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Graphical abstract for submission. On the upper place of the figure, graphene oxide 

(GO) first was modified by polydopamine (PDA) to obtain modified GO (mGO), and 

then, benzotriazole-loaded mesoporous silica nanoparticles (BTA@MSNs) are 

combined on micro scale through the in situ polymerization of polydopamine (PDA), 

preparing a self-healing bi-functional GO (fGO) for anti-corrosion enhancement of 

waterborne epoxy (WEP) coatings. On the lower right, it is a scanning electronic image 

(SEM) of fGO. To the lower left, it is the corrosion protection between blank WEP, 

GO/WEP, mGO/WEP and fGO/WEP coatings. 
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Abstract: 

In this article, graphene oxide (GO) and benzotriazole-loaded mesoporous silica 

nanoparticles (BTA/MSNs) are combined on micro scale through the in situ 

polymerization of polydopamine (PDA), preparing a self-healing bi-functional GO 

(fGO) used as nano-fillers for anti-corrosion enhancement of waterborne epoxy (WEP) 

coatings. Scanning electronic microscope (SEM) images show that the BTA/MSNs are 

uniformly distributed on the surface of high aspect ratio GO nanosheets to endow GO 

nanocontainer characteristics. UV-vis profiles demonstrate that fGO has pH-controlled 

release function. Modulus at lowest frequency is generally used for comparing the 

corrosion resistance of organic coatings. Modulus at lowest frequency (1.42×107 Ω·cm2) 

after 30 days immersion in 3.5 wt.% NaCl solution revealed 2 orders of magnitude 

higher that of blank WEP (8.22×10-3 Ω·cm2). With artificial cracks on its coatings, 

fGO/WEP had no obvious rust compared with blank WEP after 240 hours of immersion. 

We anticipate that self-healing and physical barrier bi-functional nanocontainers 

improve the traditional anticorrosion coating efficiency with better, longer-lasting 

performance for shipping, oil drilling or bridge maintenance. 

Keywords: mesoporous silica; graphene oxide; corrosion inhibitor; nanocontainer; 

waterborne epoxy coatings 
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1. Introduction 

Anticorrosive polymeric coatings are the most widely used and most effective for 

protecting metals from environmental corrosion [1]. As environmental awareness 

increases, the market share of water-based epoxy (WEP) anticorrosive coatings 

continues to rise [2, 3]. However, shrinkage, defects and micro-cracks are likely to 

appear inside WEP after film formation due to the inherent characteristics of water-

based coatings [4, 5]. To enhance barrier performance, novel two-dimensional (2D) 

ultra-thin nanomaterials, especially graphene, were introduced into the WEP coatings 

[6, 7]. Graphene has good chemical stability and perfect impermeability against 

corrosive ions, water and oxygen [8, 9]. To further increase anti-corrosion properties, 

the graphene surface was modified by covalently or non-covalently grafted molecules 

to reduce the interface incompatibility between graphene and polymer matrix [10, 11]. 

Commonly used surface modification methods for graphene include organic 

molecular grafting [12], polymer encapsulation [13], surfactant adsorption [14] and 

inorganic nanoparticles decoration (Silica, Zirconia, Alumina, Carbon nanotubes, etc.) 

[15, 16]. Among them, the decoration of inorganic nanoparticles has outstanding 

advantages: it can not only reduce the agglomeration between graphene nanosheets 

through steric repulsion between nanoparticles [17, 18], but also involves properties of 

nanoparticles to attain graphene additional functionality. This includes inhibiting 

corrosion-promotion activity of graphene [19], corrosion protection of photo-generated 

cathode anticorrosion [20], wear resistance [21], superhydrophobicity [22], anti-

bacterial properties [23], flame-retardancy [24] and self-healing ability [25].  

Mesoporous silica nanoparticles (MSNs) are ideal nanocontainers with a three-

dimensional (3D) topological structure and high chemical and thermal stability [26]. 

