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A B S T R A C T   

Smart home device usage is increasing, as is the diversity of users and range of devices. Additionally, it is 
becoming increasingly common to interconnect devices (e.g., via trigger-action rules) which, while bringing 
benefits, can bring unforeseen security and privacy risks. Developing strategies to protect users as well as un-
derstanding what biographical or attitudinal characteristics contribute to these risks is a critical step for ensuring 
empowered, but safe, interconnected smart device usage. Using narrative descriptions of domestic smart devices, 
two experiments explored how the prevailing security/privacy contexts—priming conditions—in which 20 
trigger-action rules (developed via a Delphi Study) were presented influenced the adoption of rules favoring 
either security or privacy. Both experiments contrasted three priming conditions: no prime, security prime, 
privacy prime. Experiment 1 (n = 254) used explicit priming, giving direct instruction to maximize a security or 
privacy outcome while Experiment 2 (n = 325) used implicit priming, with an apparently unrelated security or 
privacy problem-solving puzzle. Across both experiments, priming promoted safer rule adoption, markedly so 
when explicit. Explicit priming produced an asymmetry however: privacy priming improved privacy scores with 
security scores unchanged and security primes improved security scores while worsening privacy scores. Across 
experiments, two dimensions of user attitudes shaped riskier rule choice: perceived benefits of technology and pre- 
existing trusting beliefs in online companies. Our novel findings reveal that implicit and explicit priming shape 
safe use of trigger-action rules in domestic settings and that age, perceived trust and perceived benefits should be 
considered when designing safety messaging.   

1. Introduction 

The increased affordability and widening range of network-enabled 
smart devices means that more people than ever now have them in 
their homes. Statista (2021) predicted that 45.8% of UK households 
would have smart home technology in 2022 with this possibly 
increasing to 84.8% by 2026. However, alongside this growth, 
increasing concerns have been voiced about the security (i.e., control-
ling who can access, use, or alter data; Saltzer and Schroeder, 1975) and 
privacy (i.e., deciding when, how and to what extent information is 
made available to others; Westin, 1968) of smart home devices (Heart-
field et al., 2018; McAlaney et al., 2018; Parks Associates, 2019; Sicari 

et al., 2015). 
Undoubtedly, adoption of smart devices is motivated by their rela-

tive cheapness along with their perceived usefulness and ease of use 
(Yang et al., 2017). As their number and type increase, the potential for 
their joint use also increases. One way this can be achieved is via the use 
of trigger-action rules. These are rules created by the user to personalize 
the joint behavior of smart devices and online services (e.g., Corno et al., 
2019a). For example, a user may create a rule that performs an auto-
matic action (e.g., “Play Music”) when a specific trigger (e.g., “When I 
return home”) occurs. As the number of trigger-action rules, from an 
array of devices, increases then the size and complexity of domestic 
systems increases (see, for example, Zheng et al., 2018). Ultimately, 
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trigger-action rules allow end users to be free to fashion a system suited 
to their individual needs. However, while such bespoke systems increase 
functionality (and likely help promote user adoption), this complexity 
may have unforeseen consequences for security and privacy (see Manca 
et al., 2019) and have material consequences including increased risk to 
property and persons in the form of home invasion, burglary, and assault 
(Atlam and Wills, 2020). In our trigger-action rule example above then 
no music playing could indicate that the property is empty. 

Aside from the possibility of ill-considered consequences of the se-
lection and conjunction of conditional rules, bespoke systems may also 
lack safeguards from malevolent interference. Despite demand from 
users (e.g., Ogonji et al., 2020), the majority of smart and IoT devices are 
not created ‘secure by design’ when it comes to human-centered aspects 
of cyber security (Atlam et al., 2017), providing numerous avenues for 
potential attacks (Atlam et al., 2018) by malefactors with disruptive or 
criminal intent (Van Oorschot and Smith, 2019). 

A system comprised of interconnected elements and without super-
ordinate safeguards is only as strong as its weakest link (Atlam et al., 
2018). A single smart device being hacked can easily infect other smart 
devices (e.g., Ronen et al., 2017) ultimately leading to a larger breach, 
such as an attack upon the entire home network (Check Point, 2020). 
The diverse nature of possible devices in terms of purpose, function, 
process, and design means that there is rarely a universal way in which 
all these devices can be protected (Dabbagh and Rayes, 2017). For 
instance, voice-controlled devices (e.g., Amazon Echo, Google Home) can 
be vulnerable to being accessed by those outside of the household (un-
less settings are chosen to prevent this), which then may grant control to 
devices such as smart light bulbs and thermostats, but also to the 
plethora of information these (and other) devices collect – e.g. giving an 
indication of when a house is likely occupied or not, sometimes without 
the householder’s full understanding (Furey and Blue, 2018). Affording 
comprehensive protection requires the co-ordination of individual 
device-specific configuration, which consumers often find difficult and 
time-consuming (Woo and Lim, 2015; Zeng and Roesner, 2019). 

Interconnectivity also means that data collected through one device 
can be shared or fed back through another, which in practice is an 
intrinsic feature of smart home devices (e.g., accessing information from 
a thermostat through a smartphone). However, it can cause privacy and/ 
or security issues of which the user setting up a system may be oblivious. 
For example, information which is innocuous when shared in some sit-
uations (e.g., sharing details of a workout on social media), can be 
problematic in others (e.g., sharing details of a workout on social media 
whilst being absent from work due to illness; Surbatovich et al., 2017). 
Therefore, this facet of home security is made more acute when the data 
is sensitive, or alternatively, when data feels harmless enough to the user 
but can in fact reveal something more exploitable to malefactors – such 
as indications of when occupants are at home or not. Importantly, while 
many risks of smart home devices can be mitigated by careful configu-
ration, up-to-date software and suitable authentication, there are still 
ways in which the privacy and security can be undermined through 
seemingly innocuous actions, for example, by the users of the systems. 

2. Theoretical foundations 

While rule-based applications have been addressed comprehensively 
through research (e.g., Barricelli et al., 2019) the focus has not typically 
been on the consequences to security/privacy but instead on usability 
and related concepts such as understandability, level of functionality, 
misinterpretation, errors, or rule conflicts (e.g., Brackenbury et al., 
2019; Corno et al., 2019a; Desolda et al., 2017; Manca et al., 2019). 
Meta-level considerations of how the system meets the user’s general 
objectives as it relates to privacy and security have received too little 
scrutiny given the potential risks. Very little research has focused on 
how effective users are at integrating trigger-action rules beyond simple 
cases, despite the likely impact on security and privacy. Typically, the 
purview of research does not extend much beyond the immediate 

functional purpose of the device. For instance, studies do not often 
consider that a social network site (e.g., Facebook) might be linked to a 
home security device (e.g., security camera) and the consequences for 
safety, security, and privacy this might entail (although, see Cobb et al., 
2020 for some recent discussion). 

With smart home device usage increasing and trigger-action rules 
allowing for bespoke and increasingly complex systems, it is necessary 
to develop and test strategies that maintain user freedom while simul-
taneously helping to avoid the types of unintended and unforeseen se-
curity and privacy costs outlined. We approach this problem by 
considering that stimuli within an individual’s environment can acti-
vate, or prime, mental representations which consequently impact in-
formation processing and later thoughts, judgements, goals, and actions 
(e.g., see Bargh and Chartrand, 2000; Molden, 2014). Primes can be 
explicit and intentionally draw attention to them (e.g., highlighting 
words, using obvious phrases) or can be implicit and outside of people’s 
awareness and both have been demonstrated to influence later behav-
iour. For example, making health related stimuli salient in the envi-
ronment can promote healthier food choices or increases in physical 
activity (e.g., see Papies, 2016) and exposure to pro-environmental 
messaging can lead to more environmentally friendly consumer 
choices (Tate et al., 2014). Related to the present work, Chong et al. 
(2018) found that priming participants with privacy related information 
(e.g., reminders that personal information would be shared) helped 
participants make safer decisions as to which smartphone applications 
they downloaded. With priming successful in helping to shape behavior 
in many areas, we considered it a suitable candidate that could help to 
promote safe trigger-action rule enabling. 

Given the dearth of previous work exploring trigger-action rules and 
their impact upon security and privacy we adopted an exploratory 
stance. We first developed hypothetical trigger-action rules (Delphi 
Study) with differential impacts on the security and privacy of a system. 
Then, in the two experiments that followed, the key independent vari-
able was the context in which participants were asked to select rules 
they considered appropriate to activate. We contrasted one context in 
which security was primed, one in which privacy was primed and one in 
which no context was primed. Across experiments we manipulated the 
strength of the primed context, comparing explicit priming that pro-
vided directed and overt instructions to maximize either security or 
privacy (Experiment 1) and implicit priming (Experiment 2) where the 
context was merely the engagement in a task prior to the main experi-
mental blocks of trials - that had either security or privacy consider-
ations, free of direct instruction. Via the administration of 
questionnaires, we also collected biographical and attitudinal charac-
teristics of the participants. As such, this gave us two primary research 
questions: 

RQ1: Does the context under which trigger-action rules are first 
chosen engender less risky behavior in the selection of rules to be 
deployed? 

RQ2: Is trigger-action rule-choice behavior linked to individuals’ 
biographical or attitudinal characteristics? 

