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stract

kground
VID-19 infected millions of people and increased mortality worldwide. Patients w
ected COVID-19 utilised emergency medical services (EMS) and attended emergen
artments, resulting in increased pressures and waiting times. Rapid and accur
ision-making is required to identify patients at high-risk of clinical deterioration f
ing COVID-19 infection, whilst also avoiding unnecessary hospital admissions. O
y aimed to develop artificial intelligence models to predict adverse outcomes in s
ted COVID-19 patients attended by EMS clinicians.
thod
ked ambulance service data were obtained for 7,549 adult patients with suspect
VID-19 infection attended by EMS clinicians in the Yorkshire and Humber region (En
) from 18-03-2020 to 29-06-2020. We used support vector machines (SVM), extre
dient boosting, artificial neural network (ANN) models, ensemble learning methods a
stic regression to predict the primary outcome (death or need for organ support with
ays). Models were compared with two baselines: the decision made by EMS clinicia
onvey patients to hospital, and the PRIEST clinical severity score.
sults
the 7,549 patients attended by EMS clinicians, 1,330 (17.6%) experienced the prima
come. Machine Learning methods showed slight improvements in sensitivity over ba
results. Further improvements were obtained using stacking ensemble methods, t

t geometric mean (GM) results were obtained using SVM and ANN as base learn
n maximising sensitivity and specificity.
nclusions
se methods could potentially reduce the numbers of patients conveyed to hospital wi
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out a concomitant increase in adverse outcomes. Further work is required to test the models
externally and develop an automated system for use in clinical settings.
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Introduction and Background

Following the first occurrence of the SARS-CoV-2 virus in late 2019, the virus spre
kly and led to the global COVID-19 pandemic, threatening the health and lives
lions of people world-wide. Emergency medical services (EMS) in the UK reported
hree times the expected number of emergency calls during the first and second wa
he pandemic, an increase also observed in other parts of Europe (Jensen et al. (202
oks et al. (2021)). Surges in demand led to some EMS in the UK declaring ma
dents and warning of care being compromised by overwhelming demand. In order
age and meet the demands on these services during such times, and to optimise t
of limited available health care resources, risk assessment tools are required. Th
ls identify patients at greatest risk of adverse outcomes whilst simultaneously avoid
rwhelming emergency and hospital services with patients who will not deteriorate
ire hospital treatment. Managing this clinical risk for patients with COVID-19
ion is complex, and currently relies on rapid assessment by health care professiona
hine learning (ML) and artificial intelligence (AI) have the potential to support hea
professions with their clinical decision-making.

Advances in ML and AI methods have enabled more accurate predictive models
developed to improve decision-making relating to the treatment and management
ients, as well as improving the organisation and delivery of health services (Ali et
22); Ali and Feng (2019); Ala et al. (2021)). Developing and applying such tools for u
ing the COVID-19 pandemic, as well as for future pandemics, could help create bet
ls to support decision-making, helping alleviate pressures on EMS and prioritise care
ements. Early reviews of the use of AI for tackling COVID-19, by Nguyen et al. (202
Abd-Alrazaq et al. (2020), identified five main uses of AI against the disease: diagn
treatment and vaccines, epidemiology, patient outcomes and infodemiology. ML a
methods offer advantages over traditional methods of analysis (Jamshidi et al. (202
t may be of particular benefit for tackling the problems arising from the pandemic.

The rapid spread of the virus and dramatic increase in infections around the world, g
ed a significant volume of patient-related data. AI methods are particularly suited
dling and analysing large datasets (Jamshidi et al. (2020); Abd-Alrazaq et al. (2020
are adept at learning from patterns in data as they emerge over time. In recent yea
methods have been developed and applied in a variety of clinical contexts to impro
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decision-making when accuracy and speed of decision-making is vital: the COVID-19 pan-
demic also requires accurate and rapid decision making to reduce the risk of complications
and
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mortality in patients.

Jamshidi et al. (2020) and Nguyen et al. (2020) reviewed the use of AI for medical di
is using imaging and value-based data. Whilst the former paper discusses the potent
I approaches for overcoming COVID-19 related challenges using a variety of strategi
latter paper focused on the use of AI for analysing data from medical images, t
public conversations (e.g., Twitter) and news feeds, and smartphone-based data su

ocation.

In order to prioritise the treatment of COVID-19 patients by EMS, efforts have be
e to improve methods of diagnosing the condition and of identifying patients at gre
risk of deterioration and adverse health outcomes. Abd-Alrazaq et al. (2020) identifi
early studies that had used AI for outcome-related functions, including assessing t
rity of the disease (n=9), predicting progression to severe COVID-19 (n=4), predict
pital length of stay (n=1) and mortality (n=2) and identifying predictors of mortal
1). Given the need for prioritising EMS during the COVID-19 pandemic, we w
rested in developing models to predict adverse health outcomes, which could be us
riage the need for hospitalisation, among patients for whom suspected or confirm
VID-19 infection had been recorded by EMS clinicians.

Despite the work demonstrating the potential of AI in combating the COVID-19 pa
ic, there have been challenges in relation to the available data. An important limitat
sing AI for developing predictive models in medicine is that many of these models are
risk of bias (Wynants et al. (2020)), due to the small size of the datasets that may

ilable for training, and then testing, the classification models. For example, in a rec
ew by Munetoshi and Hashimoto (2021), it was reported that the median number
s in datasets that use AI to make clinical scores was 214. The review of the use of
tackling COVID-19 by Abd-Alrazaq et al. (2020) reported that half of the datasets co
red in their review included fewer than 1000 patients. Training predictive models us
ll numbers of cases makes the classification models more prone to overfitting and lea
high risk of bias. Studies utilising a greater number of cases are therefore required

er to develop better predictive models: our study utilised data from over 7,500 patien
ed on a priori sample size calculations outlined below (Marincowitz et al. (2022)),
uce the risk of overfitting and bias.

