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Abstract—This article presents a method of antenna radiation 

pattern reconstruction for the planar near-field measurement 

system. The proposed method uses clustering analysis and Voronoi 

cell classification to realize reasonable regional interpolation 

according to the data characteristics of a small number of initial 

samples, leading to an expansion of the amount of effective data in 

the initial array. Meanwhile, the Gerchberg-Papoulis (GP) 

algorithm is used to reduce the truncation errors of the 

interpolated planar near-field data, and consequently improve the 

overall reconstruction accuracy. The proposed method can 

effectively reduce the number of initial sampling points and the 

planar near-field scanning time of the measurement process. 

Besides, it can be seen from the simulation and measurement 

results that the planar near-field data processed by the clustering 

interpolation and GP algorithm can effectively enhance the 

reconstruction accuracy of the far-field pattern of the antenna 

under test.  

 
Index Terms—Planar near-field measurement, clustering 

interpolation, Voronoi tessellation, Gerchberg-Papoulis 

algorithm, pattern reconstruction.  

 

I. INTRODUCTION 

LANAR near-field measurement system can obtain the 

radiation characteristics of the antenna under test (AUT) in 

a compact testing environment (cf. Fig. 1). So it has been widely 

used in antenna measurements. In order to obtain the planar 

near-field electric field data with small truncation errors, it is 

usually necessary to scan over a large aperture with dense 

sampling points in the near-field of the tested devices. However, 

in most cases, the measurement range and accuracy of the 

testing instrument are limited, resulting in fixed scanning areas 

and sampling points. Therefore, how to reduce the truncation 

errors and reconstruct the far-field radiation pattern of the AUT 

with fewer initial sampling points is of great importance. 

A spiral scanning method was proposed to effectively reduce 

the near-field sampling time [1], [2]. The authors in [3]-[5] 

described an adaptive sampling method to determine the quasi-

minimal distribution of the data samples obtained in the data 

grid, so as to represent the overall radiation characteristics. The 
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authors in [6] proposed a method of using a switch probe for 

uniform data sampling with interpolation. A fast and effective 

pattern reconstruction method through clustering analysis and 

adaptive sampling was proposed for spherical near-field 

measurement systems in [7], [8]. The works provide some 

important ideas for conducting clustering analysis and data 

interpolation for the planar near-field measurement system. 

Unlike the spherical near-field measurement system, e.g., [9], 

truncation errors are introduced in the planar near-field test due 

to the limited angular coverage of the scanning area. In order to 

reduce the impact of truncation errors on the measurement 

results, it is necessary to include a larger effective antenna 

radiation region by increasing the measurement area. However, 

increasing the measurement area means increasing the 

measurement samples and scanning time. Thus, it is vital to find 

a way to reduce the planar near-field truncation errors without 

increasing the measurement area. 

To this end, the authors in [10], [11] introduced a smooth 

window function to filter the edge of the planar near-field data. 

Although this method reduces the influence of truncation errors, 

it also reduces the area of the effective region, which limits its 

performance. The source reconstruction method was adopted in 

[12]-[16] to get the equivalent current sources on the AUT 

aperture, based on which numerical analysis and pattern 

reconstruction were carried out. But this method is time-

consuming for electrically large antennas. The band-limited 

signal extrapolation method has been widely used in the field 

of microwave detection and signal reconstruction [17]-[19]. 

Based on this foundation, the Gerchberg-Papoulis (GP) 

iterative algorithm was utilized in [20]-[24] to effectively 

reduce the truncation errors of the planar measurement without 

increasing the scanning range. 

In this paper, we classify the limited initial sampling points 

by the K-means clustering method [25], [26], and calculate the 

area of each Voronoi tessellation cell and the gradient between 

adjacent sampling points. Then the area and gradient 

parameters under different weights are used to judge the deep 

and shallow interpolation regions within each cluster, in order 
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Fig. 1.  Near-field antenna measurement environment. 

to get more accurate interpolation results. Meanwhile, the GP 

iterative algorithm is used to reduce the truncation errors of the 

interpolated planar near-field data. The proposed method can 

reduce the measurement time to one-third of that of the 

conventional planar near-field measurement method with 

competitive accuracy performance. 

II. THEORY 

This section presents the method of antenna pattern 

reconstruction based on a small number of sampling points. 

First, the theories of clustering initial samples and Voronoi cell 

calculation are described. Then, a method of interpolating the 

initial sampling points according to different criteria is 

introduced. After that, the GP iterative algorithm which can 

reduce the truncation errors is explained. Finally, the 

reconstructed planar far-field pattern is obtained. We present 

the planar near-field antenna measurement procedure in detail 

next. 

