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The accuracy of Monte Carlo simulation methods depends on the computational effort invested in reducing the
estimator variance. Typically reducing such variance requires invoking Monte Carlo with as many samples as one
can afford. When the system is complex and the failure event is rare, it can be challenging to establish the correctness
of the failure probability estimate. To combat this verification problem, we present an adaptation of the SIVIA
algorithm (Set Inversion Via Interval Analysis) that computes rigorous bounds on the failure probability of rare
events. With this method, the nonlinearity of the system and the magnitude of the failure event no longer constitute
a limitation. This method can therefore be used for verification, when it is of interest to know the rigorous bounds
of the very small target failure probability of complex systems, for example in benchmark problems. The method is
rigorous i.e. inclusive and outside-in, so the more computational effort is invested the tighter the bounds. Because
full separation is exercised between the engineering and the probability problem, the input uncertainty model can be
changed without a re-evaluation of the physical function which opens avenues towards computing rigorous imprecise
failure probability. For example, the reliability could be formulated without making dependency or distributional
statements.
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1. Introduction

With the emergence of ever more advanced Monte
Carlo simulation methods for estimating the fail-
ure probability, it is also ever more challenging to
prove the correctness of such methods in a rigor-
ous and automatic way. In Au and Patelli (2016),
it is pointed out that problems of practical sig-
nificance currently poses three main challenges:
(i) small failure probability, (ii) high dimension
(i.e., a large number of input random variables)
and (iii) high complexity (e.g., nonlinearity) in
the input–output relationship. When it comes to
estimating failure probability, there is no panacea
to all challenges. Advanced Monte Carlo sim-
ulation methods developed in recent years, like
subset simulation (Au and Patelli, 2016), impor-
tance sampling (Papaioannou et al., 2016), line
sampling (Valdebenito et al., 2021), and regres-
sion based (Gasser and Bucher, 2018), and despite
their solid mathematical bases, are notoriously
not general purpose. For example, line sampling

simulation works well on reliability problems with
multiple random variables, but on quasi linear
performance functions (as opposed to highly non-
linear); while subset simulation may be limited
by the dimensionality and complexity of the in-
put–output relationship. The correctness of these
methods is almost always tested via Monte Carlo
simulation. However, these tests are limited to
cases for which Monte Carlo provides an accu-
rate estimation, whilst the cost of running MC
increases as the failure probability gets smaller.

The ability to separate the engineering from the
probability problem may be considered desirable
in reliability analyses. This is due to the fact that a
fully defined joint probability distribution may be
difficult to obtain in practice. Moreover, with this
separation the same engineering problem could be
adapted to different scenarios just by changing the
joint probability distribution. Existing work to ad-
dress the crude reliability problem without proba-
bility specifications has recently been presented in
the literature (Crespo et al., 2009). The extension
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to allow for probability statements has also been
proposed by the same authors in Crespo et al.
(2013). Our work can be regarded concurrent to
Crespo et al. (2013), while removing the assump-
tion of polynomial input-output relationship, and
shifting the goal from robust design optimization
to verification.

This paper introduces a method based on an
adaptation of the SIVIA algorithm to rigorously
bound the failure probability. A recent review of
the SIVIA algorithm and its implementation in
high-level languages is provided in Herrero et al.
(2012). The proposed method, that we name Set
Inversion REliability (SIRE), fully separates the
engineering problem from the probability prob-
lem as follows: first SIVIA is deployed to pro-
duce a subtiling that rigorously bounds the failure
domain under study, and second the probability
measure is computed on each element of such
subtiling. The advantages of such procedure can
be summarised as follows: (1) the information
about the geometry of the failure domain can be
extracted and stored independently of the proba-
bility statement; (2) once the subtiling is complete,
the model is no longer needed and the failure
probability can be computed at any time without
invoking the model again; (3) the method is insen-
sitive to the magnitude of the failure probability;
(4) The method is insensitive to the nonlinearity of
the performance function. (5) The obtained failure
probability is deterministic (no noise), and its er-
ror is rigorously bounded. SIRE is a deterministic
method to compute probabilities using rigorous
partition of the space of interest.