The aim of our study was to use statistical and AI methods to develop models th
ld help predict whether patients with suspected COVID-19 would experience adve
lth outcomes within 30 days of an initial assessment by EMS staff, and compare th
h decisions made using an existing tool and by EMS staff. We propose a hybrid mod
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which merges the benefits of: (a) statistical, (b) machine learning and (c) deep learning
methods, using a stacking ensemble approach. The proposed approach was useful for pre-
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ing patients at high risk and suggested that the performance of the stacking ensem
els outperform the individual models. We utilised a data set containing sufficient ca
evelop appropriate predictive models. More specifically, the objectives were to us
ge of AI and statistical approaches to i) predict which patients with suspected COVI
would require in-hospital organ support or would die from COVID-19 within 30 da
heir initial assessment, ii) identify which features/variables from patient records wou
port this decision-making, and iii) identify which models/methods offer improved p
ances under different operating points.

We applied the prediction model risk of bias assessment tool (PROBAST, Moons et
19)) to assess the risk of bias and verify that our proposed models were at low risk
. Additionally, the TRIPOD guidelines (Collins et al. (2015)) for reporting predict
els performance were followed to evaluate the machine learning methods and logis
ession. In summary, the main contributions and novel aspects of this paper are tha
cribes:

• The application of statistical and machine learning based models to predict adve
outcomes in patients with suspected Covid-19, using data from clinical assessme
of patients by EMS clinicians.

• The integration of classical and deep learning models in an ensemble framework
determine the benefit of both types of models and demonstrate how the propos
framework helps in improving the predictions of high risk patients.

• A comparative evaluation of the different proposed models, based on TRIPOD gui
line recommendations for model development.

• The potential for these to models to be deployed and used by EMS to aid rapid r
assessment of COVID-19 patients.

The remainder of this paper is organised as follows: the proposed methods are present
ection 2, including a description of the data and the problem definition. This sect
uss the data used in this work and the prediction models used to build the propos
sifiers. Model performance and feature importance are presented in Section 3 a
ussed in Section 4. Finally, a summary of the work is provided in Section 5.

Method

In this section we describe the methods used in the study. First, we describe the da
rces used (2.1), before presenting the problem definition, i.e., the outcome of inter
ur study (2.2). Section 2.3 briefly describes the range of methods of imputation
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handling missing data, before describing the method (Section 2.4). Details of our sample
size estimates and how predictor variables were selected are presented in 2.5. Section 2.6
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cribes the prediction models we developed for the analyses, including logistic regress
.1), support vector machines (2.6.2), gradient boosted decision trees (2.6.3), neural n
ks (2.6.4), and the stacking ensemble method (2.6.5). The metrics used for evaluat
performance of the models are described in Section 2.7. Details of ethical approval
vided in Section 2.8.

Data

Access to anonymised patient-level data from electronic health care records was p
d by Yorkshire Ambulance Service (YAS) NHS Trust in the UK. YAS serves a popu
of 5.5 million citizens in Yorkshire and Humber and in 2020/2021 received more th
0,000 emergency (999) calls.

EMS clinicians complete an electronic patient care record (ePCR) each time they
d an emergency call, which records presenting patient characteristics and clinical care
andardised manner. YAS provided a dataset of ePCR data for EMS responses betwe
26th March 2020 and 25th June 2020 where a clinical impression of suspected or co
ed COVID-19 infection had been recorded. The dataset consisted of patient identifie
ographic data, measured physiological parameters and other available clinical inform
. In order to measure outcomes (i.e., 30-day mortality/organ support) following t
ts, EMS attendances were linked to routinely collected COVID-related general pract
) records, emergency department attendance and hospital inpatient admission, inclu
critical care, by the NHS Digital service in England. This service manages health a
al care data on behalf of the UK National Health Service (NHS) (NHS Digital, 202
th registration data were obtained from the UK Office of National Statistics (ONS
final cohort consisted of all adult patients (aged 16 years and over) at the time of fi
ex) attendance by EMS during the study period with a clinical assessment of suspect
onfirmed COVID-19 infection, and who had been successfully traced by NHS Digit
purposively identified a cohort of patients with suspected COVID-19 infection becau
he absence of universal accurate rapid COVID-19 tests for patients with symptoms
ting possible infection at that time, this is the population that EMS clinicians had
ically risk-stratify.

Outcome

In terms of the problem definition, we defined the primary outcome as death, or requi
t for renal, respiratory, or cardiovascular organ support within 30 days of the ind
ndance. Information on outcomes, y, was obtained from death registration and criti
data in the patient record. The outcome prediction was modelled as a binary class
on problem, in which an event is to be predicted as either an adverse outcome (y =
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or no adverse outcome (y = 0). Prediction of the outcome was undertaken using four algo-
rithms, namely logistic regression (LR), support vector machine (SVM), gradient boosting
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ision trees (XGBoost) and artificial neural networks (ANNs). Brief descriptions of ea
hese algorithms are provided in Section 2.6.

Managing missing data

Clinical/medical data can be limited by the number within the samples and/or t
unt of data that are missing. Removing cases from the sample due to there be
sing values is not considered good practice, because this further reduces the numb
ases for analysis. As an alternative, data imputation algorithms can be applied
lace the missing values with reasonable values. Data imputation methods can be g
ly grouped into three categories: statistical methods, which estimate the underly
a distribution and replace missing values by drawing values from the estimated d
ution; machine learning based methods, which learn the data distribution from t
ning samples in order to reconstruct the training samples; and hybrid combinations
h statistical and machine learning methods.

Genetic algorithms (GA) Galán et al. (2017) are optimization algorithms, inspired
ogical evolution, to find a good approximation to search problems. They have be
eloped in the computational sciences and used, in conjunction with imputation me
, to find optimal sets of values to replace the missing data and have been used.
study we employed a standard approach within health/medical sciences for handl
sing data: Multiple imputation by chained equations (MICE). Multiple imputation
sidered superior to more basic methods such as complete-case analysis, missing in
r and single imputation methods (Pedersen et al. (2017)). The MICE approach u
observed data to estimate a set of plausible values for the missing data, reflecting t
ertainty in missing value estimation, reducing bias and giving more accurate standa
rs. The approach relies on the correct specification of imputation models and assum
a are missing at random.

