis on the side of analogue quantum simulation relies on our ability to derive
microscopic models for AMO platforms, quantum simulation is rapidly developing also with solid-state
platforms. We expect that this error analysis will also be applicable to future generations of those platforms,
especially when combined with Hamiltonian and/or Liouvillian learning to separately confirm the effective
microscopic models being implemented.
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Appendix A. Limits of classical simulation

In this appendix, we illustrate in more detail the limitations of classical simulation for the problem choice
considered. We show that the errors introduced in the dynamics upon limiting the precision of the classical
algorithms are significantly larger than those arising from experimental error sources.

Throughout this analysis we consider the state-of-the art methods for propagating strongly-interacting
systems, based around tensor networks. In particular, we have used tensor network techniques with
time-evolving matrix product states (MPS) [32, 45, 46]. It has been shown that for these methods
restricting the bond dimension limits the maximum entanglement entropy that can be described by the
state [75, 76]. Since entanglement grows linearly after a global quench this restriction can quickly lead to
large errors in the dynamics [17].

We demonstrate this in figure 5(a) where we plot the time-dependence of the entanglement entropy of
an initial product state, |¥(0)) = | 1,1, T, .. . .) after a quench. Here we use a two-site TEBD algorithm
[74] with particle number and total spin conservation. We use the 4th order Trotter decomposition
considered in the main text. Note that one could perform this simulation using different MPS time
evolution algorithms and so in the figure we perform the same analysis using the single-site time-dependent
variational principle (TDVP) [73] (solid) and compare to the TEBD algorithm (dashed) where we can see
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Figure 5. Classical simulation with the single-site TDVP algorithm [73] (solid) and the TEBD algorithm [74] (dashed) with a
4th order left-right sweep Trotter decomposition. Results are shown for classical simulations with the bond dimensions,

D = {512,256, 128, 64,32,16} (darkest to lightest), compared to D = 1024. (a) Entanglement entropy at the centre bond.

(P) Error (equation (4)) in observable O, = cjmcm. (¢) O, = CL/MC,,,T (d)o, = CL/MCM/Z,TCMCM. System size, M = 20,
time-step J7 = 0.001 for TDVP and J7 = 0.01 for TEBD.

similar behaviour with only small quantitative corrections. Note that for this TEBD algorithm with the 4th
order Trotter decomposition we have sufficiently converged results for a time-step of /7 = 0.01, but for the
TDVP algorithm, which has an error scaling of 7> [73], we use a time-step of J7 = 0.001 to ensure that
errors arising from discretizing time are negligible.

As the bond dimension required to capture a linear growth of entanglement must grow exponentially we
can see in figure 5(a) that truncating the bond dimension at each time step significantly limits the
entanglement growth and causes distortion to the values of other observables. The bond dimension is
truncated in the TEBD algorithm by performing singular value decompositions on each neighbouring pair
of two-site tensor and then only retain components with the D largest singular values which ensures the
retention of the most important information at each step within the restrictions imposed. We have utilised
the ITensor Library [77], optimising performance by conserving quantum numbers.

At this point we can ask the central question; if we restrict the bond dimension to values that are
efficiently simulable on classical computers, how do the resulting errors in the observables compare to the
errors produced through experimental imperfections in analogue simulation? We include the results of this
analysis on the Hubbard model (equation (1)) with U = J in figures 5(b)—(d) for different observables
where we can see that these errors grow exponentially in time and reach values that are significantly larger
than those from a calibration uncertainty in analogue simulation (see figure 2), even reaching close to order
1. For most observables and only small truncation errors (i.e. bond dimension close to the exact case), the
TDVP algorithm seems to have smaller errors initially, but these grow rapidly in time, quickly reaching the
same values as the TEBD approach for the final times considered here. For lower bond dimension where
there is a much larger truncation error, this difference between the two algorithms is not as pronounced.
This analysis indicates that the timescales that we have considered in the main text are significantly beyond
what is possible to simulate with these state of the art classical algorithms.

