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Abstract: The proliferation of the internet of things (IoT) technology has led to numerous challenges
in various life domains, such as healthcare, smart systems, and mission-critical applications. The
most critical issue is the security of IoT nodes, networks, and infrastructures. IoT uses the routing
protocol for low-power and lossy networks (RPL) for data communication among the devices. RPL
comprises a lightweight core and thus does not support high computation and resource-consuming
methods for security implementation. Therefore, both IoT and RPL are vulnerable to security attacks,
which are broadly categorized into RPL-specific and sensor-network-inherited attacks. Among the
most concerning protocol-specific attacks are rank attacks and wormhole attacks in sensor-network-
inherited attack types. They target the RPL resources and components including control messages,
repair mechanisms, routing topologies, and sensor network resources by consuming. This leads
to the collapse of IoT infrastructure. In this paper, a lightweight multiclass classification-based
RPL-specific and sensor-network-inherited attack detection model called MC-MLGBM is proposed.
A novel dataset was generated through the construction of various network models to address the
unavailability of the required dataset, optimal feature selection to improve model performance, and a
light gradient boosting machine-based algorithm optimized for a multiclass classification-based attack
detection. The results of extensive experiments are demonstrated through several metrics including
confusion matrix, accuracy, precision, and recall. For further performance evaluation and to remove
any bias, the multiclass-specific metrics were also used to evaluate the model, including cross-entropy,
Cohn’s kappa, and Matthews correlation coefficient, and then compared with benchmark research.

Keywords: RPL routing protocol; internet of things; RPL attacks; protocol-specific attacks; SN-
inherited attacks; attack detection; machine learning

1. Introduction

Due to the expansion of the internet of things (IoT) implementation in most disciplines
at an alarming rate, it has been considered as a paramount technological revolution of
this era. IoT is allegedly on the path to empowering the modern world by improving
the efficiency and effectiveness of the systems in terms of saving time and automation of
functions, while also introducing smartness in things. This state-of-the-art technology has
markedly affected our lives by producing the notions of smart homes [1], smart cities [2],
smart healthcare [3], and even wearable devices [4]. Furthermore, it has resulted in a
significant impact on saving resources in urban and industrial domains [5,6].

The interaction and communication of intelligence-induced objects and people with
each other anywhere at any given time has led to interconnected networks of billions of
nodes in the world. This innovative technology is now embarking on machine-to-machine
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communication through the internet that will not necessarily require human interven-
tion [7,8]. However, this would lead to various challenges at various levels in the complete
IoT-enabled infrastructure. Primarily, the huge amounts of sensitive data communicated
over the internet would fall victim to security attacks from various dimensions leading
to compromised IoT-enabled infrastructures. Therefore, cybersecurity is one of the major
challenges in IoT networks and systems.

The majority of the IoT devices are developed without considering security as a
fundamental factor due to several reasons. Some of them include the small size of the
device that cannot support complex mechanisms and resource constraints that do not allow
computational overheads. Therefore, to address these gaps, the researchers are actively
participating in proposing alternative solutions to improve the security of IoT-enabled
smart systems. In particular, the network layer of these systems is studied and researched
due to its high vulnerability to network and routing attacks.

The routing protocol for low-power and lossy networks (RPL) is a de facto protocol
used in IoT networks. The Internet Engineering Task Force (IETF) [9] developed this
protocol to address the unavailability of a routing standard that can fulfill the routing
requirements and be implemented in resource-constrained, low-power, and lossy IoT
networks. It works using the distance vector routing principle and forms a directed acyclic
graph (DAG) or destination-oriented DAG (DODAG) to perform the routing functions.
Five main control messages are responsible for developing a communication array. They
are DODAG information solicitation (DIS), DODAG information object (DIO), destination
advertisement object (DAO), DAO acknowledgement (DAO-Ack), and consistency check
(CC) messages [10]. It also has local and global repair mechanisms responsible for repairing
any inconsistencies, link outages, and other protocol-related problems. However, the
lightweight core of the protocol and optional as well as specification-dependent security
mechanisms lead to an increased potential for security attacks. These attacks are categorized
into RPL-specific or protocol-specific attacks and sensor network (SN)-inherited attacks.

Rank attacks (RA) from the protocol-specific category and wormhole attacks (WHA)
from the SN-inherited attack category are among the most threatening attacks targeting the
security triad of the RPL network, which encompasses the confidentiality, availability, and
integrity of the network and system. In a decreased rank attack, an attacker illegitimately
broadcasts a smaller rank value to attract child nodes and becomes a preferred parent
to launch the attack, while in a wormhole attack, two nodes form a tunnel and attract
victim nodes to send their traffic to the sink node through their path. They then replay or
selectively drop the packets, which in turn results in deterioration of the network topology,
life, as well as resources. Therefore, it is crucial to address these attacks to improve the
security in RPL-based IoT networks.

