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Abstract. We apply the Local Composite Operator method to construct the three loop effective
potential for the dimension two operator 1

2A
a
µ

2 in the Landau gauge in Quantum Chromody-
namics. For SU(3) we show that the three loop value of the effective mass of the gluon is similar
to the two loop estimates when the number of massless quarks is strictly less than five for SU(3).
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1 Introduction.

In the last quarter century it has become accepted that the behaviour of the Landau gauge
gluon propagator in Quantum Chromodynamics (QCD), as computed on the lattice, is not of
the fundamental form, [1, 2, 3, 4, 5, 6, 7, 8, 9]. In other words it differs from that of the
photon in Quantum Electrodynamics which has a massless pole with respect to the momentum.
Instead the gluon propagator is bounded with no singularity at any momentum and moreover
freezes to a non-zero value. In the high energy limit, if p is the momentum, then the propagator
has a 1/p2 asymptotic behaviour which is consistent with the Lagrangian construction that
gluons behave as effectively free particles analogous to a non-abelian massless photon. That
the gluon propagator freezes at zero momentum indicates that some non-zero mass scale is
associated with the infrared properties of the field. This is loosely termed a gluon mass but
not because one can identify an isolated state with a massive fundamental field. Clearly the
presence of such a mass scale, as opposed to a canonical mass, requires further understanding
from a theoretical point of view. There has been substantial progress to this end since the early
lattice observations of [1] and subsequent confirmations. See, for example, [2, 3, 4, 5, 6, 7, 8, 9].
One prior idea centred on Gribov’s observation, [10], that to globally uniquely fix a covariant
gauge in a non-abelian gauge theory such as QCD requires a restriction on the path integral,
[10]. In the Landau gauge this introduces a mass scale, the Gribov mass, that satisfies a gap
equation equating it to a non-perturbative function of the coupling constant. The fundamental
structure of the gluon propagator is modified as well. At large momenta it behaves like the
propagator of a massless field with a 1/p2 asymptote. By contrast at low momenta the non-zero
Gribov mass modifies the propagator in that it is bounded with no singularity and vanishes
at zero momenta. Evidently this is out of line with the low momenta lattice results. Several
modifications to Gribov’s construction have been introduced such as Zwanziger’s programme to
localize the Gribov operator to produce a local renormalizable Lagrangian, [11, 12, 13, 14, 15,
16, 17, 18, 19, 20, 21], that involves additional spin-1 ghost fields. While this maintained the
suppressed gluon propagator in the infrared it was the foundation for a subsequent extension.
A dimension two gluon mass operator was also included and studied at length in [22, 23, 24].
The localized Gribov-Zwanziger Lagrangian with the extra operator is also renormalizable. In
this particular modification of the Gribov construction various composite operators of the fields
can develop non-zero vacuum expectation values. Consequently for certain configurations the
resulting gluon propagator was much more in line with lattice data in that they froze to a
non-zero finite value.

The idea of treating the QCD Lagrangian by appending a simple gluon mass operator without
spontaneous symmetry breaking predates Gribov’s seminal work. In the mid-1970s Curci and
Ferrari, [25], investigated a nonlinear gauge fixing of Yang-Mills theory where a BRST invariant
dimension two gluon and ghost mass operator was included. This idea fell out of fashion for a
while due to the loss of nilpotency of the BRST charge, [26, 27, 28, 29, 30, 31, 32, 33, 34]. More
recently there has been a revival of interest in the model and a gluon mass term. For instance,
it was shown in [35, 36, 37, 38, 39] that one could connect the mass parameter of the gluon
with Gribov copies that arise in the global gauge fixing, [10]. In other words one can interpret
the mass as an extra gauge parameter reflecting the effect of the copies so that the infrared
properties of Yang-Mills theory could be described by a Lagrangian with a gluon mass term.
This perspective was tested out at one loop in [37, 40, 41] where the gluon mass model was
used to calculate the gluon propagator analytically and then fitted to lattice data. There was
a reasonable quantitative agreement over virtually all momenta. The inclusion of the two loop
corrections was carried out in [42] with a perceptible improvement on the one loop fit over all
momenta. This lends support to the idea that a massive gluon could be a useful tool to model
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infrared phenomena in QCD. One observation was that the mass was of the order of 350 MeV.
This was not inconsistent with recent estimates of the mass gap such as fitting models of the
gluon propagator to lattice data, [43], or via functional renormalization group ideas, [44]. Indeed
the former article also suggested that a running gluon mass might be sufficient to circumvent
the problem of Gribov copies. That such a consistent mass scale emerges in Yang-Mills theory
or QCD from different techniques provides evidence that this is a particular infrared property.

While a two loop analysis was carried out in [42] if it is accepted that there is a gluon
mass scale then the various Lagrangian field theory approaches ought to be refined by extending
them to three loops. However computing the three loop corrections to the gluon propagator in
a model with a massive gluon over all momenta along the lines of [42] is not currently possible
on technical grounds. For instance, the three loop massive 2-point master Feynman integrals
are not available analytically for all momenta. Their values are necessary for the final stage in
applying the Laporta algorithm, [45], which is the main programme for evaluating the various
2-point functions. Instead, as an alternative approach to gain three loop insight, it is possible
to study the effect of three loop corrections on the gluon mass gap by another technique. In
[46] a method was developed and subsequently refined, [47], to compute the effective action and
associated effective potential of dimension two operators in a quantum field theory. Termed
the Local Composite Operator (LCO) method it was used at one and two loops in [46, 47] to
study the SU(N) Gross-Neveu model, [48]. Although this is a two dimensional renormalizable
theory it shares various properties with QCD that include asymptotic freedom, dynamical mass
generation and the existence of a mass gap, [48]. In the Gross-Neveu model the latter has
a significant property in that the N dependence of the mass gap is known exactly, [49, 50],
providing a way to benchmark the LCO method. Indeed the mass estimates determined in
[46, 47] were in close agreement with the exact mass gap expression for a large range of N .
Buoyed by this observation the LCO method was applied to Yang-Mills theory at two loops in
[51] and later to QCD, [52], at the same order. The gluon mass estimates given in [51, 52] were
roughly 2ΛMS where the definition of the effective mass was the vacuum expectation value of
the scalar colour singlet field that arises as part of the LCO formalism. As the mass gap value
of [51, 52] in the early 2000s predated more recent estimates it was difficult then to assess its
consistency with other approaches.