There are additional algorithms for time-evolution [78] and even different ways that we could perform
the compression to a lower bond dimension such as through a variational approach [32]. These will lead to
quantitative differences, but we do not expect any to give a significant advantage or allow a classical
simulation to evolve to significantly longer times as all algorithms ultimately rely on truncating the
maximum allowed bond dimension in a similar way as the two algorithms explicitly considered. These two
algorithms considered here were chosen as they perform the optimisation of the MPS in qualitatively
different ways. The TEBD algorithm is conceptually simpler, applying two-site operations and then
compressing the tensors by applying an SVD on each long-range. Whereas in the TDVP approach we
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Figure 6. Demonstration of the oscillatory effect of observable dynamics on error. Dynamics of the observable O, = cjmcm are
shown in the upper panel for a single site # = 5 in a system with size M = 10. The result for perfect calibration (] = U = 1) is
shown (solid black line) alongside three imperfect calibration results with J and U drawn from a normal distribution with

A = 10% (dotted, dashed and dash-dotted coloured lines). The central panel shows their deviation from the perfectly calibrated
result, 0,,;, where i indexes calibration instances, U;, J;, (colours as in upper panel). The lower panel shows ¢ as described in
equation (4) for each of the calibration instances (colours as above) as well as their average (solid grey line), corresponding to
Nyp = 3.

optimise a single tensor variationally, while taking into account the effects of the entire Hamiltonian and as
there is no compression of the bond dimension, in principle this algorithm finds the optimal global
approximation of |4 (¢ + 7)) with the given bond dimension. However, the TEBD algorithm gives much
more flexibility in the particular decomposition of the full time-evolution operator into the two-site gate
sequence and in particular when applying these algorithms to this problem, we find that TEBD can give the
same accuracy for a much larger time step.

Appendix B. Analysis of calibration errors

In this section we provide additional details for the analysis on the effects of a calibration uncertainty on the
dynamical behaviour of local observables and correlations. In particular, we discuss the cause of the
oscillatory behaviour of the error and show that these errors do not depend on the system size (as long as
boundary effects are unimportant) or even the initial state used. We further discuss and justify an
extrapolation of this behaviour to quantum simulation in higher dimensions.

When introducing calibration errors, for each model we sample the parameters globally (i.e. the model
parameters are always homogeneous across the system) from a Gaussian distribution, with standard
deviation given by the calibration error A, and then compare to the results of a simulation with parameter
values at the mean of this distribution.

B1. Source of oscillatory behaviour of error

The dynamic behaviour of some observables exhibits oscillations, as seen in figures 2 and 3 and even more
clearly in figures 4(a) and (b). The source of these can be understood when one considers the quantity
plotted, ¢, as described in equation (4). Miscalibration results in differing observable trajectories, which
may oscillate out of phase, resulting in oscillatory differences between them. When calculating the value €
we must simulate several instances of the Hamiltonian. In figure 6 we compare the resulting trajectories
from an exaggerated A = 10% to that from a perfect Hamiltonian and see that the oscillatory behaviour is
inherited by the deviation in observables ¢,,; = [(O,); — {O,)o|, where (O,); is the expectation value of
observable O, in miscalibration instance i. The error used throughout the text, €, averages this over the
system and miscalibration instances but retains oscillatory behaviour.

12
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Figure 7. Errors in the observables of a Hubbard model due to a calibration uncertainty of the parameters for system sizes

M = {20,32,60} (darkest to lightest). We compare calibration errors A = 1% (solid) and A = 0.1% (dashed), with N,¢, = 50.
(a) Error (equation (4)) in O, = cjﬁcm. (b) O, = c;w S Gt (¢) O, = CL 23 /2)Tcl,Tc,,,¢. (d) Error in the state fidelity

(equation (B1)).

B2. System size dependence
In figure 7 we show the results for the Hubbard model, U = ] = 1, beginning in the product state,
[T(0)) = | 1,4, T4, ...). It is apparent that there is only a very weak system size dependence on the errors
in the observables we consider, where the small variations arise from boundary effects. This indicates that,
for timescales we consider here, which are much smaller than the time it takes for information to spread
from the centre to the boundary, we can reliably extrapolate this error behaviour to larger systems, such as
those that can be realised in cold atom experiments.

Additionally, we compare the errors in the observables to errors in the total state fidelities defined by,

EF = 1- ‘<wsim(t)|wex(t)>|2> (Bl)

where we see that, as expected, the errors in the chosen observables are smaller than the errors in the entire
wavefunction. We can also see that while the observable errors do not depend on system size, the errors in
the fidelities grow as the system size is increased. This show the importance of choosing how to quantify
errors and success rates for a quantum simulation based on the problem choice at hand.

We also consider the transverse Ising model, Jo = 1 = B = 1, beginning with an initial state,
|¥(0)) = |+,+,+,+ ), and in figure 8 we show the results for the case for algebraically decaying
interactions, J™™ = J,/|n — m|® with a = 2 and in figure 9 we show the results for a long-range
interaction, o — 00. We can see that in both cases the errors in the observables only depend on the system
size very weakly.