The MICE algorithm imputes missing values by modelling each variable with mi
values as a function of other variables in a round-robin style, by which all variab
h missing values are equally chosen in a rotational order. This usually starts w
variable with the least number of missing values. Let the set of sorted variables

2, v3, ..., vk−1, vk; with v1 and v2 complete variables and v3 having the least numb
issing values. Initially, all missing values are randomly filled. The first variable w
least number of missing values, v3, is then regressed on the other variables, and th
es are estimated from the posterior predictive distribution of v3. This process is
ted in turn for all other variables with missing values in one cycle. The imputat
nds are repeated for k rounds/cycle (in this work k=50), or until the stopping criter
et (max(abs(vt − vt−1))/max(abs(v[knownvalues])) < tolerancevalue). The Impu

6
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tion package from SKlearn (Bisong (2019)) and the Mice package in R (Van Buuren and
Groothuis-Oudshoorn (2011)) were used to implement the MICE algorithm.
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Predictor variables

Physiological parameters were extracted from the first set of clinical observations reco
he EMS clinicians. Comorbidities were included if recorded within 12 months before t
EMS attendance. Immunosuppressant drug prescriptions documented in GP reco

hin 30 days before the index attendance, contributed to the immunosuppression com
ity variable. Frailty in patients older than 65 years was derived from the latest record
ical Frailty Scale (CFS) score (Rockwood et al. (2005)) (where it was recorded) in t
tronic GP records prior to index attendance. Patients under the age of 65 years w
given a CFS score since it this not validated in this age group.

Sample size estimate and variable selection

A priori, and for the original analyses (Marincowitz et al. (2022)), we assessed t
ired sample size on the estimated precision of the area under the receiver operat
racteristic (AUC) curve based on a likely 5% event rate in a cohort of 6000 patie
yerberg et al. (2001)).

A priori sample size estimation suggested around 30 predictors could be assessed
usion. Candidate predictor variables were selected using both statistical and clini
gement. Expert clinicians within the project team reviewed the list of candidate pred
for clinical feasibility. Variables were excluded if they had a high proportion of miss
a (>50%) or high collinearity. Predictor selection for logistic regression modelling w
ducted using least absolute shrinkage and selection operator (LASSO) analysis. T
l set of predictors corresponded to ∼50 events per predictor parameter (Beleites et
13)).

Prediction Models

The aim of our research was to apply statistical and AI methods to determine h
y might improve the performance of predictive models, both on their own and when t
dictions are combined using ensemble methods. We therefore employed the follow
blished statistical and machine learning methods to predict the adverse outcome
ients: logistic regression, support vector machine, gradient boosting decision trees a
ficial neural networks. This section briefly describes these classification techniques a
their predictions are combined using a stacking ensemble framework. To enable us
sure the performance of the models more reliably, we used 10 fold cross-validation w
rounds of imputations was employed to develop the models discussed above. Fina
average classification performance metrics from all of the 10-fold cross-validations w
ained.
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2.6.1. Logistic regression

Logistic regression (LR) models have been used frequently in prediction and analysis
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several clinical applications and injury severity (Delen et al. (2017)). They can estim
probability of an adverse outcome event as a prediction result (1, adverse outcom
o adverse outcome). Moreover, the coefficients of the logistic regression reflect t
tribution of each predictive feature to the adverse outcome event (the target). Thus, o
be able to get an estimated prediction, and identify the most important contribut
ors related to the adverse outcome. Logistic regression models can be presented as:

p(y) = f(aX+ c)

ere p(y) is the probability of having an adverse outcome, y ∈ {0, 1}, c is the mo
stant, X is the vector of the predictor variables and a is the vector of the regress
fficient of these variables. In this study 26 predictor parameters were used (Table
2). The probability, p(yi), should be close to either 0 or 1, therefore it is best to us
oid function. Thus the probability of adverse outcome and no adverse outcome eve

respectively be described by py=1 = π and py=0 = 1− π, where π = ec+aX

1+ec+aX

Logistic regression assumes linearity in the logit for continuous predictors. Where t
not the case, fractional polynomial transformations were used. The method also rel
ow multicollinearity. Where variables were highly correlated, clinical experts were co
ed and only the recommended variable was entered into the variable selection proce
ur implementation of LR, shrinkage and internal bootstrap validation processes w
loyed to reduce the likelihood of over-fitting.

2. Support Vector Machine

Support Vector Machine (SVM) (Vapnik et al. (1995)) is one of the most common
d machine learning models in supervised learning for classification problems, due to
ity to handle non-linear data and its reduced tendency for overfitting compared to oth
niques (Hua et al. (2005)). To predict the outcome, the algorithm classifies the da
the two classes utilizing the optimal hyperplane. The hyperplane is selected bas

the maximum margin from the nearest points. Let the training instances be express
xi, yi) where i = 1, 2, . . . , N , yi denotes the class of instance xi, and N indicates t
ber of instances. The algorithm finds two parallel hyperplanes that can separate t
a, and maximise their distance. This distance is calculated by dual formulation us
range’s multiplier α:

Minimize L =
l∑

i=1

αi −
1

2

l∑

i,j=1

αiαjyiyjk(xixj)

where k(xixj) is the kernel function of SVM. Appropriate parameters for the SV
ely the kernel function, cost, and gamma were set for this analysis based on the p
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formance on a small development set. It was observed that a linear kernel suits this
application more than the non-linear kernel and therefore it has been used in this work.
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3. Gradient Boosted Decision Trees

XGBoost (XGB, Chen and Guestrin (2016)) is an improved version of Gradient Boost
ision Trees (GBDT), which is a machine learning method that works by combining
emble of K weak models fk(x) from a space of regression trees F = {f(x) = wq(x
reate more accurate models Friedman et al. (2000). Each fk is a function with weig
RT and independent tree structure q with T leaves, such that q : Rm ← T map

of features x into the corresponding leaf index. In particular, for a set of data with
ures, K additive functions are used to predict the i-th output:

ŷi = ϕ(xi) =
K∑

k

fk(xi), fk ∈ F ,

ere xi ∈ Rm, is the feature vector of the i-th input. The core of the algorithm is bas
learning the set of functions with the objective that minimizes the difference betwe
actual outcome y and the predicted outcome ŷ via the following loss function L:

L(ϕ(xi)) =
∑

k

(yi, ŷi) +
∑

Ω(fk),

ere Ω(fk) is a regularization term that helps smooth the learning of the weights
vent over-fitting.