Given the recent interest in gluon mass determinations from the lattice, functional renor-
malization group method and other approaches such as the Schwinger-Dyson technique, it is
the purpose of this article to extend the LCO analysis of Yang-Mills theory and QCD to three
loops. To be able to go to this loop order has become possible now with advances in techniques
to evaluate high order Feynman integrals. For instance, we will make use of the Forcer al-
gorithm, [53, 54], as well as the Laporta algorithm, [45], to respectively evaluate the four and
three loop Feynman integrals that are necessary to construct the three loop effective potential of
the dimension two gluon mass operator or equivalently the colour singlet scalar that condenses
to produce the gluon effective mass. The advantage of the LCO method is that it provides
a quantum field theoretic foundation. By this we mean that the effective potential satisfies
a homogeneous renormalization group equation and the effective action is linear in the source
field associated with the colour singlet scalar, [46, 47, 51]. This leads to an effective potential
with a well-established energy interpretation, [46, 47, 51], that means a well-defined mass can
be extracted from the absolute minimum of the potential which is not the perturbative one.
Moreover the underlying Lagrangian, which is modified by the presence of the colour singlet
scalar, is renormalizable. Once the effective potential has been computed at three loops for an
arbitrary colour group, we will extract estimates for the effective gluon mass. The definition
of the mass we propose to use here will differ from that of the earlier studies of [51, 52] which
simply involved the vacuum expectation value of the scalar field. Instead we will define the
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mass as the coefficient of the gluon mass operator in the LCO derived Lagrangian in the non-
perturbative vacuum. It will turn out that mass gap estimates derived with this definition will
be more stable with respect to loop corrections as well as more in keeping with values deduced
by other methods.

The article is organized as follows. We recall the formal aspects of the LCO method in Section
2 in the Yang-Mills theory context including the derivation of the modified Lagrangian. Section
3 is devoted to the computation of the three loop effective potential that includes the calculation
of the underlying fundamental LCO parameter from the evaluation of a four loop massless 2-
point function. Aspects of the renormalization of the LCO Lagrangian are also discussed in
Section 3. The three loop effective potential is analysed in Section 4 for both SU(2) and SU(3)
for a range of quark flavours which lead to estimates of the effective gluon mass. Concluding
remarks are provided in Section 5 with an Appendix recording expressions for all the relevant
perturbative quantities needed to determine the potential, as well as the potential itself, for a
general colour group.

2 Formalism.

We devote this section to reviewing the basics of the LCO method as applied to QCD, [51, 52],
in the Landau gauge. By way of introducing conventions we recall the QCD Lagrangian is

Lo = − 1

4
GaoµνG

aµν
o − 1

2αo
(∂µAaoµ)2 − c̄ao∂

µDoµc
a
o + iψ̄iIo D/oψ

iI
o (2.1)

where the index ranges are 1 ≤ i ≤ Nf , 1 ≤ a ≤ NA and 1 ≤ I ≤ Nc, Nf is the number of
massless quarks, NA is the dimension of the adjoint representation and Nc is the number of
colours or equally the dimension of the fundamental representation. All entities in (2.1) are bare
as denoted by the subscript o. The field strength and covariant derivatives are

Gaµν = ∂µA
a
ν − ∂νA

a
µ − gfabcAbµA

c
ν

Dµc
a = ∂µc

a − gfabcAbµc
c , Dµψ

iI = ∂µψ
iI + igT aIJA

a
µψ

iJ (2.2)

where g is the gauge coupling constant. Although we have included the gauge parameter α in
(2.1) it will henceforth be set to the Landau gauge value of zero in all subsequent calculations.
We focus on this particular gauge since it is the one that has been most widely studied over many
years, using lattice field theory and Schwinger-Dyson methods, meaning that the gluon mass has
been estimated in it more than any other gauge. Having recalled the core QCD Lagrangian we
now focus on the incorporation of the dimension 2 operator O = 1

2A
a
µ

2 into the LCO formalism.
This is achieved by considering the path integral where the operator is included with a source
J leading to the additional term JO in the Lagrangian which will then have an associated path
integral generating functional W [J ]. Therefore the starting point to treat O in the LCO method
is given by the functional, [51],

e−W [Jo] =

∫
DAµoDψoDψ̄oDcoDc̄o exp

[∫
ddx

(
Lo −

1

2
JoA

a 2
oµ +

1

2
ζoJ

2
o

)]
(2.3)

where everything is expressed in terms of bare quantities. In addition to the linear source term
there is a quadratic one. This is necessary to ensure renormalizability which can be seen in several
ways. The simplest is through dimensional analysis, [51, 52]. As the gluon field has dimension 1
then J has dimension 2 and therefore a quadratic term in J is necessary in four dimensions. If
such a term was not present then the correlation function of J , which is clearly divergent, would
not have an available counterterm to allow the consistent redefinition of the bare Lagrangian in
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terms of renormalized variables. Separately the additional parameter ζ has been introduced in
order to ensure that the renormalization group equation for W [J ] is homogeneous, [46, 47, 51].
The actual form of the renormalized parameter will be calculated later via the renormalization
group construction and will be a perturbative function of the coupling constant, [46, 47, 51].

As the bare Lagrangian Lo has already been given the renormalized quantities are defined
in the canonical way by

Aaoµ =
√
ZAA

a
µ , c̄ao =

√
Zcc

a , ψiIo =
√
Zψψ

iI

go = µεZgg , αo =
ZA
Zα

α (2.4)

where µ is the scale introduced to ensure the coupling constant remains dimensionless in dimen-
sional regularization in d = 4 − 2ε, which we use throughout, and the source renormalization is
achieved via, [46, 47, 51],

Jo =
Zm
ZA

J , ζoJ
2
o = (ζ + δζ) J2 . (2.5)

The quantity δζ should be regarded as a counterterm and Zm is the renormalization constant
associated with the renormalization of the dimension two operator O or equivalently the gluon
mass. Consequently we have

e−W [J ] =

∫
DAµDψDψ̄DcDc̄ exp

[∫
ddx

(
L − 1

2
ZmJA

a 2
µ +

1

2
(ζ + δζ)J2

)]
. (2.6)

for the generating functional for J in terms of renormalized quantities.