B3. Dependence on the initial state
In order to determine whether the observed behaviour of the errors is due to some special feature of our
initial state we compare the errors due to a calibration error in the Hubbard model when beginning in
different initial product states. In figure 10 we plot the results for different observables for both 1% and
0.1% calibration error. In figures 10(a) and (b) we use states that are periodic throughout the entire system
and in figures 10(c) and (d) we use initial states that are filled (and periodic) on the left half but empty on
the right. While there is different oscillatory behaviour in each of these simulations the qualitative
dependence is very similar, with a rapid initial increase in error followed by a much more gradual growth.
We can see that all initial states considered saturate at similar values, leading us to believe that our findings
are general for initial product states.

The analysis in this and previous sections greatly indicate that the scaling of errors in observables due to
a calibration uncertainty are not significantly affected by either the initial state, the system size or even the
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Figure 8. Errors in the observables of a transverse Ising model with algebraically decaying interactions, v = 2, due to a global

calibration uncertainty of the parameters for system sizes M = {20,32} (light blue, dark blue). Note that the M = 32 simulation

stops at ], = 2 due to errors arising from truncating the bond dimension. We compare calibration errors A = 1% (solid) and
M/Z Ul M/2 n

A = 0.1% (dashed), with N;, = 50. (a) Error (equation (4)) in O, = s/ (b) O, = 51750 (0) Oy =5
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Figure9. Errors in the observables of a transverse Ising model with nearest neighbour interactions, o — 00, due to a calibration
uncertainty of the parameters for system sizes M = {20, 32,60} (darkest to lightest). We compare a calibration errors A = 1%
(solid) to A = 0.1% (dashed), with N, = 50. (a) Error (equation (4)) in O, = s}. (b) O, = 51\1/25,1. (¢)O, = sﬁ/l/zs”.

z

model considered. By considering these errors and the problem of time-evolution, we thus have a very
general way of benchmarking quantum simulation.

B4. Extrapolation to two-dimensions

We have shown that we are able to reliably extrapolate our results to larger 1D systems as well as simulations
that use different initial states. Now in this section we justify our further extrapolation of the effect of a
calibration error to the quantum simulation of 2D Hubbard models.

The Lieb—Robinson bounds limit the distance which correlations can propagate for locally interacting
Hamiltonians, restricting the transport of information [16—18]. As a result we do not expect any
fundamental changes to occur when going from 1D to 2D for these types of simulations of dynamics after a
global quench. Although the quantitative behaviour can be affected, importantly we expect the scaling of
these errors in time to be qualitatively the same. In figure 11 we quantitatively compare the spreading in the
off-diagonal correlations in the 1D chain (figure 11(a)) and the two-leg ladder (figure 11(b)). It is clear that
these spread at the same rate, validating our assumption that our analysis so far of information spreading in
these types of systems is valid for higher dimensions.

We further verify that the errors in question have similar behaviour to the correlations for the two-leg
ladder by repeating our analysis of errors in observables caused by miscalibration for this new structure. In
figure 12 we show the growth of these errors produced through calibration uncertainty in the parameters U
and J. Although we are limited to shorter times due to an increased growth of entanglement causing the
classical algorithm to become more numerically demanding, we can see that the errors appear to saturate at
similar values and have the same scaling behaviour in time. This indicates that there is no fundamental
change upon including dynamics in a second dimension.

Experimental proof would be optimal in order to fully verify this behaviour but even without it we can
be confident that the scaling of errors in these observables due to a calibration uncertainty is significantly
smaller than that due to limiting the precision of the classical algorithm (see figure 5). Having repeated our
analysis for different initial states, structures, calibration errors and system sizes is clear that while the
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Figure 10. Comparing errors generated due to a calibration uncertainty for different initial states in the Hubbard model. The
errors (equation (4)) for (darkest to lightest) O, = ci’TcmT, 0, = c;/[ J21Cnt and O, = c;/[ 21 /ZYTCLTC”,T. We compare a 1%

calibration error (solid) and a 0.1% calibration error (dashed) in periodic initial states (a) and (b) and initial states that are
empty on the right half (c) and (d). For all we use a system size of M = 20 and N, = 50.
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Figure 11. Comparison of the spreading of the off-diagonal correlations, C, = <c;/1 /z,TC"»T>’ in time for a 1D Hubbard chain (a)
and one leg of a two-leg ladder (b). In both cases we begin in an anti-ferromagnetic state | 1, ], 1,/ .. .), where nearest neighbour
sites always have opposite spin. Colours on a log (base 10) scale.

scaling of errors due to experimental sources may have quantitative differences the overall scaling will still
be extremely favourable compared to the classical algorithms, which will perform even more poorly in 2D.