There are of course drawbacks of using the pro-
posed method. Unlike Monte Carlo, the method is
sensitive to the dimensionality of the problem, see
Table 1. In fact, subtiling is an operation whose
complexity increases exponentially with the cardi-
nality of the set being subtiled. Table 1 also shows
that SIRE can be executed in parallel; while this
is true, it is by no means as obvious as in the
case of Monte Carlo. Because of the cardinality
limitation we think that the method can be used as
a verification tool on low-dimensional and highly-
nonlinear models with very small failure probabil-
ity, i.e. those reliability problems that plain Monte

Table 1. Overall comparison between SIRE
(Set-Inversion REliability) and Monte Carlo
simulation for computing failure probability.

SIRE Monte Carlo
Rare events Yes No
Nonlinear system Yes Yes
High dimension No Yes
Parallel execution Yes Yes

Carlo simulation cannot reach.
The paper is organised as follows: §2 gives

a short introduction to the proposed method, §3
presents some results of the method applied to
some benchmark reliability problems. In §4 the re-
sults obtained in the previous section are discussed
and in §5 coordinates to reproduce the paper are
provided.

2. Set-inversion reliability analysis

In this section the main method is presented. It
is shown how the SIVIA algorithm can be used
to perform reliability analysis, while rigorously
bounding the failure probability.

2.1. The SIVIA algorithm

The SIVIA algorithm (Set Inversion Via Interval
Analysis) is a popular algorithm for constraint
back propagation (Jaulin and Walter, 1993). The
algorithm was applied to areas of engineering
such as control and robotics (Jaulin et al., 2001).

In this section, we provide a brief introduction
to the theory. Let f : R

d Ñ R be a function,
and let y :“ fpxq, be the image of x under
f . Let X Ă R

d be a n-box and Y the image
of X under f . Now, let us define Ytarget Ă Y
a given sub interval of Y . The SIVIA algorithm
uses a progressive bisection procedure to bound
the preimage A Ă X such that fpAq “ Ytarget.
Because of f , the preimage A is not a box, but
rather a united set (de Angelis, 2022). By means of
progressive bisection, the SIVIA algorithm effec-
tively creates a subtiling of the original domain X

known to contain A. The subtiling is constructed
from a list of n-boxes that are a subset of X and
share mutual boundaries. On each sub-box Xi, f
is evaluated with the rules of interval arithmetic.
The preimage A is given by the union of all sub-
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boxes whose image is fully contained in the target:

A “
8ď
i

tXi : fpXiq Ă Ytargetu, (1)

The subtiling is a rigorous inner approximation of
the preimage A in the sense that when a finite
number of boxes n replaces 8, the following
holds:

nď
i

tXi : fpXiq Ă Ytargetu Ă A. (2)

2.1.1. Divide and conquer

A subtiling is a collection of binned sub-boxes
that satisfies the imposed constrain, for example
the constrain expressed by the condition in (1).
The SIVIA algorithm outputs three lists of sub-
boxes: (1) a list of sub-boxes whose image is fully
contained in the target: S “ ListptSiuq, where
Si “ tXi : fpXiq Ă Ytargetu; (2) a list of
sub-boxes whose image is not contained in the
target: N “ ListptNiuq, where Ni “ tXi :

fpXiq Ă Y targetu, and Y target is the complement
of Ytarget; (3) and a list of all the remaining sub-
boxes whose image has non-empty intersection
with the target: E “ List ptEiuq, where Ei “
tXi : fpXiq X Ytarget ‰ ∅, Xi R Su. To obtain a
subtiling that is as close to A as possible, the size
of each sub-box has to be made sufficiently small,
so that the volume of the subtiling E complies
with the desired accuracy. The SIVIA algorithm
can be briefly summarised as follows:

(1) Fix Ytarget

(2) Determine X such that Ytarget Ă fpXq
(3) Bisect X into two sub-boxes X1, X2

(4) Evaluate Yi “ fpXiq, i “ 1, 2

(5) Append Xi to S, if fpXiq Ă Ytarget

(6) Append Xi to N, if fpXiq Ă Y target

(7) Append Xi to E, if fpXiq X Ytarget ‰ ∅

(8) Terminate, if Xi P E is sufficiently small
(9) Otherwise, keep bisecting each Xi, go to (3)

and set X :“ Xi.