The discrete grid is first generated on the near-field sampling 

plane, on which a small number ( sampleN ) of initial sampling 

points are randomly selected. These initial sampling points are 

recorded as 
1 1 2{ , ,..., }

sampleNX x x x= . In order to get appropriate 

interpolation results in different regions through the data 

characteristics of the initial sampling points, it is required to 

cluster these sampleN sampling points. In this work, the K-means 

unsupervised machine learning algorithm [7], [8] is used to 

classify these initial samples. This method calculates the 2-

norm of the E-field vector difference (i.e., Euclidean distance) 

between each sample value and the cluster center, and classifies 

the sample into a cluster corresponding to the minimum 

difference. Now, suppose that there are k  clusters, and the j-th 

cluster is marked as jC  (1 )j k   whose cluster center is 

 
1

j

j i

i Cj

c x
n 

=   (1) 

where jn  represents the number of samples in the j-th cluster 

jC . The procedure is repeated until the convergence is reached 

and the center is stable. Then calculates the sum of squares of 

errors (SSE) of all current clusters 

 
2

1 j

k

k i j

j i C

F x c
= 

= −  (2) 

Select different number of clusters k  and recalculate the jc  

and kF  values using (1) and (2), respectively. When the SSE 

curve has a significant inflection point at a certain k  value, the 

optimal k  is obtained. 

After getting the cluster classification, it is necessary to carry 

out appropriate interpolation based on the initial data 

characteristics inside the corresponding clusters. The main 

parameters for evaluating the data interpolation method include 

the distribution density and the variation rate of the samples. 

The sample distribution density can be determined by 

calculating the cell area of all initial sampling points under the 

Voronoi tessellation [7]. If adjacent sampling points have 

common cell walls and vertices, then the field intensity gradient 

between the points can represent the variation rate of the 

sampling data. 

The measurement region is discretized into Voronoi 

tessellation, so that each initial sampling point corresponds to a 

cell. Among these cells, the large one indicates that the area 

around the sampling point belongs to the under-sampling region. 

Thus, it is needed to increase the number of samples in this 

region. Each sampling point nx  ( 1,2,..., )samplen N=  has a cell 

area of ( )nA x , and the distribution density ( )nS x  near the 

sampling point nx  can be expressed as follows 

 
1 2

( )
( )

( ) ( ) ... ( )
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n

n

N

A x
S x

A x A x A x
=

+ + +
 (3) 

In order to calculate the gradient near the sampling point nx

, we first select the adjacent sampling point mx  that has 

common cell walls or vertices with the cell of the sampling 

point nx , and then calculate the field strength gradient between 

mx  and nx  
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where ( , )n mx xE  represents the absolute value of the field 

strength variation. The field strength gradient of other sampling 

points adjacent to nx  can be calculated in a similar way. The 

summation of the absolute values of all the gradients near nx  is 

denoted as ( )nB x  

 
( , )

1

( ) ( )
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m

B x E
=

=   (5) 

where sampleM  represents the total number of adjacent sampling 

points with common cell walls or vertices with nx . The 

normalized gradient parameter ( )nG x  is given as 
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 (6) 
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where ( )nG x  represents the overall normalized electric field 

gradient near the sampling point nx . A large ( )nG x  implies 

nx

 

Fig. 2.  Planar near-field interpolation method. 

that the electric field near the sampling point nx  varies greatly 

and belongs to a highly dynamic region, and, therefore, more 

interpolation data should be added to this area. On the contrary, 

a small ( )nG x  indicates a slowly varying region and the 

interpolation can be reduced. 

Combining the above two evaluation parameters ( )nS x  and 

( )nG x , the following overall evaluation parameters ( )nJ x  can 

be obtained 

 1 2( ) (1 ( )) (1 ( ))n n nJ x h S x h G x= + + +  (7) 

where 1h  and 2h  (satisfying 1 2 1h h+ = ) are the weighting 

coefficients of area and gradient parameters, respectively. If 

( )nJ x  is large, more interpolation data need to be added to this 

area. The values of 1h  and 2h  are adjusted according to the 

cluster classified by (1) and (2), that is, if ( )nG x  in a cluster is 

too large, then it means that the overall cluster belongs to a 

highly dynamic region, and it is difficult to select an under-

interpolated region from ( )nG x  in such a cluster. Therefore, in 

order to better judge whether more interpolation data needs to 

be added, 1h  can be increased in this cluster to get an area-

oriented evaluation criterion and get reasonable interpolation 

results. 

The deep and shallow interpolations are used in this work to 

interpolate the large and small cases of ( )nJ x . As shown in Fig. 

2, a deep interpolation gets 24 points (circle and fork) of the 

data around nx  on a uniform grid, while a shallow interpolation 

only needs to supplement the data of 8 points (circle) around 

nx . Since the initial dataset 1X  is incomplete, the accurate 

deep and shallow interpolation points should be acquired from 

a complete sampling dataset 2X  with a larger sampling 

interval, which is less time-consuming. Thus, by performing the 

above interpolation operation on the 1 1N N  uniform grid, the 

initial dataset 1X  can be extended to ( ) ( )1 12 1 2 1N N−  −  

uniform grid, and the number of the overall effective 

interpolated data 
1kN  satisfies 

( )( )
1 1 12 1 2 1Sample kN N N N  − − . 