3. Delphi study – developing trigger-action rules 

When deciding upon trigger-action rules to be used in our experi-
ments, there (to our knowledge) was no publicly available set of rules 
from which to draw stimulus materials. Importantly, while being 
representative of domestic use, it was important that any rules used were 
interesting, understandable, meaningful and, crucially, enshrined se-
curity and privacy considerations. 

To achieve these aims we adapted the Delphi method to create a pool 
of trigger-action rules across three stages. The Delphi method involves 
the systematic collection and aggregation of informed judgment from a 
group of experts on specific questions and issues (see, for example, 
Donohoe and Needham, 2009; Linstone and Turoff, 1975). The panel for 
our Delphi study consisted of four participants—outside the group of 
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authors—each identified as an expert in security, privacy and/or human 
factors (one senior lecturer, one lecturer, a postdoctoral researcher 
partly seconded to industry as a senior scientist, and a doctoral student 
partly seconded to industry as a senior scientist). 

The first stage was exploratory with the goal of enriching an initial 
set of rules devised by the research team and eliciting new suggestions 
from the panelists. Panelists were first shown an explanation of the study 
and its goal. Then, they were shown example rules from our initial 
corpus, with an associated ‘vulnerability score’—one for security and 
one for privacy—and our rationale for the scores. They were then asked 
to generate five new rules each having security and/or privacy impli-
cations, with a vulnerability score for security and privacy along with a 
rationale for their assigned scores. It was emphasized to panelists that 
the rules be relevant, interesting, and have a meaningful balance be-
tween security and privacy. 

In the second stage, panelists were shown rules selected by the 
research team from our original corpus and from the new rules gener-
ated in the first stage, along with their vulnerability scores and rationale. 
Then, we asked participants to give feedback on each of the rules; a new 
score if they deemed appropriate, a new rationale for a score, and any 
other comments. 

The third stage had a similar setup to the second with the aim of 
reaching a final consensus on the rules and associated scoring. This 
adapted Delphi process was instrumental in enriching our original 
collection of rules and refining the scores and wording of the rules. 
Based on quantitative consensus measures for Delphi studies from the 
literature (Diamond et al., 2014; Parekh et al., 2017) and our own 
interpretation of the qualitative answers, we determined which of the 
rules had reached consensus among the participants. Of these, twenty 
rules were selected to be used in the experiments based on their rele-
vance, interestingness, and balance between security and privacy im-
plications and each had a privacy and security weighting associated with 
it (see below for two examples). Appendix A contains the full corpus of 
trigger-action rules that were identified and refined through this pro-
cess, together with specific comments about the assumptions made in 
their selection and scoring. 

RULE 
Unlock the smart lock of my front door by voice (e.g., when I say ‘Alexa, 

unlock the door’, my front door unlocks).  

• Security weighting: -4. Rationale: Someone might trick it by saying 
the phrase from outside (Symantec, 2017), and more recent work 
suggests that an adversary can control such systems by injecting 
laser-based voice commands from a great distance (Sugawara et al., 
2020). It also explicitly ties the smart lock to an Amazon/Google 
account - thereby increasing the risk from a compromised online 
account.  

• Privacy weighting: -1: Rationale: Ties the smart lock to an Amazon/ 
Google account, i.e., Amazon/Google can build up data on patterns 
of behavior, such as when someone is at home or out. 

RULE 
If I’m the last person in the house and leave, send a notification to my 

smartwatch if any window in the house is open.  

• Security weighting: +2. Rationale: Makes sure that I don’t leave any 
windows open.  

• Privacy weighting: -2. Rationale: The smart house knows where the 
rest of the household are (or at least that they are not at home). 

The 20 trigger-action rules and associated scores for privacy and 
security fed through to Experiment 1 and Experiment 2. 

4. Experiment 1 

The main aim of Experiment 1 was to explore the effects of explicit 

priming (messaging) that directed our volunteer participants to place an 
emphasis on security or privacy in deciding upon which trigger-action 
rules to enable. The act of priming is one of providing a context in 
which subsequent behavior can be framed. In Experiment 1 it is explicit 
since it is directed specifically at a particular feature of the setting. The 
key focus was whether such messaging can impact and improve the 
decision-making process of individual users. By utilizing a repeated 
measures design it was possible to obtain a baseline level of rule- 
enabling behavior for each participant before establishing the precise 
impact of security and privacy messaging. The second aim of Experiment 
1 was to explore ways in which attitudes to technology shape how 
participants enabled rules with the aim of identifying key traits, of 
which knowledge of can then be used to help improve cyber-risky 
behaviors. 

4.1. Experiment 1 hypotheses development 

While most users seem adept at setting security and/or privacy rules 
for single devices, especially early on (e.g., during set-up of the device), 
there is little research on interconnected smart IoT devices in terms of 
security and privacy. It is predicted, albeit with a limited evidence base 
(i.e., Experiment 1 is largely exploratory given its novelty), that without 
intervention users will not be inclined to focus on the security and/or 
privacy settings of devices especially in terms of how the settings for one 
device could impact another. Explicit priming, that places an emphasis 
on security when deciding upon which trigger-action rules to enable, 
will enhance the security integrity of enabled rules compared to the non- 
priming baseline condition. Priming that places an emphasis on privacy 
will enhance the privacy integrity relative to baseline. The inclusion of 
individual differences measures in Experiment 1 (e.g., technology 
adoption propensity, trusting beliefs) is entirely exploratory and there-
fore not appropriate to make specific hypotheses. 

4.2. Experiment 1 method 

4.2.1. Experiment 1 participants 
Two hundred and fifty-four volunteer participants (all UK residents 

aged over 18 years, range 18-73, M = 33.13, SD = 10.91, 66.9% female, 
30.5% male, 1.9% other, 0.6% undisclosed) were recruited via the 
Prolific Academic Online Participant Panel (www.prolific.co). It was 
advertised as a study about smart homes and smart home technologies/ 
devices without any mention of privacy or security. Of those recruited, 
three potential participants failed a simple and fair attention check, two 
failed to provide all necessary responses and two enabled every rule in 
every condition and were treated as extreme outliers, giving a final 
sample size of 247. 

Prior to the study, the procedure was piloted with 20 participants to 
ensure appropriate comprehension of the tasks and survey questions and 
to avoid any ambiguity. These participants are not included in the final 
sample. 

We recruited only those Prolific participants with an excellent track 
record of producing trustworthy results: a minimum of 20 previous 
submissions on the Prolific platform with a minimum approval rate by 
investigators from previous studies of 98%. There were no other ex-
clusions for participation. Participants were rewarded £3.50 for 
completing the study and it took ~20 minutes to complete on average, 
(equating to an hourly rate on Prolific of £13.93). All stages of the 
experiment were approved and conducted in accordance with our in-
stitution’s ethics and risk assessment procedures – School of Psychology 
Research Ethics Committee (SREC). 

4.2.2. Experiment 1 materials 
As informed by the Delphi Study, a total of 20 trigger-action rules 

were included in this experiment and each of these rules had an assigned 
security and privacy score (See Appendix A). 

Four individual differences scales were selected as being appropriate 
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for the study. The first was the 14-item Technology Adoption Propensity 
Index (TAP) developed by Ratchford and Barnhart (2012). This 
multiple-item scale measures consumers’ propensities to adopt new 
technologies and combines assessments of consumers’ positive and 
negative attitudes towards technology. Within TAP are four distinct 
dimensions related to technology adoption: two that inhibit— (depen-
dence and vulnerability), and two that enhance (optimism and proficiency). 
An individual’s TAP score predicts both usage and ownership of tech-
nology. The second included scale was the 5-item Perceived Bene-
fits/Risks adapted from Park et al. (2019). This scale was originally 
developed to examine the effects of perceived risk, perceived benefits, and 
trust on consumers’ intention to use mobile payment systems. The third 
was the 10-item Internet Users’ Information Privacy Concerns (IUIPC) 
developed by Malhotra et al. (2004) and drawing from social contract 
theory. The factor structure comprises three dimensions—collection, 
control, and awareness—that make it useful in the analysis of the psy-
chometric properties of online privacy. The final included scale was the 
5-item Trusting Beliefs (Harborth and Pape, 2020; Malhotra et al., 2004). 
This scale was an adaptation and extension of IUIPC that measures the 
impact of privacy concerns on the use of technologies. 

4.2.3. Experiment 1 procedure and design 
The online questionnaires and experimental tasks were designed and 

delivered using Qualtrics (www.qualtrics.com) and participants were 
directed to them via the Prolific website. Participants first read through a 
description of smart homes and the types of smart home device that 
would later be mentioned in the study. For each device there was a 
picture and a short paragraph with a description of the device (See 
Appendix B). Participants were then asked to report how familiar they 
are with such devices. The next screen introduced the concept of trigger- 
action rules and platforms such as IFTTT and asked participants to report 
how familiar they are with them. 