Since their discovery, MSNs have been widely used in drug release [27], phase change 

energy storage [28, 29], anti-fouling [30], catalytic [31] and corrosion inhibitor loading 

[32]. Encapsulating corrosion inhibitors into MSNs can effectively prevent the 

corrosion inhibitor from adversely affecting the polymer coating curing process [33, 34] 

and achieve long-term environmentally responsive self-healing behaviour [35, 36]. The 

combination of graphene and MSNs is an innovative attempt to couple active 
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(controlled release) anticorrosion and passive defense (physical barrier) in one 

composite coating. 

Li et al. [37] attached amine-functionalized MSNs onto GO  via a ring-opening 

reaction at 110 °C for 4 hours. Then, the corrosion inhibitor (tannic acid, TA) was 

loaded into it by vacuum impregnation to obtain TA-loaded GO nanocontainers (TA-

GO). Compared with MSNs coating, TA-GO coating exhibits self-healing ability and 

can resist failure caused by alternating changes in hydrostatic pressure. Wang et al. [38] 

used cetyltrimethylammonium chloride (CTAC) as an auxiliary molecule to synthesize 

MSNs on graphene oxide (GO) in situ, obtaining mSiO2/GO nanocontainers with a 

sandwich structure. Subsequently, benzotriazole (BTA) molecules were loaded into the 

mSiO2/GO nanocontainers for corrosion protection of copper and steel. The 

nanocomposite coating showed excellent anticorrosion performance. Yu et al. [39] 

fabricated functionalized GO (fGS) by first in situ synthesizing BTA-loaded ordered 

MSNs on it and then modifying the composite with aminopropyl triethoxysilane 

(APTES). Aminosilane functionalization improves the dispersion stability of fGS and 

provide BTA/fGS with stimulus-response release under alkaline conditions.  

Polydopamine (PDA) is an environmentally friendly chemical modifier inspired by 

the strong adhesion of mussels to rocks [40]. It can be deposited on the surface of many 

materials, including steel [41], biomass [42], plastics [43] and nanoparticles [44]. 

Nanosized PDA polymer particles have strong physical adsorption on the surface of the 

substrate via catechol and amine hydrogen bonding [45, 46]. Based on this particular 

properties, PDA can be considered as a nano-sized adhesive [47]. In our previous work, 

PDA was used as a binder to combine GO and boron nitride (h-BN) in one pot to obtain 

h-BN-rGO@PDA nanohybrids with excellent corrosion protection properties [48]. In 

addition, Qian et al. [49] discovered that the use of PDA to encapsulate MSNs can 

achieve a controlled release of BTA loaded in MSNs when pH is lower than 5, which 

is beneficial for preparing anticorrosive nanocomposite coating with sustainable long 

term effect. 

Herein, we took the advantages of the self-polymerization reaction of PDA to 

combine GO and MSNs that have been vacuum-loaded with BTA in a pot to obtain a 
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MSNs-functionalized GO (fGO) nanocomposite with both self-healing and barrier 

function, and load the nanocomposite particles into a WEP coating as anticorrosive 

additive. In order to characterize the structure of fGO, field emission high resolution 

microscope (FESEM), TEM, thermogravimetric analysis (TGA), attenuated total 

reflection-Fourier transform infrared spectra (ATR-FTIR) and X-ray diffractometer 

(XRD) were adopted. UV–visible spectrophotometer was used to study the release 

dynamic of BTA from fGO. Electrochemical impedance spectroscopy (EIS) and 

potentiodynamic polarization were taken to investigated the anticorrosion performance 

of fGO/WEP composite coating. We anticipate that the binder and release-controlling 

effect of PDA can provide inspiration for future green materials. 