In order to reduce the influence of truncation errors in the 

planar near-field test, the GP iterative algorithm [20], [21] is 

used to extrapolate the visible planar near-field region in order 

to improve the accuracy of the interpolated far-field pattern. To 

begin with, the interpolated planar E-field is transformed by a 

two-dimensional Fourier transformation to obtain the  
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Fig. 3.  Planar near-field scanning geometric parameters. 

corresponding plane-wave spectrum (PWS) 
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, ,
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where , ( , , )x yE x y d  is the planar electric field intensity after the 

process of (1)-(7) along the x  and y  directions at a distance 

d  from the antenna aperture, zjk de  transforms the observation 

plane from the scanning plane back to the antenna aperture， 

2 2 2

z x yk k k k= − − , 02 /k f c=  
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 (9) 

where 1,2,...,m M= , 1,2,...,n N= , M  and N  representing 

the number of Fourier transformation points along the x  and 

y  axes, x  and y  denoting the scanning intervals of the 

near-field plane that are smaller than half-wavelength. 

The scanning geometric parameters are shown in Fig. 3, 

where xL  and yL  are the length and width of the scanning 

plane 1S , respectively, xD  and yD  are the dimensions of the 

antenna aperture 2S , 1O  and 2O  are the centers of 1S  and 2S , 

respectively, arctan(( ) / 2 )x x xL D d = − , and 

arctan(( ) / 2 )y y yL D d = −  [27]. 

It can be known from [20], [21] that the far-field pattern 

derived from the truncated near-field scanning plane is reliable 

only in the region surrounded by rays passing through the edge 

of the antenna aperture and the scanning plane. The reliable 

region in the spatial domain is transformed into the 

wavenumber domain by Fourier transformation, and the region 

in the wavenumber domain can be defined by the following 

formula 

 

2 22 2

0 2 2 2 2( sin ) ( sin )

y yx x

x y

x y

k kk k
U

k k k k
 

 

      
= +   +    

      

 (10) 
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where x  and y  are the intersection angle of the reliable 

region (cf. Fig. 3); x  and y  should be greater than 1 in order 

to take more modes into account [21]. Thus, the data within 0U  

belong to the reliable data to be retained. Otherwise, the data 

need to be filtered out. Accordingly, the spectral filtering can  

1. Select a small number of initial sampling data set 

                                     on a uniform plane grid.

2. Select a complete set of uniform sampling data 

       to interpolate                                     . 

3. Use Eqs. (1) and (2) to determine the appropriate 

number of clusters and divide the initial sampling 

data                                      into different clusters.

4. Use Eqs. (3)-(7) to complete the appropriate 

deep/shallow interpolation in each cluster.

5. The interpolated data are substituted into (8)-(16) for 

iteration, and the appropriate iteration termination 

point is determined by(17)-(19).

6. The antenna pattern reconstruction result with 

interpolation and reduced truncation 

error is then obtained.

1 1 2{ , ,..., }
sampleNX x x x=

1 1 2{ , ,..., }
sampleNX x x x=

1 1 2{ , ,..., }
sampleNX x x x=

2X

 

Fig. 4.  Flow chart of the proposed method. 

be expressed as 

 
0

0

1, ( , )

0, ( , )

x y

R

x y

k k U
U

k k U


= 


 (11) 

The filtered spectrum can be obtained by combining the PWS 

of Eqs. (8) and (11) as 

  1 0

, ( ) , ,( , ) ( , ) ( , ) 1
R

n n

x y U x y R x y x y x y x y RP k k U P k k P k k U+ = + −  (12) 

where n  is the value of iteration times, 0

, ( , )x y x yP k k  is the 

initial PWS of Eq. (8). The E-field intensity on the antenna 

aperture can be derived by the inverse Fourier transformation 

 
( )1 1

, , ( )

1
( , ,0) ( , )

2

x y

R

j k x k yn n

x y x y U x y x yE x y P k k e dk dk


− ++ +=   (13) 

After the inverse Fourier transformation to the spatial domain 

is done, the sampled values outside the AUT aperture are set to 

zero and the remaining values inside the aperture are retained 

to realize the spatial filtering. Namely, the filtering in the spatial 

domain is defined as 

 
2

2

1, ( , )

0, ( , )
AUT

x y S
U

x y S


= 


 (14) 

Then the E-field on the antenna aperture after spatial filtering 

can be expressed as 

 1 1

, ( ) ,( , ,0) ( , ,0)
AUT

n n

x y U AUT x yE x y U E x y+ +=  (15) 

After the filtering of the wavenumber domain and spatial 

domain in Error! Reference source not found.-(15) is done, 

the E-field intensity on the antenna aperture should be 

transformed by the Fourier transformation to get the 

corresponding PWS 

 
( )' 1

, , ( )

1
( , ) ( , ,0)

2

x y

AUT

j k x k yn

x y x y x y UP k k E x y e dxdy


++=   (16) 

Next, , ( , )n

x y x yP k k  in Eq. Error! Reference source not 

found. is replaced by '

, ( , )x y x yP k k  to obtain the PWS with 

reduced truncation errors through multiple iterations. However, 

the above calculation processes need to be executed under a 

limited number of iterations, thus it is necessary to select an 

appropriate termination point. Since the different PWS 

components satisfy 

 ( )
1

( , ) ( , ) ( , )z x y x x y x y x y y

z

P k k P k k k P k k k
k

= − +  (17) 

Therefore, ' ( , )z x yP k k  can be obtained by substituting 

'

, ( , )x y x yP k k  into Eq. (17). Accordingly, the far-field pattern can 

be acquired by substituting the entire '

, , ( , )x y z x yP k k  into the 

following formula 

 
'

, , , ,( , ) cos ( , )
2

jkr

x y z x y z x y

e
E j k P k k

r
  



−

=  (18) 

where 0 r   , sin cosxk k  = , and sin sinyk k  = . 