The algorithm described here will output three
lists of sub-boxes each belonging to either S,N,E.
The overall size of the sub-boxes in E is an indica-
tor of the accuracy of the subtiling, and it is merely
determined by the number of evaluations of f . In

what follows the algorithm is used to address a
reliability, so it will need some adaptation.

2.2. Reliability analysis with SIVIA

The probability that a continuous random vari-
able Y (element of a Borel topological space),
is greater than a given threshold yt, in formulas:
PY pY ą ytq, is called a failure probability when
associated with a rare undesirable event. Let f :

R
d Ñ R, be a function such that y “ fpxq. A

failure probability is the probability that the output
random variable Y is in the interval ryt,8q, that is
pF “ PY pY P ryt,8qq. We will denote such un-
desirable event by Ytarget “ ryt,8q. In reliability
problems, the analytical closed-form distribution
of Y is unknown, because f is often complex.
For this reason, and because the distribution of
the random variable vector X is known, it is often
preferable to compute the failure probability as
follows: pF “ PXpX P ΩFq, where ΩF is the
preimage of Ytarget over f , which is also called
failure domain. Running the SIVIA algorithm on
the target: Ytarget “ ryt,8q, will output a rigorous
subtiling of the failure domain. Note that SIVIA
need not have a bounded target in order to pro-
ceed. A lower subtiling of the failure domain ΩF

is obtained after progressive bisection of X , as
follows:

ΩF “
nď
i

tXi : fpXiq Ă Ytargetu, (3)

where Xi, i “ 1, ..., n are sub-boxes as a result
of the progressive bisecting. The subtiling (3) is
called an inner subtiling because a subset of the
actual failure domain, ΩF Ă ΩF. The SIVIA
algorithm also outputs the following subtiling

ΩE “
nď
i

tXi : fpXiq X Ytarget ‰ ∅, Xi R ΩFu,
(4)

which is an outer approximation of the bound-
ary between the failure domain and its comple-
ment. The more computational investment is put
in SIVIA, the smaller ΩE is in size, thus the more
accurate is this subtiling. Because the subtilings
of (3) and (4) are the union of a finite number of
boxes, their probability measure can be computed
conveniently on each sub-box. Ideally, the volume
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of the subtiling ΩE tends to zero, when the failure
domain is exactly represented. However, this is
only possible in theory, i.e. with an infinite num-
ber of sub-boxes and function evaluations. The
lower bound failure probability pF “ PXpΩFq, is

PXpΩFq “
nÿ
i

PX ptXi : fpXiq Ă Ytargetuq , (5)

whilst the upper failure probability is

pF “ PXpΩFq ` PXpΩEq (6)

where,

PXpΩEq “řn
i PXptXi : fpXiq X Ytarget ‰ ∅, Xi R ΩFuq.

The probability measure on each individual box
is computed by means of the H-volume, knowing
the joint probability distribution HX . In the next
section, how this measure, inclusive of consider-
ing correlation, is computed is further explored.