Next we recall the procedure to find ζ as an explicit function, [46, 47, 51]. This will be
achieved from the renormalization group properties of W [J ] which satisfies[

µ
∂

∂µ
+ β(a)

∂

∂a
− γm(a)

∫
x
J
δ

δJ
+ µ

∂ζ

∂µ

∂

∂ζ

]
W [J ] = 0 (2.7)

where we have set a = g2/(16π2). From (2.5) we can deduce that

µ
∂ζ

∂µ
= 2γm(a)ζ + δ(a) (2.8)

where δ(a) is in effect the anomalous dimension of J and is determined from the counterterm
via, [46, 47, 51],

δ(a) =

[
2ε + 2γm(a) − β(a)

∂

∂a

]
δζ (2.9)

in order for W [J ] to satisfy a homogeneous renormalization group equation, [46, 47, 51]. As
it stands presently this renormalization group function follows from the standard procedure
for treating bare parameters in a renormalizable theory. In the context of the LCO method
the origin of the δζ counterterm is due to the requirement of the quadratic term in J for
renormalizability since the 2-point correlation function of J is divergent. This implies that
W [J ] is not linear in the source which would rule out an energy interpretation for the action
after a Legendre transformation. Equally the parameter ζ is undetermined at this point. To
resolve this, [46, 47, 51], ζ is chosen to be the solution of the first order differential equation

β(a)
∂ζ(a)

∂a
= 2γm(a)ζ(a) + δ(a) . (2.10)
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In other words the running of ζ(a) is determined from that of the coupling constant. If one
examines the a dependence of the various known expressions in (2.10) we note that β(a) = O(a2),
γm(a) = O(a) and δ(a) = O(1) implying the leading term of ζ(a) has to be O(1/a). Therefore
one formally solves (2.10) perturbatively using the ansatz

ζ(a) =
∞∑

n=− 1

cna
n (2.11)

which produces a unique function of the coupling constant leading to the homogeneous renor-
malization group equation for W [J ], [46, 47, 51],[

µ
∂

∂µ
+ β(a)

∂

∂a
− γm(a)

∫
x
J
δ

δJ

]
W [J ] = 0 . (2.12)

The main consequence of this is that ∆, given by

∆ =
δW [J ]

δJ
, (2.13)

has a well-defined vacuum expectation value and its effective action follows from

Γ[∆] = W [J ] −
∫
x
J∆ . (2.14)

Consequently the effective action satisfies[
µ
∂

∂µ
+ β(a)

∂

∂a
+ γm(a)

∫
x

∆
δ

δ∆

]
Γ[∆] = 0 (2.15)

which is the standard formal renormalization group equation.

In order to determine the effective action and thereby the effective potential we need to
compute W [J ] and execute the inversion (2.14). For the case when W [J ] is linear in J this is
straightforward but for the present case the dependence on J is quadratic. The LCO method
bypasses this difficulty for O by introducing a Hubbard-Stratonovich transformation that intro-
duces a purely scalar colour singlet field σ. Within the path integral this is effected by including
unity in a redundant way, [46, 47, 51], via

1 =

∫
Dσ exp

(
−
[
b1σ + b2A

a 2
µ + b3J

]2)
. (2.16)

The free parameters bi are chosen in such a way as to cancel off the quadratic term in J2 and
the interaction of J with the gluon. In the exponent of the integrand in (2.16) there will be six
terms but two of these will be cancelled by choices of b2 and b3 leaving four terms. One of these
terms will be linear in J and σ allowing b1 to be fixed so that the new expression for W [J ] takes
the form

e−W [J ] =

∫
DAµDψDψ̄DcDc̄Dσ exp

[∫
ddx

(
Lσ − σJ

g

)]
. (2.17)

Each of the remaining three terms of (2.16) will involve only fields and in particular Aaµ and σ.
These are absorbed into a redefinition of the original action to produce the new Lagrangian

Lσ = Lo −
σ2

2g2ζ(a)Zζ
+

Zm
2gζ(a)Zζ

σAaµA
aµ − Z2

m

8ζ(a)Zζ

(
AaµA

aµ
)2

(2.18)

where

Zζ = 1 +
δζ

ζ(a)
. (2.19)

6



The consequence is that with (2.18) one can determine Γ[∆] using standard techniques of per-
turbation theory allowing one to deduce the effective potential. The only difference for QCD
is that its Feynman rules have to be amended by the additional terms in (2.18) of a modified
quartic gluon vertex as a well as a momentum independent propagator for the σ field and its
3-point interaction with the gluon.

3 Determination of the effective potential.

Having concentrated on the formalism that allows us to extract the effective potential for the
Landau gauge gluon mass operator we devote this section to the actual computations that lead
to the three loop expression. As is clear from the previous section various renormalization group
functions are required to find ζ(a) such as β(a), γm(a) and δ(a). Moreover as explained these
are needed at the four loop level. As the QCD Lagrangian has been renormalized to five loops
now in the MS scheme, [55, 56, 57, 58], the only renormalization constants that are needed to
extend the two loop effective potential of [51, 52] are Zm and the counterterm for ζ. The former
is in fact already available at five loops in the MS scheme in the Landau gauge via a simple
Slavnov-Taylor identity. It was shown in [59] originally and subsequently observed in [60] via
a three loop calculation that Zm is not independent but related to ZA and Zc in the Landau
gauge. This identity was later verified in more detail in [61]. Indeed similar Slavnov-Taylor
identities have been constructed for the BRST invariant gluon mass operators in two nonlinear
gauges. These are the Curci-Ferrari, [25], and maximal abelian gauges, [62, 63, 64], with the
identities being discussed in [65, 66] and [67, 68] respectively. So γm(a) in the Landau gauge
can be deduced from the combination γA(a) + γc(a).

⊗ ⊗−→
p

Figure 1: Correlation function for the operator source J or O where ⊗ denotes the insertion of
J or O.