Appendix C. Additional sources of errors in analogue simulators

In the main text we explicitly compared the errors due to a calibration uncertainty to heating due to laser
fluctuations and decoherence effects. However, there are a number of other potential sources of errors in an
experimental realisation of analogue simulation with ultra-cold atoms. In this appendix we explicitly
consider an error in the preparation of the initial state and then separately errors due to the presence of
unwanted terms in the physical Hamiltonian of the simulator. Through our quantitative analysis of the
dynamical errors in observables we argue that for the situations and timescales that we consider, that these
give errors orders of magnitude smaller, compared to those arising from a calibration uncertainty and so
can be neglected in our error budget analysis discussed in the main text.

Cl. State preparation
In figure 13 we plot the errors in the observables of the Hubbard model due to an error in the preparation
procedure of the initial state, [¥(0)) = | 1,1, T, J,...). In order to model this we remove a fermion from a
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Figure 12. Errors in the observables of a Hubbard model on a two-leg ladder due to a calibration uncertainty of the parameters
for system sizes M = {20,40} (dark blue, light blue). We compare a 1% calibration error (solid) and a 0.1% calibration error
(dashed) with N, = 50. (a) Error (equation (4)) in O, = Cl,TCVhT' (b) O, = CL/Z’TCM. (¢c) O, = CL/Z’TCM/Z,TCZ:YTC,,YT.
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Figure 13. Errors in the Hubbard model due to an error in the preparation of the initial state for system size, M = 20. The error
(equation (4)) averaged over removing a single particle at one lattice site in the initial state. Errors in (darkest to lightest)

0, = CpyCnts 0, = CL/ZTC,,T and O, = CL/z,TCM/ZvT‘n,TC"»T
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Figure 14. Errors in the Hubbard model due to the presence of addltlonal terms 1n the Hamiltonian for system size, M = 20.
Errors in (darkest to lightest) O, = = s 0, = c 216nt and O, = M 21EM/2, Tcn 1Cnt- We plot the cases where the additional
terms have a magnitude of 1% (solid) and 5% (dashed) compared to the nearest neighbour tunnelling J and the onsite
interactions U. (a) Errors due to including a next-nearest neighbour tunnelling term, equation (C1) (note this value stops at

t] = 2.1 due to errors arising from truncating the bond dimension). (b) Errors due to including a nearest neighbour interaction,
equation (C2).

single lattice site at time t = 0 and perform different simulations for the removal at different sites. In

figure 13 we average the global error (equation (4)) over removing the fermion at each lattice site. While the
average error is large, even at initial times, this is dominated by local errors around the position of the
incorrectly prepared site and at positions further away from the empty site then the errors are negligible for
the timescales considered.

Note that these are the error values, given that the state has been incorrectly prepared. But in
state-of-the-art simulations, this will typically only occur ~1% of the time [6]. So these values should be
multiplied by 1072 before comparing to the errors induced through the calibration errors. This particular
error could be further reduced by performing post selection of the simulations where if it is clear that an
initial error has occurred, then these simulations can be neglected.
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C2. Additional terms in the Hamiltonian
Another potential source of error is additional mechanisms influencing the dynamics in analogue
simulation experiments. These processes will most likely have a much smaller magnitude compared to the
onsite and nearest neighbour tunnelling terms but could lead to large errors at long times. The parameters
in the Hubbard model which best describes the dynamics of trapped atoms, can be derived quantitatively
from first principles [41], and while first order processes can be made to be negligible in the experiment by
carefully controlling the laser parameters, second-order terms that can arise from strong interactions could
play a role if the regimes probed are not chosen carefully.

The most likely additional terms take the form of next nearest neighbour tunnelling,

Hyy = ~Jun Y (&ho8nt20 +hoc.), (C1)
n,o
or nearest neighbour interaction,
HVnn - VnnZ(ﬁn,T + ﬁn,i) (ﬁn—i-l,T + hn—i—l,i) . (CZ)
n

In figure 14 we plot the resulting errors in the observables upon including these additional terms at the
level of 5% and 1%. For values around 1% we can see that the errors are smaller than those induced from a
calibration error on the level of 0.1%. This indicates that for the timescales that we are considering, the
errors from a calibration error is much more significant than those arising from these types of Hamiltonian
correction terms.

Appendix D. Trotter decompositions

In this appendix we present our estimates for the critical time steps at which point a digital simulator will
have an error in a particular observable comparable to the errors produced from a calibration uncertainty
in an analogue simulator.