Machine-learning (ML) is an emerging paradigm for data analytics, automation, pat-
tern recognition, anomaly detection, and prediction-related tasks. The techniques used
in this discipline include statistical algorithms and models which have exhibited their
effectiveness in different fields including cybersecurity. Moreover, ML is compatible with
IoT systems in working principles and concerning data requirements because they gen-
erate a large amount of data that ML can utilize to build robust models. Therefore, this
study proposes an ML-based model for addressing RA and WHA attacks in RPL-based IoT
networks. The proposed model named MC-MLGBM leverages the light gradient boosting
machine model to perform multiclass classification for attack detection where the main task
is to classify the network traffic data into begin, RA, and WHA target classes. MC-MLGBM
stands for multiclass machine-learning-based model leveraging the light gradient boosting
machines for attack detection (MC-MLGBM).

Moreover, a novel dataset is generated as part of this study due to the scarcity of
publicly available datasets in the domain of RPL-based IoT. It includes benign, RA, and
WHA traces where the attack data were collected through extensive network modeling
and simulation utilizing various network models. The network models are exclusively
designed and implemented for the generation of the required network traffic dataset.
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Furthermore, the mobility factor is addressed in this paper using the random waypoint
mobility model to create a mobile RPL-based IoT network environment. The model
performance is evaluated using standard evaluation parameters and metrics including
accuracy, precision, and recall. To further validate the results for multiclass classification,
three other multiclass-specific metrics are used. They are cross-entropy, Cohn’s kappa, and
Matthews Correlation Coefficient (MCC). Furthermore, the proposed model is compared
with benchmark research and relevant classifiers. The experimental results present that the
proposed model outperforms the benchmarks in terms of attack categorization, the number
of attacks detected, mobility, and performance evaluation using ML parameters.

The main contributions of the paper are summarized as follows:

• A novel ML-based model is proposed for RPL-specific RA attack and SN-inherited
WHA attack detection which is trained on a self-generated dataset. The parameters
are optimized and characterized by high accuracy, a high detection rate, and high
performance, which is assessed through standard ML evaluation metrics as well as
multiclass classification evaluation metrics.

• A novel dataset is generated that consists of both RPL-specific and SN-inherited attacks
in the static and mobile state of IoT nodes. The dataset is produced to address the lack
of recent datasets in the RPL-based IoT domain.

• The light gradient boosting machine model is leveraged to perform multiclass classifi-
cation for attack detection in RPL-based IoT.

• An in-depth evaluation of the MC-MLGBM model is carried out based on different
evaluation metrics in the training (for learning purposes) and testing phases.

The remaining paper is organized as follows: Section 2 reviews the relevant existing
literature, Section 3 presents the methodology and proposed model, Section 4 recounts the
experimental results, and Section 5 discusses the conclusion, the limitations of this work,
and future research direction.

2. Related Work

IoT networks are vulnerable to different security attacks and the RPL protocol impacts
this vulnerability, which causes the RPL-based IoT network to become prone to RPL-
specific or protocol-specific and SN-inherited attacks. The research in this domain is
still in its initial stages, notwithstanding the several studies conducted regarding attack
detection and prevention in such networks. RPL-based IoT networks are vulnerable to both
protocol-specific and SN-inherited attacks simultaneously, which consumes the RPL-based
network resources and threatens confidentiality, integrity, and availability (CIA) security
triad requirements [11]. In this section the related existing literature is reviewed, which is
presented by researchers for attack detection in RPL and IoT.

In [12], the authors have discussed recent communication and network protocols appli-
cable in the IoT environment, while in [10], the authors have provided an in-depth analysis
of RPL-related security attacks, RPL composition, components, and control messages. They
have also presented the attack classification taxonomy and a structured categorization of
countermeasures presented by other researchers. In [13], the authors have proposed a
machine-learning-based binary classification method to detect one of the protocol-specific
attack types. They have generated their dataset due to the lack of an appropriate dataset
by creating a version number attack network model to simulate the attack in the Cooja
network simulator and gather the data. In machine learning, feature scaling and selection
are two of the most important steps and there are numerous techniques to perform these
steps mentioned in the literature. The authors have used a min-max scaling procedure
and forward feature selection technique to preprocess their dataset. Furthermore, a light
gradient boosting machine is used as a binary classifier to detect the version attack in an
RPL network with a different number of nodes. The results demonstrate that the proposed
model performs exceptionally well in the classification of normal traffic from attack traf-
fic. However, there is a gap identified in terms of addressing SN-inherited attacks and
consideration of node mobility. The mobility metric is mentioned but not discussed.
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Similarly, in [14], the authors have proposed a deep learning-based model for the
detection of hello flood attacks. These attacks fall under the category of SN-inherited
attacks. They have evaluated the model using accuracy and regression-related evaluation
metrics including mean squared error, mean absolute error, and root mean squared error.
The model is compared with other classifiers including support vector machines (SVM) and
it performs well in comparison. However, the protocol-specific attacks are not considered
in this research and the mobility of IoT nodes is also not addressed. Moreover, deep
learning methods are well known for requiring more time and data, and their difficulty
in interpretation. In [15], the authors have proposed to use the self-organizing map-based
deep learning strategy for developing an intrusion detection system to address RPL attacks.
However, the placement strategy—which is an important factor in such solutions—was not
stated clearly in this study [13].