 

2. Experimental 

The fabrication process is described in Figure 1. First, MSNs were synthesized via 

a template-assisted hydrolysis method. And then, BTA was loaded into MSNs by 

vacuum impregnation, producing MSNs-encapsulated BTA (BTA@MSNs). At the 

same time, GO was modified by PDA, resulting a PDA modified GO (mGO). mGO and 

BTA@MSNs were placed into a pot where PDA had its in situ polymerization. Finally, 

MSNs-functionalized GO (fGO) was fabricated. More details of the experimental 

procedures can be found in the Supporting Information. 
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Figure 1. Experimental scheme showing fGO preparation using GO and MSNs as raw 

materials and incorporation of fGO into the composite WEP coating. Please refer to 

Supporting Information Section for experimental details. 

 

3. Results and discussion 

3.1 The basic characterization of fGO 

Scanning electron microscopy (SEM) and transmission electron microscopy (TEM) 

were used to observe the morphology of MSNs, GO, mGO, and fGO. As shown in 

Figure 2a and 2b, MSNs are smooth spherical nanoparticles with mesoporous structure. 

Dynamic light scattering (DLS, Figure S1) shows the average MSN particle size of 

173.6 nm. Commercial grade GO has a 2D structure with a smooth surface and a super 

large aspect ratio of about 4000 (Figure 2c and 2d). BET isotherms (Figure S2) confirm 

MSNs have a very large specific surface area (1292.96 m2/g), making them ideal for 

loading with active materials such as BTA. GO has an extremely small specific surface 

area (4.62 m2/g) , but can be used in conjunction with MSNs. After PDA processing, 

the surface of mGO becomes rougher and wrinkles become more obvious (Figure 2e 

and 2f). This is because unsaturated bonds on the GO surface are reduced during the 

oxygen-consuming PDA formation [48]. The rough mGO surface provides more 
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attachment sites for MSNs than smooth GO. There are many evenly distributed MSNs 

(tiny particles) on the surface of fGO (Figures 2g, 2h), indicating that resulted fGO has 

the properties of MSNs’ nanocontainers and GO’s high aspect ratio. 

 

Figure 2. SEM images of (a) MSNs, (c, d) GO, (e, f) mGO, and (g, h) fGO; (b) TEM 

image of MSNs. 
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Figure 3a shows the infrared spectra of MSNs, GO, mGO, and fGO. For MSNs, 

3451 cm-1 and 1630 cm-1 are related to the stretching and bending vibration peaks of 

physically absorbed water; 1077 cm-1, 803 cm-1 and 452 cm-1 correspond to the 

asymmetric vibration, symmetrical stretching and bending of Si-O-Si, respectively [27, 

32]. In GO, the absorption peaks at 3411 cm-1, 1732 cm-1, 1634 cm-1, 1391 cm-1, and 

1082 cm-1 are attributed to -OH, carboxyl C=O, aromatic C=C, C-OH, C-O-C epoxide, 

respectively [12, 13, 50]. After being modified by PDA, there are many new absorption 

peaks on mGO (for example, stretching of N-H at 3379 cm-1, shearing of N-H at 1592 

cm-1, and stretching of C-N at 1357 cm-1) [51-53]. The infrared spectrum of fGO has 

Si-O-Si blending peaks (406 cm-1) that mGO does not have. In addition, the intensities 

of N-H absorption peaks related to mGO on fGO show a certain degree of 

reinforcement indicating that the PDA content of fGO is increased after using PDA’s 

polymerization to bind mGO and MSNs. The above phenomena show that mGO and 

MSNs are successfully deposited to fGO surface. 
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Figure 3. (a) FTIR spectra, (b) XRD patterns of MSNs, GO, mGO, and fGO; (c) release 

profiles of BTA in MSNs or fGO when facing different pH environments. 