To implement these types of dynamical simulations on a digital quantum simulator, it is necessary to
discretise the evolution into time steps using the Trotter decomposition and then further decompose these
evolution operations into the logic operations (gates) that are native to the digital quantum simulator. This
is similar to performing the simulations on a classical computer, the difference being that with current (and
near term) architectures for quantum simulation we are limited in the total number gates that we can
perform accurately. This limitation is due to the finite coherence times of these systems, which limits the
fidelity of the gates used to implement the simulation and hence may result in an error that increases with
each gate. In order to analyse the feasibility of executing these simulations on a digital quantum computer it
is thus critical to understand how many gates will be necessary to execute a simulation which has
comparable errors to the analogue quantum simulation. In order to calculate this we must first investigate
the behaviour of errors in observables that arise from executing the Trotter decomposition in order to
digitize time in the simulation. We investigate how these errors behave with increasing the time step, 7, in
order to find the largest time step possible at which we can achieve similar precision in a digital simulation
to an analogue one. Although a larger 7 introduces more error it allows for a smaller number of time steps
which is desirable in order to minimize the number of gates required. As such, balancing the time
decomposition error with the total number of required logic gates is crucial.

As described in the main text, we use the error values caused by calibration error in our classical
simulations of an analogue simulator as an error budget and we attempt to find the critical time step, 77,
where the errors that arise from a discretization in time match this budget. This depends on the particular
way the discretization of the time-evolution operator is performed (the Trotter decomposition) and so we
compare to many of the most standard forms that are routinely used for performing MPS time-evolution
simulations on a classical computer.

Once we have calculated the number of gates required for a digital quantum simulator to execute a
simulation with comparable errors to an analogue one we can then ask how accurate these gates need to be
and assess the feasibility of achieving this in the near term. An alternative method would be to include gate
error from the start when trying to find a decomposition which results in errors matching the error budget
but there is no assurance that this would be possible and so we instead choose to only consider Trotter error
when finding a decomposition and estimating the required resources.
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Figure 15. Comparison of critical time steps using different methods of second order Totter decompositions. Shown are the
critical time steps, J7*, at which a digital simulation executed by the either method would result in Trotter errors of equal
magnitude to those in an analogue simulation due to a calibration error of 0.1% at tJ = 3. We compare a left-right sweep
decomposition (crosses) defined in equation (D4) to an odd—even split (plus signs) defined in equation (D5). Additionally, we
compare the cases where each two site gate contains both the tunnelling and interaction terms (solid) to the case where these
pieces are also split into separate time-evolution operations (dashed). (a) Errors in O, = CLYTC,,YT. (b) O, = CL Jo Gt (c)
0, = CL /Z’TCM/Z,TC:L’TCV,,T. (d) Error in the state fidelity (equation (B1)).

D1. Hubbard model
First we present the results for the Hubbard model. As this model contains only onsite and nearest
neighbour terms it is particularly suited for a decomposition into single and two site gates of which there
are a variety of different approaches.

If we split the Hamiltonian H up into a sum of terms which act on nearest neighbour sites
H= ZQ/PIHWH, then we can write the time-evolution operator which evolves the system for a single time
step U(7) as

U(r) =e 7

M-1
~ |I —iH, T
~ e mn+1 N
n

where the second term is only approximately equal to due to the fact that H,,,,+1 does not commute with
nearest neighbouring term. The above equation would be the simplest first order Trotter decomposition
with an error that scales with 7, but there are many higher order approaches which work in a similar way.

Here we have considered two such approaches, first, a decomposition involving the successive sweeping
left and then right through the 1D chain [47] and second, a successive application on even and then odd
bonds [32]. In order to define the decompositions for the former, we introduce the notation,

(D1)

M-1 ] M-1
(S) — H elen,n#»IST/z — H 0n,n+1(57_/2)) (D2)
n=1

n=1

which indicates a single left-right sweep through the system with a time-step s7/2. This means that we first
apply Ui,,(s7/2), then U, 3(s7/2) and so on until Uy p(s7/2). Additionally we define the reverse
operation, corresponding to a similar sweep but from the right to the left,

1 1
()" = H e Hun1s7/2 = H Unpi1(s7/2). (D3)
=M—

n 1 n=M-1

This allows us to define the second order sweep decomposition as,

Usweep(T) = (1)(1)T: (D4)
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which has an error that scales with 72.