Therefore it only remains to determine δζ. An efficient method to deduce this was outlined
in [52] but followed a different but equivalent strategy to that given in [51]. In [52] the divergence
structure of the correlation function of J or equivalently that of O was considered in the massless
theory. This Green’s function is indicated graphically in Figure 1. Unlike say the correlation
function of the field strength all Feynman graphs contributing to this Green’s function will
only have two gluons emanating from each operator insertion. Strictly the LCO method will
produce a non-zero mass for the gluon and therefore one should in principle determine the
Green’s function with massive gluon propagators. However as only the ultraviolet divergences
are required for the counterterm δζ massless gluon propagators will suffice. The advantage of
this, as noted in [52], was that the Green’s function could be computed using the automatic
Feynman diagram package Mincer, [69, 70]. In following the same strategy here we use instead
the recent extension of that programme which is Forcer, [53, 54]. Both packages determine
the divergences of massless 2-point functions as a function of ε. The Mincer package was
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designed for three loop computations but with the current need for more precision in quantum
field theory Forcer was developed to calculate four loop graphs. This is a key point since
the LCO formalism requires that δζ has to be calculated to four rather than three loops here.
For the two loop effective potential of [51] the three loop term of δζ was needed which is why
Mincer was the appropriate tool. Therefore we have used Forcer to re-evaluate and verify the
three loop counterterm before extending it to four loops here. As background there are 1, 5, 67
and 1242 Feynman graphs at the respective succussive loop orders from one to four. These were
generated by the Qgraf package, [71], which is the starting point for the automatic computation
of the Feynman graphs contributing to the four loop J correlation function. Throughout we
employed the symbolic manipulation language Form, [72, 73], for handling the tedious amounts
of algebra. Indeed the Forcer package is written in Form. Equally we made use of the Form
based color.h module, [72], to evaluate the group theory associated with each graph. That
routine is based on the comprehensive article [74] on non-abelian groups.

Figure 2: Two loop graphs contributing to the effective potential.

Consequently we have been able to deduce the counterterm δζ to four loops for an arbitrary
colour group. As the full expression for it is large it has been provided in Appendix A with
electronic versions of all the major expressions computed in this article provided in the attached
data file. This means that the various quantities that are derived from δζ are as large and also
recorded in that appendix. However in order to represent the procedure to derive the effective
potential we will present the key equations in this section for the case of SU(3) and Nf = 3.
Therefore the counterterm for the renormalization of J is

δζ

∣∣∣∣SU(3)

Nf=3
= − 12

ε
+ 3

[
27

ε2
− 82

ε

]
a +

[
−7290

ε3
+

26934

ε2
+ [1443ζ3 − 55109]

1

ε

]
a2

12

+

[
5511240

ε4
− 24184980

ε3
− [801252ζ3 + 56625408]

1

ε2

+ [15906120ζ5 − 1781190ζ4 − 1771416ζ3 − 109560851]
1

ε

]
a3

1152

+ O(a4) (3.1)

where ζn is the Riemann zeta function. Converting this to a renormalization group function via
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(2.9) leads to

δ(a)

∣∣∣∣SU(3)

Nf=3
= − 24 − 984a + [1443ζ3 − 55109]

a2

2

+ [15906120ζ5 − 1781190ζ4 − 1771416ζ3 − 109560851]
a3

144
+ O(a4) . (3.2)

It is a simple matter now to perturbatively solve the consistency equation that determines ζ(a)
and find

1

ζ(a)

∣∣∣∣SU(3)

Nf=3

=
3

8
a − 1189

288
a2 + [567891ζ3 − 2627074]

a3

155520

+ [72516983400ζ5 − 9659825910ζ4 − 22815926343ζ3 − 80343163558]
a4

235146240
+ O(a5) . (3.3)

The final quantity required prior to computing the effective potential is the renormalization
constant

Z−1
ζ

∣∣∣∣SU(3)

Nf=3
= 1 +

9a

2ε
+

[
−243

ε2
+

1025

ε

]
a2

24

+

[
590490

ε3
− 1592865

ε2
+ [6529841− 16524ζ3]

1

ε

]
a3

12960
+ O(a4) (3.4)

deduced from (3.1) and (3.3) using (2.19).

The foundation has now been put in place from the LCO construction for the effective
potential of O to be determined. By this we mean the renormalization constants of the variables
have been found to the necessary order to produce a finite three loop expression. As we will be
using (2.17) and (2.18) as the starting point for the process, since for instance there is a linear
source term for σ, we follow the standard procedure for deducing an effective potential. At the
outset it is worth noting related articles in this area that were useful for this task. These were
the three loop effective potentials given in [75] for O(N) φ4 theory, the application of the LCO
method to a scalar theory, [76], and most usefully the comprehensive study of [77] for a general
renormalizable theory that includes the Standard Model. First, to set the scene we recall that
the one loop effective potential V1(σ) is deduced from an infinite set of n-point functions with a
constant external σ field. Summing this class of functions produces

V1(σ) =
σ2

2g2ζ(a)Zζ
+

(d− 1)NA

2

∫
ddk

(2π)d
ln

(
k2 +

Zmσ

gZζζ(a)

)
(3.5)

where we have included the renormalization constants as these are necessary for the higher order
corrections. The factor of (d−1) arises from the contraction of the Lorentz indices of the massive
Landau gauge gluon propagator with the mass given by, [51, 52],

m2 =
Zmσ

gZζζ(a)
(3.6)

and NA appears from the trace of the adjoint colour indices.

To proceed to the two and three loop corrections one does not have to tediously resum
corrections to the leading n-point functions with a constant σ field. Instead one equivalently
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Figure 3: Three loop benz graphs contributing to the effective potential.

computes the respective loop order vacuum graphs based on the interactions in Lσ but with a
new field σ̃. This is introduced by the simple shift, [51, 52],

σ = 〈σ〉 + σ̃ (3.7)

where the expectation value of σ is a constant. We note that the propagator for σ̃ derives from
the coefficient of σ̃2 in Lσ after applying (3.7). Again we have used Qgraf to generate the two
and three loop vacuum graphs. The graphs that contribute at two loops are shown in Figure 2
where the spring lines are gluons, the dotted directed lines are quarks, the solid directed lines are
Faddeev-Popov ghosts and the double solid lines correspond to σ̃. We note that the interactions
of the latter involve ζ(a). At three loops more graphs contribute to the effective potential and
these are shown across three Figures. The ones based on the benz topology are given in Figure 3
while those based on the ladder topology given in Figure 4. The remaining graphs are provided
in Figure 5 which include the one loop propagator corrections to the two loop graphs of Figure
2 from massive gluon snail graphs as well as vertex corrections to the same graphs.