In [16], the authors proposed to address RPL attacks including the rank attack using
a deep neural network approach. They generated the dataset using the Cooja simulator
in the Contiki operating system and evaluated the model against standard performance
parameters including accuracy, achieving the highest accuracy for one attack called the
hello flood attack. However, this approach leads to similar problems, as discussed earlier in
this section, i.e., long training time, and vulnerability to other attacks in the model layers.

In [17], the authors have proposed a trust-based mechanism to address security issues
in RPL networks with a focus on protocol-specific rank attacks. They performed a simula-
tion study to evaluate the proposed expected transmission count metric-based strategy in
terms of energy consumption, packet delivery rate, throughput, and rank change in the
network. However, mobility was not addressed. Additionally, a hardware security chip is
required along with the nodes. In [18], the authors have addressed transmission attacks in
vehicular ad hoc IoT networks using a trust-based technique. However, the routing attacks
were not considered and it was limited to vehicular ad hoc networks. Similarly, in [19], the
authors have addressed security issues in vehicular ad hoc IoT networks using a trust-based
protocol for jamming attacks and identifying malicious nodes in such IoT-enabled networks.
However, RPL attacks were not considered in the proposed approach.

Numerous review studies and surveys have been conducted for exploring different
techniques to address the security attacks in IoT and RPL-based IoT. For instance, in [20],
the authors have performed a systematic literature review of ML and DL strategies for
attack detection in RPL-based IoT. Similarly, in [21], the authors have conducted a detailed
survey for the evaluation of RPL attacks. They have also assessed various detection and
mitigation methods using RPL control messages. Table 1 presents a summary of the related
works in addition to the dataset(s) used, methodology, attacks considered, and limitations
or research gaps.

Table 1. Summary of Related Works, Limitations, and Research Gaps.

Ref. Dataset Methodology Evaluation
Method(s)/Result Limitation/Gap

[13] Self-generated
An ML-based model for the
detection of version number

attacks in RPL-based IoT

Accuracy, precision, recall,
F1 score, log loss

SN-inherited attacks were
not considered, and mobility

was not considered

[14] Self-generated

A DL model using a gated
recurrent unit network-based

method to detect hello
flooding attacks in the IoT

network

Accuracy, mean squared
error, mean absolute error,

root mean square error

Protocol-specific attacks
were not considered,

mobility was not considered,
DL-based methods require

high computation and
memory, scalability issues
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Table 1. Cont.

Ref. Dataset Methodology Evaluation
Method(s)/Result Limitation/Gap

[17]
Doesn’t

apply/simulation
study

Proposed to employ
expected transmission count

as a metric and developed
trust-based technique for

securing the routing
topology

Packet delivery ratio,
energy consumption,

throughput, rank change

Mobility was not considered,
uses security in the form of a

chip with every node, and
additional hardware

required

[18] Simulation study

A framework for securing
vehicular ad hoc networks

from data transmission
attacks

False alarm probability,
missing detection

probability, velocity,
end-to-end delay

Routing attacks were not
considered, limited to

vehicular ad hoc networks

[19] Simulation study

Proposed a protocol to
address jamming attacks and

identify attacker nodes in
vehicular ad hoc and IoT

networks

Routing overhead,
precision, recall,

throughput

RPL-specific attacks were not
considered

[22] Simulation study
A security model based on
dynamic and parametrized

trust for IoT systems

Trust accuracy, trust value
convergence, model
resilience to change

Not suitable for routing
attacks, RPL-specific and
SN-inherited attacks were

not considered, and mobility
was not considered

[23] Simulation study

Proposed two lightweight
methods based on

elimination and shielding
strategies to address version

number attacks in RPL
networks

Power consumption,
control message overhead,

packet delivery ratio

SN-inherited attacks were
not considered, and mobility

was not considered

[15] Self-generated

An intrusion detection-based
technique using neural

networks to address routing
attacks in RPL-based

wireless sensor networks

Not mentioned

Mobility was not considered;
placement strategy was not

discussed; evaluation metrics
were not mentioned

[24] Self-generated

Proposed to address
RPL-specific attack called

version number attack using
a beacon, routing metric, and

ML classification-based
framework

Accuracy, precision, recall,
specificity

SN-inherited attacks were
not considered, and mobility

was not addressed

3. Methodology

This paper proposes an attack detection model for the detection and classification of
protocol-specific as well as SN-inherited attacks in RPL-based IoT networks using machine
learning. The model is based on the following phases: network model simulation for data
collection from different required scenarios, dataset creation and analysis, preprocessing
and feature engineering, model development, and training. The trained model is assessed
using the test dataset with a selection of appropriate performance metrics which are
discussed in the forthcoming sections. Figure 1 presents the conceptual architecture and
model design. The various modules in the previously discussed phases form a liaison to
achieve the results in terms of attack detection and classification of attack type, which was
then evaluated using several pertinent, multiclass-related metrics.
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Figure 1. Conceptual design and architecture of the proposed model.