 

We performed wide-angle XRD ray diffraction of MSNs, GO, mGO, and fGO, as 

shown in Figure 3b. MSNs have a broad peak at 2θ=22.72°, which is caused by the 

amorphous structure of silica (JCPDS NO: 29-0085) [54]. For GO, mGO, and fGO, 

diffraction peaks corresponding to the GO crystal plane (001) appear at low angles 

(2θ<10°). According to the Bragg equation [13], we can calculate the d-spacing of GO, 

mGO, and fGO is 0.77 nm, 0.81 nm, and 0.85 nm, respectively. The increase of d-

spacing indicates that GO was successfully intercalated by PDA and MSNs, which can 

effectively reduce the agglomeration inside mGO and fGO, and greatly facilitate its 

dispersion in the resin matrix [55]. At the same time, the diffraction peaks of the (001) 

plane of mGO and fGO are broader than GO, indicating that the modification resulted 

in a decrease in the integrity of the crystal structure of GO and an increase in disorder. 
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In addition, the characteristic peak of MSNs (approximately at 2θ=22.72°) was also 

found in fGO. It shows that fGO is a hybrid nanomaterial composed of mGO and MSNs. 

Figure S3 reveals TGA curves of BTA, GO, MSNs, mGO and fGO. It can be seen 

that BTA, as a small organic molecule, begins to thermally decompose at around 204 °C 

and is completely degraded at around 325 °C. For MSNs, there is a period of weight 

loss (about 3.5%) before 120 °C. This is due to the moisture absorbed inside its porous 

structure. However, the weight of MSNs (94.89%) remained stable during the 

subsequent heating process. After loading BTA, BTA/MSNs also began to decompose 

at around 204 °C and reached equilibrium at around 325 °C with a weight loss of 

47.54%. Through the difference between the weight loss values of BTA/MSNs and 

MSNs, the load of BTA in MSNs is 40.29%. Pure GO decomposes at around 372 °C 

and reaches the maximum degradation (95.17%) at 735.6 °C. Since fGO is loaded with 

BTA, its onset temperature (approximately 227°C) is lower than that of GO, but its 

temperature corresponding to the maximum degradation value (81.92wt.%) 

(approximately 739°C) is slightly higher than that of GO. The incorporation of 

inorganic materials (MSNs) in fGO imparts good thermal stability of the composite. 

Calculating the residual value between fGO and GO. The proportion of MSNs in fGO 

is 14.42%. In total, the load of BTA in fGO is 5.28%.  

As shown in Figure 3d, BTA rapidly releases from MSNs rapidly in a neutral 

environment (pH 7) and reached a release equilibrium (about 70 %) at t=150 min. This 

is due to the open porous structure of MSNs. Such a rapid release results in BTA wasting 

and the adverse effect of the released free BTA on the curing of the WEP coating. 

Therefore, we deposited PDA to modify the surface of MSNs. With PDA layer, the 

release of BTA from fGO at pH 7 is greatly reduced to 10 % by negatively charged 

catechol and indole functional groups of PDA, which prevent the release of BTA due 

to electrostatic repulsion. [49, 51]. At pH 3, the release speed is significantly increased 

due to the autonomous fGO response, a demonstration of the smart nanocontainer 

response to local pH. 

 

3.2 The characterization of fGO/WEP composite coating 
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3.2.1 The distribution of fGO in WEP 

Figure 4 exhibits the SEM images of cross-section of blank WEP, GO/WEP, 

mGO/WEP and fGO/WEP produced by liquid nitrogen quenching. As shown in Figure 

4a, the surface of the blank WEP coating is relatively smooth, but there are many visible 

micropores and cracks due to the inherent defects of the water-based resin after curing. 

The cross-sections of the other three samples are rougher than the blank WEP, which is 

caused by the rigidity increase after the addition of nanomaterials [12, 44, 52]. For 

GO/WEP in Figure 4b, there are large agglomerates caused by the lipophilic 

incompatibility between GO and WEP. After PDA modification of GO, there is no 

apparent agglomeration on the SEM image of mGO/WEP (Figure 4c). Scattered 

nanospheres were found in the cross section of fGO/WEP (Figure 4d), indicating that 

MSNs can be uniformly dispersed in the WEP matrix after being loaded on GO. At the 

same time, fGO is affected by the grafting of MSNs, causing the roughness of 

fGO/WEP to increase compared with mGO/WEP. 