Each participant then undertook the following three experimental 
conditions: 

No Prime condition: A neutral context introductory paragraph was 
presented at the top of the screen. Participants were asked to imagine 
that they had all the smart devices and services introduced previously in 
their home and asked which trigger-action rules they would like to 
enable. Below the paragraph were listed each of the 20 trigger-action 
rules with circular radio buttons (red outline but no fill) labelled Yes 

or No placed adjacent to each description (see Fig. 1). When a partici-
pant clicked a button corresponding to Yes or No then the button filled 
red. Before the 8th and 15th rule the Yes and No labels were placed in the 
columns to remind participants which radio button corresponded to 
which response. Participants were required to pick a response for each of 
the rules but free to do so in any order they wished and free to alter their 
decisions at any point. There was no time limit and once participants 
were happy with their decisions, they clicked a proceed button at the 
bottom of the page. 

Security Prime condition: This comprised the same 20 rules and pre-
sentation parameters as the no prime condition and once again asked 
participants to imagine that they had all the smart devices and services 
in their home. However, the introductory paragraph differed in as much 
as it explicitly prompted participants to consider the security implica-
tions of enabling the rules. Participants were told that it is important to 
maximize the security in their house (e.g., to make sure that burglaries 
are prevented). To ensure compliance with the task, and not risk par-
ticipants simply leaving all rules switched-off (the most secure option as 
it prevents inter-connectedness between devices) participants were told 
that 1 point would be awarded for each rule used, with a cost (lost 
points) if there were security problems in the final configured set of rules 
or a gain (extra points) if the rule configuration potentially makes the 
house more secure. Based upon the total points scored by each partici-
pant, bonus payments, were given to the top 10% of participants. 

Privacy Prime condition: This again comprised the same 20 rules and 
presentation parameters as the no prime condition with participants 
once again asked to imagine that they had all the smart services in their 
house. However, the introductory paragraph asked for explicit consid-
eration of the privacy implications of enabling each rule. Participants 
were told that it is important to maximize the privacy in their house (e. 
g., “to make sure that other people don’t have access to your personal 
details or something embarrassing about you doesn’t become public”). 
As with the security prime condition, to ensure compliance with the 
task, participants were told that 1 point would be awarded for each rule 
used, with a cost (lost points) if there were privacy problems in the final 
configured set of rules or a gain (extra points) if the rule configuration 
potentially enhances privacy. Again, based on the total points achieved, 
bonus payments were given to the top 10% of participants. 

The No Prime condition was always presented first with the Privacy 
Prime and Security Prime conditions then presented in a randomized 

Fig. 1. Example layout of trigger-action rules in all three experimental conditions.  
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order across participants. After completion of the three prime conditions 
participants were then required to fill out the demographic and indi-
vidual differences questionnaires outlined above. 

4.3. Experiment 1 results 

4.3.1. Trigger-action rules (Experiment 1) 
For each of the trigger-action rules enabled (Yes response given) the 

associated security and privacy weights served as the basis for giving 
each participant a total of six scores (i.e., the sum of the security and 
privacy scores, in each of the three conditions). Table 1 shows these raw 
scores—the sums of scores for each participant—averaged over partic-
ipants and Fig. 2 shows the calculated difference scores for the security 
prime and privacy prime conditions relative to the no prime condition. 

The change scores corresponding to the factor primes (Security 
Prime, Privacy Prime) and rule weightings (Security, Privacy) were 
subject to a repeated measures ANOVA. The pattern of results (Table 1 
and Fig. 2) reveals that a focus on security led to a neglect of privacy 
(while increasing security) whereas a focus on privacy increased privacy 
scores while leaving security relatively intact. This is illustrated most 
forcibly in the significant interaction between primes and rule scores, F 
(1, 244) = 214.2, MSE = 22.2, p < .001, n2

p = .47. There were also main 
effects of primes, F(1, 144) = 10, MSE = 16.6, p = .002, n2

p = .04, and 
rule weightings, F(1, 244) = 10.2, MSE = 47.8, p = .002, n2

p = .04, 
subsumed within the interaction. 

The interaction was explored further and one sample t-tests (two- 
tailed) revealed the interaction to be driven by privacy primes 

increasing privacy scores (M = 2.9, SD = 8.41), t(244) = 5.4, p < 0.001, 
d = 0.35, while leaving security scores (M = 0.09, SD = 5.71) un-
changed, t(244) = 0.26, p = .8, d = -0.02. Security primes increased 
security scores (M = 3.49, SD = 5.03) markedly, t(244) = 10.85, p = <

.001, d = 0.69, while worsening privacy scores (M = -2.33, SD = 7.79), t 
(244) = 4.7, p < .001, d = -0.3. 

As a necessary consequence of our experimental procedure, the 
number of rules a participant could enable was free to vary. This pro-
vided an additional variable of interest when accounting for behavior. 
Furthermore, the more rules someone is willing to enable then the less 
cyber-secure their behavior could be considered. The average number of 
rules enabled in each condition is shown in Fig. 3. 

On average, only around half the available 20 rules were enabled in 
each condition. Generally, the number of rules enabled was lower for the 
Privacy Prime than the other two conditions. An overall repeated- 
measures analysis of variance (ANOVA) revealed conditions to be sig-
nificant, F(2, 488) = 14.2, MSE = 8.08, p < .001, n2

p = .06 with post-hoc 
(two-tailed, Tukey) tests showing that the only significant differences 
were between No Prime (M = 9.78, SD = 3.76) and Privacy Prime (M =
8.79, SD = 4.23), t(488) = 3.86, p < .001, d = -0.21, and Security Prime 
(M = 10.1, SD = 3.25) and Privacy Prime, t(488) = 5.12, p < .001, d =
0.43. The small mean difference between Security Prime and No prime 
was not significant: t(488) =1.26, p < .2, d = 0.08. 

The number of rules enabled again reveal privacy and security 
primes to work in different ways with a security prime leaving the 
number of rules enabled relatively similar (albeit with a small, but non- 
significant increase in mean) and a privacy prime leading to an overall 
reduction in the number of rules enabled. A characterization of privacy 
as being a more potent and generalized dimension of decision-making is 
suggested by the results so far. 

4.3.2. Individual differences (Experiment 1) 
Using the demographic and individual differences data collected 

during the experiment we undertook hierarchical regressions, control-
ling for demographic information, with the security and privacy scores 
as dependent variables in each of the three conditions (No Prime, Se-
curity Prime and Privacy Prime). Additionally, we undertook the same 

Table 1 
Mean (and SD) Security and Privacy scores in each condition.   

Rule Weights (raw)  
Security Privacy 

Condition M SD M SD 

No Prime -1.03 4.20 -13.36 6.93 
Security Prime 2.46 3.97 -15.68 7.06 
Privacy Prime -1.12 5.18 -10.45 7.33  

Fig. 2. Box plots with violin overlay illustrating the security and privacy change scores in each priming condition relative to no prime (dashed line). 
Note. *** Significant change from No Prime at p < .001. 

P.L. Morgan et al.                                                                                                                                                                                                                              



International Journal of Human - Computer Studies 168 (2022) 102902

6

analysis on the number of rules enabled measure. 
This, one must caution, was not a conservative approach, but we 

think necessary insofar as we were not guided by well-developed hy-
potheses in the individual differences’ domain. In that respect the 
following analysis should be regarded as exploratory and its outcome 
only suggestive. However, at the same time, those effects emerging as 
predictors are likely to be the most major ones and it is anticipated that 
they will prove informative for use in future studies. 

No Prime condition 
Security scores: The regression including all predictors was signifi-

cant, F(16, 223) = 3.01, p <.001, R2 = .18 . IUIPC_Control (an in-
dividual’s concerns about whether they have control over personal 
information as manifested by the existence of voice e.g., such as having 
options to opt-in/out of data collection) was negatively related to se-
curity scores (p = .01). Contributing most to the model, but just failing to 
reach conventional levels of significance, were TAP Vulnerability (in-
hibits use of technology) which was positively correlated (p = .06), and 
Perceived Benefits which was negatively correlated (p = .08) 

Privacy scores: The model including all predictors was significant, F 
(16, 223) = 4.48, p <.001, R2 = .24. Demographic factors contributing 
most were Age (p < .01) and Skill with technology (p = .01). Privacy scores 
increased as age and skill increased. Trusting Beliefs (p < .01) and 
Perceived Benefits (p < .001) were both negatively correlated. Perhaps 
unsurprisingly, the more people trust online companies, the lower their 
privacy score. And again, the more benefits they expect to receive from 
using smart home technologies the lower their privacy score. Finally, 
privacy scores were positively related with Perceived Risks (p < .05) with 
privacy scores increasing as the perceived risks from technology 
increased. 

Security Prime condition 

Security score: The models were not significant. Education (p = .06) 
and trusting beliefs (p < .01) were factors contributing most to model that 
included all predictors though. Education was positively correlated so 
that security scores increased as education levels increased whereas 
trusting beliefs were negatively correlated with decreasing security 
scores as trusting beliefs increased. 

Privacy score: The model including all predictors was significant, F 
(16, 223) = 3.28, p <.001, R2 = .19. Demographic factors contributing 
most were Age (p = .05) and Skill with technology (p < .001). Both were 
positively correlated such that privacy scores improved as age and skill 
with technology increased. As in the No Prime condition, Perceived 
Benefits (p < .01), was negatively correlated. The more benefits expected 
from smart home technologies then the lower the privacy score. 

Privacy Prime condition 
Security score: The models were not significant. IUIPC_Control (p =

.04) contributed most to model that included all predictors and was 
negatively related to security scores. The more that participants agreed 
with consumers having more control over their online data then the 
fewer rules that were enabled. 