We could alternately execute a second order Suzuki—Trotter decomposition by applying the evolution
operators of all the odd bonds followed by those of the even bonds rather than sweeping from left to right
and back. This is defined by

UOE(T) — o 1HoddaT/2 g—1HevenT o—iHoadT/2 (D5)

This involves a single application of the time-evolution operator for all odd bonds with half a time step,
followed by the application on all even bonds with a full time-step which is finally followed up by evolving
the odd bonds again for another half time-step. This works particularly well for the Hubbard model as it
only contains onsite and nearest neighbour terms so that all Heyen, commute with one another and all Hy4q
commute with one another. This means that we can split up the time-evolution operator for the odd

(and even) bonds into a product of time-evolution on each bond separately with no error.

In figure 15 we perform the same simulation as considered in the main text, where we begin in an initial
product state, |U(0)) = | 1,), 1,4, . . .), and then evolve with the Hubbard Hamiltonian with U = J. Here
we compare the errors in observables when using the two defined second order trotter decompositions,
equations (D4) and (D5), in order to simulate the time-evolution. By performing a fit of the errors at
t] = 3, we extrapolate the critical time-step 7* at which the errors in each observable due to the Trotter
decomposition and finite time step become equal to those generated by a particular level of calibration
error.

We also investigate the difference between treating the two site terms in the Hamiltonian with and
without splitting up the tunnelling and interaction terms. Splitting up these terms typically leads to a larger
decomposition error, but each piece can be approximated with fewer logic gates in an experimental
realisation. We find that in terms of this error budget analysis that this consideration leads to qualitatively
similar values.

For these simulations, we find that the odd—even decomposition permits larger critical time step values
which do not strongly depend on system size or on which observable we use to determine them.

Higher order decompositions offer better scaling of error with time step size which motivates us to carry
out a similar analysis on a variety of different fourth order decompositions. There are more options for how
to carry out higher order decompositions, here we compare the different sweep decompositions derived in
reference [47], which for clarity we write here

Agveep = (") (=2)(D)" ()" ()T ()"
x (M MO@)(=2)T(1)()T (1)
Boweep = (1DT(2)(D)T(=3)"(2)2)(1)(2)"(2)"

T T (D6)
X (=3)(2)" (1)(1)(1)
Coveep = (DT2)B) () (=4)(3)"3)(—4)"
x (1)3)@)T(1).
We also consider a fourth order Suzuki—Trotter odd—even decomposition derived in reference [32],
which is defined by, ) ) ) ) ) )
Uath ok = Uor(11)Uokr(72)Uor(73) Uog(72) Uoe(T1), (D7)

where Uog(7;) is given by the second order odd—even decomposition in equation (D5),
Ti=T,=7/(4—43) and 73 = 7 — 47,.

In the same way as before we compute the critical time step, 7%, at which point the errors in an
observable at t] = 3 become equal to the errors that arise from a calibration error in an analogue
simulation. We plot the results in figure 16 as a function of system size for each of the fourth order
decompositions that we have considered, where we again compare to with an without an additional splitting
of the interaction and tunnelling terms.

We find that this further splitting does not lead to large corrections and that there is only a weak
dependence on system size for the time scales considered. For these fourth order decompositions, we find
that for these observables that the left-right sweep decompositions are optimal which is in contrast to the
second order version where we found a slight improvement if we use the odd—even decomposition. It
should however be taken into account that the odd—even decomposition requires fewer steps to execute a
single time step compared to any of the sweep decompositions and so when calculating the numbers of
gates needed to execute a simulation with comparable error to analogue we should find the combination of
step count and critical time step that results in the lowest total number of gates.
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Figure 16. Comparison of errors due to fourth order Totter decompositions to errors arising from a calibration uncertainty in
the Hubbard model. Shown are the critical time-steps, J7*, at which a digital simulation would come with Trotter errors that
match the errors in an analogue simulation due to a calibration error of 0.1% at t/ = 3. We compare a left right sweep
decompositions, Agyeep (crosses), Bsweep (plus signs), Cyyeep (stars) defined in equation (D6) to an odd—even Suzuki—Trotter split
(circles) defined in equation (D7). Additionally, we compare the cases where each two site gate contains both the tunnelling and
interaction terms (solid) to the case where these pieces are also split into separate time-evolution operations (dashed). (a) Errors

inO, = cjmcm. (b) O, = CL/Z)TC,,,T. (c)O, = CL/Z)TCM/Z,TCL)T%T. (d) Error in the state fidelity (equation (B1)).
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Figure 17. Comparison of errors due to second and fourth order Totter decompositions to errors arising from a calibration
uncertainty in the long-range transverse Ising model (o = 2). Shown are the critical time-steps, J7*, at which a digital simulation
incurs Trotter errors that match the errors in an analogue simulation due to a calibration error of 0.1% at tJ, = 4. We compare
the second order left-right sweep decomposition (crosses) defined in equation (D4) to the set of fourth order left-right sweep

decompositions, Agyeep (Plus signs), Bayeep (stars), Cyeep (circles) defined in equation (D6). (a) Errors in O, = s}. (b)
_ M2 _ M2,
O, =5,"75".(c) O, =5, "5l
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D2. Transverse Ising model
Here we present the results for a digital simulation of the transverse Ising model (see equation (2)) with
algebraically decaying interactions (v = 2). In this case, it is not as straightforward to define an odd—even
decomposition due to the additional presence of longer distance interactions so we only consider the case of
a left-right sweep.