2.3. Rigorous integration of uncertainty

No constraint in shape, dimension, or dependence
is placed on the input probability distribution HX

(and subsequently PX ), other than that we know it
precisely. The lower (5) and upper (6) bounds on
the measure could be computed from the proba-
bility density function hX , by integrating it on the
subtiling perhaps using quadrature, e.g.

pF “
nÿ
i

PX pSiq “
nÿ
i

ż
Si

hXdx, (7)

where Si “ tXi : fpXiq Ă Ytargetu. Computing
(7) by quadrature however, will only produce an
approximation of both probability bounds, whilst
we seek a method which is also rigorous in the
probability estimation. A simpler approach is to
directly use the cumulative distribution function
(cdf) HX . The cdf is related to the probability
measure by HXpxq “ PXpX ď xq, and as such
it is simple to compute the measure on a hyper-
rectangle S by evaluating the cdf on the vertices
and performing an iterative sum

VHX
pSq “

ÿ
sPverticespSq

signSpsqHXpsq, (8)

where the sum is taken over all the vertices of S,
and where

signSpsq “
#

1 if #lepsq is even

´1 if #lepsq is odd.
(9)

The function VHX
is called the H-volume by

Schweizer and Sklar (2011), and generalises our
usual notion of volume. It is defined for measures
other than the Lebesgue measure (uniform distri-
bution), for example the multivariate distribution
HX . It is also defined for sets larger than three di-
mensions, e.g., when using the Lebesgue measure
in 1D it gives length, area in 2D, volume in 3D,
and hyper-volume beyond that. In (9), #lepsq is
the number of left endpoints of the vertex s. As an
example, in two dimensions the (hyper-)rectangle
S “ rs1, s1s ˆ rs2, s2s has four vertices ps1, s2q,
ps1, s2q, ps1, s2q, and ps1, s2q, which each has 2

(even), 1 (odd), 1 (odd), and 0 (even) number of
left endpoints #le, respectively. The two dimen-
sional calculation is thus

VHX
prs1, s1s ˆ rs2, s2sq “
HXps1, s2q ´ HXps1, s2q

´HXps1, s2q ` HXps1, s2q. (10)

The probability measure of each of the sub-boxes
Si may be computed using (8), and since they are
all disjoint and PX is precise (and thus additive),
the total failure probability is the sum of the mea-
sures of each sub-box

pF “
nÿ
i

VHX
pSiq . (11)

An identical calculation is performed for the up-
per bound (6). Note that this calculation can be
performed directly on the copula C of HX , since
using Sklar’s theorem the joint distribution HX

can be expressed in terms ofC and marginalsHXj

HXpxq “ CpHX1
px1q, . . . , HXd

pxdqq, (12)

where C captures all dependence information
of the random variable X . The integration can
be performed directly on the copula by iso-
probabilistically transforming each sub-box Si
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through the inverse cdfs of the marginal distribu-
tions, e.g.,

Ui “
dą

j“1

rH´1
Xj

psjiq, H´1
Xj

psjiqs,

where j indexes the dimension and i the sub-
boxes, and evaluating

pF “
nÿ
i

VCpUiq. (13)

2.4. Performance function

The function f is called a performance function g,
when the failure domain is determined by its sign
or by a fixed interval, such as r0, 1s or r1,8s. In
this paper, the failure domain will be denoted by
ΩF “ tx : gpxq ď 0u.

3. Application

In this section, set-inversion reliability analysis is
applied to a few problems form the so called TNO
reliability challenge, which is a set of reliabil-
ity challenge problems released by Rozsas et al.
(2018). The problems can be consulted publicly at

https://rprepo.readthedocs.io/.
Among these problems we select a few for the
purpose of demonstrating the proposed method.

3.1. Nonlinear system with failure islands
(RP57)

This reliability problem displays multiple failure
islands, as shown in Figure 1. A summary of this
problem specifications is given in Table 2. The
performance function is a multi-output nonlinear
function provided as a combination of parallel
and series functions. The performance function
g : R2 Ñ R

3 Ñ R has the following form:

g1pxq “ ´x2
1 ` x3

2 ` 3

g2pxq “ 2 ´ x1 ´ 8x2

g3pxq “ px1 ` 3q2 ` px2 ` 3q2 ´ 4

gpxq “ minpmaxpg1, g2q, g3q
Figure 1 shows the isodensities of the joint stan-
dard normal with peak density at (0,0). The blue
domain (or safe domain) is subtiled with boxes
on which the model is guaranteed to evaluate in a