Privacy score: The model including all predictors significant, F(16, 
223) = 2.88, p <.001, R2 = .17. Just as in the No Prime condition, 
Trusting Beliefs (p = .06) and Perceived Benefits (p = .03) were both 
negatively correlated factors contributing to the model such that privacy 
scores worsen as the perceived trust and benefits increase. Tap Optimism 
(p < .05) was also negatively correlated with the privacy score. The 
more optimistic individuals were about technology then the lower their 
privacy scores. 

Number of rules enabled measure 
No Prime condition: The Model including all predictors was signifi-

cant, F(16, 223) = 5.53, p <.001, R2 = .28. The Demographic factor 

Fig. 3. Box plots with violin overlay illustrating the number of rules enabled in each of the priming conditions.  
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contributing most was Age (p < .01): number of rules enabled decreased 
as age increased (in a similar pattern to the Privacy score data). Trusting 
Beliefs (p < .01) and Perceived Benefits (p < .001) were both positively 
correlated with the number of rules enabled. The more people trust 
online companies and expect to gain a benefit, then the greater number 
of rules enabled. Perceived Risks (p = .03) was negatively correlated with 
fewer rules enabled as perceived risks increased. 

Security Prime condition: The Model including all predictors was sig-
nificant, F(16, 223) = 3.93, p <.001, R2 = .22. Demographic factors 
contributing most were Age (p = .04) and Skill with Technology (p <
0.01). Both were negatively correlated with the number of rules enabled: 
the number of rules enabled decreased as age increased and as skill 
decreased the number of rules enabled increased. Perceived Benefits (p 
< .01) was a positively correlated factor. The more people expect to gain 
from technology, then the more rules were enabled. Trusting Beliefs (p 
= .06) just failed to reach conventional significance but showed a similar 
pattern to the No Prime condition with increased trust in online com-
panies resulting in more rules enabled. 

Privacy Prime condition: The model including all predictors was sig-
nificant, F(16, 223) = 2.7, p <.001, R2 = .16. This showed a similar 
pattern to the security prime condition with Perceived Benefits (p = .04) a 
positively correlated factor and Trusting Beliefs (p = .055) also positively 
correlated but just failing to reach conventional significance 

4.4. Experiment 1 discussion 

Experiment 1 demonstrated that explicit priming that encourages 
maximization of certain outcomes produces material consequences for 
the rules deployed, albeit for hypothetical circumstances. Interestingly 
there is an asymmetry between security and privacy. Enjoining the 
maximization of privacy improves privacy scores while leaving security 
scores largely unchanged. Enjoining security produced a more sym-
metrical effect: it acted to improve security scores while negatively 
impacting privacy scores at the same time leaving the number of rules 
enabled relative to the No Prime condition stable. These findings suggest 
a degree of cognitive control with participants able to identify and select 
rules based directly upon the messaging received prior. Just why there is 
an asymmetry of this sort, is open to question. Security and privacy 
concerns are major concerns for users of smart home technologies 
(McAlaney et al., 2018; Parks Associates, 2019) and in all conditions 
participants were free to enable as many rules as they wished. It is 
positive to find that explicit security and privacy related messaging is 
sufficient in promoting directed, and safer, rule-enabling behavior. 

The second stage of the experiment collected individual differences 
measures and here there were some key predictors emerging in several 
models. While exploratory, we take the analysis to provide useful 
pointers for inclusion of a sub-set of factors in future regression models. 
The factors that seemed to predominate in the analysis were: trusting 
beliefs, perceived benefits and age. If users trust technology, then there 
is a tendency to set security and privacy concerns aside. Trust has pre-
viously been shown to be important in predicting planned behavior 
within smart home services (Yang et al., 2017). However, this study is 
the first to demonstrate a direct association with trigger-action rule 
enabling behavior which is a performed, rather than a planned, action. 
This finding has important implications for privacy and security 
messaging as end user improvements may first be dependent upon 
sowing seeds of distrust. 

Perceived benefits (Park et al., 2019) were also fairly consistent in 
predicting rule-enabling behavior with more rules enabled as the 
perceived benefits increased. Additionally, there were several instances 
where this came at the expense of security/privacy. Similarly, to the 
trusting beliefs scale, it seems that perceived benefits do not only apply 
to behavioral intentions but also to behavioral outcomes. Ironically, this 
again points to reducing rather than increasing trust and points perhaps 
to research investigating the power of illustrative examples as opposed 
to general incitement (or indeed both) as the more effective method of 

behavior change. Age was also a key demographic factor in several 
models. Older users tended to be more conservative in the number of 
rules enabled which suggests, in regard to trigger-action rules, that they 
will be exposed to fewer security/privacy risks than younger users. 
Although this is the first demonstration of it in the adoption of 
trigger-action rules it is consistent with findings across a wide range of 
domains (e.g., Weller et al., 2011). This finding therefore contributes to 
an already well-established literature and suggests an important inter-
play between age and perceived benefits that future regression models 
and behavior change interventions will need to consider. 

5. Experiment 2 

Experiment 2 extended upon the priming conditions explored in 
Experiment 1. The rule-enabling task that participants undertook was 
identical, but the priming task was implicit rather than explicit, that is, 
instead of giving specific instructions about what to achieve via the 
selection of the rules, participants undertook a self-contained problem- 
solving activity that was broadly about security, privacy or was neutral. 
By utilizing implicit primes, we hoped to demonstrate a broader basis of 
priming whereby the engagement of cognitive activity—generally about 
security or privacy—would reduce security and privacy risks. 

We adopted a between-participants design with the three con-
ditions—No Prime, Security Prime and Privacy Prime—all being un-
dertaken by randomly allocated independent groups. The advantage of 
this design was that it eliminated the risk of contamination of effects 
across conditions. However, a caveat of this design choice was that it 
meant that individual difference data could not legitimately be used in 
the same way as Experiment 1. However, we were able to make prin-
cipled use of the key variables identified in Experiment 1 (age, trusting 
beliefs and perceived benefits) to test whether they were once again 
predictive here. 

5.1. Experiment 2 hypotheses development 

Similar to Experiment 1, Experiment 2 is largely exploratory given 
that, to our knowledge, there has been no past research on the use of 
implicit priming on user settings choices regarding the security and 
privacy of interconnected IoT smart home devices. We can in part turn to 
our key findings from Experiment 1 though – that explicit security 
priming improved security scores but degraded privacy scores whilst 
explicit privacy priming improved privacy scores whilst largely leaving 
security scores intact. It is reasonable to expect that a non-explicit form 
of priming like that used in Experiment 2 will not have such marked 
effects as explicit priming but will be effective enough to improve 
overall security (in the implicit security prime condition) and privacy (in 
the implicit privacy prime condition). The inclusion of some individual 
differences measures from Experiment 1 (age, trusting beliefs and 
perceived benefits) is again exploratory and given the between- 
participants design adopted in Experiment 2 it is only appropriate to 
suggest that we may observe trends similar to the findings in Experiment 
1. 

5.2. Experiment 2 method 

5.2.1. Experiment 2 participants 
Conditions of recruitment, participant inclusion and payment were 

identical to Experiment 1 with those who had participated in Experi-
ment 1 excluded from participating. 

A total of 333 volunteer participants (all UK residents aged over 18 
years, range 18-76, M 34.99, SD 12.85, 67.11% F, 32.44% M, 0.4% 
other) were recruited to provide a balanced independent groups design 
of 111 participants per cell. However, 8 participants were shown to have 
failed a simple and fair attention check and so were excluded from the 
final analysis. This left 110 participants in the no prime condition, 108 in 
the security condition and 107 in the privacy condition (total n = 325). 
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Slight imbalances in cells are not considered a problem at these sample 
sizes (see Shaw and Mitchell-Olds, 1993). All stages of the experiment 
were approved and conducted in accordance with our School of Psy-
chology Research Ethics Committee. 

5.2.2. Experiment 2 materials 
The same 20 trigger-action rules and associated security and privacy 

scores used in Experiment 1 were also used here. However, instead of 
explicit paragraphs prompting participants to think about security/pri-
vacy the current experiment utilized implicit priming tasks. For the No 
Prime condition participants were first given two tasks in which they 
were asked to select which smart lightbulb, from a choice of two, they 
would buy for a friend. Participants were presented with a list of features 
that were not relevant to security or privacy on which to base their 
decision (e.g., maximum lifespan, ease of use). For the Security Prime 
task participants were implicitly primed to think about the security of 
their home by performing two tasks asking which of two houses was 
more likely to be burgled based on eight characteristics (e.g., the loca-
tion of the property, whether it has a garden). This task was adapted 
from previous literature on decision-making among expert and novice 
residential burglars (Garcia-Retamero and Dhami, 2009). Finally, the 
Privacy Prime task implicitly primed participants to think about the 
privacy of their data by presenting two tasks (adapted from Kelley et al., 
2013) in which, based on several characteristics (e.g., access granted to 
contacts, access granted to photos), they had to choose which applica-
tion they would be more willing to install on their smartphone. 
Appendix C outlines these tasks in more detail. 