It has been revealed in [20] that the initial value in the reliable 

region consists of both accurate and erroneous solution parts. 

After several iterations, the accurate solution gradually 

converges while the erroneous part diverges, causing the overall 

error to decrease at the beginning and then increase. In this work, 

the optimal iteration termination point is determined by 

comparing the difference of the far-field pattern energy 

corresponding to different sampling points under different 

iteration times. 

According to (17) and (18), Num -times iterations are 

performed on the planar near-field , ( , , )x yE x y d  and the 

number of interpolated data is 
1kN , the corresponding far-field 

is 
1

1

, , , 1( , ) , 1,...x y z nE n Num  = . Meanwhile, we extract 
2kN  

data from , ( , , )x yE x y d , and Num -times iterations are 

executed to get the far-field pattern 

2

2

, , , 2( , ) , 1,...x y z nE n Num  = . The difference of the far-field 

pattern energies under two datasets is expressed as 

 
1 2 1 2

2
1 2

( , ) , , , , , ,( , ) ( , ) sinn n x y z n x y z nE E E d d      = −  (19) 

For the near-field measurement in the same scanning plane, 

different data subsets have their own stable convergence points 
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after applying the same iterative process, that is, before the 

optimal convergence point, the accurate solution occupies the 

main component in the iterative result of (16), then the error 

component begins to increase gradually, and the minimum 

energy difference is obtained at the optimal termination point 

[20]. After finding the minimum energy difference 
1 2( , )n nE  of 

the first Num -times iterations, the current iteration numbers 

1n  and 2n  (with a minimum 
1 2( , )n nE ) are taken as the optimal  

1a

1b

1c

2c

2b 2a
 

Fig. 5.  Configuration of the AUT. 

TABLE I 

ANTENNA MODELING PARAMETERS 

Horn size/mm Waveguide size/mm 

1a  31.90 2a  8.00 

1b  27.90 2b  5.00 

1c  30.00 2c  10.00 

TABLE II 

MEANING OF EACH VARIABLES 

Variable Explanation 

1X  Initial randomly selected dataset to be interpolated 

2X  Basic dataset used to interpolate 1X  

3X  Dataset after the process of interpolation 

'

3X  Dataset after the process of GP algorithm 

4X  Complete sampling dataset used for comparison with 
'

3X  

5X , 6X  Subsets used to calculate the iteration termination point 

  

 (a) (b) 

Fig. 6.  Distribution of the planar E-field strength of (a) the initial dataset 1X  

and (b) the complete uniform dataset 2X . 

iteration termination points of 
1

1

, , , ( , )x y z nE    and 
2

2

, , , ( , )x y z nE  

, respectively. 

In order to elaborate on the steps of the proposed method, the 

processes of interpolation reconstruction and truncation error 

reduction are summarized in Fig. 4. It is known that more useful 

planar near-field data can be acquired by interpolating the 

incomplete initial sampling dataset, and the amount of data 

satisfies ( )( )
1 1 12 1 2 1Sample kN N N N  − − . Additionally, the 

proposed method makes the extrapolation through the GP 

algorithm in order to improve the accuracy of the solution in the 

reliable region and reduce the impact of the truncation errors. 

   

 (a)       (b) 

Fig. 7.  K-means clustering (a) L-curve (b) clustering result. 

 

Fig. 8.  Voronoi cell under deep and shallow interpolation classification. 

III. SIMULATIONS AND MEASUREMENTS 

Simulations and measurements are carried out in order to 

show the effectiveness of the proposed method. The full-wave 

simulations in this work are conducted using the commercial 

software FEKO.  

A. Simulations 

The FEKO model of the AUT is shown in Fig. 5, and the 

corresponding model parameters are listed in Table I. Table II 

shows the explanations of the datasets referred to in the 

following text in order to give clearer guidance. Without loss of 

generality, a working frequency of 30 GHz is chosen. The 

voltage amplitude on the waveguide port is normalized. The 

gain of the AUT is 18 dBi. The distance d  between the near-

field scanning plane 1S  and the antenna aperture 2S  is 5  

(where   denotes the wavelength). The sampling plane 1S  is 

uniformly meshed, and the grid intervals along the x  and y  

axes are x  and y , respectively. 

In order to obtain the initial sampling dataset 

1 1 2{ , ,..., }
sampleNX x x x= , the sampling interval is set to 

4x y =  =  mm resulting in a 41 41  uniform grid, and 750 
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sampling points are randomly selected on the grid as the initial 

sampling set 
1 1 2{ , ,..., }, 750

sampleN sampleX x x x N= = . The 

interpolation of the initial sampling points is executed on a 

complete basic dataset 2X . Therefore, the sampling interval is 

adjusted to 5x y =  =  mm and a 33 33  uniform basic 

dataset 2X  is obtained. The above process completes  

  

 (a) (b) 

Fig. 9.  Planar near-field strength distribution of (a) the interpolated dataset 3X  

and (b) the complete uniform dataset 4X . 