 

Figure 4. SEM images of cross-section of (a) blank WEP, (b) GO/WEP, (c) mGO/WEP 

and (d) fGO/WEP produced by liquid nitrogen quenching. 

 

3.2.2 Anticorrosion performance of composite coatings 

In order to study passive anti-corrosion ability of fGO/WEP coating, we carried out 
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EIS test (Figure 5) and Tafel test (Figure S4) for all coatings in NaCl solution (pH 7, 

3.5wt%) for up to 30 days. 

Figure 5 displays resistance performance for the composite coatings over time. For 

the blank WEP in Figure 5a, the Bode modulus decreases with the time, and the low-

frequency platform length is getting longer. It demonstrates that the WEP coating 

suffered severe corrosion damage after 30 days of immersion [8]. The Bode phase angle 

of WEP is constantly shifting to high frequencies (Figure 5b), which indicates that the 

adhesion of the blank WEP coating is significantly reduced resulting in a decline in 

barrier performance [5]. GO/WEP (Figure 5c and 5d) also experienced a decline trend 

similar to the blank WEP but it decreased faster. After immersion on the 4th day, there 

was a worse decline than WEP due (i) the incompatibility of GO and WEP increasing 

internal defects in the coating as shown by SEM in Figure 4 and (ii) hydrophilic GO 

easily absorbs corrosive media. After modification with PDA, mGO/WEP has more 

advantages than GO/WEP in terms of initial value, downward trend and final value 

(Figure 5e and Figure 5f). Modification with PDA improves dispersion of mGO in WEP. 

Large aspect ratio of mGO reduces coating porisity, while the catechol group of PDA 

demonstrates good adhesion to metal substrate [44, 47]. fGO/WEP exhibits the most 

stable Bode modulus and lowest Bode phase angle over 30 days (Figure 5g and Figure 

5h). This may be due to the fact that the d-spacing of fGO is larger than that of mGO, 

as suggested by XRD. Therefore, fGO can be better dispersed thus improving the 

barrier performance. The surface modification with PDA similar to mGO provides good 

metal adhesion for fGO/WEP. 
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Figure 5. The Bode modulus of (a) blank WEP, (b) GO/WEP, (c) mGO/WEP and (d) 

fGO/WEP and Bode phase angle of (e) blank WEP, (f) GO/WEP, (g) mGO/WEP and 

(h) fGO/WEP. 
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The influence of immersion time on the anti-corrosion performance of the 

composite coating is described in Figure 6. As seen in Figure 6a, the lowest frequency 

modulus |Z0.01Hz| values of the four coating samples all show a downward trend with 

increased immersion time. The value of |Z0.01Hz| tested on the 30th day is as follows, 

fGO/WEP (1.42×107 Ω·cm2) > mGO/WEP (6.10×105 Ω·cm2) > blank WEP (1.17×105 

Ω·cm2) > GO/WEP (2.91×104 Ω·cm2). The lowest modulus value of fGO/WEP after 

30 days is more than 2 orders of magnitude of the blank coating. Therefore, adding even 

small amounts (1 wt.%) of fGO to WEP imparts excellent anti-corrosion barrier 

performance. 

 

 

Figure 6. (a) |Z0.01Hz|, (c) CPEdl and (d) Rct of MSNs, GO, mGO, and fGO during 

immersion in NaCl soultion; (b) The EEC used for simulating EIS data. 

 

We used the equivalent electric circuit (EEC) shown in Figure 6b to fit the above-

mentioned EIS data. Rs represents the solution resistance, Rc stands for the coating 

resistance; Rct is the charge transfer resistance; CPEc simulates the non-constant phase 
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capacitance of the coating; CPEdl is the non-constant phase capacitance of the double 

layer. The relevant specific fitting data are presented in Table S1. From the high degree 

of overlap between the gray fitting line in Figure 5 and the real data (the scatter points), 

it can be known that the fitted EECs are reliable for explanation of EIS. 