5.2.3. Experiment 2 procedure and design 
The design and procedure were in many respects similar to Experi-

ment 1 with all participants first receiving the same introduction to 
smart home technologies and trigger-action rule platforms as before. 
Experiment 2 utilized a between-participants design with participants 
then randomly assigned to complete just one of the three priming tasks 
detailed above (No Prime, Implicit Security Prime, or Implicit Privacy 
Prime). After completion of the priming task all participants were pre-
sented with the 20 trigger-action rules and free to enable as many, or as 
few, rules as they wished. Presentation parameters of the rules and radio 
buttons were identical to Experiment 1. Once completed, all participants 
were then required to fill out the demographic and individual differ-
ences questionnaires before the study ended with presentation of a 
debrief. 

5.3. Experiment 2 results 

5.3.1. Trigger-action rules (Experiment 2) 
The scoring was identical to Experiment 1 with each trigger-action 

rule enabled (Yes response given) assigned its appropriate security and 
a privacy score and the sum, in each of the three conditions, calculated 
(See Table 2). Fig. 4 shows the calculated difference scores for the se-
curity prime and privacy prime conditions relative to the no prime 
condition. 

Due to the nature of the between-participants design standardized 
change scores could not be calculated and because direct comparison of 
the raw security and privacy scores yields very little useful information, 
the exposition here treats security and privacy scores separately. 

An implicit Security Prime significantly increases security scores (M 
= 1.43), but not privacy scores (M = 1). An implicit Privacy Prime has no 
significant effect on either security (M = 0.53) or privacy (M = 2.07) 
scores. A one-way ANOVA revealed a significant main effect of priming 
condition on security scores, F(2, 322) = 3.31, p = 0.04, with post-hoc 
tests (two-tailed, Tukey) showing a significant difference between No 
Prime and Security Prime (p = .03) but a non-significant difference 
between No Prime and Privacy Prime (p = .19). Analysis of privacy 
scores with a one-way ANOVA revealed a non-significant effect of 

Table 2 
Mean (and SD) Security and Privacy Scores in each condition.   

Rule Weights (raw)  
Security Privacy 

Condition M SD M SD 

No Prime -1.65 4.27 -13.57 7.28 
Security Prime -0.23 4.19 -13.04 6.49 
Privacy Prime -0.66 4.12 -11.5 7.18  

Fig. 4. Box plots with violin overlay illustrating the security and privacy change scores in each priming condition relative to no prime (dashed line). 
Note. * Significant change from No Prime at p < .05. 

P.L. Morgan et al.                                                                                                                                                                                                                              



International Journal of Human - Computer Studies 168 (2022) 102902

9

priming condition, F(2,322) = 2.57, p = .08. 
Number of rules enabled: A prime tended to diminish the number of 

rules enabled and this was most marked with the Privacy Prime condi-
tion (see Fig. 5). A one-way ANOVA revealed a significant main effect of 
priming condition, F(2, 322) = 4.1, p = .02, and post-hoc comparisons 
(two-tailed with Tukey’s HSD) revealed the only significant difference to 
be between No Prime and Privacy Prime conditions (p = .01) with 
remaining comparisons non-significant (ps > 0.05). 

5.3.2. Individual differences (Experiment 2) 
A caveat of using a between-participants design is that it loses power 

to detect smaller effects. However, we did identify three key variables in 
Experiment 1 – age, trusting beliefs and perceived benefits – which 
meant we could use the individual differences data collected in Exper-
iment 2 to establish whether those variables are consistent predictors 

Fig. 5. Box plots with violin overlay illustrating the number of rules enabled in each of the priming conditions.  

Table C1 
Task used within the No Prime condition.   

Product 1 Product 2 

Connectivity Wi-Fi Bluetooth, Wi- 
Fi 

Integration Amazon Alexa, Google Assistant, 
IFTTT 

Amazon Alexa 

Maximum est. lifespan 23 years 18 years 
Dimmable Yes Yes 
Ease of use **** **** 
Set-up **** ***** 
Colour quality **** ***** 
Price £24.99 £29.99  

Table C2 
Task used within the Security Prime condition.   

Property 1 Property 2 

Garden in the 
property 

Tall hedges/bushes Short hedges/bushes 

Signs of care Not well-kept property Not well-kept property 
Type of property Flat House 
Light in the property On On 
Letter box Empty Stuffed with post 
Location of the 

property 
Corner of the street Middle of the street 

Access to the 
property 

Doors/windows on ground 
floor 

Doors/windows on second 
floor 

Security in the 
property 

No burglar alarm system Burglar alarm system  

Table C3 
Task used within the Privacy Prime condition.   

Calorie Tracker 1 Calorie Tracker 2  

Privacy Facts: This app collects your 
Personal information Yes Yes 
Contacts No Yes 
Location No Yes 
Diet/nutrition No Yes 
Health/medical No No 
Photos No No 
Usage analytics Yes Yes  

Price Free £4.99  
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and whether they generalize across experiments. Similar to Experiment 
1, we undertook regressions using the security and privacy scores as 
dependent variables in each of the three conditions (No Prime, Security 
Prime and Privacy Prime) but, unlike Experiment 1, only including the 
three key variables identified. Secondly, we undertook the same analysis 
on the number of rules enabled measure. 

No Prime condition 
Security scores: The model was not significant, F(3, 105) = 1.35, p 

=.26, R2 = .04. 
Privacy scores: The model including the three predictors was signif-

icant, F(3, 105) = 15.1, p < .001, R2 = .3, with both perceived benefits (p 
< .001) and trusting beliefs (p < .001) providing significant contribu-
tions to the model. As in Experiment 1, these were both negatively 
correlated so that privacy scores worsened as perceived benefits and 
trusting beliefs increased. 

Security Prime condition 
Security score: The model including the three predictors was signifi-

cant, F(3, 100) = 4.42, p =.006, R2 = .12, but only perceived benefits (p 
< .001) provided a significant contribution to the model. Again, this was 
a negative relationship: security scores diminished as perceived benefits 
increased. 

Privacy score: The model including the three predictors was signifi-
cant, F(3, 100) = 17.0, p <.001, R2 = .34, with perceived benefits (p <
.001) and trusting beliefs (p = .055) contributing most to the model. 
These were once again negative relationships with privacy scores 
worsening as perceived benefits and trusting beliefs increase. 

Privacy Prime condition 
Security score: The model including the three predictors was signifi-

cant, F(3, 102) = 4.17, p =.008, R2 = .11, but only trusting beliefs (p <
.05) providing a significant contribution to the model. This was once 
again a negative relationship with security scores worsening as trusting 
beliefs increase. 

Privacy score: The model including the three predictors was signifi-
cant, F(3, 102) = 9.73, p <.001, R2 = .22, with perceived benefits (p <
.001) providing a significant contribution to the model and trusting 
beliefs (p = .054) and age (p=.054) both providing a substantial (albeit 
just reaching conventional significance thresholds) contribution to the 
model. Once again, the relationship was negative with increases in 
perceived benefits and trusting beliefs associated with worsening pri-
vacy scores. Age had the opposite effect with improvements in privacy 
scores as age increased. 

Number of rules enabled measure 
No Prime Condition: The model including the three predictors was 

significant, F(3, 105) = 15.4, p < .001, R2 = .31, with both perceived 
benefits (p < .001) and trusting beliefs (p < .001) providing significant 
contributions to the model. The relationship here was positive with the 
number of rules enabled increasing as trusting beliefs and perceived 
benefits increase. 

Security Prime Condition: The three predictors model was significant, 
F(3, 100) = 15.4, p < .001, R2 = .32, with perceived benefits (p < .001) 
providing the most significant contribution to the model. Again, this 
relationship was positive with the number of rules enabled increasing as 
the perceived benefits increase. 

Privacy Prime Condition: Here again the three predictors model was 
significant, F(3, 102) = 10.3, p < .001, R2 = .23, with both perceived 
benefits (p < .001) and trusting beliefs (p = .02) providing significant 
contributions to the model. The relationships here were again positive 
with the number of rules enabled increasing as trusting beliefs and 
perceived benefits increase. 

5.4. Experiment 2 discussion 

Experiment 2 tested whether implicit priming is sufficient to pro-
mote positive changes in trigger-action rule-enabling behavior. While 
the overall effects were of a smaller magnitude than those obtained via 
explicit priming in Experiment 1, the implicit primes still produced 

statistically reliable consequences. More precisely, implicit security 
priming specifically led to a change in rule-enabling behavior so that 
security risks were mitigated to some extent compared to those receiving 
a neutral prime. In contrast to the outcome of Experiment 1, this 
improvement in security scores was not achieved at the expense of 
privacy. Additionally, there was a general effect of priming upon the 
overall number of rules enabled indicating that any kind of task 
(whether including an implicit security, or privacy message) can help 
promote more cautious decision making that would ultimately lead to 
more secure systems. It should be noted that the tasks used were very 
subtle in the nature of their messaging and yet still elicited significant 
changes in behavior. As indicated by Experiment 1, as the messaging 
shifts to being more explicit even further mitigation of risk would be the 
most likely outcome. 