The next stage in the process is the evaluation of the 5 two loop and 29 three loop vacuum
graphs for V (σ). As with the derivation of δζ at four loops we have carried this out by an
automatic Feynman diagram computation. Unlike that case the subsequent integrals are massive
since we assume 〈σ〉 is non-zero and therefore we cannot apply the Forcer algorithm. Instead
we employ the Laporta algorithm, [45], where all the integrals contributing to a vacuum graph
are reduced to a small set of core master integrals. In practical terms we used the Reduze
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implementation of the algorithm, [78], to achieve this. While analytic expressions for three (and
higher) loop vacuum master graphs have been determined by various methods we use the results
provided in [79] for our automatic computation. This is because [79] gathers and summarizes
the earlier work of [80] on the vacuum benz topologies as well as that of others [81, 82, 83] with
the same conventions. To ensure that the final result is ultimately finite, as the counterterms are
already determined, the master two loop master integrals have to be expanded to the requisite
order in ε. Such terms are available in the expressions recorded in [79]. In addition V1(σ) has
to be expanded to O(ε2) prior to the substitution of the various renormalization constants.

Figure 4: Three loop ladder graphs contributing to the effective potential.

Collecting the various contributions from the graphs together with the renormalization con-
stants determined to the necessary order we arrive at the three loop effective potential in the
MS scheme. As our focus in this section is for SU(3) and Nf = 3 in SU(3) we note

V (σ)

∣∣∣∣SU(3)

Nf=3
=

[
4

3
+

[
6ln(ḡσ̄)− 1594

81

]
a
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+

[
779

60
ζ3 +

45

2
ζ2 −

3340906

10935
+

297

2

√
3Ls2( 2π

3 ) +
1106

9
ln(ḡσ̄)− 27

2
ln

2
(ḡσ̄)

]
a2

+

[
828955

756
ζ5 +

69153

64
ζ4 +

7742747

12960
ζ3 +

40319

96
ζ2 −

91909989967

9447840

− 1769Li4( 1
2)− 3321

32
Ls2

2( 2π
3 ) +

1769

4
ln2(2)ζ2 −

1769

24
ln4(2)

+
121

6

√
3π3 +

5659

4

√
3Ls2( 2π

3 )

+

[
1924658

405
− 2541

40
ζ3 −

6075

16
ζ2 −

8019

4

√
3Ls2( 2π

3 )

]
ln(ḡσ̄)

− 1767

2
ln

2
(ḡσ̄) +

243

4
ln

3
(ḡσ̄)

]
a3
]
σ̄2 + O(a4) (3.8)

where ḡ = g
4π , Lin(z) is the polylogarithm function,

ln(z) = ln

(
z

µ2

)
, (3.9)

the log-sine function is

Lsn(θ) = −
∫ θ

0
dz lnn−1

∣∣2 sin(1
2z)
∣∣ (3.10)

noting that Ls2(θ) = Cl2(θ) with Cl2(θ) denoting the Clausen function and we have introduced
the shorthand notation

σ =
9NA

(13CA − 8TFNf )
σ̄ (3.11)

with the colour dependent factor arising from the coefficient of the leading term of ζ(a). The full
colour group expression for V (σ) is given in Appendix A. In arriving at that we have reproduced
the two loop Yang-Mills theory result of [51] and the subsequent extension to Nf massless quarks,
[52]. The potential is as one would expect in that the three loop term is cubic in ln(ḡσ̄).

Figure 5: Remaining three loop graphs contributing to the effective potential.
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Nf a(1) a(2) a(3)

0 0.064171 0.046493 0.035626
2 0.073973 0.061090 0.044562
3 0.079941 0.074190 0.051766
4 0.086787 0.100128 0.063391
5 0.094641 ——— 0.090027

Table 1: Values of SU(3) coupling constants at the minimum of the potential for Nf massless
quarks.

4 Analysis.

We are now in a position to refine the two loop estimates for 〈12A
a
µ

2〉 given in [51, 52] and from
them to deduce a value for the gluon mass. The analysis in this section will focus again on
SU(3) with Nf = 3 in order to illustrate the method but we will record results for the gluon
mass for other values of Nf as well as for SU(2). First, to assist with this we record the numerical
expression for the effective potential which is

V (σ̄)

∣∣∣∣SU(3)

Nf=3
=

[
1.333333 +

[
6.000000ln(ḡσ̄)− 19.679012

]
a

+
[
−13.500000ln

2
(ḡσ̄) + 122.888889ln(ḡσ̄)− 78.871262

]
a2

+
[
60.750000ln

3
(ḡσ̄)− 883.500000ln

2
(ḡσ̄) + 1701.846389ln(ḡσ̄)

− 3902.054942] a3
]
σ̄2 + O(a4) . (4.1)

The stationary points are deduced by solving

dV

dσ̄
= 0 (4.2)

and from (4.1) we have

dV

dσ̄

∣∣∣∣SU(3)

Nf=3
=

[
2.666667 +

[
12.000000ln(ḡσ̄)− 33.358025

]
a

+
[
−27.000000ln

2
(ḡσ̄) + 218.777778ln(ḡσ̄)− 34.853636

]
a2

Nf a(1) a(2) a(3)

0 0.096257 0.069739 0.053594
2 0.120805 0.111985 0.078461
3 0.137908 0.217124 0.113177
4 0.138742 ——— ———
5 0.146341 ——— ———

Table 2: Values of SU(2) coupling constants at the minimum of the potential for Nf massless
quarks.
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+
[
121.500000ln

3
(ḡσ̄)− 1584.750000ln

2
(ḡσ̄) + 1636.692777ln(ḡσ̄)

− 6102.263495] a3
]
σ̄ + O(a4) . (4.3)

In order to extract the location of the stationary point we follow the prescription given in
[46, 47, 51] and set the scale to be where the logarithm vanishes which is

ḡσ̄ = µ2 (4.4)

which produces several solutions. There is one stationary point at σ̄ = 0 which corresponds to
the usual perturbative vacuum with V (0) = 0. At one and higher loops this is a local maximum
but in the absence of loop corrections it a minimum. Non-zero solutions for σ̄ result from the
remaining cubic in a and these correspond to the global minimum of the potential. We have
solved for the coupling constant values numerically and the SU(3) results are given in Table 1
with a(L) indicating the solution at L loops. In [51, 52] a different convention was used for the
coupling constant which was denoted by y. It is related to a by factor of Nc. Here we prefer
to use a as the variable since the rescaling by Nc or in effect CA is arbitrary and ineffectual.
Moreover additional rank 4 Casimirs appear in the effective potential at three loops as is evident
in (A.7).