Dependence of CPEdl and Rct vs. immersion time is shown in Figures 6c and 6d. 

CPEdl represents the thickness of the electric double layer at the interface between the 

coating and the metal [49]. The larger the value of CPEdl, the greater is the degree of 

adhesion drop caused by the penetration of the corrosive medium to the coating/metal 

interface. Figure 6c shows that fGO/WEP has the smallest value of CPEdl, indicating 

the best adhesion to the metal substrate. Rct is an indicator of the corrosion proctection 

offered by the coating [12, 13]. The fGO/WEP in Figure 6d has the highest Rct value 

compared to other samples during 30 days confirming effective prevention of corrosion 

of metal substrates. 

As shown in Figure S4, the corrosion potentials (E) of fGO/WEO and mGO/WEP 

are both positive than blank WEP. Therefore, it can be inferred that PDA-modified 

materials have better stability in corrosive environments. After 30 days of immersion, 

blank WEP, GO/WEP, mGO/WEP and fGO/WEP were tested by Tafel method to 

calculate the annual corrosion rate (CR)[13]: 

�� =
�����	



��
 

According to the data in Table S2, the value of CR has changed significantly: 

fGO/WEP (1.82×10-4 mpy) < mGO/WEP (2.78×10-3 mpy) < blank WEP (8.22×10-3 

mpy) < GO/WEP (3.00×10-2 mpy). The CR value of fGO/WEP is more than order of 

magnitude lower than the blank WEP, further illustrating the impressive corrosion 

protection ability of fGO fillers. 

 

3.2.3 The self-healing performance of scratched composite coatings 

In order to study the active (self-healing) anti-corrosion activity, we made two 

crossing scratches on the surface of all the coatings, leaving the metal directly exposed 

to a corrosive environment for 240 hours. 
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Figure 7 displays a clear difference between the scratched coatings. The blank WEP 

coating has obvious yellow rust left along the scratches, and black corrosion products 

appear at the intersection. It shows that the blank coating offers minimal corrosion 

protection. The accumulation of black corrosion products on the GO/WEP coating is 

more serious than blank one, and corrosion products are also produced in places where 

there are no scratches. It indicates that the overall protection performance of GO/WEP 

is inferior even to blank WEP. mGO/WEP also has black corrosion products, but only 

along the scratched area. This shows the mGO fillers impart good barrier corrosion 

protection, but with little self-healing ability in damaged area. fGO/WEP demonstrates 

the best performance combining barrier corrosion protection of the pristine coating with 

self-healing functionality in the cracks. This is realised with a similar macroscopic 

appearance after 240 hours of exposure to corrosive environment. In order to better 

study the self-healing phenomenon, the intersection of the scratches of the coating was 

monitored by SEM. For blank WEP, a large amount of continuous ridge-like dense rust 

appears on the surface of the steel substrate. Many loose corrosion products can be 

found on GO/WEP sample. It indicates that GO/WEP’s corrosion products are 

transformed, resulting in a higher corrosion degree than blank WEP. mGO/WEP has 

only sporadic corrosion products. The fGO/WEP’s metal surface has only straight and 

clear rough surfaces and no corrosion products were found.  
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Figure 7. Visual images (left) of blank WEP, GO/WEP, mGO/WEP and fGO/WEP 

before and after immersion in 3.5 wt.% NaCl solution for 240 hours. The yellow/red 

arrows show the intersection of the two scratches made with a scalpel. The area of the 

coating exposed to the corrosive environment is 7.07 cm2. SEM images (right) of the 

intersection of the scratches of blank WEP, GO/WEP, mGO/WEP and fGO/WEP after 

immersion. 