  

 (a) (b) 

 

(c) 

Fig. 10.  Comparison of the AUT radiation pattern after the interpolation 

including the (a) theoretical pattern, (b) 1X  NFT pattern, and (c) 3X  NFT 

pattern. 

steps 1 and 2 in Fig. 4.  

Figs. 6(a) and (b) show the planar E-field strength 

distributions of the initial sampling dataset 1X  and the uniform 

grid dataset 2X , respectively. The data clustering is performed 

following step 3 in Fig. 4. 1X  is classified by the K-means 

method using Eqs. (1) and (2), and the cluster number k  varies 

from 1 to 9. The SSE associated with each k  value is calculated 

to obtain the L-curve (elbow curve) shown in Fig. 7(a). As can 

be seen in the L-curve, when 5k = , the overall SSE has a 

significant inflection point, and the subsequent values tend to 

be stable. Therefore, the optimal cluster number is 5k = . 

Correspondingly, 1X  is classified into 5 categories and the 

clustering results are shown in Fig. 7 (b). 

After the clustering results are obtained, we calculate the 

corresponding Voronoi cells for all sampling points of 1X , and 

the cell division results are shown in Fig. 8. The area and 

gradient of each cell are calculated according to Eqs. (3)-(6). 

In the highly dynamic regions, such as the yellow and orange 

areas in Fig. 7(b), the weight of 1h  in Eq. (7) should be 

increased in order to better classify the deep and shallow  

  

 (a) (b) 

Fig. 11.  Comparison of the AUT radiation pattern after the interpolation in (a) 

E-plane and (b) H-plane. 

   

 (a) (b) 

Fig. 12.  Normalized far-field energy difference between (a) 3X  and 5X ; (b) 

3X  and 6X . 

interpolation regions. By judging the cell parameters of each 

sampling point in 1X , the deep and shallow interpolation 

regions are determined and marked by dark color (cell core is 

red) and light color (cell core is blue) respectively, as shown in 

Fig. 8. 

Using the interpolation method shown in Fig. 2, the initial 

dataset 1X  is linearly interpolated with the basic dataset 2X , 

and the extended dataset 3X  is obtained consequently. The 

interpolation process is executed in MATLAB. The new dataset 

3X  has 6249 effective sampling points, i.e. 
1

6249kN = . 

Meanwhile, all the points of 3X  are arranged on the 81 81  

uniform grid, where the empty grid is set to the mean values of 

its closest 8 points. Then 3X  becomes a 81 81  array. Finally, 

Fig. 9(a) can be obtained where the Voronoi cells and cell cores 

are also displayed. By observing the results, it can be seen that 

most grid points have corresponding interpolation data of 3X . 

Only a few discrete points lack interpolation data, but this has 

little impact on the reconstruction effectiveness of the AUT 

pattern. In order to compare with the result of 1X  after the 

process of interpolation and GP algorithm, x  and y  is reset 

to 2 mm in FEKO to acquire the 81 81  uniform sampling 

dataset 4X , whose planar E-field strength is shown in Fig. 9(b). 
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In order to show the effectiveness of the interpolation method, 

the near-to-far-field transformation (NFT) pattern of 3X  

should be compared with the theoretical AUT pattern. Fig. 10 

shows the three-dimensional (3D) theoretical pattern, 1X  NFT 

pattern and 3X  NFT pattern. It can be seen that the 

interpolation process adds more accurate data to the initial  

  

 (a) (b) 

Fig. 13.  Comparison of the AUT radiation pattern after the GP algorithm 

including the (a) 4X  NFT pattern, and (b) 
'

3X  NFT pattern. 

  

 (a) (b) 

Fig. 14.  Comparison of the AUT radiation pattern after the GP algorithm in (a) 

E-plane and (b) H-plane. 

dataset 1X , and the interpolated result 3X  has a better 

accuracy than the 1X . Fig. 11 shows the E-plane and H-plane 

of the patterns in Fig. 10. It can be known that the interpolation 

method increases the number of effective data in 1X  and the 

reconstruction accuracy, but the truncation errors need to be 

further improved by GP algorithm. 

Next, we uniformly extract the 33 33  and 41 41  planar 

near-field data subsets from 3X , which are recorded as 5X  and 

6X , respectively. According to steps 5 and 6 in Fig. 4, 3X , 5X  

and 6X  should be iterated, and the normalized far-field energy 

differences between 3X  and 5X , and 3X  and 6X  are 

obtained by Eq. (19), as shown in Figs. 12(a) and (b). The 

horizontal coordinate represents the iteration times of 3X , 

while the vertical coordinates of Figs. 12(a) and (b) represent 

the iteration times of 5X  and 6X , respectively. 

By searching the minimum 
1 2( , )n nE  of the 35-times iterations, 

it can be found that the optimal iteration termination point for 

the dataset 3X  is 20. In addition, by comparing the far-field 

energy iteration differences corresponding to different data 

subsets of 3X  in Figs. 12(a) and (b), it can be seen that Eq. (19) 

can effectively find the minimum far-field energy difference 

between 3X  and the other two subsets, and the iteration 

termination point of 3X  is relatively stable. 