3.1. Network Model Setup, Simulation, and Network Scenarios for Data Collection

To collect the required data, the RPL-based IoT network is simulated depending on
the type and amount of data needed. In this research study, we need benign network
traffic data, protocol-specific attack data, and SN-inherited attack data. To experiment with
generating and acquiring these types of data, we have used the Cooja network simulator
which runs on the Contiki 3.0 operating system. This simulator supports RPL-based IoT
network simulation inherently and allows the emulation of actual sensor node hardware
with a variety of node types represented as motes during the simulation. The simulator
is Java-based with foundations in C language [25]. For our network model simulation,
we have used the latest stable release, Contiki 3.0 on an Oracle virtual machine called
VirtualBox [26] with 8 GB of RAM and 60 GB of hard disk for raw data collection from
different network models and scenarios. Each node emulates a sky mote and the benign
network was simulated as soon as initiated. The two attack scenarios were simulated after
the network achieves a certain level of stability. This step was performed to observe the
maximum effect of the attack on the network and its resources. Table 2 presents the data
generated from different network models and simulation scenarios. In the next sub-section,
the various network models are discussed which were implemented for gathering the
desired data.

3.2. Simulation of Benign Network Models, Protocol-Specific Attack Models, and SN-Inherited
Attack Models

In this paper, we have proposed to address protocol-specific and SN-inherited attack
types. Therefore, three network models are developed inclusive of the benign model to
collect the normal network traffic as a benchmark followed by attack traffic generation
and collection. The algorithms for protocol-specific (RA) attacks and SN-inherited (WHA)
attacks are presented in Algorithm 1 and Algorithm 2, respectively. The attack scenarios
are illustrated in Figures 2 and 3.
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Table 2. The datasets from different network models and scenarios.

Network Models for
Simulation

Scenarios
Dataset Total

No. of Nodes Node State

Benign network model

1st case: 20 nodes; 1 sink node,
19 sender nodes, all benign

2nd case: 50 nodes; 1 sink node,
49 sender nodes, all benign

1st case: static
2nd case: mobile

1st case: 6250
2nd case: 7512 13,762

Protocol-specific attack
network model (rank attack)

1st case: 20 nodes; 1 attacker node,
19 benign nodes with 1 sink node

2nd case: 50 nodes; 2 attacker nodes,
48 benign nodes with 1 sink node

1st case: static
2nd case: mobile

1st case: 7732
2nd case: 3457 11,189

SN-inherited attack network
model (wormhole attack)

1st case: 20 nodes; 2 attacker nodes,
18 benign nodes with 1 sink node

2nd case: 50 nodes; 2 attacker nodes,
48 benign nodes with 1 sink node

1st case: static
2nd case: mobile

1st case: 3754
2nd case: 2357

6111
Total static:
Total static:

13,326
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3.2.1. Benign Network Model Simulation

The benign network model is simulated for benchmarking purposes, and two scenarios
are considered for data collection. In the first scenario, the number of nodes is increased
from twenty to fifty, while in the second scenario, the state of the node is considered, which
is either static or mobile. The data were collected from two use cases of each scenario and
used as a baseline dataset against attack datasets. The simulations were implemented in
random and grid positionings backed by the methods used by researchers in the existing
relevant literature which can be referred to in [13,27–29]. The raw data were collected as
PCAP (packet capture) files and exported as a CSV file using Wireshark. Next, the two
attack models are discussed in the respective sub-sections.

3.2.2. Protocol-Specific (RA) Attack Model Simulation

Two network models are designed for the protocol-specific attack simulation based on:
(1) the number of nodes and (2) the state of nodes, each of them further divided into two
use cases. The first use case of the first scenario comprises twenty nodes in the network,
where one node is malicious and nineteen nodes are normal. In the second case of the first
scenario, the network comprises fifty nodes, where two nodes are malicious and forty-eight
are normal with one sink node in each case. The second scenario depends on the state of the
node, which is either static or mobile. The first instance of the second scenario contains all
nodes in a static disposition, while the second use case consists of a network with partially
mobile nodes.

The rank attack is simulated from the protocol-specific attack category. The rank
attack network model is cumulatively illustrated in Figure 2, where three nodes, 10, 19, and
20, broadcast the decreased rank and favorable characteristics through DIO messages to
attract the network traffic. In the attack model, malicious nodes are placed near the root
node strategically for the victim nodes to select them as parents. Algorithm 1 depicts the
simulation of rank attack in the RPL-based IoT network in the Cooja simulator.