 

In addition to qualitatively analysis of the amount of corrosion products, we also 

performed a SEM-EDS test of the elemental composition of the corrosion products 

(Figure 8) for quantitative analysis. Blank WEP rust in Figure 8a is 47.7% oxygen, 0.5% 

sodium, 7.8% chlorine and 43.8 iron. In GO/WEP (Figure 8b), the oxygen and chlorine 



Page 19 

content decreased to 37.9% and 4.4% but the iron content increased to 57.5%, 

indicating that the rust has been transformed to a more advanced form and more metal 

(iron) on the substrate surface is consumed. However, both the oxygen (10.2%) and 

chlorine (0.7%) decreased sharply in mGO/WEP (Figure 8c). The oxygen (4.6%) and 

chlorine (0.1%) content of fGO/WEP (Figure 8d) is much lower than blank WEP. It is 

confirmed that the iron sheet covered by fGO/WEP has good integrity. The microscopic 

behaviour is consistent with the macroscale observations in Figure 7. 

 

Figure 8. SEM-EDS result of the intersection of the scratches of (a) blank WEP, (b) 

GO/WEP, (c) mGO/WEP and (d) fGO/WEP. 

 

3.2.4 The anticorrosive mechanism of fGO/WEP 

Based on the above experimental data and analysis, the anti-corrosion mechanism 

of fGO/WEP compared to blank WEP is proposed in Figure 9. Because the blank WEP 

coating has many micropores and micro cracks, the corrosive medium is free to attack 

metal surface. Therefore, the risk of metal corrosion is high. The cracks of the blank 

WEP accelerate damage to the metal surface by corrosive medium. Adding fGO fillers 

to WEP has two distinct advantages. It enhances the barrier ability of WEP when the 

coating is intact by providing a “labyrinth effect” that extends the penetration path for 

corrosive media through its random but non-agglomerated distribution inside the 

coating. At the same time, fGO releases the corrosion inhibitor (BTA) by responding to 

the pH change of the corrosive microenvironment when the coating is scratched. BTA 

reacts with exposed metal surface to increase the corrosion potential of metals and thus 
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inhibit corrosion. In summary, fGO is a new generation nano container with active and 

passive anti-corrosion functions. 

 

Figure 9. Schematic presentation of the anticorrosion performance of blank WEP (left) 

and fGO/WEP (right). 

 

4. Conclusion 

In this article, we used the in-situ polymerization of PDA to prepare benzotriazole 

(BTA)-loaded MSN-GO@PDA (fGO). PDA modifes GO to provide more adsorption 

sites for the binding of GO to MSNs and wrap MSNs to control BTA release in response 

to pH changes of the environment. FTIR/XRD/SEM results show that GO and MSNs 

have been successfully combined. TGA demonstrated the loading of BTA in fGO is of 

5.28 wt.%. UV-vis measurements showed BTA release from fGO under acidic condition 

pH<5. PDA is beneficial to the dispersion of active nanocontainers in WEP as 

confirmed by SEM of the cross-section of the coatings. Electrochemical impedance 

measurements revealed lowest frequency modulus |Z0.01Hz| value (1.42×107 Ω·cm2) and 

annual corrosion rate (1.82×10-4 mpy) of fGO/WEP were 2 orders of magnitude higher 

and 1 order of magnitude lower than that of blank WEP (8.22×10-3 Ω·cm2, 8.22×10-3 

mpy), respectively. fGO/WEP has good passive barrier anticorrosion performance. In 

the self-healing test of scratches, the corrosion products on the surface of the metal 

substrate protected by fGO/WEP are less than 10% of the blank WEP. It is confirmed 
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that fGO/WEP has self-healing anti-corrosion ability. Nanocontainers with both self-

healing and physical barrier anticorrosion functionalities can be used for protection of 

ships, offshore facilities, bridges and 5G base stations because they do not only meet 

the anticorrosion requirements of a complete coating under normal and causal 

conditions, but also respond to extreme conditions of coating damage with autonomic 

self-healing response. 
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