Table 2. Reliability problem RP57

Target pF # R.v. # P. functions Distributions
2.84e-2 2 3 Np0, 1q

Table 3. Set-inversion reliability results RP57

# Evaluations pF bounds p10´2q Width p10´2q
456 [0.44, 11.61] 11.17

1996 [1.91, 3.80] 1.19
4046 [2.32, 3.32] 1.00

10000 [2.60, 3.06] 0.46

Fig. 1. Challenge problem RP57 obtained with 456
and 1996 function evaluations. The upper figure corre-
sponding to 456 evaluations shows a coarser subtiling
(size of the orange boxes), resulting in a broader failure
probability interval.

positive interval g ą 0; while the red-box region is
where the model is certainly negative g ă 0. The
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region where the algorithm is undecided (orange
boxes), are an outer subtiling of the failure bound-
ary. On the orange boxes, the interval evaluation
results in a value of the performance that straddles
zero: 0 P g. The results for increasing number of
function evaluations are provided in Table 3.

3.2. Nonlinear series system (RP35)

This reliability problem is a series system with
two nonlinear performance functions. From the
subtiling shown in Figure 2, the geometry and
shape of the failure domain can be appreciated.
The problem displays two predominant failure
modes. A summary of the problem specifications
is given in Table 4, while results for increasing
number of function evaluations are in Table 5.

Table 4. Reliability problem RP35

Target pF # R.v. # P. functions Distributions
3.54e-2 2 2 Np0, 1q

The performance function of problem RP35 g :

R
2 Ñ R

2 Ñ R has the following form:

g1pxq “ 2 ´ x2 ` expp´0.1 x2
1q ` p0.2 x1q4

g2pxq “ 4.5 ´ x1x2

gpxq “ minpg1, g2q

Table 5. Set-inversion reliability results RP35

# Evaluations pF bounds p10´3q Width p10´3q
374 [1.56, 17.13] 15.57

1584 [2.44, 4.71] 2.27
3198 [2.93, 4.07] 1.14

10000 [3.26, 3.73] 0.47

3.3. Effect of correlation

Correlation can dramatically change the results
presented in the previous two examples.

The effect of correlation is explored on the
previous two examples, introducing a Gaussian
copula with a few correlation coefficients. As ex-
pected, The failure probability changes by orders
of magnitude when the correlation coefficient is
varied, as shown in Table 6.

Fig. 2. Challenge problem RP35 obtained with 374
and 1584 function evaluations. The upper figure corre-
sponding to 374 evaluations shows a coarser subtiling
(size of the orange boxes), resulting in a broader failure
probability interval.

Figure 3 shows the isodensities with correla-
tion ρ “ ´0.99 and ρ “ 0.99 for problem
RP57. From the isodensities shown in Figure 3,
it appears clear why such a dramatic change in
the failure probability is found. Note that because
of the separation between the reliability and the
engineering problem, the results in Table 6 could
be obtained with a single run of SIVIA; in other
words, exploring different correlation coefficients
has been done “for free”, i.e. requiring repeated
model evaluations for different values of ρ. This is
possible thanks to the aforementioned separation,
because once the subtiling is completed, the prob-
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Table 6. Failure probability bounds for problems RP57
and RP35 with varying correlation coefficient. The results
have been obtained with a total of 104 evaluations. Values
are reported using outward rounding with 3 signif. digits.

ρ pF RP57 RP35 pF
-0.99 [0.0,0.0] [0.00454, 0.00513]
-0.95 [4.29, 9.48]e-05 [0.00434, 0.00489]
-0.80 [0.00433, 0.00584] [0.00363, 0.00410]
-0.50 [0.0127,0.0159] [0.00252, 0.00287]
-0.30 [0.0175,0.0214] [0.00218, 0.00251]

indep. (0) [0.0260, 0.0306] [0.00325, 0.00373]
0.30 [0.0356, 0.0407] [0.00746, 0.00834]
0.50 [0.0417, 0.0469] [0.0123, 0.0137]
0.80 [0.0476, 0.0522] [0.0230, 0.0250]
0.95 [0.0516, 0.0550] [0.0300, 0.0324]
0.99 [0.0541, 0.0575] [0.0320, 0.0345]

ability measure can be computed with any given
probability distribution.