Finally, the planar near-field data 3X  after 20 iterations is 

recorded as 
'

3X , and then the reconstructed AUT pattern is 

obtained by the NFT algorithm. Fig. 13 shows the NFT pattern 

of the dataset 4X  and the reconstructed dataset 
'

3X , where  

  

 (a) (b) 

Fig. 15.  The normalized radiation pattern errors between theoretical pattern and 

(a) 4X  NFT pattern (b) 
'

3X  NFT pattern. 

 

Fig. 16.  The planar near-field measurement environment. 

1 = = . The antenna gain of the reconstructed 
'

3X  is 16.8 

dBi. Meanwhile, the E-plane and H-plane of the theoretical 

pattern, 4X  NFT pattern and 
'

3X  NFT pattern are drawn in 

Fig. 14, where the theoretical pattern is the same as Fig. 10(a). 

Comparing the results in Figs. 10, 11, 13 and 14, it can be 

seen that the initial sampling dataset 1X  with 750 points cannot 

characterize all the E-field strength of the AUT, which 

consequently is very different from the theoretical pattern. 

Besides, after the process of interpolation and GP algorithm, the 
'

3X  NFT pattern has a better improvement in truncation error 

than the 3X  NFT pattern, and has good consistency with the 

theoretical pattern, as shown in Figs. 11 and 14. 

Moreover, Fig. 15 shows the entire normalized far-field 

energy errors between the theoretical pattern of Fig. 10(a) and 

the NFT pattern of datasets 4X  and 
'

3X  of Figs. 13(a) and (b), 

respectively. The results clearly reveal that the far-field pattern 

of the AUT after the interpolation and GP iterative processes 

has less errors and better consistency with the theoretical value. 

B. Measurements 

In this section, the method described in this paper is verified 

in the planar near-field test environment shown in Fig. 16. The 

horn antenna with the gain of 15.5 dBi is selected as AUT1, the 

working frequency is 4.5 GHz and the distance between the 
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scanning plane and the antenna aperture is 5 . The horn 

aperture size is 11.9 cm   16.8 cm. The scanning interval is set 

to 21.6x y =  =  mm, and collect 400 initial sampling data 

under the 31 31  uniform grid as 1X . Readjust the scanning 

interval to 32.5x y =  =  mm and acquire a complete 21 21   

  

 (a) (b) 

Fig. 17.  Distribution of the measured planar E-field strength of (a) the initial 

dataset 1X  and (b) the complete uniform dataset 2X . 

   

 (a) (b) 

Fig. 18.  Measured K-means clustering (a) L-curve (b) clustering result. 

 

Fig. 19.  Voronoi cell under deep and shallow interpolation classification. 

basic dataset 2X . The near-field sampling results are shown in 

Fig. 17. The L-curve of 1X  is shown in Fig. 18(a), and the 

clustering result with 5k =  is shown in Fig. 18(b). 

The Voronoi cells classification is shown in Fig. 19. The 

interpolated new dataset 3X  (Fig. 20(a)) has 3551 effective 

sampling points. The dataset 4X  (Fig. 20(b)) with 61 61  grid 

points is acquired by setting the sampling interval to 

10.8x y =  =  mm.  

The 3D comparison of the theoretical pattern, 1X  NFT 

pattern and 3X  NFT pattern is shown in Fig. 21, where the 

theoretical far-field is the NFT pattern measured in the multi-

probe anechoic chamber (AC), which can be less affected by 

the truncation errors. The E- and H-plane of the radiation 

patterns in Fig. 21 are shown in Fig. 22. From the results, it is 

clear that the interpolation method can increase the effective 

data and get a well-reconstructed pattern of 3X . 

  

 (a) (b) 

Fig. 20.  The measured AUT1 planar near-field strength distribution of (a) the 

interpolated dataset 3X  and (b) the complete uniform dataset 4X . 

  

 (a) (b) 

 

(c) 

Fig. 21.  Comparison of the measured AUT1 radiation pattern after the 

interpolation including the (a) theoretical pattern, (b) 1X  NFT pattern, and (c) 

3X  NFT pattern. 

  

 (a) (b) 

Fig. 22.  Comparison of the measured AUT1 radiation pattern after the 

interpolation in (a) E-plane and (b) H-plane. 

After the interpolation process, the GP algorithm needs to be 

executed to reduce the truncation errors. Datasets 5X  and 6X  

are uniformly extracted from 3X , and the normalized far-field 

energy differences are shown in Figs. 23(a) and (b). The optimal 
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number of the iterations of 3X  is 18.  

The planar near-field data 3X  after 18 iterative operations is 

recorded as 
'

3X , and Fig. 24 shows the 3D 4X  NFT pattern and 

'

3X  NFT pattern. The reconstructed antenna gain is 13.2 dBi.  

 

 (a) (b) 

Fig. 23.  The normalized far-field energy difference between 3X  and (a) 5X  

(b) 6X .  

  

 (a) (b) 

Fig. 24. Comparison of the measured AUT1 radiation pattern after the GP 

algorithm including the (a) 4X  NFT pattern, and (b) 
'

3X  NFT pattern. 

  

 (a) (b) 

Fig. 25.  Comparison of the measured AUT1 radiation pattern after the GP 

algorithm in (a) E-plane and (b) H-plane. 