4. Artificial Neural Networks (ANNs)

Artificial Neural networks (ANNs), often referred to as “neural networks” or “n
ks”, are well known for their self-learning, using self-error correction mechanisms a
linear mapping abilities, to achieve high performance. They can potentially improve t
diction of adverse outcomes by learning and exploiting non-linear relationships betwe
various patient characteristics and the adverse outcome.
During the training process, at the output layer, the processed data were compar
h the ground truth outcomes (i.e., the actual observations) and the error was fed ba
he network to update its weights/parameters. This is the process of back-propagati
ch fine-tunes the weights of the neural network based on the error rate obtained in t
vious epoch, with the ultimate aim of minimising the error, E, in achieving the tar
es.

E =
∑

µ

Eµ =
∑

µ,j

(tµj − oµj )

re oµj is the output of the j-th node when a set of input vectors sµi and target values
introduced into the neural network. The initial set of weights used in back-propagat
) are randomly selected, and hence, there is a risk of reaching a locally optimal

9
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of weights. In addition to this risk, neural networks also have other limitations, the pri-
mary ones being the need for very large volumes of data and the computing resources
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ired. In our specific applied scenario, resource limitations did not have an impact
performance of our model, as we used a dedicated high performance machine. Ho
r, a discussion of the impact of different sizes of data sets on our model performan
utside the scope of this paper. In our model, there were four layers, the input lay
dense-ReLU hidden layers and an output layer. The input layer contained 26 nod
esponding for the 26 patient characteristics features, while the output layer had o
e, to represent whether the output was an adverse case or not. The overall netwo
refore had a 26:128:64:1 architecture, i.e., that it had 26 input nodes for the indep
t variables, 128 and 64 nodes in the first and second hidden layers respectively, and o
put, Sigmoid-activated, node in the final layer for the dependent variable. The neu
ork was implemented in Python, using the Keras library (Gulli and Pal (2017)).

5. Stacking ensemble method

Ensemble learning is a mechanism for collaborative decision-making that aggregates t
isions (predictions) of multiple models to produce new (probably better) predictio
re are several ensemble learning techniques in literature however, the most comm
s are: (a) Bagging (Breiman (1996)), (b) Boosting (Schapire (1990)), Stacking (Wolp
92)) and Mixture of Experts (Jacobs et al. (1991); Jordan and Jacobs (1994); Laso
l. (2014)). Despite of several ensemble methods are presented in literature, find
ood ensemble configuration is still not a trivial task and depends on the target a
ation. In this work, the stacking ensemble learning technique is used. Stacking, a
ed stacking generalisation, was first proposed by (Wolpert (1992)), and is a hierarchi
emble technique that aims to combine the strengths of multiple prediction methods
st the prediction accuracy. In particular, the predictions of multiple models, referr
s base-models, are fed into a second-level model, referred to as a meta-learner. T
a-learner is then trained to optimally combine the predictions of base-learners, to fo
al set of predictions. An example of its use in medical research is to predict occurren
ajor adverse cardiovascular events in patients with acute coronary syndromes (Zhe
l. (2021)). A simplified diagram of stacking is shown in Figure 1. With regards
cting the meta-learner, Wolpert (1992) stated that a simple linear model could do v
l since all the classification efforts were completed by the base-learners.

In this study, a logistic regression model was used as the meta-learner, and differ
binations of SVM, XGB and ANNs were used as base-learners, resulting in four differ
ances of stacking ensemble models.

Evaluation Metrics

The accuracy of the predictions of the adverse outcome was assessed using the AU
referred to as the c-statistic, a measure of the goodness fit of the model. This gi
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 Meta-learner 
Final 
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Predictions 2

Predictions .
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Figure 1: A sketch of stacking ensemble framework.

probability of a model correctly predicting the patients with higher risk. Unlike oth
rics, it does not require a particular threshold value. However, the AUC is not enou
ts own to evaluate performance on imbalanced data (Zou et al. (2016); Grund and Sab
10)). Thus, typically, the negative predictive value (NPV) and positive predictive va
V) measures are also reported together with the sensitivity (the % of true positive ca
, that experienced an adverse outcome] that were correctly identified by each metho
specificity (the % of true negative cases [i.e., that did not observe the adverse outcom
t were correctly identified as false cases), and the geometric mean, GM, of the sensitiv
specificity:

Sensitivity =
TP

TP + FN

Specificity =
TN

FP + TN

GM =
√
sensitivity x specificity

NPV =
TN

TN + FN

PPV =
TP

TP + FP

re TN (the number of true negatives), FN (the number of false negatives), TP (t
ber of true positives) and FP (the number of false positives) were calculated fo

11
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particular operating point (also referred to as cut-off point) on the AUC curve.
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ical experts based on the requirements of the application. Choosing an operating po
t has a high sensitivity is common practice in several clinical applications (Gulsh
l. (2016); Abràmoff et al. (2013); Philip et al. (2007)), as this minimises the number
e negatives. This is particularly desirable for the COVID-19 pandemic, because ca
ted earlier were more likely to survive. However, there is inevitably a trade-off betwe
easing the sensitivity, which is typically associated with a decrease in specificity. W
refore used two operating points in separate models for each algorithm, the first
imise the sensitivity and the second to maximise the specificity.