In this case we can decompose our Hamiltonian into a piece that acts on two sites H,, ,,;, which are not
necessarily on nearest neighbours. Thus we have to define our individual sweeps slightly differently,

M-1 M
(S) _ H H efiH,,,ms‘r/Z
n=1 m=n+1
-1 M (D8)
= H H Uypm(s7/2).
n=1 m=n+1
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This means that we first apply INJl,z, then U1,3 until ULM before moving on to 02)3, then 02,4 and so on. The
application of a two site time-evolution operator in the MPS algorithm on sites that were not nearest
neighbour was facilitated by applying sequences of swap gates. In the resource estimation for digital
quantum computation all-to-all coupling is assumed so the swap gates are not counted but would need to
be added to the calculation for a architecture with less connectivity.

This then allows us to define the second order decomposition using equation (D4) and then the fourth
order version using equation (D6).

As with the Hubbard model we perform a time-evolution simulation using these decompositions for
different time-steps, where we begin in an initial product state, |[¥(0)) = |+, +,+,+ - - -) and use the
parameters B = ], and o = 2. We then calculate the errors which arise from this finite time-step for the
different decompositions at tJ, = 4 and extrapolate to find the critical time-step 7* at which these errors are
the same as those resulting from calibration error.

In figure 17 we plot the results from the second and fourth order decompositions, where we find similar
behaviour to the Hubbard model where the values do not strongly depend on system size, but are more
sensitive to the form of the decomposition used.

Appendix E. Digital resource estimation

In this appendix we will explain in more detail the methods used to calculate and minimise the resources
required to execute a digital quantum simulation of comparable accuracy to that of an analogue quantum
simulator. As we assume that the limiting factor in the accuracy of the digital simulation is the error due to
Trotterisation, we need take as inputs only the number of sweeps required per time step and the total
number of time steps. These depend on the choice of Trotter decomposition, the duration of a time step, T,
and the total duration of the simulated evolution, t. By finding the number of gates and their depths per
sweep we are then able to report the total number of gates and gate depths for the full evolution. The true
optimal decomposition will depend also on the gate errors but by choosing to assume perfect gates we are
nevertheless able to illustrate the methods one would use to minimise gate counts, report on the gate counts
for a fault-tolerant system, and give optimistic estimates for a NISQ system.

E1. Hubbard model

For the Hubbard model we use two qubits to represent each site, where each qubit represents one fermionic
species. The Jordan—Wigner mapping [57, 79] ensures that the fermionic anticommutation relation is
obeyed which yields the following mappings:

1 1
=Lt ot Lot @
1 N 1,
(nk - E) (nl - E) = 29:% (E2)
1
c,T(cl +he = E(U';U,lc + Uﬁa}l,)ij, (E3)

where Zjw represents the tensor product of o, on the sites between k and /, the so called Jordan Wigner
strings,
Zyw = oftlokt? gl (E4)

and where k and ! index both site and species of the Hubbard model and hence map to a single qubit. The
inclusion of a chemical potential term in the Hamiltonian would incur no extra cost due to the necessity of
single qubit operations to correct the execution of the on-site interaction term.

If we assume a native gate set of Clifford gates, CNOTSs and an arbitrary rotation of angle 6 clockwise
around the z axis defined by R,(0) = e 1992/2 then executing the terms of equations (E1) and (E2) involve
single qubit rotations and two CNOT gates per term but is otherwise trivial. The tunnelling term is more
complex due to the presence of the Jordan Wigner string. The naive circuit used to implement a single
tunneling term is shown in figure 18. Three main observations can be used to reduce the number of CNOT
gates needed to execute multiple such terms and parallelise the rotation gates as much as possible [58].

Firstly, since the Jordan Wigner string simply counts the number of excitations on the intervening
qubits, the ordering of the operations used to calculate the string can be changed such that the calculated
parity used to execute the rotation around the x axis can be reused to execute the rotation around the y axis.
This could also be seen by permuting the basis changing H and Y gates through the CNOT gates and
cancelling the CNOT gates that are now adjacent.