Algorithm 1: Protocol-specific RA Scenario

1. Input: rank attack building block, DIO control message
2. Output: DIO message with the decreased rank
3. Begin
4. True: DIO with an illegitimately decreased rank
5. If
6. RPL_Conf_Min_HopRankInc = 0,
7. RPL_Max_RankInc = 0,
8. Infinite_Rank limited to 256, and
9. Rpl_recalculate_ranks = null, then

10. Child nodes select the parent,
11. Attack instigated
12. Else
13. False: node = benign
14. Until decreased rank attack is launched
15. Network = attacked
16. End

3.2.3. SN-Inherited (WHA) Attack Model Simulation

Two network models were designed for the SN-inherited attack simulation based on:
(1) the number of nodes and (2) the state of nodes, each of them further divided into two use
cases. The first use case of the first scenario comprises twenty nodes in the network, where
two nodes are malicious and eighteen nodes are normal. In the second case of the first
scenario, the network comprises fifty nodes, where two nodes are malicious and forty-eight
are normal with one sink node in each case. Similar to the protocol-specific attack network
model, the second scenario also depends on the state of the node, which is either static or
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mobile. The first use case consists of all static nodes, while the second use case consists of a
network with partially mobile nodes.

The wormhole attack is simulated from the SN-inherited attack category. The attack
model is presented in Figure 3, where two nodes, 16 and 26, form a tunnel between each
other by probing using DIS messages and then sending and receiving DIO, DAO, and
acknowledgment messages. In the attack model, malicious nodes are placed near the victim
nodes to observe the attack effect. Consequently, the neighbor nodes 17–25 join the attacker
node 16 by selecting it as a parent due to its illegitimate preferred parent characteristics,
such as decreased rank value and shortest path to the root node. Similarly, nodes 27–30 also
join the attacker node 26 for the same reasons mentioned earlier. Algorithm 2 demonstrates
the simulation of SN-inherited wormhole attack in the RPL-based IoT network in the
Cooja simulator.

Algorithm 2: SN-Inherited WHA Scenario

1. Input: wormhole attack building block
2. Output: attacked RPL network
3. Begin
4. True: malicious nodes form tunnel via probing using DIS
5. If
6. Receive route requests,
7. Broadcast high-level capability,
8. Neighbor nodes overhear fake credentials,
9. Join the node as child nodes,

10. Drop the child node packets, then
11. Nodes = malicious
12. Else
13. False: node = benign
14. Until wormhole attack launched
15. Network = attacked
16. End

3.3. Raw Data Collection

After simulating our network models in different scenarios, the radio message tool
was used to sniff and collect the radio messages transmitted between the nodes that would
be analyzed with a 6LoWPAN analyzer with a PCAP feature incorporated into the tool.
Figure 4 presents the workflow of the data collection module. Subsequently, the collected
data were processed by the Wireshark software and saved in comma-separated values
(CSV) format.

3.4. LIoTN-RPL Dataset Creation and Data Preparation

We used the Wireshark network analyzer to perform deep network traffic analysis and
fragment the data to observe the traffic pattern for creating an extensive and all-inclusive
dataset with appropriate feature vectors called the LIoTN-RPL dataset. As a result, the
total extracted features counted to 210. We then performed the data cleaning process to
delete duplicate features, resulting in the total number of features being reduced to 61, the
majority of which had numeric values. Subsequently, the fixed features (with unchanging
values) were removed from the dataset. Missing values were handled using the NaN as
a replacement using the Pandas library in Python. Then, the categorical input features
including source ID, destination ID, and protocol were encoded using one-hot encoding.
One-hot encoding is a technique used in machine learning for converting categorical data
into numerical data for ML-based models to successfully train them on the dataset. This is
because ML models, particularly the ones involving classification algorithms for binary
and multiclass problems, require the data to be in a uniform format for improving the
model performance [30,31]. One-hot encoding achieves this by converting the categorical
values into a numerical format. Therefore, we have used this approach to transform the
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categorical features in our dataset into numerical data for uniformity. Moreover, we have
encoded the target labels as (0–2) for benign, rank, and wormhole attack traffic, respectively.
The static node dataset contains 17,736 data instances and the mobile node dataset contains
13,326 data points.
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Feature Engineering

Feature engineering techniques for machine learning are a fundamental element
in machine learning but are usually neglected or conducted in an uninvolved manner.
However, this step needs to be performed carefully because it plays a crucial role in the
accuracy of the models Feature engineering involves various processes including feature
selection, transformation, and normalization that lead to a prepared dataset for building
the model. Given the nature of the dataset, the feature selection process was adopted
in this paper. The broad categories of feature selection methods include supervised and
unsupervised methods. As this paper proposes a supervised-learning-based model, the
former methodology is preferred. Supervised-learning-based feature selection methods
include wrapper, filter, embedded, and hybrid methods. In this paper, we have adopted
one of the filter methods called the correlation matrix with heatmap for feature selection,
and a set of best resulting features is presented in Table 3.