In the research literature, setting the operating points is varied according to the app
on. For example, Abràmoff et al. (2013) chose a pre-selected set point on the AUC
ch a sensitivity of 96.8% was reported for detecting referable diabetic retinopathy
publicly available Messidor-2 data set. This point was associated with a specificity
%, PPV of 39.8% and NPV of 98.5%. Valente et al. (2021) considered a cut-off thre
that achieved a sensitivity of 80% in predicting the level of mortality risk after acu
nary syndrome. This cut-off was associated with NPV and PPV values of 99% a
respectively. In developing the PRIEST tool, Marincowitz et al. (2021) selected a p
ed probability threshold that led to high NPV (this also implies high sensitivity), b
h a relatively high PPV (i.e., at least 96.5% NPV and a minimum PPV of 28% ). Th
rictions were associated with a sensitivity of 99% but the specificity was reduced to 7

Other studies have selected operating points at which the F1 measure (the harmo
n of sensitivity and precision) was maximum, as used by Vaid et al. (2020), and wh
cut-off was calculated separately for each folder to maximize the F1 measure. T
shold for the final model was then computed as the median of those per-fold threshol

Using the baseline PRIEST scoring tool (Marincowitz et al. (2022)), the best perf
ce achieved on the same data set used in this study was: sensitivity 97%, specific
, NPV 98%, PPV 26%. In this study, a cut-off that achieved an NPV of at least 9
a PPV of at least 26% was used as the operating point for the developed classificat
els for predicting adverse outcomes.

Ethical Approval

The North West-Haydock Research Ethics Committee gave a favourable opinion on t
NTED study on 25th June 2012 (reference 12/NW/0303) and on the updated PRIE
y on 23rd March 2020, including the analysis presented here. The Confidential
isory Group of the NHS Health Research Authority granted approval to collect da
hout patient consent in line with Section 251 of the National Health Service Act 20
ess to data collected by NHS Digital was recommended for approval by its Independ

12
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Group Advising on the Release of Data (IGARD) on 11th September 2021 having received
additional recommendation for access to GP records from the Profession Advisory Group
(PA
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G) on 19th August 2021.

Results

Sample characteristics

The study cohort derivation and the characteristics of the 7,549 adult patients
marised in Tables 1 and 2, for the overall sample and according to whether the p
ts experienced the adverse outcome or not. The sample is described in further det
where. (Marincowitz et al. (2022)). In brief, the mean age of patients was 60 ye
=20) and 52.5% of the sample was female (n=3960). The mean number of medicatio
g taken was 3.4 (SD=3.3). In total, 1,330 patients (17.6%, 95% CI:16.8% to 18.5
erienced one or more of the primary outcomes (i.e., death or organ support). Patie
experienced adverse outcomes were generally older than those who did not, and w

ing higher numbers of medications. A higher proportion of those who experienced
erse outcome were males (57.3%; n=760).

The variables listed in Tables 1 and 2 form the predictors (e.g., gender, number
rent medications, comorbidities and clinical frailty scores, etc.) used in the propos
diction models. All reported results are based on the average of ten cycles of ten-f
s-validation experiments.

Model performance

Table 3 presents the results for the four separate prediction methods in comparison w
baseline results, i.e., EMS clinician and PRIEST clinical severity score (Marincow
l. (2022)), at the two different operating points, i.e., to maximise sensitivity (3
specificity (3b), whilst also restricting the region of performance to have NPV a
values of at least 0.98 and 0.26 respectively. Three of the methods (LR, SVM a

B) showed slight improvements in sensitivity over the study baseline results report
viously (Marincowitz et al. (2022)) with no major differences among these metho
y all achieved AUC scores between 0.86-0.87 and geometric means (GM) of sensitiv
specificity between 0.62–0.65. These three methods also showed improved performan
pared to the baseline when maximising specificity (3b). However, the ANN mo
formed better overall when compared to these methods at both operating points w
h a higher specificity, geometric mean and AUC. It achieved GMs of 0.83 and 0
he first and second operating points respectively, and AUC of 0.90 and 0.86, alb
h greater variability at both operating points. Figure 2 shows the Receiver Operat
racteristic (ROC) curves for the individual LR, SVM, XGB and ANN models.
In order to improve the prediction of patients with high risk of adverse outcome,
bined the predictions of these classifiers to produce optimal predictive models us

13
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Table 1: Patient Characteristics

Ch tal,
%)

49
Ag (20)

(45,77)
to 105

Ge 90 (47.5)
60 (52.5)

Nu 49
cu (3.3)
me 0,6)

o19

Co 0 (5.1)
30 (29.5)
80 (18.3)
75 (31.4)
15 (16.1)
0 (2.3)
0 (2.4)
5 (1.5)

Cl 10 (81.3)
50
(5.8)
0 (31.4)
0 (62.8)

Gl 82
Sc .6 (1.3)

(15,15)
o 15

*T he nearest 5,

wh
Jo
ur

na
l P

re
-p

ro
of

aracteristic Statistic/level Adverse No adverse To
outcome, n (%) outcome, n (%) n (

N 1330 (17.6)* 6220 (82.4)* 75
e (years)* Mean (SD) 74.5 (15.4) 56.9 (19.4) 60

Median (IQR) 78 (65,86) 56 (42,73) 59
Range 19 to 103 16 to 105 16

nder* Male 760 (57.3) 2825 (45.4) 35
Female 570 (42.7) 3390 (54.6) 39

mber of N 1330 6220 75
rrent Mean (SD) 4.5 (3.3) 3.2 (3.3) 3.4
dications* Median (IQR) 4 (2,7) 2 (0,5) 3 (

Range 0 to 19 0 to19 0 t

morbidities* Cardiovascular disease 95 (7) 290 (4.6) 38
Chronic respiratory disease 375 (28) 1855 (29.8) 22
Diabetes 390 (29.2) 995 (16) 13
Hypertension 610 (45.8) 1765 (28.4) 23
Immunosuppression 280 (21.1) 930 (15) 12
Active malignancy 60 (4.6) 115 (1.9) 18
Renal impairment 55 (4.1) 125 (2) 18
Stroke 30 (2.3) 85 (1.4) 11

inical frailty* N/A (age <65 years) 330 (47.5) 3985 (86.4) 43
Missing 645 1605 22
1-3 20 (4.7) 40 (6.4) 60
4-6 75 (20.5) 240 (37.7) 31
7-9 270 (74.8) 350 (55.9) 62

asgow Coma N 1297 6085 73
ale Mean (SD) 13.7 (2.4) 14.8 (0.8) 14

Median (IQR) 15 (14,15) 15 (15,15) 15
Range 3 to 15 3 to 15 3 t

o comply with NHS digital disclosure guidance totals for these variables are rounded to t

ich may result in apparent disparities in the overall totals .
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Table 2: Patient Characteristics (continued)