Nf L = 1 L = 2 L = 3

0 2.030604 2.003773 2.591158
2 2.012200 1.878750 2.418769
3 2.003627 1.802659 2.297279
4 1.996403 1.702877 2.120771
5 1.991927 ——— 1.806990

Table 3: Values of ḡ〈σ̄〉/ΛMS for SU(3) at L loops using (4.5).

Nf L = 1 L = 2 L = 3

0 2.030604 2.124240 2.654008
2 2.012200 1.986479 2.467973
3 2.003627 1.890028 2.334335
4 1.996403 1.744687 2.142946
5 1.991927 ——— 1.826447

Table 4: Values of ḡ〈σ̄〉/ΛMS for SU(3) at L loops using (4.6).

In Table 1 there is no solution for the coupling at the two loop stationary point for Nf = 5
and the SU(3) group since the quadratic equation in a produces complex conjugate roots. For
the case of SU(2) the situation is similar but arises at a lower value of Nf with those stationary
point couplings given in Table 2. While both tables indicate that the non-zero stationary point
coupling decreases with loop order what is more important is the behaviour of the effective gluon
mass induced by the non-zero value of 〈σ̄〉. Therefore we have to translate the stationary point
couplings to a value for the gluon mass. This will be a two stage process. First using the values
found for a at the stationary point of the three loop potential we obtain estimates for ḡ〈σ̄〉 using
the relation (4.4) before repeating the process provided in [51, 52]. This is based on the relation
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between the running coupling constant and a mass scale in units of the Λ parameter. As we
have focussed on the MS scheme throughout our reference scale will therefore be ΛMS. Solving
the first order differential equation that defines the β-function in a perturbative way allows us
to either express the coupling constant as a function of mass which we denote by a(L)(m) at
each loop order L or ḡ〈σ̄〉 as a function of the coupling constant. We will use m(L)(a) to denote
a generic mass scale. For reference to three loops the explicit expressions are

a(1)(m) = − 1

β0 ln
(
m2

Λ2

)
a(2)(m) = − 1

β0 ln
(
m2

Λ2

) − β1 ln
(
ln
(
m2

Λ2

))
β3

0 ln2
(
m2

Λ2

)
a(3)(m) = − 1

β0 ln
(
m2

Λ2

) − β1 ln
(
ln
(
m2

Λ2

))
β3

0 ln2
(
m2

Λ2

)
−
[
β2

1

[
ln2

(
ln

(
m2

Λ2

))
− ln

(
ln

(
m2

Λ2

))
− 1

]
+ β0β2

]
1

β5
0 ln3

(
m2

Λ2

) (4.5)

and

m(1)(a) = Λ exp

[
− 1

2β0a

]
m(2)(a) = Λ exp

[
− 1

2β0a
− β1

2β2
0

ln(−β0a)

]
m(3)(a) = Λ exp

[
− 1

2β0a
− β1

2β2
0

ln(−β0a) +
1

2β3
0

[
β2

1 − β0β2

]
a

]
. (4.6)

for any renormalization scheme. Specifically the β-function coefficients are, [84, 85, 86, 87, 88,
89],

β0 = −
[

11

3
CA −

4

3
TFNf

]
β1 = −

[
34

3
C2
A − 4TFCFNf −

20

3
TFNfCA

]
β2 = −

[
2857

54
C3
A + 2C2

FTFNf −
205

9
CFCATFNf −

1415

27
C2
ATFNf

+
44

9
CFT

2
FN

2
f +

158

27
CAT

2
FN

2
f

]
(4.7)

for reference. Using the values for a(L) given in Tables 1 and 2 it is a straightforward exercise
to substitute them into the right side of (4.6). To deduce estimates for ḡ〈σ̄〉 from (4.5) requires
more work in that we searched for a value of m

Λ that gave the respective values of a(L) in each
of these tables. One reason for using two methods rests in the fact that we are working with a
truncation by loop order. If the all orders expressions for (4.5) and (4.6) were both available then
each would be the precise inverse function of the other. So the solution to either would give the
same value for the mass. In the truncated case the discrepancy between them would be a rough
measure of the accuracy at each loop order. The results of this analysis for both approaches are
recorded in Tables 3 and 4 for SU(3) and the respective SU(2) estimates are provided in Tables
5 and 6. Several initial comments on Tables 3 to 6 are apt. First the estimates up to Nf = 3
at one and two loops in Tables 4 and 6 are in agreement with [51, 52] while the remainder are
new. We have chosen to include higher values of Nf to illustrate that at a certain point, which
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differs for each group, there is not always a solution for the coupling at a stationary point. Next
the estimates for ḡ〈σ̄〉 at one loop in the pair of tables for each group are identical. This follows
trivially from the fact that a(1)(m) and m(1)(a) are formal inverses of each other which is evident
from (4.5) and (4.6).

Nf L = 1 L = 2 L = 3

0 2.030604 2.003773 2.585258
2 1.993346 1.793178 2.269245
3 1.973484 1.624988 1.950830
4 2.164616 ——— ———
5 2.349416 ——— ———

Table 5: Values of ḡ〈σ̄〉/ΛMS for SU(2) at L loops using (4.5).

Nf L = 1 L = 2 L = 3

0 2.030604 2.124240 2.647960
2 1.993346 1.882611 2.306476
3 1.973484 1.584461 1.969801
4 2.164616 ——— ———
5 2.349416 ——— ———

Table 6: Values of ḡ〈σ̄〉/ΛMS for SU(2) at L loops using (4.6).

Nf ΛMS Reference

0 224+8
−5 [90]

2 294+10
−10 [91]

3 339+10
−10 [92]

4 296+10
−10 [92]

5 213+8
−8 [92]

Table 7: Values of ΛMS in MeV.