Table 3. The selected features for model development.

No. Selected Features Feature Name

1 src.6lowpan Source ID

2 dst.6lowpan Destination ID

3 dio.rank DIO rank

4 dao.ack DAO acknowledgment

5 ack Acknowledgment

6 udp UDP

7 maxrankinc Maximum Rank Increase

8 minhoprankinc Minimum Hop Rank Increase
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Table 3. Cont.

No. Selected Features Feature Name

9 rerr Rank error

10 diointervalmin Minimum DIO interval

11 dioredconst DIO redundancy constant

12 protocol ICMPv6, UDP, and IEEE 802.15.4 protocols

13 rank Rank value

14 lost Lost packets

15 hopcount Hop count

16 ipv6hoplim Hop limit

17 wpanseq.no 6LoWPAN sequence number

18 dio.dst DIO destination

19 mesgs Message type

20 dis DIS

21 diointervalmin Minimum DIO interval

3.5. Multiclass Classification Model

In this paper, a multiclass classification model was proposed to address the rank and
wormhole attacks in an RPL-based IoT network. The light gradient boosting machine
model is leveraged to perform multiclass classification for classifying benign, rank, and
wormhole target classes in the dataset. The model was developed for binary classification
by Microsoft in 2016 as a lightweight variant of the gradient boosting method with under-
lying one-side sampling and exclusive feature bundling methods. The one-side sampling
method called GOSS establishes and maintains the precise information gain by keeping
the high gradient data instances a high priority and dropping the limited gradient data
instances [32]. Equation (1) presents the mathematical form of the GOSS function. V̂j
presents the approximate variance gain over A∪B subset which is presented by Al, Ar, Bl,
and Br in the equation while 1 − a/b indicates the normalization coefficient for the gradient
sum. The V̂j(d) is used to find the optimal split point for smart sampling of the dataset and
for improving the model accuracy by focusing on the instances with large gradients. This
also helps in reducing the complexity.

V̂j(d) =
1
n
((∑xiεAl

gi +
1− a

b ∑xiεBl
gi )̂ 2 /nj

l(d) + (∑xiεAr
gi +

1− a
b ∑xiεBr

gi )̂ 2/nj
r(d) (1)

Secondly, the exclusive feature bundling method called EFB helps in minimizing the
complexity by wrapping the exclusive features into a single feature. The histogram-based
algorithms underlying the model help in improving the training time as well as they use
less memory which is advantageous for LLNs such as IoT [33]. Therefore, this model is
leveraged to perform multiclass classification followed by hyperparameter optimization
and fine tuning.

4. Results and Discussion
4.1. Performance Evaluation Metrics

In this research study, we have considered several factors in determining the perfor-
mance evaluation metrics to assess the performance of the proposed model. These metrics
are based on the confusion metrics results that form a solid foundation for examining
the classification-based ML models. Furthermore, we have also considered the type of
classification, which is multiclass in this case, and which requires further parameters to
counter any accuracy-related bias. Therefore, we have adopted cross-entropy, Cohn’s
kappa, and Matthews correlation coefficient for extensive evaluation and validation. Fi-
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nally, the performance of the model is compared with the benchmark research works and
related classifiers.

Accuracy is the first evaluation metric used for the evaluation of the model’s perfor-
mance. It calculates the number of correct predictions among all the predictions made
by the model. Equation (2) presents the accuracy where TP, TN, FP, and FN denote true
positive, true negative, false positive, and false negative, respectively.

(TP + TN)

(TP + TN + FP + FN)
(2)

The second metric used for model performance evaluation is precision. It calculates
the accuracy of each class using the parameters from the confusion matrix. Equation (3)
presents the precision.

(TP)
(TP + FP)

(3)

Recall, also known as the detection rate, is the ratio between the number of attacks
detected by the system and the total number of attacks that are present in the dataset.
Equation (4) calculates the detection rate.

(TP)
(TP + FN)

(4)

Cross-entropy measures the extent to which the predicted probabilities match the
given data and is used to quantify the cost of inaccurate predictions. The terms log loss
and cross-entropy are used interchangeably; the lower the log loss, the better the model
has performed. Cohn’s kappa addresses potential bias towards the major class (if any)
by statistically measuring the vicinity of the predicted classes to the actual classes when
compared with a random classification. Matthews correlation coefficient computes the
correlation coefficient between the observed and predicted classifications within a range
of +1, 0, and −1, where +1 indicates the ideal prediction model, 0 indicates random
prediction, and −1 depicts inverted or reverse prediction. In this paper, we have used
these metrics for the evaluation of the proposed model in addition to classic ML-based
performance evaluators.

4.2. Results and Findings

For the proposed model to detect the RA and WHA in an RPL-based IoT network, we
have performed substantial analysis using Python language. The model is trained on 70%
of the training dataset and tested on the remaining 30% of unseen dataset. Furthermore, we
have performed feature engineering and fine tuning to improve the accuracy of the model
and compared it against our benchmark research as well as other ML classifiers to validate
the obtained results.