Ch tal,
(%)

AC
62 (91.8)
3 (4.2)
4 (2.5)
(1.1)
(0.5)

Di 07
(m .1 (16.5)

(72,93)
to 193

Sy 09
(m 9 (23.9)

8 (123,152)
to 238

Pu 33
(b .7(20.1)

(82,110)
to 194

Re 60
(b .4 (8)

(18,28)
to 84

Ox 5
74 (49.6)
8 (13.3)
8 (7.5)
84 (29.5)

Bl 03
(m 2 (3.4)

2 (5.2,7.7)
9 to 35
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aracteristic Statistic/level Adverse No adverse To
outcome, n (%) outcome, n (%) n

VPU Missing 13 58 71
Alert 1002 (76) 5860 (95.1) 68
Confusion 125 (9.5) 188 (3.1) 31
Voice 100 (7.6) 84 (1.4) 18
Pain 64(4.9) 21 (0.3) 85
Unresponsive 27 (2) 7 (0.1) 34

astolic BP N 1278 6029 73
mHg) Mean (SD) 76.7 (17.7) 84.5 (15.9) 83

Median (IQR) 76 (65,87) 84 (74,94) 83
Range 0 to 193 22 to 167 0

stolic BP N 1277 6032 73
mHg) Mean (SD) 133.2 (25.8) 140.2 (23.2) 13

Median (IQR) 132 (116,148) 139 (124,153) 13
Range 65 to 238 33 to 237 33

lse rate N 1303 6130 74
eats/min) Mean (SD) 100.2 (22.5) 96(19.5) 96

Median (IQR) 99 (84,115) 94 (82,109) 95
Range 38 to 194 7 to 190 7

spiratory rate N 1315 6145 74
reaths/min) Mean (SD) 30.1 (10) 23.1 (6.9) 24

Median (IQR) 28 (22,36) 20 (18,26) 22
Range 0 to 76 0 to 84 0

ygen saturation Missing 36 109 14
>95 on air 142 (11) 3532 (57.8) 36
94-95 on air 134 (10.3) 854 (14) 98
92-93% on air 109 (8.4) 449 (7.3) 55
<92% on air or O2 given 910 (70.3) 1274 (20.9) 21

ood glucose N 982 4021 50
mol/L) Mean (SD) 8.1 (4) 6.9 (3.2) 7.

Median (IQR) 6.8 (5.6,9) 6 (5.2,7.3) 6.
Range 0.9 to 35 1.1 to 33.8 0.

mperature (°C) N 1301 6115 74
Mean (SD) 38.1 (1.2) 37.8 (1.1) 37
Median (IQR) 38.2 (37.4,38.9) 37.7 (37,38.5) 37
Range 32 to 42 34 to 41.7
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Table 3: Performance of individual algorithms using the first (high sensitivity) and second (high specificity)
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ating points.The baseline models were the decision by the EMS clinicians whether to convey
ent to hospital or not and the recommendation arising from the use of the PRIEST clinical seve
e (Marincowitz et al. (2022)).

Model Sensitivity Specificity npv ppv GM AUC
seline EMS clinician 0.84 0.39 0.92 0.23 0.57 NA

PRIEST score 0.97 0.41 0.98 0.26 0.63 0.83±0.01

High

LR 0.98 0.43 0.99 0.27 0.65 0.87±0.01

sitivity

XGB 0.98 0.39 0.99 0.26 0.62 0.86±0.02
SVM 0.98 0.41 0.99 0.26 0.63 0.86±0.01
ANN 0.96 0.72 0.99 0.43 0.80 0.90±0.09

High

LR 0.93 0.64 0.98 0.37 0.77 0.87±0.01

ecificity

XGB 0.95 0.56 0.98 0.31 0.72 0.86±0.02
SVM 0.94 0.60 0.98 0.33 0.75 0.86±0.01
ANN 0.95 0.77 0.98 0.48 0.86 0.90±0.09

stacking ensemble method (as discussed in Section 2.6.5). Table 4 shows the resu
the four ensemble methods in comparison with the baseline results (i.e., EMS clinic
ssment and PRIEST clinical severity score). Overall, the ensemble models show
r improvements and consistent increase in the prediction measures when compared
individual models, with AUC values of 0.95 for three of the four stacked ensem
els at both operating points. The best GM results were obtained when stacking SV
ANN as base learners at both operating points. The best GM was achieved at t
nd operating point for this ensemble with a relative difference of 4%, compared to t
formance of the same model operating at the first operating point. Figure 3 shows t
C curves for the ensembled models presented in Table 4.

Feature Importance

Feature importance ranking is important to help develop understandable and int
table ML models. However, this is very challenging for deep learning methods due
nature of combinatorial optimization and the nested non-linear structure within th
hods. Although recently several attempts have been made to understand the imp
ce of features within deep learning methods (Doshi-Velez and Kim (2017); Wojtas a
n (2020)), they are still in their initial stages of development and beyond the scope
study. In this section, we therefore only discuss the feature importance of the lin
els.

Table 5 lists the coefficients/weights considered by the linear models LR, SVM a
B. The LR coefficients are exponentiated standardised coefficients. The weights giv
the different features by the SVM classifier are normalised by the largest weight,
uce the effect of the high variation among those weights. The coefficients of the XG
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Figure 2: The ROC curves of the individual models.

ever, are normalised by their count and multiplied by a 100, such that the column su
00%.
It can clearly be seen from Table 5 that the distribution of feature relevance varies co
rably according to the three different classifiers and is unbalanced across the individ
ures. While SVM mainly considered the patient’s level of consciousness (ACVPU
B gave most weight to oxygen saturation, with much lower weights to other variabl
uding age and severe frailty. Overall, while the XGB selected all features, the SV
sifier selected (in a descending order) ACVPU, oxygen saturation, frailty, comorbid
sex. Logistic regression (LR) highlighted oxygen saturation, level of consciousness a
as the most important features. The importance of these features was also report
the papers reviewed in (Wynants et al. (2020)).