Fig. 25 shows the E-plane and H-plane of the theoretical 

pattern (Fig. 21(a)), 4X  and 
'

3X  NFT patterns. Fig. 26 shows 

the entire normalized far-field energy errors between Fig. 21 (a) 

and Figs. 24 (a) and (b) respectively. Through the results, it can 

be known that there are smaller errors between the NFT pattern 

of 
'

3X  and the theoretical one. 

In order to show the effectiveness of the proposed method for 

the AUT with higher gain and smaller size, we select an antenna 

with a gain of 20 dBi and aperture size of 10.6 cm   13.6 cm 

as AUT2. The testing frequency is set to 8.6 GHz, and the 

distance between the sampling plane and aperture is 5 . The 

interval x  and y  are both set to 17 mm, 11.3 mm and 5.7 

mm to form the 21 21 ( 2X ), 31 31  and 61 61 ( 4X ), 

datasets, respectively, and we select 400 samples from the 

31 31  grid to acquire 1X , as shown in Fig. 27. After the 

processes of the proposed method,  
'

3X  can be derived. Since 

the 8.6 GHz is out of the frequency testing range in the multi-

probe AC, then the far-field pattern of AUT2 is acquired in the 

planar far- 

  

 (a) (b) 

Fig. 26.  The measured normalized radiation pattern errors between theoretical 

pattern and (a) 4X  NFT pattern (b) 
'

3X  NFT pattern. 

  

 (a) (b) 

Fig. 27.  The measured AUT2 planar near-field strength distribution of (a) the 

interpolated dataset 3X  and (b) the complete uniform dataset 4X . 

  

 (a) (b) 

Fig. 28.  Comparison of the measured AUT2 radiation pattern after the 

interpolation and GP algorithm in (a) E-plane (b) H-plane. 

field system. Therefore, the comparison of 3D radiation pattern 

is omitted here and the E-plane and H-plane are shown in Fig. 

28. The reconstructed antenna gain is 17 dBi. From the 

measurement results, it is obvious that the proposed method can 

effectively reconstruct the AUT2 pattern with a small number 

of initial samples, and the truncation errors can also be reduced 

when compared with the 4X  having the same grid interval.  

C. Discussions 

1) Error Analysis 

In order to further discuss the accuracy of the proposed 

method, we use the following relative errors to show the 

difference between the theoretical pattern and the reconstructed 

pattern 
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where 0 ( , )E    and ( , )reconE    are the theoretical and  

TABLE III 

RELATIVE ERRORS OF E-PLANE AND H-PLANE 

Figure Items Value Items Value 

Fig. 11 
1,ED  8.09% 1,HD  11.81% 

2,ED  6.67% 2,HD  2.86% 

Fig. 14 
3,ED  4.81% 3,HD  2.45% 

4,ED  4.21% 4,HD  2.43% 

Fig. 22 

'

1,ED  17.45% 
'

1,HD  22.03% 

'

2,ED  10.04% 
'

2,HD  11.96% 

Fig. 25 

'

3,ED  8.40% 
'

3,HD  10.95% 

'

4,ED  6.99% 
'

4,HD  11.49% 

Fig. 28 

''

3,ED  18.15% 
''

3,HD  13.53% 

''

4,ED  15.04% 
''

4,HD  12.20% 

  

 (a) (b) 

Fig. 29.  Distribution of the planar E-field strength of (a) the basic dataset 2X  

and (b) the interpolated dataset 3X . 

reconstructed patterns in E-plane and H-plane. Here we 

calculate the pattern errors in Figs. 11, 14, 22, 25 and 28, and 

the results are shown in Table III. The subscripts E  and H

represent the errors in E-plane and H-plane. The subscript 1-4 

represent the errors between the theoretical pattern and 1X , 

3X , 4X , and 
'

3X  NFT pattern, respectively. Each two rows 

correspond to the pattern errors of E-plane and H-plane in one 

figure, and the figure number is shown in the first column. 

From the results, it can be concluded that the interpolation 

method can effectively increase the useful data of 1X  and 

improve the accuracy of the NFT pattern (see the comparison 

of 1D , 2D , 
'

1D  and 
'

2D  in E- and H-plane). Besides, after the 

process of the GP algorithm, the entire truncation errors are 

decreased and the NFT of 
'

3X  is well consistent with the 

theoretical one (see the comparison of 3D , 4D , 
'

3D , 
'

4D , 
''

3D  

and 
''

4D  in E- and H-plane). Thus, the proposed method can 

effectively reconstruct the AUT NFT pattern with good 

accuracy. 

More importantly, in the measurement process, the overall 

measurement time of 4X  is 3 hours, while the time costs of 2X  

and 1X  are 0.5 and 1 hour, respectively. Therefore, the 

proposed method not only reduces the number of initial 

samples, but also decreases the entire measurement time 

consumption, indicating that the proposed method is well 

efficient and practical. 

  

 (a) (b) 

Fig. 30.  Comparison of the AUT radiation pattern after the interpolation in (a) 

E-plane and (b) H-plane. 

  

 (a) (b) 

Fig. 31.  Comparison of the AUT radiation pattern after the GP algorithm in (a) 

E-plane and (b) H-plane. 

  

 (a) (b) 

Fig. 32.  Comparison of the AUT radiation pattern after the interpolation and 

GP algorithm in (a) E-plane and (b) H-plane. 