The second stage in the process to estimate the gluon mass is to translate the values of ḡ〈σ̄〉
into the effective mass which is defined by

m2
eff =

〈σ̄〉
gζ(a)

(4.8)

based on (3.6). This definition differs from that used in [46, 47, 51, 52] which took the value of
ḡ〈σ̄〉 for the gluon mass. If one were to use that approach here it is evident that there would be
convergence concerns given the jump in the three loop values in comparison with the two loop
ones from examining Tables 3 to 6 for both groups. In light of this we have taken (4.8) as a
more appropriate quantity to use. Consequently we have to compute a value for ζ(a) for each
group and Nf value which is achieved by evaluating ζ(a) using the coupling constants given in
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Tables 1 and 2. However naively substituting those numbers into the perturbative expression
for 1/(aζ(a)), either (3.3) or (A.3), will lead to convergence issues. Therefore to deduce each
adjustment factor we have calculated Padé approxminants to 1/(aζ(a)) using the one, two and
three loop terms of (3.3) and (A.3) to find the numbers to multiply each entry in Tables 3 to 6.
In particular we have used the [0, 1], [0, 2] and [1, 2] Padé approximants at the respective orders.
For the SU(3) case we can also include the values of ΛMS which are summarized in Table 7.
Therefore combining the three values of ḡσ̄ and 1/(aζ(a)) we arrive at the values given in Tables
8 and 9. The errors are derived from those given in Table 7.

Nf L = 1 L = 2 L = 3

0 333+12
−6 303+11

−7 319+12
−7

2 432+15
−14 354+12

−12 355+12
−12

3 495+15
−15 374+11

−11 369+10
−11

4 430+14
−15 280+9

−9 287+10
−9

5 308+11
−12 ——– 166+6

−7

Table 8: Values of meff in MeV for SU(3) at L loops based on Table 3.

Nf L = 1 L = 2 L = 3

0 333+12
−6 321+12

−7 327+12
−7

2 432+15
−14 374+13

−13 361+13
−11

3 495+15
−15 392+14

−11 375+11
−12

4 430+14
−15 287+12

−10 290+10
−9

5 308+11
−12 ——— 168+6

−7

Table 9: Values of meff in MeV for SU(3) at L loops based on Table 4.

What is evident from both Tables 8 and 9 is that there is a degree of stability in the two
and three loop effective gluon mass estimates up to Nf = 4. This is probably not unrelated to
the coupling constants at these orders being smaller than the one loop value for Nf 6= 0 and
therefore more within the range of perturbative reliability. Another feature is that the mass
increases up to Nf = 3. This behaviour though needs to be tempered by recalling that we have
assumed the quarks are massless. The inclusion of a quark mass would undoubtedly complicate
the structure of the effective potential and thereby affect the effective gluon mass estimates. As
we chose to gauge the truncation discrepancy by extracting a value for ḡ〈σ̄〉 from the couplings
in two different ways it is worth commenting on this. If one compares say the Nf = 0 two
loop effective mass values in Tables 8 and 9 there is roughly a 6% difference. This reduces to
around 2.5% at three loops. A similar narrowing is present for the other Nf cases. One main
feature is that in the Yang-Mills theory case there is a marked degree of consistency at each
loop order. One way of providing a rough ballpark estimate of the effective gluon mass using
the LCO approach is to average the three loop value in the tables. For example for Yang-Mills
theory this would give meff = 323 MeV.

Other methods have produced gluon mass estimates which we mention for balance. For
instance, the study of [43] investigated the effect of including the Gribov mass, [10], in a model
which also included a gluon mass operator. The main observation was that both mass scales
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were roughly equal and around 500 MeV. In particular the two mass parameters appear in the
gluon propagator that can be derived from various modifications of Gribov’s original action,
[10]. Zwanziger’s reformulation of the Gribov action as a local renormalizable one, [11, 12, 13,
14, 15, 16, 17, 18, 19, 20, 21], provided the basis for various extensions that included a gluon
mass parameter such as [22, 23, 24]. While such a study produces mass that is of the accepted
magnitude this was achieved by fitting to a classical propagator and therefore omitted quantum
effects. This has been extended in later investigations. For instance, one and two loop corrections
to the gluon propagator have been calculated using the Landau gauge Lagrangian with a gluon
mass term which is justified by the interpretation of the mass being related to Gribov copies
[35, 36, 37, 38, 39, 40, 41, 42]. The subsequent gluon mass estimates were deduced by fitting the
one and two loop propagators, that were calculated analytically, [37, 40, 41, 42], against Landau
gauge lattice data producing respective estimates of 350 MeV and 330 MeV. A more recent study,
[44], using a functional renormalization group approach computed the effective potential of the
field strength. From the value of the resulting field strength condenate an effective gluon mass
gap of 0.312(27) GeV was found which was commensurate with the lattice value of 0.3536(11)
GeV for the mass gap derived from the lattice data of [93]. These two values, as well as a similar
gluon mass estimate, [37, 40, 41, 42], extracted from different lattice data, indicates a relative
degree of consistency from various directions. Therefore it is intersting that the LCO method
produced a three loop gluon mass estimate that is very similar to these independent Lagrangian
based methods.

Nf L = 1 L = 2 L = 3

0 1.488526 1.352525 1.446185
2 1.454108 1.098230 1.128747
3 1.434460 0.761928 0.937949

Table 10: Values of meff/ΛMS for SU(2) at L loops based on Table 5.

Nf L = 1 L = 2 L = 3

0 1.488526 1.433839 1.481260
2 1.454108 1.153003 1.147266
3 1.434460 0.742926 0.946343

Table 11: Values of meff/ΛMS for SU(2) at L loops based on Table 6.

We complete our analysis by providing similar estimates for the SU(2) effective gluon mass.
The situation differs here in that we do not have values for ΛMS and so cannot give mass
estimates in any physical units. Instead we have provided meff/ΛMS for the three values of
Nf where there were coupling constant solutions at each loop order. These are recorded in
Tables 10 and 11 where the respective values from the Padé approximants to 1/(aζ(a)) have
been included. A similar pattern to the SU(3) case is apparent. There is a degree of stability
for Yang-Mills theory across loop orders for both tables. For Nf = 2 the two and three loop
estimates are similar but for Nf = 3 there is less consistency across loop order. This is parallel
to the Nf = 4 and 5 cases for SU(3) since the latter is the value before which there are no two
or three loop solutions for the minimum of the effective potential. The three loop effective gluon
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mass estimate in that situation appears to be out of line with the pattern of values for lower
Nf . This is perhaps an indicator of the loss of a minimal effective potential solution for higher
Nf and this appears to be borne out for the SU(2) group as well.