Furthering the predictive value of the key variables identified in 
Experiment 1 – age, perceived benefits and trusting beliefs – these 
produced significant regression models of behavior in all but one 
instance (security scores in the no prime condition). Additionally, 
perceived benefits and trusting beliefs emerged as significant contribu-
tors in a number of the models. In all instances they were indicative of 
more risky security and privacy related decision making with increases 
in the overall number of rules enabled and worsening security and pri-
vacy scores. Because, along with Experiment 1, these variables consis-
tently emerged as significant predictors it suggests that they are key 
variables for predicting rule-enabling behavior. As such, they are also 
ones in which future research should be highly considerate of. However, 
in contrast to Experiment 1, age was a significant predictor variable in 
only one regression model. It may be that age is less relevant than 
indicated by Experiment 1 although there is a wealth of research (e.g., 
Weller et al., 2011) indicating the importance of age. Most likely is that 
the failure to find consistent significant effects of age in the present 
experiment is that it is reflective of the between-subjects design choice. 
Not only does a reduction in participant numbers lead to reduced power 
but also reduces the possible variability of ages, of which to use when 
establishing whether a relationship exists, within the participant pool. 

6. General discussion 

The present series of experiments assessed the impact that explicit 
(Experiment 1) and implicit (Experiment 2) security and privacy related 
messaging has upon trigger-action rule enabling behavior. Additionally, 
they sought to identify key individual differences that underlie the 
decision-making process. Overall, both explicit and implicit messaging 
had positive impacts upon rule-enabling behavior with some general 
reductions identified in the total number of rules enabled. Additionally, 
security messaging, whether delivered implicitly or explicitly led to 
improvements in security scores. In Experiment 1 this improvement in 
security scores came at the expense of privacy scores suggesting that an 
explicit focus on security leads to a neglect of privacy. However, this 
same pattern was not evident in Experiment 2. Implicit privacy 
messaging, although leading to directional improvements in security 
and privacy scores failed to reach significance. However, explicit pri-
vacy messaging led to robust improvements in privacy scores while 
leaving security scores at similar levels to no prime. Security and privacy 
have been shown to concern users (McAlaney et al., 2018; Parks Asso-
ciates, 2019) and the current experiments demonstrate that highlighting 
security and privacy implications, explicitly or implicitly, can lead to 
measurable positive changes in behavior. 

It is perhaps unsurprising, intuitively, that explicit instructions result 
in a change of behavior. However, that there is a significant effect of 
implicit priming is perhaps a little unexpected on some counts, sug-
gesting as it does a relatively passive process, one of general sensitiza-
tion to a prevailing cognitive activity and its generalization beyond its 
immediate context. Implicit messaging in other domains (e.g., food 
preference decisions; Whalen et al., 2018) is considered a strong driver 
of decision making though so it is also not entirely unreasonable to 
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suspect that similar processes could possibly influence security and 
privacy related decisions. We would encourage further testing on the 
efficacy of implicit messaging before it is advocated as a potential so-
lution for risky cyber behavior but from the present experiment it seems 
a useful avenue to pursue. 

Privacy and security seemingly operated in different ways across the 
experiments. In Experiment 1, explicit security messaging promoted an 
improvement in security at the expense of privacy while privacy 
messaging led to privacy improvements while keeping security rela-
tively intact compared to no prime. The pattern in Experiment 2 was 
slightly different with implicit security messaging increasing security 
scores while privacy scores also remained positive and not significantly 
different from no prime. However, the bundling of many conditions and 
many scenarios within our experimental design is unrepresentative of 
everyday life. This limitation may have had particular consequences 
here because of the way in which the many different conditions poten-
tially acted as a basis of comparison for each other, comparisons that 
would not ordinarily be available to the consumer. So, using a repeated 
measures design as we did in Experiment 1 runs the risk that when the 
participant comes to selecting a type of trigger-action rule, the selection 
will be a product in part of other judgments that have been made in 
other stages of the experiment. The asymmetry we observed may have 
been a quirk of cross-condition comparisons, ones absent from Experi-
ment 2, rather than revealing a genuine tendency to neglect privacy in 
favor of security. However, we can be confident that, in general, pri-
ming—implicit and explicit—does have the desired behavior change 
effects, even if we possibly need to be a bit circumspect about the trade- 
off observed in Experiment 1. 

6.1. Implications 

We argue that the novel method and findings provide a suitable base 
from which to build a body of evidence in what has been, until now, an 
under researched area. The outcome of our study also provides an evi-
dence base on which to begin suggesting practical steps for everyday 
use. Having a message that prompts users to focus on privacy or security 
leads to a significant reduction in rule enabling behavior and seemingly 
more cognitive control over the decision-making process. Such 
messaging could very easily be incorporated into trigger-action rule 
platforms at appropriate stages. For example, if a user is creating a 
trigger-action rule involving a smart lock then a message prompting the 
user to consider security risks may help mitigate some instances of risky 
rule-enabling behavior. Likewise, before a rule can be enabled, a 
reminder to consider privacy concerns (e.g., like Chong et al. 2018) may 
mitigate some users granting inappropriate access to social media sites 
or other personal details. Understandably, such rules being enabled, and 
access being granted to various sources, help generate revenue for 
various outlets (e.g., via advertising). However, at least some trade-off 
between encouraging the enabling of rules combined with explicit 
prompts to carefully consider the security and privacy implications will, 
in all likelihood, lead to further trust and uptake in the use of such 
platforms rather than risk users continuing to be averse to smart tech-
nology because of security and privacy concerns online (e.g., McAlaney 
et al., 2018; Parks Associates, 2019). 

The insight gained from the present experiments into traits driving 
rule-enabling decision-making means that tailored messaging could be 
incorporated within trigger-action rule platforms. For example, 
depending on the demographic age group of the user some additional 
security/privacy messaging may mitigate some riskier decisions among 
younger users. Additionally, questions asked when installing the app (e. 
g., selected from perceived benefits, Park et al., 2019 or trusting beliefs 
scales, Harborth and Pape, 2020; Malhotra et al., 2004) could lead to 
effective individually tailored messaging being presented to the user. 
The association of rule choice with age is consistent with results in other 
contexts and with attitude change with age more generally (e.g., Weller 
et al., 2011). It should be noted that, for smart home technologies, 

privacy concerns may reduce as time spent with the technology in-
creases (see e.g., Ghorayeb et al., 2021). A consequence is that we should 
not be complacent in thinking older adults will always be more cautious. 
Even cautious older users may eventually begin to adopt more rules after 
familiarization with trigger-action platforms. It may be the case that 
messaging needs to be introduced as the time spent with technology 
increases and, to complement our findings, future research may wish to 
further explore the relationship between age, messaging and rule choice 
but over extended periods of time. 

6.2. Limitations 

In studies like ours, there are very real issues about realism. They run 
the possibility that volunteers are invited to engage in a variety of hy-
pothetical and schematic scenarios—without material consequences for 
the individual—and in which they could feasibly either understate or 
perhaps even overstate the likely real-world reaction. Additionally, with 
instructions and incentives necessary to ensure engagement with tasks 
there is a danger too of participants using online studies as a game. Quite 
aside from issues of realism, there are also issues of representativeness, 
ones that can be manifest in many different forms. The outcomes of rule 
choices are not consequential in our study and, of course, the impera-
tives of safety and security are more real and consequential in the ‘real’ 
world. This suggests that we cannot be completely sure that what we 
have shown will also be observed in naturalistic settings. That being 
said, trigger-action rule platforms, such as IFTTT, are based online. 
Upon downloading and installing the app, suggested rules (e.g., ‘Get an 
email with the latest IFTTT updates’) are immediately presented to the 
user with activation achievable via a single click. In that sense, the de-
gree of difference between the current study—in which rules could be 
activated via a single click— and the platforms to which we investigated, 
are perhaps not so far removed. Future research would benefit from 
using interfaces more closely resembling the platforms of interest 
though to ensure a higher degree of overlap between the experimental 
and ‘real life’ setting. 

Somewhat relatedly, participants may have interpreted the 
messaging as part of the general ‘demand characteristic’ (Orne, 1962) of 
the experiment. That is, they will have guessed the purpose of the ex-
periments and complied with its explicit or implicit requirements. This 
possibly could be exacerbated by the Prolific experiment platform 
whereby participants receive approval ratings based on how well they 
perform in studies. A motivation to perform tasks in such a way that they 
enhance the experimenter’s outcome (and in-turn receive positive 
feedback) is thought to promote demand characteristics (e.g., Nichols 
and Maner, 2008). Future studies, with a further degree of realism as 
suggested previously may help to mitigate this issue further. 

6.3. Future work 

Certainly, in carrying the work forward the task should reflect the 
increasing complexity available to users when creating trigger-action 
rules (see Manca et al., 2019). Our task used rules that were single, 
isolated instances of IFTTT logic, therefore lacking the complexity and 
multifariousness of real-world settings. Combinations of rules, even two 
or three rules, will pose an appreciable challenge to the user (Huang and 
Cakmak, 2015) which will take on several forms. One is that the user 
will have to anticipate the implications for the safety of each rule, as we 
have done here. However, as the number of rules increases so does the 
cognitive load on decision making and short-term memory which is 
likely to be even more detrimental for security/privacy decision making 
(e.g., Morgan et al., 2018; Williams et al., 2017). The implication of 
complex rules will have to be considered in combination, posing yet 
further challenges which are likely to exceed mental capacity, and 
instead require the support of tools to chart the various combinations 
and associated consequences (Brackenbury et al., 2019; Ur et al., 2016) 
or be reliant on third-party tailored suggestions (e.g., Manandhar et al., 
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2020). There will also be emergent consequences that cannot be pre-
dicted from considering each rule in isolation and, as the level of 
complexity increases so do the demands on knowledge and under-
standing of the pragmatic consequences (Palekar et al., 2019). The 
precise effect all this will have on security and privacy for the individual 
user is currently unknown and clearly an important avenue of future 
research. It may be that users are aware of their own capacities and 
understanding and thus only adopt simple trigger-action rules. Howev-
er, it is also entirely possible this is not the case and that without formal 
systems of support (e.g., software mapping IFTTT networks which 
should undergo further development; Corno et al., 2019b) users may 
inadvertently increase their privacy and security risk as a result of 
incorporating ever more complicated sets of rules. 