Discussion

The aim of this study was to develop and improve prediction models for identify
erse health outcomes for patients with suspected COVID-19 in a pre-hospital setti
ohort of patients with suspected, as opposed to confirmed, infection was used as t
ects the population that EMS clinicians had to risk stratify clinically. We used a co
ite health outcome measure of in-hospital organ support or death within 30 days
ial assessment by EMS clinicians. While predicting inpatient admission or oxygen th
is likely to vary in different settings, developing more accurate predictive models us
methods could help ensure necessary care is provided for those most at risk of se
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le 4: Performance of stacked ensemble algorithms using the first (high sensitivity) and second (h
ificity) operating points. The baseline models were the decision by the EMS clinician whether
ey the patient to hospital or not and the recommendation arising from the use of the PRIEST clin
rity score (Marincowitz et al. (2022)).

Model Sensitivity Specificity npv ppv GM AUC
seline EMS clinician 0.84 0.39 0.92 0.23 0.57 NA

PRIEST score 0.97 0.41 0.98 0.26 0.63 0.83±0.01

High

SVM,XGB 0.98 0.42 0.99 0.26 0.64 0.86±0.01

sitivity

ANN,SVM 0.96 0.73 0.99 0.45 0.84 0.95±0.01
ANN,XGB 0.95 0.73 0.98 0.43 0.83 0.95±0.01
ANN,SVM,XGB 0.99 0.47 0.99 0.29 0.68 0.95±0.01

High

SVM,XGB 0.93 0.60 0.98 0.33 0.74 0.86±0.01

ecificity

ANN,SVM 0.92 0.83 0.98 0.57 0.88 0.95±0.01
ANN,XGB 0.90 0.83 0.98 0.53 0.86 0.95±0.01
ANN,SVM,XGB 0.90 0.83 0.98 0.53 0.86 0.95±0.01

Figure 3: The ROC curves of the stacking models.
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le 5: Feature Importance for LR, SVM and XGB Models (the higher levels of importance within e
el are highlighted in green for emphasis).

LR SVM X
ature Value Rank Value Rank Value
e 6.11 3 0.00 - 5.24
mber of medications 0.88 21 0.00 - 1.55
mperature 0.98 20 0.00 - 1.52
lse rate (manual) 1.42 13 0.00 - 1.34
ood sugar level 1.23 14 0.00 - 1.55
stolic blood pressure 0.63 25 0.00 - 1.58
spiratory rate 2.10 7 0.00 - 2.70
rdiovascular Disease 0.68 24 0.08 6= 1.80
ronic respiratory disease 0.86 22 0.01 12= 2.03
abetes 1.63 10 0.08 6= 1.80
pertension comorbidity 1.15 16 0.00 - 1.34
munosuppression (including steroid use) 1.03 18 0.01 12= 1.34
alignancy 2.61 5 0.05 9 1.24
nal impairment 1.20 15 0.03 10= 1.58
oker 0.72 23 0.00 - 1.28
evious Stroke 1.64 9 0.00 - 1.03
x 1.58 11 0.03 10= 2.09
oderate frailty 0.42 26 0.06 8= 1.91
vere frailty 1.01 19 0.11 5 3.03
VPU - confusion 1.11 17 0.06 8= 1.50
VPU - voice 1.47 12 73.5 3 2.63
VPU - pain 3.77 4 89.1 2 3.35
VPU - unresponsive 6.18 2 100.0 1 2.62
94-95% on air 1.94 8 0.00 - 1.56
92-93% on air 2.44 6 0.01 12= 1.93
<92% on air or O2 given 7.71 1 0.31 4 50.47
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ous adverse outcomes, whilst reducing unnecessary transfers and the risk of hospitals and
EMS services being overwhelmed by demand, which was an important problem during the
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VID-19 pandemic. To the best of our knowledge, this is the first study of its kind
stigate applying ML methods to enhance the predictive ability of decision-making
S clinicians for patients with suspected Covid-19. Our use of ensemble methods in t
ect is novel and adds to the knowledge base on using ML methods for decision-mak
linical practice.

The use of risk prediction models in clinical decision-making requires trade-offs. T
is between overall accuracy, sensitivity and specificity. Given the serious consequen
ot transporting a patient with suspected COVID-19 to hospital, e.g., who subsequen
or requires intensive care support, we aimed for our machine learning models to achie
same sensitivity (0.97) as the PRIEST clinical severity score (Marincowitz et al. (202
decision-making alone and corresponded to a non-conveyed patient having a 1/50 (NP
) risk of subsequent deterioration, without sacrificing the specificity of current pract
leading to large increase in patients transported to hospital. Although a useful co

ator for performance of developed predictive models, EMS decision-making to trans
ients to hospital is not made solely on the basis of the risk of deterioration. Decisio
need to account for clinical best interest decisions not to convey patients to hospi
subsequently deteriorate, especially at the end-of-life, when palliation may be app
te, or the patient wishes not to be conveyed.

XGB, LR and SVM models could achieve theoretical gains in the sensitivity of pred
, whilst maintaining specificity, leading to overall gains in discrimination. Stacking
hods led to further gains in accuracy and their use in clinical settings could lead
uctions in hospital conveyance with a reduced risk of non-conveyed patients deterior
Stacking of ANN, SVM and XGB achieved a sensitivity 0.99, specificity of 0.47 and