2) Sampling Method 

In this work, we assume that the initial dataset 1X  is not 

completely sampled on a uniform grid due to arbitrary data 

failure and measurement restriction (e.g., mechanical arm 

movement range and test accuracy). This assumption accounts 

for a more general and complex measurement situation, since 

the random selection can simulate a much worse case of the 

sampling loss and data storage failure. However, the sampling 

method of 1X  and 2X  is not strictly limited to a specific form 

of random, uniform, or large-interval (larger than / 2 ) 

sampling method. Here, we add two more cases to illustrate the 

effectiveness of the proposed method with randomly selected 

2X  and the necessity of the basic dataset 2X . 

First, we use the same simulation model in Fig. 5, and the 
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dataset 2X  is randomly selected on the 33 33 uniform grid. 

The total number of the selected samples of 2X  is 700, and the 

planar E-field strength of 2X  is shown in Fig. 29(a). Using the 

proposed interpolation method, the interpolated result ( 3X ) of 

1X  is shown in Fig. 29(b). After the process of the GP 

algorithm, 
'

3X  can then be acquired. Figs. 30 and 31 show the 

E-plane and H-plane of 3X  and 
'

3X  NFT pattern, compared 

with the theoretical pattern, 1X  and 4X  NFT pattern. The 

relative errors 2,

r

ED  and 
2,

r

HD  in Figs. 30(a) and (b) are 6.98% 

and 3.83%; 
4,

r

ED  and 
4,

r

HD  in Figs. 31(a) and (b) are 4.61% and 

3.17% (the meaning of the subscript is the same as that in Table 

III). From the comparisons of Figs. 11, 14, 30, 31, and the 

relative errors, it can be known that the randomly selected 2X  

can effectively supplement the useful data in 1X , and the 

reconstructed AUT pattern is in good agreement with the 

theoretical one.  

Then, we use 1X  to realize self-interpolation, and the E-

plane and H-plane of the NFT results after the interpolation and 

GP algorithm can be derived as Fig. 32. When compared with 

Figs. 11, 14, 30, and 31, it is obvious that the effectiveness and 

performance of the self-interpolation method is not as good as 

the proposed method with a random or complete sampling of 

2X . 

The above results reveal that: When 1X  and 2X  are both 

used in the random selection method, the two datasets are in 

different sampling intervals containing different values with 

different precisions, then 2X  can add more additional useful 

data to the initial dataset 1X . If 1X  is interpolated by itself, 

then it is hard to supplement more useful data when the data 

loss is severe (i.e., the number of the initial samples of 1X  is 

too small). Therefore, 2X  is of great importance to the 

supplementation of useful data of 1X  and the effectiveness of 

the proposed method. 

Notably, from the perspective of the stability of the 

measurement system, the stability is influenced by different 

factors, including whether the calibration within the testing 

frequency range of the vector network analyzer (VNA) is 

accurate enough, whether the software of the control computer 

is compatible with the control of the signal source and 

mechanical arm (i.e., acquisition issue), whether the interface 

between the GUI and background processing program is robust, 

etc. Accordingly, on the one hand, if the measurement of AUT 

is complicated, then the increase in the sampling number, time 

cost, and data storage will raise the burden of the system for 

data sampling and processing, leading to a higher probability of 

instability and data loss. Thus, in this case, the complete 

sampling of the smaller number of 2X  is easier to be realized 

than 1X , and the selection of complete sampling of 2X  and 

random data loss of 1X  is more suitable and reasonable. On the 

other hand, if the system has poor robustness, the random 

sampling (representing random data loss) of 1X  and 2X  is 

more reasonable, and the effectiveness of the proposed method 

under this circumstance is verified, as shown in Figs. 29-31. 

What is more, in order to enlarge the reliable region and 

improve the side lobes of the AUT, the near-field scanning area 

should be enlarged. Thus, when the working frequency of the 

AUT is increased, the number of the entire samples should be 

significantly increased and the measurement time of the initial 

dataset 1X  and the basic dataset 2X  is also increased. 

Therefore, although the proposed method performs well in 

different working frequencies, the measurement time and 

accuracy should be comprehensively considered when applying 

for the AUT with a higher gain or wider frequency range. 

IV. CONCLUSION 

This paper combines the clustering interpolation method with 

a small number of initial sampling points and the GP iterative 

algorithm for planar near-field measurements. The proposed 

planar near-field measurement method can reduce the number 

of initial samples, and acquire more appropriate regional data 

through clustering and interpolation. Notably, the practicability 

of the randomly selected method for the initial dataset has been 

verified in [7], and the random selection can also have a good 

effect on reducing the time cost of the current source 

reconstruction process [7], [15]. What’s more, using the random 

sampling method to simulate the complex and unexpected data 

failure and measurement restriction is more reasonable and 

practical when compared with some specific even sampling 

method. In this way, the entire sampling time can be 

significantly reduced. Besides, the simulated and measured 

results reveal that the iterative algorithm can effectively 

decrease the influence of truncation errors on the interpolated 

planar measurement results. Consequently, the proposed 

method can reduce the measurement time to one-third of that of 

the conventional planar near-field measurement with equally 

good accuracies. 
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