Participants in our experiments were given pre-written rules which 
they could choose to enable. Trigger-action platforms usually include 
suggested rules and so this approach maintains some realism. However, 
on most trigger-action platforms users are also free to design their own 
rules, which is a departure from the present work. While messaging may 
help mitigate the enabling of suggested rules, whether this will extend to 
bespoke rules is beyond the scope of the present work. Future work 
should explore this, by giving participants more freedom to select which 
devices they would choose to include in the rules or by having them 
designing their own rules entirely and scoring those choices on security/ 
privacy. 

Finally, self-reported gender distribution among our participants was 
predominantly female. It was not our aim to research gender differences 
and the distribution of self-reported gender we obtained, unless specific 
controls are in place, is reflective of much psychology research. How-
ever, it should be acknowledged that research has suggested that the 
uptake and interest of smart home technology among women is lower 
than that of men (e.g., Strengers et al., 2019) with men tending to use 
them more in areas such as research and retail purchases (e.g., Canziani 
and MacSween, 2021). Future research may wish to explore whether 
there are gender influences upon rule-enabling behavior. 

7. Conclusion 

Overall, the current paper has highlighted the potential for unin-
tended and unforeseen security and privacy risks that using trigger- 
action rule platforms (e.g., IFTTT) impose upon the user. Prompting 
users with explicit or implicit priming messaging goes some way to 
mitigate these risks by encouraging the engagement of fewer trigger- 
action rules. Explicit priming has a positive effect on security (albeit 
at a cost to privacy) and privacy (with no cost to security) with implicit 
priming only having a positive effect on security and not privacy. 
Additionally, traits such as age, perceived benefits and trusting beliefs 
were shown to drive riskier trigger-action rule enabling behavior. As 
such, when designing privacy and security safety messaging for users of 
interconnected smart home devices, not only should developers ensure 
to bring these themes to the user’s attention but also consider these pre- 
existing traits when doing so. 
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Appendix A 

Trigger-action rules, along with their security and privacy 
weightings 

The first stage of the Delphi study had an exploratory character, and 
it involved the identification of meaningful rules that could practically 
be included in the study. Between rules suggested by the Delphi par-
ticipants and those provided by the authors (who acted as the Delphi 
administrators) 30 rules were created. Out of these 30 rules 20 were 
ultimately selected for inclusion in the study, based on a balance be-
tween expected privacy and security scores and the diverse use of 
devices. 

This appendix presents a corpus of 30 trigger-action rules that were 
identified for this study. Each rule comes with two scores from -5 to +5. 
These scores describe the judged severity of potential security and pri-
vacy implications for using this rule (i.e., a negative security score 
represents a potential security breach, while a positive score suggests 
that this rule strengthens the security of the smart home). Of these 30 
rules, 20 were selected for study. 

Notes on scoring: Our study has an explicit focus on the trigger-action 
rules, rather than other aspects of security and privacy. Our rules and 
scores have been selected to reflect this. In particular, it is important to 
acknowledge that connected devices can be compromised from more 
than one entry point. For example, research has shown that a single 
smart device that gets hacked can infect other smart devices (Ronen 
et al., 2017) and can lead to a larger breach in the house, such as an 
attack to the home network (Check Point, 2020). This is particularly 
important for our scenarios, as this means that if someone hacks one 
device/service, it is possible for them to trigger certain actions to others. 
So, the more rules one uses, the more vulnerable they are. In addition, 
there is the risk of the trigger-action service itself being compromised, 
which is an important extra consideration (Fernandes et al., 2018). 

Apart from a few exceptions (e.g., when completely irrelevant ser-
vices are included, such as social media or other online services), we 
have not taken these factors into account for our scoring, due to the 
complexity of the assumptions we would have to make about the hy-
pothetical user’s cybersecurity practices. Finally, we have not taken into 
account the security and privacy of single devices and services, such as 
the security vulnerabilities of smart locks (Ho et al., 2016) or the privacy 
implications of AI voice assistants (Vox, 2020), as our focus is on the 
added problems or solutions created by linking these devices and ser-
vices. However, future studies that may be willing to also consider 
factors like the above, may adjust scores accordingly. 

Here are the trigger-action rules that were adopted in the study along 
with their security and privacy scores, together with the rationale for 
each. To reiterate, the rules were presented to the participants without 
the scores and rationale. A list of rules not adopted follows them. 

Trigger-Action Rules and their weightings 
If my smart alarm triggers, call my phone.  

• security: +2. I have instant notification when something is potentially 
wrong (+3). A determined intruder could repeatedly set off the alarm 
without breaking in to reduce the owner’s perception that the alarm 
being triggered is linked to a security incident (-1).  

• privacy: 0. 

If a delivery driver arrives at my door, my smart lock notifies me and 
allows me to send a code to the driver that opens an outer door for 1 
minute to allow a delivery whilst I am running an errand. 
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• security: -3. The delivery driver has been given access to the property, 
albeit minimal and for a very limited time.  

• privacy: -0. 

Unlock the smart lock of my front door by voice (e.g., when I say ‘Alexa, 
unlock the door’, my front door unlocks).  

• security: -4. Someone might trick it by saying the phrase from outside 
(Symantec, 2017), and more recent work suggests that an adversary 
can control such systems by injecting laser-based voice commands 
from a great distance (Sugawara et al., 2020). Also explicitly ties the 
smart lock to an Amazon/Google account - thereby increasing the 
risk from a compromised online account.  

• privacy: -1: Ties the smart lock to an Amazon/Google account, i.e., 
Amazon/Google can build up data on patterns of behaviour, such as 
when someone is at home or out. 

Whenever my daughter uses her smartphone to open the smart lock in the 
house, send a notification to my smartphone.  

• security: 0. We assume that the daughter uses this instead of a 
physical key (so both a physical key and the smartphone can be 
stolen to gain unauthorised access to the house).  

• privacy: -2. I know the location of my daughter. 

When the smart thermostat detects that the temperature rises above 25 
degrees, slightly open the window.  

• security: -3. An adversary may attempt to raise the temperature from 
outside, e.g. by blocking an outside air conditioning fan].  

• privacy: -0. 

If a pair of shoes I have ‘liked’ on Instagram goes on a >20% sale, show it 
on my smart mirror when I brush my teeth in the morning.  

• security: 0.  
• privacy: -3. My Instagram ‘likes’ are shared with the smart mirror 

company. 

If I’m the last person in the house and leave, send a notification to my 
smartwatch if any window in the house is open.  

• security: +2. Makes sure that I don’t leave any windows open.  
• privacy: -2. The smart house knows where the rest of the household 

are (or at least that they are not at home). 

Five minutes before I need to leave for my next appointment (based 
on my calendar information), my smart mirror turns on and shows me 
the route I should take to drive there (or walk there, based on my pre-
vious behaviour).  

• security: 0.  
• privacy: -3; My smart mirror connects to my calendar and knows my 

current and future location. 

If my smart mattress detects that I’m sleeping and someone rings the 
doorbell, do not ring the bell (so as not to wake me up).  

• security: -2. Ringing the bell is a common way for burglars to scope a 
house.  

• privacy: -2. The smart doorbell has knowledge of my sleeping habits. 

Every time my smart alarm changes mode (i.e., becomes armed or dis-
armed), track this in a Google Spreadsheet so that I keep a record. 

• security: -2. Someone may hack or otherwise access my Google ac-
count and get access to whether my alarm is armed or not, or derive a 
pattern.  

• privacy: -0. 

When my smart lock becomes locked, arm my smart alarm.  

• security: +2. I will not forget to arm my smart alarm.  
• privacy: 0. 

When my smart lock becomes unlocked, disarm my smart alarm.  

• security: -3. The alarm is not armed if I forget to lock my door, or if I 
don’t lock the door when I am inside; if the smart lock is hacked/ 
tricked then the smart alarm is also disarmed.  

• privacy: 0. 

When a Google Calendar event matches a phrase I choose (e.g., whenever 
the event ’Dog Walker’ starts), disarm my smart alarm system.  

• security: -2. Someone can hack my calendar account; some people 
have automatic addition to the calendar of events from social media 
or have events automatically added to their calendar from emails.  

• privacy: -0. 

When I arrive home, cameras on my smart lock use facial recognition in 
combination with smart watch fitness data to detect my mood and play 
different types of music accordingly.  

• security: 0.  
• privacy: -3. The music service and the smart lock service can collect 

and track my mood data. 

When someone rings the smart doorbell and the facial recognition algo-
rithm on the camera of my doorbell recognizes that it’s my sister, unlock the 
door and disarm the alarm.  