C of 0.95. However, increased accuracy of these methods comes at the cost of increas
plexity and reduced interpretability. The PRIEST clincial severity score can be ma
y calculated and is based on physiological parameters already used by EMS clinicia
isk assess patients as part of the National Early Warning Score (NEWS2), alongs
, sex and performance. Logistic regression modelling used to develop the PRIEST cl
severity score achieved similar measures of accuracy and calibration to LR, SVM a
B modelling in this study (Goodacre et al. (2021)). However, following consultat
h clinical stakeholders, a simplified scoring system based on NEWS2 was derived
er to improve clinical useability at the cost of accuracy. ANN and stacked predict
hods offer significant gains in accuracy, but use a greater number of variables and t
diction methods are not transparent and would require automation of individual pred
to allow implementation. The ‘black box’ nature of prediction may have implicatio
acceptability for both patients and clinicians. In addition, the PRIEST clinical sev
score has been externally validated in different settings (Suh et al. (2021); Marincow
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et al. (2022)). Our machine learning models would require both the ability to be practically
implemented by EMS clinicians and external validation before they could be used clinically.
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A strength of our study is in the relatively large numbers of cases (>7,500) availa
the analyses, including 1330 cases with adverse outcomes (17.6%). This compa
urably with other studies developing prediction models for COVID-19 using AI me
. In a recent review, Abd-Alrazaq et al. (2020) reported that half of the included stud
fewer than 1000 patients. Having small numbers of cases can lead to overfitting a
eased risk of bias. Our a priori sample size calculations were based on an estimat
cision of the area under the ROC curve based on a likely 5% event rate in a coh
000 patients (Steyerberg et al. (2001)). The sample size estimation suggested 30 p
ors could be assessed for inclusion in the models (we included 26). The number
uded variables were reduced on the basis of clinical feasibility, the level of missing da
igh collinearity.

However, our machine learning models have only been internally validated and due
tential) over-fitting, may not perform as well when applied to new datasets. The da
obtained were from a single region in the UK (Yorkshire and Humber) and featu
d by the models may be less applicable to other settings. Further testing of our mod
other data would therefore be required to validate the models externally, and to ass
clinical impact of using these methods for triage alongside clinical judgement. Ad
ally, these data were collected during the first lockdown period in the UK (Marc
e 2020), a period before the COVID-19 virus had mutated significantly, and before v
tions and universal reliable COVID tests were available. Further testing of the mod
data collected from patients in more recent phases of the pandemic is required to t
durability of our models in the light of changes in the virus and the pandemic.

As described previously, our study used a combined adverse outcome of a patient dy
equiring organ support within 30 days of their initial visit by the EMS. It is possi
t the model performance and feature importance may have differed if these outcom
been assessed separately: however, our aim was to develop models that predicted

come which identified patients in definite need of hospital care. This would priorit
for those who need it most and help to minimise the risk of hospitals and EMS be

rwhelmed during the pandemic. Further research could develop predictive models
se separate outcomes and compare the features (variables) contributing to the pred
s.

Our study focused on the effectiveness of the machine learning models and compar
se with clinical decision-making and existing triage tools: our aim was not to exam
efficiency of these methods, and clearly this would require further work, i.e., to comp
computation times of the developed approaches. Further work is required for these M
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models to be implemented into routine practice, and more research would be needed to
demonstrate how such models can be operationalised effectively and efficiently. A robust
pro a
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spective evaluation would be needed to demonstrate the effectiveness and safety in
-hospital clinical setting.

Further work could also usefully explore what other forms of data collected by EM
ht help improve the effectiveness of these algorithms. For example, the textual no
t EMS clinicians record could potentially be a rich source of data, as well as oth
ient details. These records might yield insights into the possibilities of patients dev
g complications that require hospital admission, the need for organ support, as well
of death during Covid-19 infection. The use of text mining methods, such as Natu
guage Processing (NLP), could be used to extract features to refine predictive mod
her.

Conclusion

This study provides new evidence regarding the potential of machine learning metho
evelop models for prediction of adverse health outcomes in patients with suspect
VID-19 within 30 days of being assessed by an EMS clinician. When compared w
sfer decisions made by EMS clinicians at the time of assessment, and the previou
orted PRIEST tool (Marincowitz et al. (2022)), the proposed models performed bet
redicting who was at risk of requiring organ support and/or dying, and therefore w
in most need of hospital care. Compared with the PRIEST tool, the XGB meth
onstrated a relative improvement in performance by 3.6%, SVM by 3.5%, ANNs
and LR by 4.8%. When the models were stacked, there was further improvement

formance: the best overall performance was obtained when stacking the ANN and SV
els, which showed an improved relative performance over the PRIEST tool by 14.5

The work demonstrates the potential of ML methods to support the decision-mak
ront-line EMS clinicians in assessing the severity of patients with suspected COVI
The proposed ML methods could be applied to help clinicians in identifying patie
igh risk of adverse outcomes using data gathered from patients with high PPV ra
ging from 31-48%), considerably higher than the PRIEST tool or the EMS clinicia

The developed models could therefore help both identify patients most likely to ne
tment in hospital whilst avoiding overwhelming hospital and emergency services w
e numbers of patients. In other words, these models could potentially lead to red
s in the numbers of patients conveyed to hospital without a concomitant increase
erse outcomes. The research is also important in that it provides an understanding
relative importance of specific patient features in the decision-making process with
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the predictive models, overcoming the problems traditionally associated with ‘black box’
technologies. Across the methods for which the importance of these features could be
ran nd
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ked, oxygen saturation, the patient’s level of consciousness, their level of frailty a
appeared the most important. These features concurred with those previously id
d in (Wynants et al. (2020)) and those in the PRIEST tool (Marincowitz et al. (2022

Further research is required to validate the findings externally, and to develop and t
ol to automate the prediction of the risk of adverse outcome, so that the methods c
utilised by EMS clinicians in practice. This would also require the computatio
iency of the algorithms to be compared, and optimised, in order to balance bo
urate and timely decision-making. Further work could also investigate the use of N
extracting features from the textual notes of EMS clinicians within electronic reco
to investigate other methods (e.g., genetic algorithms) for dealing with missing da
mmon problem when utilising data from clinical records.
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RapidandaccurateassessmentofsuspectedCOVID-
19patientsisrequiredtoidentify at-risk patients 

Our machine learning models provided better predictive 
performance than existing triage methods item There were some 
differences in the features selected between the machine learning 
algorithms 

Oxygen saturation, a patient’s level of consciousness and frailty 
were the most important features 

These models could be deployed to provide more accurate 
predictions of patient outcomes 



Journal Pre-proof

Decla

The a  
that 
Jo
ur

na
l P

re
-p

ro
of

ratio if ioterettt

uthors declare that they have no known competnn  nancial interests or personal relatonships
could have appeared to infuence the work reported in this paper.