21



10P Publishing

Quantum Sci. Technol. 7 (2022) 045025 S Flannigan et al

k1] i i

H—e
b—e

L ! o -
1—{H] R.(01) HHY L R.(61) y-!

Figure 18. Circuit diagram showing implementation of the tunneling term of the Hubbard model between qubits k and 1. Note
that here the Yand Y~! gates describe the operations that execute and reverse a basis change from z to y respectively, as H
converts z to x and is its own inverse. 0, = —J.
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Figure 19. Circuit diagram showing the optimised execution of two tunnelling events between qubits k and / and j and m, where
the parity calculation between k and m is computed onto an ancilla qubit o and reused in the j to m tunelling computation. The
shorthand used to describe the rotation parts of the circuit is shown in the lower panel. Notably this rotation part is the complete
optimised hopping term between k and [ in the case of no intervening qubits (i.e./ = k + 1).

Secondly, again exploiting our understanding of the purpose of the Jordan Wigner string, it is preferable
when doing multiple parity calculations to store the calculated parity on an ancilla qubit for re-use when
calculating longer strings. A calculation of the parity between k and / can be re-used when calculating the
string between j and m given j > k > [ > m.

The third observation is that tunneling between two sites does not affect the parity between these two
sites and so can be commuted through an encompassing string, thus allowing the rotation part of the two
terms to be executed in parallel. Figure 19 shows the circuit which executes two such tunneling events
between j and m and between k and /, having implemented all optimisations.

As well as minimising the number of CNOT gates and parallelising the rotations for nested tunneling
events it is beneficial to execute as many operations in parallel as possible. This is achieved by ordering the
qubits first by the species of fermion which they represent and within which tunnelling events may take
place. Each group is arranged in a 2D lattice matching layout of the corresponding sites as shown in
figure 20. The qubits within each lattice are numbered using a snake-like configuration such that hopping
events between qubits neighbouring in the horizontal direction need no Jordan Wigner strings. All of these
events can be executed in just two steps, where within each step all elements commute as they do not share
qubits. Tunnelling events in the vertical direction are achieved by executing two further steps, first starting
with qubits on even rows and then on odd ones. Jordan Wigner strings spanning the row in order to execute
these vertical interactions will not all commute with one another but will be nested so one can re-use the
parity calculations as described above to minimise the number of gates.

Thus we are able to count the necessary gates to implement a single sweep of evolution under the
Hubbard model, shown in table 4 and where, for this arrangement of qubits and choice of optimisation,
one ancilla per row will be needed, requiring /M extra qubits.
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Figure 20. Lattice qubit ordering and hopping term groups for a qubits representing one spin species on a 2D lattice with
M = 25 sites. Black circles represent the qubits, hopping terms which can be executed in parallel are grouped by colour, and solid
(dashed) lines represent hopping terms between neighbouring (distant) qubits by index.

Table 4. Total resources required to implement single time step sweep for an L x L lattice with M sites of the Hubbard model.

Gate Gate count Depth
Cliffords (H, Y) 32(M — /M) 16
R.(0) 11M — 8vM 10
CNOT 2(15M — 20v/M + 6) 6(2vVM + 1)

Table 5. Total resources required to implement single time step sweep of the long-range transverse field Ising model with M sites.

Gate Gate count Depth
Cliffords (H) 2M 2
R.(0) M+ M(M//2) M+2
CNOT 2M(M]//2) oM

Combining these numbers with the number of sweeps per time step and the total number of time steps
results in the gate counts found in the main text. In the likely case that it is not possible to execute such
large numbers of gates on a NISQ device we must use a fault-tolerant system. The main effect in terms of
resource estimation is that all rotation gates must be constructed using many T gates following [63], but
where savings can be made by executing the rotations in parallel as described in [64].

E2. Transverse Ising model

The Ising model is comparatively simple to execute, requiring only as many qubits as sites and with the
transverse term mapping trivially to a single qubit rotation around the x axis (and any optional longitudinal
term mapping to a z axis rotation). The more complex coupling term will require a fixed number of gates
but the depth of these can be optimised in order to execute as many gates as possible simultaneously. We
have here assumed all-to-all coupling, motivated by the increased complexity of this interaction landscape.
The resulting gate counts and depths per sweep for the full Hamiltonian (without longitudinal term) are
shown in table 5.

In the main text we again evaluate this for a given Trotter decomposition, time step size and total
evolution duration to give the total resource requirements and then find the fault-tolerant estimates based
on the same methods and exploiting the parallel execution of rotation gates to minimize the number of T
gates needed.
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