• security: 0. We assume that the facial recognition algorithm is very 
accurate and cannot be fooled (i.e. iPhone grade, such that it cannot 
be fooled by a photograph) and we ignore issues similar to the ones 
reported with smart lock authorization management. In that sense it 
is still safer than giving a physical key to a family member (+1). 
However, it still connects the smart lock to the alarm (-1).  

• privacy: -2. The picture of my sister is given to the smart alarm 
company. 

When the camera on my smart doorbell detects an unknown/suspi-
cious person (e.g., someone that lingers in my property for over 20 
seconds), send a photograph of that person and a text message to my 
neighbours.  

• security: +2. The neighbours can be on the lookout.  
• privacy: -3. The person whose picture is being taken and shared has 

not consented to that. If done on a scale can lead to a more collective 
breach of privacy and mass surveillance (Paul, 2019). 

When my connected car moves into a 30m radius from my home, open the 
garage door and disarm the alarm.  

• security: -2. Someone who steals the car can also enter the house; 
someone may wait outside and sneak in when the car approaches.  

• privacy: -0. The smart garage door and the smart alarm company 
have some location data of my car, but that is minimal and incon-
sequential (only when the car enters a geofenced location). 

Whenever I click a physical button near the front door when I’m 
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leaving the house: i) turn off all my smart lights, ii) turn down the 
temperature to 20 degrees on my smart thermostat, iii) turn off all 
electricity on my smart plugs, iv) arm my smart alarm, v) close the 
window blinds.  

• security: 0. Provides a comprehensive security setup, i.e., I will not 
forget to set up the alarm (+1). It is a pattern of life indicator (-1).  

• privacy: -0. 

If the supermarket I usually go to has an offer on products that I usually 
buy, show a notification on the screen of my smart fridge.  

• security: 0.  
• privacy: -3. My buying habits are shared between the supermarket 

chain and the smart fridge company. 

If any local supermarket has an offer on products similar to the ones I 
usually buy, show a notification on the screen of my smart fridge.  

• security: 0.  
• privacy: -4. My buying habits and my potential purchases are shared 

between many supermarket chains and the smart fridge company. 

Rules not included in experiments 
As part of the Delphi Study the following rules were suggested/ 

developed but not adopted: 
If it is after midnight and my smart alarm becomes armed, create a 

‘scene’ (dim the living room lights to 20% and the kitchen lights to 40% 
so that it seems that someone is inside).  

• security: +1. It gives an occupancy cue to a casual observer or 
opportunistic burglar (+2). Criminals who are engaging in recon-
naissance activities are likely to realise this pattern, which also gives 
a false sense of security (-1).  

• privacy: 0. 

When I arrive home (based on my phone’s location sensing), disable the 
smart alarm of the house.  

• security: -2. Someone may steal my smartphone and gain access. 
Someone may spoof the location data of my phone and gain access.  

• privacy: -0. 

When my smart lock gets unlocked, change a little light in my living 
room to green; When my smart lock gets locked, change a little light in 
my living room to red (so that I know the status of my front door at all 
times).  

• security: -3. Essentially a visual indicator from outside whenever the 
door is locked/unlocked.  

• privacy: -0. 

When a drone arrives at my window carrying the food I ordered online, 
open the window so that the drone can get in.  

• security: -3. Someone can follow the drone from outside and take 
advantage of the open window. Someone can mount a camera on the 
drone and record/see what is happening inside my house.  

• privacy: -2. Someone can mount a camera on the drone and record/ 
see what is happening inside my house. 

If the facial recognition algorithm on the camera of my smart door-
bell recognizes someone that I’ve been exchanging messages with on 
Tinder, then initiate a romantic ‘scene’ (turn the lights to an appropriate 
colour, initiate a romantic playlist on Spotify, turn up the thermostat to 
28 degrees).  

• security: 0.  
• privacy: -3. My smart alarm bell system/company has information 

about my social network activities. 

If it is sunny and I am out of the house, activate the robotic lawn mower.  

• security: -1. An attacker with knowledge of the rule will identify if I 
am away.  

• privacy: -0. 

If I am close to a specific supermarket (based on my smart phone loca-
tion), my smart fridge checks the contents of my fridge and sends me a 
shopping list.  

• security: -1. My smart fridge is aware of how far away from the house 
I am.  

• privacy: -1. My smart fridge stores consumer data and can manipulate 
purchasing behaviours. 

If I open my treat cupboard more than 5 times within a 12 hour period, 
then donate £1 to the Childhood Obesity Foundation.  

• security: 0. Someone who is aware of this rule (e.g., a friend/visitor) 
can open the cupboard. But the impact would be minimal.  

• privacy: 0. 

When my blood glucose level drops below a certain value, buzz my 
smartphone.  

• security: 0.  
• privacy: 0. 

When the soil in my plants dries out, send a notification to my phone to 
water them.  

• security: 0.  
• privacy: 0. 

Appendix B 

The introduction to smart home devices and associated descriptions 
presented at stage 1 of the experiment are shown below. In addition to 
the text, participants also saw an accompanying image of the smart 
device being described. 

Smart homes use smart devices that are constantly connected to the 
internet. These devices can send messages and information to other 
devices, users and service providers; and they can receive messages and 
instructions from other devices, users and providers. You can control 
smart devices through a control panel in your home, an app on your 
smartphone or tablet (via the cloud), or any Internet-connected com-
puter. Some examples of current and future smart home devices include: 

Smart locks replace traditional door locks. Typically, they come with 
a mobile or web/desktop app that you can use to lock and unlock the 
door with an icon tap on your smartphone, add permanent and tempo-
rary users and set access schedules for specific days and times. Besides 
front doors, the same concept can be used to open, close and manage 
smart garage doors and smart windows. 

Smart doorbells are equipped with a camera that can record audio and 
video when someone (e.g., a visitor or a trespasser) is in view. They can 
send notifications or call the owner’s smartphone when someone presses 
the doorbell button and can enable the owner to speak to whoever is at 
the door via their smartphone or other internet-connected device. 

Smart alarms (or smart home security systems) are sophisticated, 
internet-connected burglar alarms. They include the functionality of 
smart locks and smart doorbells, but they also come with contact sen-
sors, motion detectors and sirens. They can be armed, disarmed, 
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managed and monitored by an internet connected device such as a smart 
phone, a tablet or a computer. 

Smart lights systems consist of internet-connected lightbulbs. This 
means that one can power the lightbulbs on and off, and adjust the 
brightness and colour for any lightbulb or groups of lightbulbs from any 
internet connected device. 

In-home voice assistants are smart speakers that use Artificial Intel-
ligence to interact, converse and take voice commands from the in-
habitants of a smart home. Examples include Apple’s HomePod, 
Amazon’s Echo and Google Home. 

Smart thermostats connect the home heating system to the internet 
and let you change the temperature, switch the heating on or off, and 
create and manage heating schedules from any internet connected 
device. 

Smart mirrors are internet-connected mirrors that can also display 
information, such as time, weather, calendar, news etc. 

Smart fridges are connected to the internet and have an interactive 
display. So, the fridge can use internet resources (e.g., look up recipes), 
send or receive messages from a smartphone, or be managed by the 
interactive display or a smartphone app (e.g., control the temperature or 
track the contents via an internal camera). 

Smart window blinds can be opened and closed via an internet con-
nected device. 

Smart plugs are plugged into power outlets and can transform home 
appliances into smart devices. These devices can then be controlled and 
managed with an app via any internet-connected device. So, one can 
turn on and off the plugged-in devices, but also monitor their energy 
consumption. 

Connected cars are vehicles with internet access. This allows devices, 
both inside (e.g., sensors and on-board computers) and outside the car 
(e.g., other cars, houses, and infrastructure), to interact with each other. 

Appendix C 

The below outlines the implicit tasks used in Experiment 2: 
No Prime Condition: This was the control condition inasmuch as it was 

neutral with regard to security or privacy. This condition used as a 
decision-making activity involving two tasks that required participants 
to select between two smart light-bulbs based on their features 
(Table C1). By way of example, one of these tasks was as follows: 

‘A friend of yours has decided to buy smart light bulbs for their new 
home. After an internet search you come across the following table. 
Based on the characteristics of the two smart light bulbs below, which 
product would you recommend to your friend?’ 

Security Prime Condition: Participants were implicitly primed to think 
about the security of their home by performing two exercises that asked 
them to select which of two houses was more likely to be burgled based 
on eight characteristics of each house (Table C2). This exercise was 
adapted from previous literature on decision-making among expert and 
novice residential burglars (Garcia-Retamero and Dhami, 2009) and one 
of the two problem-solving tasks follows: 

‘Based on the description of the two residential properties below, 
which one do you think would be more likely to be burgled?’ 

Privacy Prime Condition: Participants were implicitly primed to 
think about the privacy of their data by requiring them to perform two 
exercises that asked them to select between which application they 
would be willing to install on their smartphone (Table C3). The first 
exercise asked them to select between two calorie trackers and the 
second between word games. 

One of the exercises was as follows: 
‘You have decided to track your calories, because you are concerned 

that you have started putting on some weight lately. After an internet 
search you come across the following table describing two popular 
calorie tracker applications for your smartphone. Which one would you 
install? 
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