The results obtained from the experiment exhibited promising results in both classic
ML-based evaluation metrics and multiclass-related metrics. The model achieved a training
accuracy of 0.998 and a testing accuracy of 0.997 for the detection of both types of attacks,
as shown in Figure 5.

The model achieved an average training precision of 0.997 and average testing preci-
sion of 0.99 as shown in Figure 6.

The model achieved an average training recall of 0.997 and an average testing recall of
0.998 as shown in Figure 7.

Furthermore, the multiclass classification-related performance evaluation is summa-
rized in Table 4. Table 5 presents the overall results and their comparison with other
ML classifiers including ML-LGBM [13], gated recurrent unit-based DL (GRU-DL) [14],
gradient boosting, XGBoost, and multiclass SVM, demonstrating that our proposed model
MC-MLGBM outperforms the mentioned classifiers. Furthermore, the light gradient boost-
ing model at the base of our multiclass classifier has a lower fitting time as compared to
other classifiers, for instance, XGBoost, while it also distinguishes RA from WHA and sepa-
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rates the benign traffic traces from attack traffic traces in the LIoTN-RPL dataset. Mobility
is also addressed in our study by extracting the mobility-induced dataset using the random
waypoint mobility model [34,35] in the Cooja simulator.

Sensors 2022, 22, x FOR PEER REVIEW 13 of 17 
 

 

4.2. Results and Findings 
For the proposed model to detect the RA and WHA in an RPL-based IoT network, 

we have performed substantial analysis using Python language. The model is trained on 
70% of the training dataset and tested on the remaining 30% of unseen dataset. Further-
more, we have performed feature engineering and fine tuning to improve the accuracy of 
the model and compared it against our benchmark research as well as other ML classifiers 
to validate the obtained results. 

The results obtained from the experiment exhibited promising results in both classic 
ML-based evaluation metrics and multiclass-related metrics. The model achieved a train-
ing accuracy of 0.998 and a testing accuracy of 0.997 for the detection of both types of 
attacks, as shown in Figure 5. 

 

Figure 5. Training and testing accuracy of the proposed model. 

The model achieved an average training precision of 0.997 and average testing preci-
sion of 0.99 as shown in Figure 6. 

 

Figure 6. Training and testing precision of the proposed model. 

The model achieved an average training recall of 0.997 and an average testing recall 
of 0.998 as shown in Figure 7. 

Figure 5. Training and testing accuracy of the proposed model.

Sensors 2022, 22, x FOR PEER REVIEW 13 of 17 
 

 

4.2. Results and Findings 
For the proposed model to detect the RA and WHA in an RPL-based IoT network, 

we have performed substantial analysis using Python language. The model is trained on 
70% of the training dataset and tested on the remaining 30% of unseen dataset. Further-
more, we have performed feature engineering and fine tuning to improve the accuracy of 
the model and compared it against our benchmark research as well as other ML classifiers 
to validate the obtained results. 

The results obtained from the experiment exhibited promising results in both classic 
ML-based evaluation metrics and multiclass-related metrics. The model achieved a train-
ing accuracy of 0.998 and a testing accuracy of 0.997 for the detection of both types of 
attacks, as shown in Figure 5. 

 

Figure 5. Training and testing accuracy of the proposed model. 

The model achieved an average training precision of 0.997 and average testing preci-
sion of 0.99 as shown in Figure 6. 

 

Figure 6. Training and testing precision of the proposed model. 

The model achieved an average training recall of 0.997 and an average testing recall 
of 0.998 as shown in Figure 7. 

Figure 6. Training and testing precision of the proposed model.



Sensors 2022, 22, 6765 14 of 17
Sensors 2022, 22, x FOR PEER REVIEW 14 of 17 
 

 

 
Figure 7. Training and testing recall of the proposed model. 

Furthermore, the multiclass classification-related performance evaluation is summa-
rized in Table 4. Table 5 presents the overall results and their comparison with other ML 
classifiers including ML-LGBM [13], gated recurrent unit-based DL (GRU-DL) [14], gra-
dient boosting, XGBoost, and multiclass SVM, demonstrating that our proposed model 
MC-MLGBM outperforms the mentioned classifiers. Furthermore, the light gradient 
boosting model at the base of our multiclass classifier has a lower fitting time as compared 
to other classifiers, for instance, XGBoost, while it also distinguishes RA from WHA and 
separates the benign traffic traces from attack traffic traces in the LIoTN-RPL dataset. Mo-
bility is also addressed in our study by extracting the mobility-induced dataset using the 
random waypoint mobility model [34,35] in the Cooja simulator. 

The main findings from the results are summarized as follows: 
• The results obtained from the experiments illustrate that the proposed model per-

forms well in terms of addressing both the RPL-specific RA and SN-inherited WHA 
with respect to overall accuracy (99.7%), precision (99%), and detection rate (99.7%). 