5 Discussion.

We have applied the LCO formalism to a new loop order for any theory and in particular a gauge
theory. Our main focus has centred on QCD with Nf massless quarks. The key observation is
that for Yang-Mills theory the three loop corrections to the effective gluon mass derived from
the minimum of the effective potential demonstrate a degree of convergence. For the SU(3)
colour group this is centred roughly around the value of 323 MeV for the effective mass. This
is not inconsistent, for instance, with values from other methods such as extracting a mass
by fitting perturbative gluon propagators to lattice data or functional renormalization group
techniques. The same analysis showed that this apparent convergence was evident for SU(2)
Yang-Mills theory as well. The situation for non-zero Nf was not as clear cut. This was
primarily because, as noted in [52], there was a marked difference between the one and two loop
values of the effective mass computed there albeit with a different definition from the one used
here. With the current definition (4.8) this is also apparent but interestingly Tables 8 and 9
support the notion that the two and three loop values for the effective mass have stabilized when
further corrections are included. Of course this is in the simplified scenario of massless quarks
which is not truly realistic. What would be needed is a generalization of the LCO method to
induce quark masses from an extended effective potential. This does not seem straightforward
if one naively examines the core formalism. The LCO construction for the gluon mass operator
benefits from this having mass dimension 2 with an associated mass dimension 2 source field
that therefore requires a quadratic source term on renormalizability grounds. Using the same
dimensional analysis the quark mass operator would have dimension 3 meaning its source field
would be dimension 1. Therefore aside from the mixing of the two types of sources to produce a
cubic term, quartic quark mass operator source terms would be necessary on renormalizability
grounds. The technical issues of accommodating this within the LCO formalism may not be
insurmountable but would require new insights to find the effective potential.

In terms of future directions given that the core renormalization group functions of QCD
are known at five loops in the MS scheme, [55, 56, 57, 58], the techniques are already available
in principle to deduce the next term in the series for ζ(a). This would require a five loop
computation of the J correlation function. In addition the approach of [57] to renormalize QCD
using a vacuum bubble expansion means that all the core four loop Feynman integrals that
are necessary to compute the four loop graphs of the effective potential are known. Therefore
extending our analysis to the next loop order would seem viable in the foreseeable future. From
another point of view it would be interesting to apply the LCO Lagrangian to other problems
such as the evaluation of 2- and 3-point functions akin to that studied in [37, 40, 41, 42]. The
reasoning would be to see if the mass estimate extracted here was consistent with lattice data
as well as testing the effect the extra interactions present in (2.18) have. Finally we recall that
one of the early observations that led to the interest in studying the value of 〈12A

a
µ

2〉 in the
Landau gauge arose in lattice and other studies, [94, 95, 96, 97, 98]. It was noted that O(1/p2)
power corrections arose in operator product expansion measurements. This ran counter to
expectations that the leading correction would be O(1/(p2)2). With the general acceptance that
an effective gluon mass lurks in Yang-Mills theory the LCO Lagrangian might be the tool to
formally re-examine the operator product expansion.
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A Expressions for arbitrary colour group.

As the main analysis in the body of the article centred on the SU(3) colour group and Nf = 3
we devote this section to recording the corresponding expressions for an arbitrary group. First
the counterterm associated with the source field is given to three loops by

δζ =

[
− 3

2ε
+

[
[35CA − 16NfTF ]

1

8ε2
+ [32NfTF − 139CA]

1

12ε

]
a

+

[
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f T

2
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which is translated to its renormalization group function

δ(a) =

[
− 3 + [32NfTF − 139CA]

a

3

+
[
27648ζ3CANfTF − 6237ζ3C

2
A − 71551C2

A + 17524CANfTF
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One reason for noting the counterterm was to give assurance that the derivation of δ(a) was
consistent with the renormalization group formalism. By this we mean that the double and
triple poles in ε are not independent but determined by the simple poles at lower loop orders.
Equipped with this the expression for ζ(a) can be deduced from (2.10) leading to
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This is clearly a more involved expression compared to that of the previous order given in
[51, 52]. The reason for this is mainly due to the four loop terms of the β-function and the gluon
mass anomalous dimensions, [58, 100] which both involve rank 4 colour Casimirs which are not
present at lower loop order. These are based on the totally symmetric tensor, [74],

dabcdR =
1

6
Tr
(
T aRT

(b
R T

c
RT

d)
R

)
(A.4)

for an arbitrary group representation. The designation of R to be F or A indicates evaluation
in either the fundamental or adjoint representations. Next we have
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which was defined in (2.19). Another quantity required prior to determining the effective po-
tential is the renormalization constant
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[
4

3
TFNf −

35

12
CA

]
a

ε

+

[[
2765

288
C2
A +

16

9
T 2
FN

2
f −

149

18
TFNfCA

]
1

ε2

+

[
2TFNfCF −

449

96
C2
A +

35

12
TFNfCA

]
1

ε

]
a2 + O(a3) . (A.6)

While this is already available to high loop order via the Slavnov-Taylor identity, [59, 61], it is
provided in the conventions used to derive V (σ) and is the source for deducing γm(a).

Finally the full effective potential at three loops for the Landau gauge gluon mass operator
for an arbitrary colour group is

V (σ) =
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We have used the same shorthand notation as [52] for various colour group combinations but
appended these with a new one, λ4, that arises at this new loop order. These are

λ1 =
1

[13CA − 8TFNf ]
, λ2 =

1

[35CA − 16TFNf ]

λ3 =
1

[19CA − 8TFNf ]
, λ4 =

1

[79CA − 32TFNf ]
. (A.8)

For completeness we note, [74],

dabcdF dabcdF =
(N2

c − 1)(N4
c − 6N2
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96N2
c

, dabcdF dabcdA =
Nc(N

2
c − 1)(N2
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48

dabcdA dabcdA =
N2
c (N2

c − 1)(N2
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24
(A.9)

for SU(Nc).
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