4. Discussion

The results presented in this paper show some
common features. The width of the error (or im-
precision) in approximating the failure probability
decreases with the number of function evalua-
tions. So the more computational effort is invested
the tighter the failure probability bound. When
considering unbounded distributions, extra care
needs to be placed to choose the size of the initial
box. The initial box needs to be large enough to
include all the boxes with a non-negligible prob-
ability measure. This can be done in each coor-
dinate dimension by using the quantile function
of each marginal distribution. If the initial box
excludes regions with non-negligible probability
measures, rigour may be compromised. For un-
bounded distributions, it is advised to start the
algorithm with an initial box that stretches far
beyond the 10´8 and 1 ´ 10´8 percentile; this is
because the size of the initial box only marginally
affects the subtiling process, and the efficiency of
the algorithm. Even though the presented exam-
ples have mainly shown standard normal distribu-
tions, there is no restriction about the distribution
family. The examples are taken from a repository
of reliability challenge problems, and have been
selected to showcase complexity rather than exotic
distributions.

Fig. 3. Challenge problem RP57 obtained with cor-
relation coefficients ρ “ ´0.99 (upper figure), and
ρ “ 0.99 (lower figure).

We note that this method assumes that the input
joint cdf HX is exactly (rigorously) evaluable.
Often such functions are not known analytically,
as is the case with the multivariate normal cdf, and
subsequently the Gaussian copula, and require a
numerical method of some form. In this work, the
multivariate cdfs is evaluated with the algorithm
from Genz (1992), which although is considered
an industry standard, is not rigorous and uses a
mix of quadrature and Monte Carlo. The bounds
obtained from the independent examples are rig-
orous, as they use the independent copula which is
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analytic. The correlated examples using the Gaus-
sian copula rely on this non-rigorous algorithm,
and as such may be subject to slight variation
when re-evaluated. We emphasise that this paper
presents a method to rigorously compute proba-
bilities from a known HX , and does not comment
on how HX is rigorously computed.

4.1. Efficiency

While SIRE is insensitive to the nonlinearity and
the magnitude of the failure probability, its major
barrier to efficiency is the cardinality of the input
variable set. For convenience, we divide all relia-
bility problems into four macro classes based on
their input set cardinality: 1-5 small, 6-10 moder-
ate, 11-25 large, ą25 grand (or extra large). With
this classification, the efficiency of the method can
be better framed. The method as presented in this
paper, can only be used on small to moderate relia-
bility problems. Modification of the method could
be used on large reliability problems if rigour is
compromised. On small to moderate reliability
problems, the efficiency of the method can be im-
proved: (1) with a bisection criterion based on the
magnitude of the probability measure in each sub-
box; (2) by improving the interval computations
to minimise inflated uncertainty; (3) by burn-in
subintervalisation combined with parallel process-
ing. On moderate to large reliability problems,
the SIVIA algorithm cannot terminate due to the
limitations of subtiling high-dimensional spaces.
Nonetheless, the algorithm can still be used with
a termination criterion based on a maximum to-
tal number of evaluations. In this scenario, even
though the subtiling is not satisfactory, the in-
formation from such partial subtiling can still be
used to characterise the geometry of the boundary
of the failure domain, a.k.a. limit-state boundary.
This information can then be used to deploy other
algorithms, like importance sampling or line sam-
pling simulation that typically require cues about
the geometry of such a boundary.

5. Reproducibility

The code and algorithms used in this document
are available at
https://github.com/marcodeangelis/SIRE.

Interval computations were run using intervals
https://github.com/marcodeangelis/

intervals a code library for interval computing
in Python. Both repositories were last accessed in
June 2022.
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