• The advanced metrics used for evaluating the multiclass classification show promis-
ing results where the model achieves low cross-entropy value (0.116), which indi-
cates high accuracy. The high values of Cohn’s Kappa and MCC indicate that the 
model performs comparatively better. 

• The above metrics also confirm the unbiased accuracy, which might have been pre-
sent if only overall accuracy was used for evaluation. 

• The proposed model outperforms benchmark research and classifiers in terms of ac-
curacy, precision, and recall for two different types of attacks, that is, RPL-specific 
RA and SN-inherited WHA. 

• The model achieves high performance during the learning phase, which is presented 
through the assessment of the model through the training set after fine tuning. The 
final evaluation conducted on the testing set shows enhanced performance in terms 
of attack detection through multiclass classification. 

Table 4. Performance Analysis of the Proposed Model. 

Evaluation Metric Train/Test Result 

Accuracy 
Training 0.998 
Testing 0.997 

Precision 
Training 0.997 
Testing 0.99 

Recall Training 0.998 

Figure 7. Training and testing recall of the proposed model.

Table 4. Performance Analysis of the Proposed Model.

Evaluation Metric Train/Test Result

Accuracy Training 0.998

Testing 0.997

Precision
Training 0.997

Testing 0.99

Recall
Training 0.998

Testing 0.997

Cross entropy 0.116

Cohn’s Kappa 0.93

MCC 0.927

Table 5. Comparison of the Proposed Model with Benchmark and Other Classifiers.

Model Attack
Accuracy Precision Recall

Cross
Entropy

Cohn’s
Kappa MCCProtocol-

Specific
SN-

Inherited

Proposed
MC-MLGBM 3 3 0.998 0.997 0.998 0.116 0.93 0.927

ML-LGBM 3 5 0.981 0.97 0.96 0.1289 log
loss - -

GRU-DL 5 3

0.99 for
selective
features

- - - - -

MC-SVM 3 3 0.965 0.95 0.962 0.159 0.89 0.90

GB 3 5 0.99 0.98 0.98 - - -

XGBoost 3 5 0.988 0.977 0.983 - - -

The main findings from the results are summarized as follows:
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• The results obtained from the experiments illustrate that the proposed model performs
well in terms of addressing both the RPL-specific RA and SN-inherited WHA with
respect to overall accuracy (99.7%), precision (99%), and detection rate (99.7%).

• The advanced metrics used for evaluating the multiclass classification show promising
results where the model achieves low cross-entropy value (0.116), which indicates
high accuracy. The high values of Cohn’s Kappa and MCC indicate that the model
performs comparatively better.

• The above metrics also confirm the unbiased accuracy, which might have been present
if only overall accuracy was used for evaluation.

• The proposed model outperforms benchmark research and classifiers in terms of
accuracy, precision, and recall for two different types of attacks, that is, RPL-specific
RA and SN-inherited WHA.

• The model achieves high performance during the learning phase, which is presented
through the assessment of the model through the training set after fine tuning. The
final evaluation conducted on the testing set shows enhanced performance in terms of
attack detection through multiclass classification.

5. Conclusions

This paper proposed the machine-learning-based classification model called MC-
MLGBM for the detection of RPL-specific RA and SN-inherited WHA in an RPL-based
IoT network. For our study, we have generated the static and mobility-induced datasets
gathered in a pool called LIoTN-RPL using the Cooja simulator for training and testing
the models. This dataset was generated by simulating various network models depending
on the number of nodes, and state of the nodes. The LIoTN-RPL dataset was used as
a benchmark for our model to perform multiclass classification. Extensive analysis was
performed to test the proposed model and compare with the benchmark research including
binary light gradient boosting machines as well as other classifiers. The confusion matrix
was used for analysis and the derived metrics such as accuracy, precision, and recall were
used for model performance evaluation. The results were promising and better than
our benchmarks in terms of multiclass classification of RA and WHA, achieving average
accuracy, precision, and recall of 99.7%, 99%, and 99.7%, respectively, for the multiclass
LIoTN-RPL dataset. We have further validated our model using metrics such as cross-
entropy (0.116), Cohn’s kappa (0.93), and MCC (0.927) for multiclass classification and
imbalanced class in the dataset to avoid biased accuracy results. The model outperforms
overall when compared with benchmark research, binary classifiers, and multiclass SVM.

Although the proposed model shows promising results, there are some limitations
to our work. Further developments are required in the LIoTN-RPL dataset. Currently,
it contains benign traffic data, RA, and WHA attack data. More attacks from both RPL-
specific and SN-inherited categories need to be simulated and collected in the LIoTN-RPL
data pool for diversification, and further model evaluation. The future research direction
is inspired by this limitation and the current promising results that are obtained for two
attacks. In future, more attacks from both categories of RPL attacks will be considered by
designing attack models, conducting simulation studies, dataset generation, and detection
using the proposed model.
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